20,630 research outputs found

    Quantum Branching Programs and Space-Bounded Nonuniform Quantum Complexity

    Get PDF
    In this paper, the space complexity of nonuniform quantum computations is investigated. The model chosen for this are quantum branching programs, which provide a graphic description of sequential quantum algorithms. In the first part of the paper, simulations between quantum branching programs and nonuniform quantum Turing machines are presented which allow to transfer lower and upper bound results between the two models. In the second part of the paper, different variants of quantum OBDDs are compared with their deterministic and randomized counterparts. In the third part, quantum branching programs are considered where the performed unitary operation may depend on the result of a previous measurement. For this model a simulation of randomized OBDDs and exponential lower bounds are presented.Comment: 45 pages, 3 Postscript figures. Proofs rearranged, typos correcte

    Complexity of Restricted and Unrestricted Models of Molecular Computation

    Get PDF
    In [9] and [2] a formal model for molecular computing was proposed, which makes focused use of affinity purification. The use of PCR was suggested to expand the range of feasible computations, resulting in a second model. In this note, we give a precise characterization of these two models in terms of recognized computational complexity classes, namely branching programs (BP) and nondeterministic branching programs (NBP) respectively. This allows us to give upper and lower bounds on the complexity of desired computations. Examples are given of computable and uncomputable problems, given limited time

    Quantum vs. Classical Read-once Branching Programs

    Full text link
    The paper presents the first nontrivial upper and lower bounds for (non-oblivious) quantum read-once branching programs. It is shown that the computational power of quantum and classical read-once branching programs is incomparable in the following sense: (i) A simple, explicit boolean function on 2n input bits is presented that is computable by error-free quantum read-once branching programs of size O(n^3), while each classical randomized read-once branching program and each quantum OBDD for this function with bounded two-sided error requires size 2^{\Omega(n)}. (ii) Quantum branching programs reading each input variable exactly once are shown to require size 2^{\Omega(n)} for computing the set-disjointness function DISJ_n from communication complexity theory with two-sided error bounded by a constant smaller than 1/2-2\sqrt{3}/7. This function is trivially computable even by deterministic OBDDs of linear size. The technically most involved part is the proof of the lower bound in (ii). For this, a new model of quantum multi-partition communication protocols is introduced and a suitable extension of the information cost technique of Jain, Radhakrishnan, and Sen (2003) to this model is presented.Comment: 35 pages. Lower bound for disjointness: Error in application of info theory corrected and regularity of quantum read-once BPs (each variable at least once) added as additional assumption of the theorem. Some more informal explanations adde

    One-Tape Turing Machine and Branching Program Lower Bounds for MCSP

    Get PDF
    For a size parameter s: ? ? ?, the Minimum Circuit Size Problem (denoted by MCSP[s(n)]) is the problem of deciding whether the minimum circuit size of a given function f : {0,1}? ? {0,1} (represented by a string of length N : = 2?) is at most a threshold s(n). A recent line of work exhibited "hardness magnification" phenomena for MCSP: A very weak lower bound for MCSP implies a breakthrough result in complexity theory. For example, McKay, Murray, and Williams (STOC 2019) implicitly showed that, for some constant ?? > 0, if MCSP[2^{??? n}] cannot be computed by a one-tape Turing machine (with an additional one-way read-only input tape) running in time N^{1.01}, then P?NP. In this paper, we present the following new lower bounds against one-tape Turing machines and branching programs: 1) A randomized two-sided error one-tape Turing machine (with an additional one-way read-only input tape) cannot compute MCSP[2^{???n}] in time N^{1.99}, for some constant ?? > ??. 2) A non-deterministic (or parity) branching program of size o(N^{1.5}/log N) cannot compute MKTP, which is a time-bounded Kolmogorov complexity analogue of MCSP. This is shown by directly applying the Ne?iporuk method to MKTP, which previously appeared to be difficult. 3) The size of any non-deterministic, co-non-deterministic, or parity branching program computing MCSP is at least N^{1.5-o(1)}. These results are the first non-trivial lower bounds for MCSP and MKTP against one-tape Turing machines and non-deterministic branching programs, and essentially match the best-known lower bounds for any explicit functions against these computational models. The first result is based on recent constructions of pseudorandom generators for read-once oblivious branching programs (ROBPs) and combinatorial rectangles (Forbes and Kelley, FOCS 2018; Viola 2019). En route, we obtain several related results: 1) There exists a (local) hitting set generator with seed length O?(?N) secure against read-once polynomial-size non-deterministic branching programs on N-bit inputs. 2) Any read-once co-non-deterministic branching program computing MCSP must have size at least 2^??(N)

    Characterization and Lower Bounds for Branching Program Size using Projective Dimension

