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Abstract 

We consider the size of the representation of Boolean functions by several classes of binary 
decision diagrams (BDDs) (also called branching programs), namely the classes of arbitrary 
BDDs of real time BDD (RBDD) (i.e. BDDs where each computation path is limited to the 
number of variables), of free BDDs (FBDDs) (also called read-once-only branching programs), 
of ordered BDDs (OBDDS) i.e. FBDDs where variables are tested in the same order along all 
paths), and binary decision trees (BDTs). 

Using well-known techniques, we first establish asymptotically sharp bounds as a function of 
n on the minimum size of arbitrary BDDs representing almost all Boolean functions of 
n variables and provide asymptotic lower and upper bounds, differing only by a factor of two, 
on the minimum size OBDDs representing almost all Boolean functions of n variables. 

We then, using a method to obtain exponential lower bounds on complexity of computation 
of Boolean functions by RBDD, FBDD and OBDD that originated in (Breitbart, 1968), present 
the highest such bounds to date and also present improved bounds on the relative economy of 
description of particular Boolean functions by the above classes of BDDs. For each nontrivial 
pair of BDD classes considered, we exhibit infinite families of Boolean functions representable 
much more concisely by BDDs in one class than by BDDs in the other. 

1. Introduction 

Binary decision diagrams (BDDs) play an important role in several application 

areas including VLSI design, pattern recognition, decision table programming, and 
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Computer aided design (CAD). Thus they have attracted a great deal of attention both 
from theoreticians [3,6-l 1,15,16,19,24,29,30,32,34-383 and from applied re- 
searchers [1,2,4,5,12-14,18,20,27,28,31]. 

Theoreticians used restricted classes of branching programs for proving exponen- 
tial lower bounds on computational complexity of different problems [29,30,32, 
34-38,23,21]. It appears that it is easier to develop lower bound techniques for 
branching programs than for Turing machines and yet both these models have an 
equivalent computational power. Recently, it was shown that lower bound techniques 
developed for branching programs can be extended to obtain nonlinear lower bounds 
for VLSI circuit complexity [21]. 

Engineering community has advocated using BDDs and OBDDs as a CAD 
specification language for Boolean functions [4,12]. The use of OBDDs, rather than 
arbitrary BDDs, facilitates the solution of various analysis and synthesis problems. 
However, there has been concern in the CAD community with the size of OBDDs 
representing particular Boolean functions. 

These considerations have generated considerable interest in the comparative 
complexity of a Boolean function description by different BDD models. 

Formally, a BDD is a labeled directed acyclic graph with the following properties: 
1. There is exactly one source node. 
2. Each nonsink node has outdegree 2, is labeled by a Boolean variable, and is 

called an internal node. 
3. Each internal node has one outgoing edge labeled by 0 and the other labeled 

by 1. 
4. Each sink node is labeled by 0 or 1, and is called a terminal node. 
By the size of BDD A, denoted by L(A), we mean the number of internal nodes of A. 

Let n (n > 1) be a number of Boolean variables that are used to label BDD nodes. For 
each assignment to the variables labeling a given BDD, there is a unique path from the 
source node to a terminal node. A Boolean function f(xi, . . . . x,) (where n 2 0) is 
computed (or represented) by a given BDD if for each sequence of n Boolean values 
u = cI1, . ..) c1,, the path corresponding to a ends with a terminal node whose label is 

f(a 1, . . ..a.). 
A real-time BDD (RBDD) is a BDD for which the length of each path does not 

exceed n, where n is the length of the input word. A free BDD (FBDD) is a BDD for 
which each path has at most one occurrence of each variable. An ordered BDD 
(OBDD) is a FBDD such that the order of occurrences of variables on all its path is 
consistent with some linear order, i.e. if variable x occurs before variable y on some 
path, then there is no path where y occurs before X. A binary decision tree (BDT) is 
a BDD for which each node has indegree at most one. 

The relative succinctness of two BDD classes can be captured by results showing 
that there are functions succinctly representable via BDDs in the first class, but for 
which a much larger size is required if the representing BDD must be in the second 
class. The strongest such result would say that BDD in the second class is exponenti- 
ally larger than the BDD in the first class. For instance, it is well known [36] that 
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there are Boolean functions representable by OBDDs of size linear in the number of 
variables n, but for which any BDT has size exponential in n. Here we consider the 
reverse case, and exhibit a family of Boolean functions { fn ) n 2 1 } for which we show 
that they can be computed by BDT of size O(n’/logn) but require at least Q(2”‘logn) 
nodes to be computed by any OBDD. This result says that there are BDTs of size 
m such that any equivalent OBDD must be of size roughly 2s. 

Complexity of computation of Boolean functions by FBDD were studies by several 
researchers. Wegener [35] exhibited a family of Boolean functions { fn 1 n 2 13 for 
which any FBDD computing f must have at least R(2cn”3) size. Zak [38] exhibited 
a family {f,ln 2 l} such that any FBDD computing f must have size of at least 
Q(2c&/n). Similar results were obtained by Dunne [17] and Krause [22] 

These results were improved by Wegener [37] and by Ajtai et al. [3,6]. In [6] a family 
{ fn ) n 2 1 } is exhibited such that each function requires at least Q(2’“) nodes to be 
computed by FBDD. Their constant c, however, is very small, namely c < lo- ’ 3. 

Clearly, each FBDD is also RBDD but not vice versa. Kriegel and Waack [24] 
exhibit a family { fn ( n b 1 } of Boolean functions each of which requires RBDD of 
,(2”‘48) size. In contrast, we exhibit a family {fn ) n 2 l} such that each such function 
can be computed by BDD of size @(n’) and yet each RBDD computing the function 
must have at least 2”13 nodes. In addition, we exhibit another family {fn ) n 2 l} such 
that each such function can be computed by RBDD of @(n’) size and yet each FBDD 
computing the function requires at least ~2”‘~ nodes. 

It appears that the above result provides the largest lower bound for RBDD (and, 
by implication, for FBDD and OBDD) achieved so far. Our construction uses 
methods developed in [8-111. 

The relationship between FBDDs and OBDDs was considered by Fortune et al. 
[ 19). They exhibited a family { fn 1 n B 1 } such that each such function can be 
computed by FBDD of @(n2) size and yet each OBDD computing the function 
requires at least 0(2&-“(“)) size. In contrast, we exhibit here a family {f, I n 2 1 } such 
that each such function can be computed by FBDD of @(n2) size and yet each OBDD 
computing the function requires at least 2”19 nodes. 

The rest of the paper is organized as follows. Section 2 contains basic definitions 
and outlines our method for proving exponential lower bounds for computations on 
BDDs. In Section 3, we consider the asymptotic size of general BDDs and OBDDs 
representing Boolean functions. It contains asymptotically sharp bounds as a function 
of n on the minimum size of BDDs representing almost all Boolean functions of 
n variables. Our asymptotic lower and upper bounds as a function of n on the 
minimum size OBDDs representing almost all Boolean functions of n variables are 
asymptotically differ only by a factor or two. We have been informed that a similar 
result concerning BDDs appears in [25], which seems to be part of a series of technical 
reports. However, we have been unable to obtain it, and have not found citations to it 
in the literature on BDDs. The asymptotic result for OBDD is obtained by a straight- 
forward analysis of a well known general OBDD construction. Both these results are 
included here for the sake of completeness of our presentation and a lack of single 
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place where asymptotic bounds are presented. Our main results are contained in the 
next three sections. 

In Section 4, we consider the relative succinctness of OBDDs and BDTs. In Section 
5, we define a family of Boolean functions {fn 1 n 2 l} for which we show that any 
RBDD computing a function from our class requires 2”j3 size. In Section 6 we 
construct Boolean functions that can be easily computed by BDD (RBDD, FBDD, 
respectively) and require exponential size for RBDD (FBDD, OBDD, respectively). 
Section 7 concludes the paper. 

2. Basic definitions and lower bound technique 

Let A be a BDD, r be a class of BDDs, f be a Boolean function, and n 2 1 be an 
integer. We define the r-size off, denoted by L,(f), as 

L,(f) = min {L(A) 1 A representsf and A E T}. 

We define L,(n) as 

L,(n) = max (L,(f) 1 g is an n variable Boolean function}. 

Since BDD 2 RBDD 2 FBDD 2 OBDD and BDD z RBDD 2 FBDD 2 BDT, 
the following relationships hold trivially for all Boolean functions f: 

Let f; g: N --f R be such that f(n), g(n) > 0. We write f(n) - g(n), if 

lim,+,f(n)ls(n) = 1. 
Let X = (xi, . . . . x,) and X 1 Y= (xi,, ...) xie), where k > 1. Iff(X) is a Boolean 

function of n variables and a = ai,, . . . , Cli, are values for variables from Y, then we 
denote S” the Boolean function obtained from f by substitution of ai,, . . . , tLi, for 
variables from Y. It is well known that every Boolean function has a unique ring sum 
representation [33]. 

We say that a Boolean functionf(X) is linear in variables from Y if every product in 
its ring sum representation contains at most one variable from Y. If a Boolean 
function f(X) is linear in all of its variables, then f is called linear. We say that 
a Boolean function f(X) is symmetric in variables from Y, if f(X) does not change 
under any permutation of variables from Y. If a function is symmetric in all of its 
variables, then it called symmetric. A Boolean function f(xl , . . , , xi- 1, xi, xi+ 1, . . . , 

x,) depends essentially on xi iff f(xl) ...) xi_ 1,O,xi+ 1, ,.., x,) #f(xip .a.) xi_ 1, 

19xi+l, **-Y x,). From the above definitions, it can be easily derived that iff(X) is 
symmetric in Y, then eitherf(X) depends essentially on all variables from Y, or it does 
not depend essentially on any variable from Y. Hence, any symmetric and noncon- 
stant Boolean function depends essentially on all of its variables. 
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Lemma 1. Zff(X) is symmetric and linear in Y, then 

f(X) = @1(X, Y) + @2(X, Y). 1 x’, 
X’EY 

(1) 

where + is taken by modulo two. 

Proof. Two cases are possible: (1) eitherfdoes not depend essentially on any variable 
from Y, or (2) it depends essentially on all variables from Y. In the first case, assuming 
!&(X, Y) = 0, we derive (1). In the second case, consider those products from ring sum 
representation off that contain variables from Y. Since f is linear in Y, each such 
product contains exactly one variable from Y. Let Pj (1 < j < k) be a sum of all 
products that contain variable x’, from Y. Sincefis symmetric in Y, we obtain that all 
Pj are the same, and, thus, (1) holds. 0 

Corollary 1. Zf f(X) is symmetric and linear and not a constant, then 

f(X) = x1 + x2 + ... + x, + a, where a is a constantfrom (0, l} (i.e.f(X) 8s linear in all 
of its arguments). 

Proof. Since f is linear, functions @ 1 and Q2 in (1) are constants. Since f is not 
a constant, we obtain that Qi, is equal to 1. Cl 

Let Sf(X) be the symmetric Boolean function that is equal to one iff exactly 
0 < i < n of its variables are equal to one. SC(X) is called an elementary symmetric 
function. By definition, Sf = 0 if i > n or i < 0. It is well known [33] that if k-tuple 
a contains exactly s ones among its k values, then 

Si.a = Sir.5 n n k. 

Lemma 2. Let X = (x,, . . . . x,) and Y = (yt, . . . . y.) be disjoint sets of variables. Let 
f’(X, Y) = C;=O &!(X)Sk(Y) andf2(X, Y) = CzO L!(X)Si(Y), where L! and L? are 
arbitrary Boolean functions. Then 

f’=f’ ilfjrforallO<i<n,L!=L?. 

Proof. Let us assume to the contrary, f t = f 2, but there is a k such that L: # Lz. 
Then 

f 1 + f z = 0 = i (L!(X) + Lf(X))$JY) (2) 
i=O 

Since L: + Lz # 0, there is an a such that L;(a) + L:(a) = 1. Let /3 be an n-tuple that 
contains exactly k ones. Then Sk,(b) = 1, and S&?) = 0 for each i # k. Thus, 
f ‘(ap) + f 2(at!I) = 1, which contradicts (2). Cl 

Using Lemma 2 straightforwardly, we derive the following lemma. 

Lemma 3. Zff = CyCo Li(X)Si( Y) ( w h ere again X and Y are disjoint sets of n variables), 
then f depends essentially on xk from X if and only if there is a j such that Lj depends 
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essentially on xk. Moreover, tff depends essentially on at least one variablefrom X, then 
it depends essentially on all variables from Y. 