    Get PDF
    We study projective dimension, a graph parameter (denoted by pd(G)(G) for a graph GG), introduced by (Pudl\'ak, R\"odl 1992), who showed that proving lower bounds for pd(Gf)(G_f) for bipartite graphs GfG_f associated with a Boolean function ff imply size lower bounds for branching programs computing ff. Despite several attempts (Pudl\'ak, R\"odl 1992 ; Babai, R\'{o}nyai, Ganapathy 2000), proving super-linear lower bounds for projective dimension of explicit families of graphs has remained elusive. We show that there exist a Boolean function ff (on nn bits) for which the gap between the projective dimension and size of the optimal branching program computing ff (denoted by bpsize(f)(f)), is 2Ω(n)2^{\Omega(n)}. Motivated by the argument in (Pudl\'ak, R\"odl 1992), we define two variants of projective dimension - projective dimension with intersection dimension 1 (denoted by upd(G)(G)) and bitwise decomposable projective dimension (denoted by bitpdim(G)(G)). As our main result, we show that there is an explicit family of graphs on N=2nN = 2^n vertices such that the projective dimension is O(n)O(\sqrt{n}), the projective dimension with intersection dimension 11 is Ω(n)\Omega(n) and the bitwise decomposable projective dimension is Ω(n1.5logn)\Omega(\frac{n^{1.5}}{\log n}). We also show that there exist a Boolean function ff (on nn bits) for which the gap between upd(Gf)(G_f) and bpsize(f)(f) is 2Ω(n)2^{\Omega(n)}. In contrast, we also show that the bitwise decomposable projective dimension characterizes size of the branching program up to a polynomial factor. That is, there exists a constant c>0c>0 and for any function ff, bitpdim(Gf)/6bpsize(f)(bitpdim(Gf))c\textrm{bitpdim}(G_f)/6 \le \textrm{bpsize}(f) \le (\textrm{bitpdim}(G_f))^c. We also study two other variants of projective dimension and show that they are exactly equal to well-studied graph parameters - bipartite clique cover number and bipartite partition number respectively.Comment: 24 pages, 3 figure

    A Generalized Quantum Branching Program

    Full text link
    Classical branching programs are studied to understand the space complexity of computational problems. Prior to this work, Nakanishi and Ablayev had separately defined two different quantum versions of branching programs that we refer to as NQBP and AQBP. However, none of them, to our satisfaction, captures the intuitive idea of being able to query different variables in superposition in one step of a branching program traversal. Here we propose a quantum branching program model, referred to as GQBP, with that ability. To motivate our definition, we explicitly give examples of GQBP for n-bit Deutsch-Jozsa, n-bit Parity, and 3-bit Majority with optimal lengths. We the show several equivalences, namely, between GQBP and AQBP, GQBP and NQBP, and GQBP and query complexities (using either oracle gates and a QRAM to query input bits). In way this unifies the different results that we have for the two earlier branching programs, and also connects them to query complexity. We hope that GQBP can be used to prove space and space-time lower bounds for quantum solutions to combinatorial problems.Comment: 21 page

    On the size of binary decision diagrams representing Boolean functions

    Get PDF
    AbstractWe consider the size of the representation of Boolean functions by several classes of binary decision diagrams (BDDs) (also called branching programs), namely the classes of arbitrary BDDs of real time BDD (RBDD) (i.e. BDDs where each computation path is limited to the number of variables), of free BDDs (FBDDs) (also called read-once-only branching programs), of ordered BDDs (OBDDS) i.e. FBDDs where variables are tested in the same order along all paths), and binary decision trees (BDTs).Using well-known techniques, we first establish asymptotically sharp bounds as a function of n on the minimum size of arbitrary BDDs representing almost all Boolean functions of n variables and provide asymptotic lower and upper bounds, differing only by a factor of two, on the minimum size OBDDs representing almost all Boolean functions of n variables.We then, using a method to obtain exponential lower bounds on complexity of computation of Boolean functions by RBDD, FBDD and OBDD that originated in (Breitbart, 1968), present the highest such bounds to date and also present improved bounds on the relative economy of description of particular Boolean functions by the above classes of BDDs. For each nontrivial pair of BDD classes considered, we exhibit infinite families of Boolean functions representable much more concisely by BDDs in one class than by BDDs in the other

    On computational power of classical and quantum Branching programs

    Get PDF
    We present a classical stochastic simulation technique of quantum Branching programs. This technique allows to prove the following relations among complexity classes: PrQP-BP ⊆ PP-BP and BQP-BP ⊆ PP-BP. Here BPP-BP and PP-BP stands for the classes of functions computable with bounded error and unbounded error respectively by stochastic branching program of polynomial size. BQP-BP and PrQP-BP stands the classes of functions computable with bounded error and unbounded error respectively by quantum branching program of polynomial size. Second. We present two different types. of complexity lower bounds for quantum nonuniform automata (OBDDs). We call them "metric" and "entropic" lower bounds in according to proof technique used. We present explicit Boolean functions that show that these lower bounds are tight enough. We show that when considering "almost all Boolean functions" on n variables our entropic lower bounds gives exponential (2c(δ)(n-logn)) lower bound for the width of quantum OBDDs depending on the error δ allowed
    corecore