Our lower bounds estimates are based on the following lemma. 

Lemma 4. Let f (X) be a Boolean function and k be an integer such that 0 < k < n. 

Suppose that for any k variables xi, “*xi*, the functions obtained by substituting con- 
stants for these variables are all diflerent and depend essentially on all the remaining 

variables. They any RBDD for f contains at least 2k internal nodes. 

Proof. Let A be a RBDD computing f: Any path in A to a terminal node must contain 
more than k edges. Therefore there are 2k paths of length k, each reaching an internal 

node. 
Consider any pair of such paths. If the two paths involve different sets of k variables, 

then the Boolean functions of the remaining variables after traversing the two paths 
are different, since these functions depend essentially on different sets of variables. If 
the two paths involve the same set of k variables, then by the hypothesis, the functions 
of the remaining variables are different. Therefore, each of the 2k paths of length 
k must reach a distinct internal node of A. 0 

3. Representation of Boolean functions by BDDs 

Since it is very difficult to find a specific Boolean function whose representation by 
a BDD requires exponential size, researchers have attempted to find such a function 
using an asymptotic approach. Such methods allow us to find a uniform method that 
builds minimal size BDDs for the most complex Boolean functions. 

Although it is well known that L BDD(n) is, roughly, exponential in n, the exact size 
complexity does not seem to be well known. For instance, in his widely cited book 
1361, Wegener presents the following bounds on LB&n): 

2” 

3n 
< L,,,(n) and L,,,(n) is 0 I 

However, the original results on L,,,(n) in [26] are stronger, namely 

2n-1 pIi2 

__ < L,,,(n) < - - 1. 
n n 

Our Theorem 1 provides an asymptotically exact estimate on LB,,(n). 

Theorem 1. For all n 3 1, (2”/n)(l - E,) < L BDD(n) < (2”/n) (1 + E,,), where E, --) 0 as 
n + 00. Thus, LB&a) N 2”ln. 
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Proof. We prove a stronger statement, namely, that “almost all” Boolean function of 
n variables require (2”/n) (1 - E,) internal nodes for their computation by BDDs, 
where E, -+ 0 as n + co . 

Upper bound: L,,&I) d (2”/n) (1 + E,), where E, + 0 as n + CO. To prove the upper 
bound we design a computation method that for any Boolean function f of n 
arguments constructs a BDD computing f that has no more than (2”/n) (1 + E,) 
internal nodes, where E, --f 0, as n -B co. The computation utilizes a representation of 
Boolean functions described in [33]. 

Let f(X) be a Boolean function of n variables. We choose a parameter k, where 
1 < k < n. Then f(X) can be represented by a 2k x 2”-k matrix, whose rows are 

numbered by k-tuples of values for x1, . . . , xk and whose columns are numbered by 
(n - k)-tuples of values for xk+ i , . . . , x,. The value of the function for c1i, . . . , ~1, is 
placed at the intersection of the (ai, . . . , 6tk) row and the (&+ i, . . . , a,) column. 

Let us also choose a parameter s where 1 < s < 2k, and subdivide the rows of the 
table into r2k/s] groups with s consecutive rows per group. 

We definef,(X), where 1 < i < r2k/s1, as follows: 

J(X) = 
i 

f(X) if <or,..., ak) is a member of the ith group of rows, 
o otherwise. 

Therefore, the functionf(X) is a disjunction of all the functionsfi(X) and the following 
relation holds (where C here denotes disjunction). 

r2’hi 
f(W = c L(X). (3) 

i=l 

It is easy to see that any column of values for the functionfi(X) has zeros outside of ith 
group of rows and possible nonzero values within the ith group of rows. The possible 
number of different columns in the matrix of values for the ith function is no more 
than 2”, since a column may contain only s nonzero values. The columns of the ith 
function can be subdivided into p groups, where 1 d p < 2”. Two columns belong to 
the same group if and only if they are identical for the functionfi. 

We define f,j(X) as follows: 

f,(X) 
_hj(x)= o 

i 

for the columns of the jth group, 

otherwise. 

Thus 

r2b/sl 2.9 

fix) = C CfijCx)- 
i=r jzz1 

(4) 

A functionfij has columns of only two types: either a column consisting of only zeros 
or a column with /Ii, . . . , bs in the ith group of rows and zeros outside of it. Therefore, 
every f;j can be considered as a conjunction of two functions: fij’(xr, . . . , x,) and 

fif)(Xk+l, *a*, xn), where fi,!‘(xi, . . . . xk) depends Only on variables x1,. .., xk and iS 

equal to one in rows where the jth group of columns for the ith group of rows has at 
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least one 1, andfif’ (xk+r, . . . . x,) depends only on variables xk + 1, . . . , x, and is equal 
to 1 in columns of the jth group. 

Thus, combining representations (3) and (4) we derive thatf(X) can be represented 
as follows. 

Representation (5) has the following properties: 
1. Everyf!?” (x l, 1, . . . , xk) has no more than s values equal to 1. 

An example of the described representation is shown in Fig. 1 for a function of 
7 variables,. where k and s are equal to 3. 

Based on the representation (5) we construct a BDD A computing f(X). The 
constructed BDD consists of three block - Bl, B2, B3 described below. 

Xl -3 X3 

0 0 0 

0 0 1 
0 1 0 

0 1 1 
1 0 0 
1 0 1 

1 1 0 
1 1 1 

oooooooo11111111 
oooo1111oooo1111 
0011001100110011 

0101010101010101 

oooooO1110011011 

001111ooo1111100 
01011oooooO11111 

001111ooooooO111 
ooo111ooo11ooo10 
11ooo1111loooooO 

ooo111oocmmo1 
011ooo1110011111 

X4 
-% 
% 
X7 

First 

group 
of rows 

Second 

group 
of rows 

Third group 
of rows 

oooooooo11111111 X4 
cmo1111oooo1111 X5 

0011001100110011 X.5 
XI -3 X3 0101010101010101 X7 

0 0 0 
0 0 1 
0 1 0 

0 1 1 001111oooc!mo111 
1 0 0 ooo111ooo11ooo10 
1 0 1 11ooo11111oooooO 

1 1 0 
1 1 1 

(‘4 f2(X,.X2’X3.X4’X5.Xs,X7) 

Fig. 1. 
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oo(mooo11111111 x4 
oooo1111oooo1111 X5 

0011001100110011 x6 

Xl X2 X3 0101010101010101 X-1 

0 0 0 
0 0 1 
0 1 0 

0 1 1 ooo11-10 
1 0 0 ooo11ooooooooo10 
1 0 1 

1 1 0 
1 1 1 

(4 f2.7(X1.X2,X3,XQIX5,X6rX7) 

Xl X2 X3 

0 0 0 
0 0 1 
0 1 0 

0 1 1 
1 0 0 
1 0 1 

1 1 0 
1 1 1 

oooooooo11111111 X4 
oooo111moo1111 X3 
0011001100110011 x6 

0101010101010101 -9 

(4 f~,‘,(X1,X2,X3,X4rX5,X6,x,) 

Xl X2 X3 

0 0 0 
0 0 1 
0 1 0 

0 1 1 
1 0 0 
1 0 1 

1 1 0 
1 1 1 

oooocmo11111111 X4 
oooo1111oooo1111 X5 
0011001100110011 x6 

0101010101010101 X7 

ooo11oooomom10 
cm01 1-10 
coo11-10 

ooo11-10 
ooo11oommooo10 
ooo11ooooooooo10 

ooo11-10 
ooo11-10 

(4 

Fig. 1 (continued). 
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1. Block BZ values x 1, . . . , xk determines a group number. Let L(B1) be the number 
of internal nodes of Bl. Block Bl consists of a binary tree of k levels whose nodes are 
labeled with x1 through xk, and a number of nodes at the (k + 1)th level equal to the 
number of different subfunctions J in the representation (3). Therefore, 

k-l 

L(BZ)< c 2’+$+1= Y 
i=o ( ) 

1,; . 

2. Block B2 using a group number determined by block Bl, determines a column 
group number based on the values of the last (n - k) variables of the function 1: 
Block B2 consists of no more than r2k/s1 smaller blocks B21. Each such subblock 
consists of a binary tree whose root is labeled with xk+ 1 and was counted as a part of 
block Bl, a sequence of n - k - 1 levels labeled with variables xk+Z through x,, and 
a final level containing a node for each column group. Since there are no more than 2” 
nodes in the final level of each subblock, the number of nodes in all B2i blocks is 

2” 

= Q- + 2”-k - 

2k+ 1 2kts 

--2+22”+-- 
s s . 

3. Block B3 using a row group number and a column group number computes 

fijCx12, .--Y x,) and, thereby completes the computation of the function value for 
a given set of input values. Block B3 consists of no more than (2k/~ + 1)2’ smaller 
blocks 83ij, where each such block computes function fii(Xr , . . . , x,). Since each such 
function can be represented as shown in (S), each B3ij is a binary tree. The root of this 
tree is labeled with x1 and was counted as part of block B2. The tree then has k - 1 
levels labeled with variables x2 through xk. Finally, there is a level containing terminal 
nodes. The number of internal nodes in block B3 is 

22kfs 2ktsil 

= ___ + 2kts _ ~ _ 2st1 

S S 

Hence, the complexity of A is equal to the sum of L(Bl)-L(B3), 

L(A) = L(H) + L(B2) + L(B3) 

Y 2” 
= y+-+++22”-k- 

2kt’ 2kts 22kts 

----2+22”+---+--- 
s s S S S 

2k+stl 
+~k+~_---_ -p+1 

S 
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= -y-k + 2k+s + 2k _ 2” _ 2 + ;(y’ + 22k+s _ 2k _ 2k+S) 

22k+s 
< ; + 2-k + __ + 2k+s + 2k. 

s 

Let us choose k = 2Llog n] and s = n - 6Llog n J. Since 2 log n - 2 < k Q 2 log n and 
n - 610gn < s < n - 610gn + 6, we obtain 

2 n+2 

L(A) < 

2” 2 n+6 

+ -+ 
n-610gn n2 n’(n - 610gn) 

+ 

This completes the proof of the upper bound. 
Lower bound: LBDD (f) > (2”/n) (1 - 8,). To prove that for almost all Boolean 

functionsfof n arguments, LB,,,,(f) >, (2”/n) (1 - E,) where E, + 0 as n -+ M, we use 
counting arguments. Consider a BDD with k internal nodes and let us assign to each 
node a unique tag consisting of a number from 1 through k, assigning different tags to 
different nodes. Each internal node in the BDD is labeled by one of the variables from 
X. Without loss of generality, we assume that there are only two terminal nodes in 
each BDD. One terminal node is labeled with 0 and assigned tag k + 1, and the other 
is labeled 1 and assigned tag k + 2. 

Each BDD with k tagged internal nodes can be uniquely represented as follows. 
Consider a table of k rows. Row i represents internal node i, and contains an entry 
with three values ( q,jl , j,). Suppose internal node i of the BDD is labeled by variable 
xq, is connected to nodej, by an edge labeled 0, and is connected to nodej2 by an edge 
labeled 1. Then row i contains the entry (q,jl ,j,). 

Since each row of the table has (k + 2)‘n possible values, there are (k + 2)2knk such 
tables (not all of which represent BDDs). However a BDD with k internal nodes can 
be assigned tags in k! different ways, and therefore is represented by k! isomorphic 
tables. The number of nonisomorphic BDDs with k internal nodes is thus no more 
than 

(k + 2)2knk < (ckn)k 

k! ’ ’ 

where c is some constant. 

It is well known that there are 22” Boolean functions of n variables. Therefore, the 
number of different nonisomorphic BDDs with k internal nodes should be large 
enough to compute every Boolean function of n variables. 

Thus (ckn)k 2 22”. Consequently, k 2 (2”/n) (1 - 8,). q 

It should be noted that the asymptotically minimal size BDD to evaluate any 
Boolean function of n variables obtained by our method reads each variable no 
more than twice. Perhaps this fact explains why it is so difficult to obtain an expo- 
nential lower bounds for read-only twice branching program without any additional 
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restrictions. Obtaining an exponential lower bound for read-only twice branching 
program would in effect allow to exhibit the most complex Boolean functions to be 
computed by general BDDs. 

The next theorem provides a general construction of an OBDD (and hence 
a FBDD and a RBDD) whose size differs from the lower bound of Theorem 1 by 
a factor of at most 2. 

Theorem 2. For all n 2 1, (2”+ 1 In) (1 + 6,) 2 LoeD&) 2 (2”/4 (1 - 4, where 
c,-+Oasn+co. 

Proof. Upper bound: To prove the upper bound we design a computation method 
that for any Boolean functionf of n variables constructs a OBDD computingf that 
has no more than (2”+‘/n) (1 + E,,) internal nodes. 

Let us select a parameter k, where 1 < k < n. Each function of n variables can be 
uniquely represented as follows [33]: 

f(X) = ~x~‘~~~x~k~f,(xk+l, . . ..xn). (6) 
II 

where u = c1 1, . . . . ak ranges over the 2k possible assignments to variables x1, . . . , xk. 

The distinct functionsf, occurring in this representation can be enumerated asi where 
the number of such functionsi is at most max (2k, 22”-k ). Based on representation (6) 
we construct an OBDD A computing f as follows. 

1. Block Bl computes all possible conjunctions of length k from variables 
x1, . ...&. This block is a k-level tree. Each node of the ith level is labelled with 
variable xi, where 1 < i < k. Therefore, 

k-l 

L(B1) = c 2’ = 2k - 1. 
i=O 

2. Block B2 using a conjunction computed by block Bl, computes a function 

_fhk+l, ‘**, xn), for each j from the representation (6). Block 82 can be constructed to 
have at most one internal node for each of the 22” --* - 2 nonconstant functions of 
variables x k + 1, . . . , x,. Suppose a given function of xk + 1, . . . , x, depends essentially on 
xh, but does not depend essentially on any Xj, where j < h. Then this function is 
represented in B2 by a node labeled by variable xh. Thus, the number of internal nodes 
in 82 is at most 22”-k - 2. An alternate way to see this is that the number of nodes 
labeled with xk+ 1 is the number of functions n - k variables that depend essentially 
on xk+r (i.e. 22”-‘- 22”-“-’ ), the number of nodes labeled by &+2 is 
22”-k-’ _ 22”-*-2 

, *a*, and the number of nodes labeled by x, is 22’ - 2. Therefore, 

L(B2) < 22”-* - 2. 

From the representation (6) we derive that the constructed OBDD computes Boolean 
function 1: The size of the OBDD is a sum of L(B1) and L(B2). Thus, we obtain 

L(A) = L(B1) + L(B2) < 2k + 2”‘~* - 3 
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Let us choose k = n -llog(n - 2logn)J. Then k < n - log(n - 210gn) + 1 and 
n - k < log (n - 2 log n), so we derive 

2 II+1 
L(A) < +II 

n - 210gn n2’ 

This yields 

L(A) < ?(I + E.), 

where E, + cc as n -+ co. Thus the upper bound is proven. 
Lower bound: Since every OBDD is also a BDD, the lower bound from Theorem 1 

also applies to OBDDs. 0 

In Theorem 1, we showed that asymptotically L,,,(n) is 2”/n and in Theorem 2 we 
showed that L,,(n) is asymptotically between 2”/n and 2”+ l/n. This raises the issue 
of exactly characterizing Loann(n), asymptotically. The upper bound construction in 
Theorem 1 produces a BDD that is not free because blocks Bl and B3 involve the same 
variables. However, suppose the value of s in the construction is a power of 2, say s = 24. 
Then of the k variables that determine the row number, the first k - q variables 
determine the row group, and the remaining q variables determine the row within 
the group. Thus Block Bl can determine the group number by testing variables 

Xl, .*a, xk _ q. Furthermore, block B3 need not test these variables again; it can determine 
the relative row number within the row group by testing variables xk _ q + 1, . . . , xk. Thus, 
when s is a power of 2, the constructed BDD is an OBDD. However, the construction 
sets s = n - 6Llogn J, and thus produces an OBDD only for a certain values of n. 

The upper bound construction of Theorem 2 always produces an OBDD, but 
the asymptotic size of the constructed OBDD is often greater than 2”/n. However, 
for any E > 0 there are infinite number of values of n for which log(n - 2 log n) 

- Llog (n - 2 log n)] < E, so that the constructed OBDD A is close to the right size: 

L(A) < 
2”+E 

+2” 
n - 210gn n2’ 

Thus the construction of Theorem 1 always produces a BDD whose size is right, but 
only occasionally produces a BDD that is ordered, whereas the construction of 
Theorem 2 always produces an OBDD, but only sometimes produces one whose size 
is almost right. Perhaps some merger of the constructions can be used to more exactly 
characterize LoeD,,( 

4. Comparative sizes of BDTs and OBDDs 

In this section we consider the relative succinctness of OBDDs and BDTs. It is well 
known that L,,,(n) = 2” - 1. To see that this is an upper bound, consider any 
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Boolean functionf of n variables, say x1, x2, . . . , x,. A complete binary tree T/ can be 
constructed whose nodes at level I are labeled with xl, and whose bottom level 
contains terminal nodes. The number of internal nodes of this tree, L( Tf), is 
c;:o’2’ = 2”-‘. T o see that it is a lower bound, note that for the parity function of 
n variables, each BDT path to a terminal node must test all the variables. Conse- 
quently, a BDT for the parity function must have at least 2” terminal nodes, and at 
least 2” - 1 internal nodes. 

It is easy to see that the parity function of n variables can be computed by an 
OBDD with 2n - 1 internal nodes [36]. Thus the parity functions are a family of 
Boolean functions { fn 1 n 2 1 } such that fn depends on n variables and 

bwr(fn) 2”- 1 _ 
L FBDD(_M 2n - 1, 

which is 2”- ‘/n asymptotically. It is much less obvious that there are Boolean 
functions fn that have very large minimal size OBDDs and small size BDTs. We prove 
that this is so in the next theorem. 

Theorem 3. For each n of the form 2k, where k > 1, there is a Boolean function fn of 

n variables such that 

Lo&f.) ~ 2(““OO “)P4 

LB&f”) n’/logn ’ 

Proof. We specify a Boolean function fn of n = 2k variables such that any OBDD 
computing f. has size at least 2 (“/‘“g”)-3, but there is a BDT computing fn with size 
2n2/logn. Function fn is defined as follows. Let fn have n variables labeled 
x,,, . . . , xzk _ 1. Let m = L2 k/ k J. The 2k variables can be envisioned as partitioned into 
m groups, each consisting of k variables, with possibly some variables left over. Let 
group 0 COnkI x,, contain x0 through xk _ 1, group 1 contains xk through xZk _ 1, etc. 

Let group 0 be termed the selection group. Let groups 1 through m - 1 be termed 
candidate groups. Let Nj be the integer represented by group j when the k variables in 
group j are interpreted as the binary encoding of an integer. Thus, 0 < Nj < 2k - 1. 
When the integer No represented by the selection group is between 1 and m - 1, it can 
be envisioned as the index of one of the candidate groups. Let this candidate group be 
termed the selected group. The selected group can in turn be envisioned as encoding 
the identity of one of the 2k variables. Let this variable be called the selected variable. 
Then, the value of function f” is defined to be the value of the selected variable. Thus, 
when 0 < No < m, fn is defined to be 

f”(X O,...,XZ~-I) = XNN 0 

Otherwise (when No = 0 or No 2 m),fn is defined to equal 0. 
Consider an OBDD A that computes f., using total order II. Consider the position 

in n immediately after encountering m - 2 variables from candidate groups. At this 
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point in order II, there is at least one candidate group, say group j, such that none of 
the variables in group j have been encountered yet. Suppose the selected group is 
indeed group j. Then the variables in group j might potentially make any of the m - 2 
already encountered candidate group variables the selected variable. Thus A must 
have at least 2”-’ internal nodes in order to remember the value of these m - 2 
variables. More formally, consider the 2”-2 partial assignments to the variables off”, 
where the variables in group 0 have values encoding integer j, and the first M - 2 
candidate group variables in n have all 2m-2 possible assignments. Each of these 
partial assignments makesf, a function of the remaining candidate group variables. 
Furthermore, each of these subfunctions is a distinct Boolean function. For, if two 
partial assignments differ in variable i, then if the variables in group j have values such 
that Nj = i, the value of f. would be different. Thus, these partial assignments 
correspond to 2m-2 distinct Boolean functions of the untested variables. As a conse- 
quence, OBDD A must have at least 2’“- 2 internal nodes. Since m = Ln/log n J, and 
Ln/logn] > (n/logn) - 1, A must have at least 2(n”ogn)-3 internal nodes. 

Now consider the following BDT, tree T, for computing functionf,. Tree T has an 
upper portion consisting of a complete binary tree testing all the variables in group 0, 
the selection group. Let the exiting arcs of this upper tree be labeled 0 through n - 1, 
so that arc j corresponds to the case when N,, = j. Consider arc j. If j = 0 or j > m, 
then arc j enters a terminal node labeled with value 0. If 0 < j < m, then arc j enters the 
root of a complete binary tree that tests all the variables in group j. Each of the 
n exiting arcs of a given lower tree, say lower tree j, corresponds to a possible value of 
Nj. An exiting arc corresponding to a variable in group 0 or in group j refers to an 
already tested variable, and so enters a terminal node. Each of the remaining n - 2k 

exiting arcs enters an internal node labeled by variable xN,, the exiting arcs of which 
enter terminal nodes. 

Now consider the number of internal nodes of tree T. The upper tree contains n - 1 
internal nodes. There are m - 1 lower trees, each with n - 1 internal nodes labeled by 
variables in its group, and leading to n - 2k internal nodes. The total number of 
internal nodes in tree T is 

2n2 q 
n - 1 + (m - 1) (2n - 2k - 1) < 2nm < - 

log n’ 

5. Construction 

By Lemma 4, to establish exponential lower bounds for Boolean functions com- 
puted by RBDD, FBDDs or OBDDs, it would be sufficient to exhibit a family of 
Boolean functions { f, ( n 2 1 } such that each function fn has exponential in n the 
number of subfunctions obtained fromf, by substituting constants instead of any of its 
m variables, where m < n and each such subfunction depends essentially on all its 
remaining variables. 
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In [8-lo] we exhibit a family of Boolean functions {f. 1 n 2 1 > such that by 
substituting instead of any of its n/2 variables we obtain 2”/* different subfunctions. In 
[l l] we exhibit a different family of Boolean functions {f. 1 n > 1 } such that by 
substituting instead of any of its n/3 variables we obtain 2”j6 different subfunctions. 
From those results it follows that ~,,,n(f,) > 2’@. 

In this Section we exhibit a family (f. I n > 12) of Boolean functions such that by 
substituting instead of any its n/3 variables we obtain 2 ‘I3 different subfunctions each 
depending essentially on its remaining variables. 

We show the construction for N = 3n. Let X, Y, 2 be three disjoint sets of variables, 
each containing n variables, where n b 4. We define an auxiliary functionf ’ (X, Y, Z) 
as follows: Functionf’ is equal to the value of the variable in group X with an index 
one less than the number of ones mod (n + 1) among variables in groups Y and Z. It is 
easy to see that 

f’(xt y7z)= f: Xi (S',;,'(YyZ) + S",,"(Y,Z)). (7) 
i=l 

Letf’(X, Y,Z) =f’(Y,Z,X);f3(X, Y,Z) =f’(Z,X, Y). It is easy to see thatf’(f2, 
and f 3, respectively) is symmetric in (Y, Z) ((X, Z), (X, Y), respectively) and linear in 
X (Y, Z, respectively). Thus, by Lemma 3, it depends essentially on all of its variables. 

Let function F (X, Y, Z) be a Boolean function of 3n arguments defined as follows: 

F (X, Y,Z) =f’ +f2 +f”, (74 

In the rest of the section we prove that for any n selected variables of F, the 
functions obtained from F by substituting different n-tuples c1 and /3 for the selected 
variables, are different and depend essentially on all its nonselected variables. To do 
that we need first to establish some structural properties of F that are formulated in 
several next Lemmas. 

Let us choose x*, y *, z * where x * contains k1 variables chosen from X, y * contains 
k2 variables chosen from Y, and z* contains k3 variables chosen from Z, where 
kl + k, + k3 = n. Let x’ = X - x*, y’ = Y - y* and z’ = Z - z*. It is easy to see 
that x’ contains (k2 + k3) variables, y’ contains (k, + k3) variables, and z’ contains 
(k, + k,) variables. 

Let CI = CQ ~+a,, and fi = clx. /3,,*/?z. be two different n-tuples. Let ax* a,,.( /?x*&.) 
contain tll(tzl) ones, c+ a=*( px*fiz*) contain t12(t22) ones and tlyt c+( fly.&) contain 
t13(t23) ones. Without loss of generality, let us assume that t13 < t23 (or t12 < tz2, or 
tl 1 < t2 1, respectively) 

Since a,* a,.(a,.,a,.,a,.,a,., respectively) contains t13(t12,tll, respectively) ones, 
using representation (7) and (la), we obtain (8) given below. 

f 
19 ay.ag = x s,o+k, I 2,3-l 

r13+1 + x,,,+z snl+kI + **- + X”S.&, 

+ x1s:;2;+’ + .-‘x,,,s;+k, + *-. + xkl+l,3s;:::. (8) 

Similar expressions can be easily obtained for f2s Q*%* and for f 3, C~*d~*. 
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Lemma 5. f Is depends essentially on all of its variables. 

Proof. From representation (8) it follows that each variable from x’ is present as 
a coefficient for some Sk,,, (0 < i < n). The lemma’s assertion follows now from 
Lemma 3. Cl 

Similar lemmas hold for f’*” and f 3,0r. From representation (8) by an appropriate 
change in the summation variable in (8) and assuming that variable indices are 
interpreted by modulo (n + l), we obtain (9) and analogous equations give representa- 
tions (10) and (11) below: 

n+k,+tla+l 

f 1. +az* + f 1,6%4,* = 
i=E+l (xi + Xi+f23-f13) CT’,:-’ when t13 G t23, 

(9) 

n+kz+t,z+l 

f 2. G4cz* + f 2, !3,.8,* = 
i=z+I (Yi + Yi+f22-t12) Si;tkl2z-’ when t12 G t22, (10) 

n+ka+tll+l 

f 3. Q.=f + f3* tJ,.B,. = 
i=z+l (zi + Zi+tzl-tll)S~Yfkl:-l when tll G t21 7 (11) 

where variable indices are taken modulo (n + 1) and x0 is equal to 0, by definition. 
Analogous representations hold when t 13 > t23, t12 > t22, or tll > t21, respectively. 

Lemma 6. Zf t13 # t23, then f lSa + f ‘T8 depends esse ntially on all variables from x’. If 
cl3 = t23, then f ‘*’ + f lSp does not depend essentially on any variables from xl. 

Proof. Without loss of generality, assume t13 < t23. Using representation (9) for 
fL”+f’.B and substituting tl,. and fix* for variables from x* in the first and second 
addends, respectively, we obtain that 

n+k, 

f “’ + f “’ = c LiSi+kl. 
i=O 

(12) 

If ll2 = c23, then from (9) we obtain each Li in (12) is a constant and therefore 
f 1*a + f l*g does not depend on any variable from x’. 

Ift13 z t23, then i and i + t23 - tl 3 are distinct values modulo (n + 1). Therefore, in 
(9) the coefficient of each S is the sum of two different variables from x’. Note that each 
variable from x’ is a part of the coefficient of at least one of the s’s. Therefore (9) leads 
to representation (12) off ‘sa + f ‘VP in which regardless of what the selected kr vari- 
ables from x are, for each variable in x’, the coefficient of at least one of the elementary 
symmetric functions of y’ and z’, and thus depends essentially on that variable. 
Therefore, by Lemma 3, f ‘A + f ‘J? depends essentially on all variables from x’. 0 

Similar lemmas hold for f ‘,a + f 2*8 and f 3*a + f 3V8. 
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Lemma 7. If F” = FB, then f ‘9’ + f 1*8 is symmetric in x’. 

Proof. Since F” + FB = 0, it is symmetric in x’. Since both f 2*a + f 2*p and f 3*a + f 3,@ 
are symmetric in x’, it follows that f ‘2’ + f l.8 is symmetric in x’. 0 

Lemma 8. Zf t13 # t23 and x’ contains at least two variables, then f ‘9’ + f ‘*O is not 

symmetric in xl. 

Proof. From (9) we conclude that f lga + f lqB is linear in x’. Let us assume that it is 
also symmetric in x’. Then by Lemma 1, we derive that 

f lya + f “’ = @l(y’,Z’) + @z(y’gZ’) 
( > 

C Xi f (13) 
XiEX’ 

where, from Lemma 6, Q2 is not the constant 0. On the other hand, considering (9), we 
obtain that each coefficient for SA;t,l,!- ’ involves no more than two variables from x’. 
If x’ contains more than two variables, then (13) contradicts (9). 

Suppose x’ contains exactly two variables. Let i be the smallest value 2tl3 + 1 
such that i mod (n + 1) is the index of a variable in x’. Since representation (9) contains 
the term 

txi + Xi+f*3--t~3)S~+~~-1, 

symmetry in x’ implies that the index of the other variable in x’ is 
i + t23 - t13 mod(n + 1). But representation (9) also contains the term 

tXi+f*3-t13 + Xi+2(t~3-r~3))S~=t~~-2f’3-1. 

Since x’ only contains two variables, we obtain i + 2(t23 - t13)mod(n + 1) = 
imod(n + l), i.e. 2(t23 - t,,)mod(n + 1) = 0. But since x* contains n - 2 variables,, 
t23 - t13 is at most 2. Since n 2 4, we have a contradiction. 0 

Lemma 9. If t13 = t23, kl < j-n/2], andf ‘9’ + f ‘sp is not a constantfunction, then it is 
a non-linear function. 

Proof. From (9), we obtain that, since t13 = t23, 

f l.%4+ + f l.SY*Pz* = x1s;;;,~13 + x2s;;,‘*-~13 + . . . + Xt*3S;+kl 

+x f,3+l(s:+kI + sag:,, + a.0 + Xl,,+k,w+;: + qf::) 

+x tl3+kl+l s;:,, + *** 
+ x s”-‘“+ 1 

n n+kl . 

Consequently, 
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where yi is 1 if Xi is in x* and variable Xi has different values in tx and /?, and is 
0 otherwise. 

Note that for each i, 1 < i d n, there is aj, 0 < j < n + kI, such that the coefficient 

ofSl+k* is yi. From Corollary 1, the only linear symmetric nonconstant functions are 
the even and odd parity functions. Therefore, for f ‘9’ +fr’fl to be a linear noncon- 
stant function, at least Ln/2] of the yi must equal 1. Since kI < Ln/2], it follows that 

f’,” +f lsB is nonlinear. 0 

Lemma 10. Let S,(x,y) be a symmetric nonlinear function of its variables, and let 

Sz(x, z) be a symmetric function of its variables, where x, y and z are disjoint nonempty 

groups of variables. Then SI(x, y) + S2(x, z) depends essentially on x and is symmetric 

in x. 

Proof. Since both Sr and Sz are symmetric in x, their sum S1 + S2 is also symmetric 
in x. 

Since S1 is both symmetric and nonlinear, its ring sum form contain at least one 
product involving variables from both x and y. Since this product does not appear in 
the ring sum form of Sz, the product appears in the ring sum form of Sr + Sz. This 
implies that function S1 + Sz depends essentially on each variable from x appearing in 
this product. Then, by Lemma 1, S1 + Sz depends essentially on every variable in x. 

0 

Theorem 4. F” = Fs, then a = /I 

Proof. Assume that F” = F@. Let us consider several cases. 
Case 1: There is a ki such that ki = n. Without loss of generality, let US assume that 

k,=n,kZ=O,kJ=O.Bythedefinitionoff’,f’,”+f’,B=CyiS’z,(Y,Z),whereeach 
yi is a constant. Similarly, 

fZ9”+f2J= C Li( y, S~(z)9 f3**+f3J=CL:(Z)S;(Y), 

where Li( Y) and L:(Z) are either sums of two variables, or only a single variable, or 
identically 0. 

First, consider the case when tl 1 = tzl. Since no variables from Z and Y are 
selected, t 12 = tzz = t13 = tz3 = 0. From (10) and (11) we obtain that 

f 2,a +f2*s = 0 and f 3*a + f 3*fl = 0. 

Since F” = FB, we obtain f 1,a = f “8. Thus each yi = 0, where 0 < i < 2n. Since 
t,3=t23=O,weobtainfrom(9)thatyi=ai+,+Bi+l.ThUsai=Biforeachxiinx*. 
Therefore c( = /?. 

Let us now consider the case where tI r # tzl . Note that f ‘9’ + f 2*8 is linear in Y, 
and by Lemma 6, depends essentially on each variable from Y. Therefore at least one 
Li( Y) is not identically 0. 
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L,(Y) is either a sum of two variables, or contains exactly one variable. Since 
Y contains n variables and n > 4, the functionj2” +j2Jr is not symmetric in Y, by 
Lemma 1. But since F” = FB = 0, Lemma 7 applies, soj2~” +j2V8 is symmetric in Y, 
a contradiction. 

Case 2. There is a ki such that ki = n - 1. Without loss of generality, let us assume 
that k, = n - 1, k2 = 1 and k3 = 0. Let Xj be the variable from X that was not 
selected. By Lemma 6, we obtain that in case ti3 = t23: 

jL” +j’.B = ~Yi%-l(Y’a, 

where yi are constants; or, in case t13 # t23, 

f’4 +fLB 
= XjRII(Y’vZ) + CdiSi?n-I (Y’vzh 

where 6i are constants and RI 1 is a symmetric function that is equal to the sum of no 
more than 4 elementary symmetric functions, (see (9)). 

Also, note that 

j”” +j2” = CLi(y’)Sf+l (xj~z), 

j3*” +j3,8 = c L:(z)s:(xj, y'), (14) 

where each &(y’) and L:(Z) are linear functions of no more than 2 variables. Let us 
consider several cases. 

Subcase 2.1: cl1 # tzl. By Lemma 6,j3vu +j3*B depends essentially on each vari- 

able from z. From (14), it follows that j3,” + j3,fi is not symmetric in z. From Lemma 

7, we obtain that F” = FB implies j3,a + j3,p is symmetric in Z, a contradiction. 

Subcase 2.2: tlz # tz2. Arguments similar to those for case 2.1 hold, with replace- 
ment of j3 by j2. Thus, there is a contradiction in this case. 

Subcase 2.3: cl1 = cl1 and cl2 = tz2. Then the value of the single variable selected 
from y is the same in c( and /3, so we also have t 1 3 = t23. From representation (lo), we 

obtain that j’s” + j2qB is identically 0. Similarly, from representation (1 l), j 3*a + j3S8 

is identically 0. 
Thus, F” + Fb = j’*” + jlsB. Since F” = Ffl, we have j’*” + j’*B = 0. Since 

Cl3 = t23, Eq. (16) holds, where each yi in (14) equals 0. From representation (9), this 
implies that c1 and p have the same value for each variable in x*. Thus u = /I. 

Case 3: No ki exceeds n - 2. In this case we obtain that each group x’, y' and z’ 
contain at least two variables. There are two possibilities: there is a j such that 

tlj # t2j, or tlj = t2j for all 1 <j < 3. 
Let us consider the first possibility. Without loss of generality, assume that 

cl3 # t23. By Lemma 8, we obtain that j’,” + jlVB is not symmetric in x’. From 
Lemma 7, this contradicts F” = FB. 

Let us now consider the second possibility, that is cl1 = t21, cl2 = tZ2, and 
cl3 = t23. By Lemma 6,j1*‘l + j’*@ does not depend essentially on x’. It cannot be 
identically 1, since it is equal to 0 for any tuple where y’ and z’ contain (n - t13) ones 
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(see representation (9)). Thus, jr*= + f ‘J is either identically 0 or a nonconstant 
symmetric function of y’ and z’. 

By the same token, f’*= +fZVB and f3*= +f3*B is identically 0 or nonconstant 
symmetric functions of (x’, z’) and (x’, y’), respectively. 

Let us assume that neitherf’,” +flgB norf’.= +f2J, norf3= +f3*B is identically 
0. Since ki + k2 + k3 = n and n 3 4, there is a ki such that ki < Ln/2J. Without loss of 
generality, assume k3 < Ln/2J. Then from Lemma 9,f3*= +f3pB is nonlinear. Thus, 
from Lemma 10, the function ( f’s” +f’*@) + ( f3,’ +f3*fl) depends essentially on 
the variables from x’. But since F” = FB, we have f’*” +fr,@ =f’*= +f2g8 + 
f3*= +f3s8. Sincef’= + f ‘J does not depend essentially on x’, we have a contradic- 
tion. 

Thus at least one off’*” +f’*@ orf2*= +f’*” orf3= +f3*B is identically 0, say 
j’*= +fl*@. Thenf2p” +f*,fl = j-3,= +f3*@. Sincef2*” +f’*@ is symmetric in z’, and 
since f3*” +f3*@ does not depend on z’, we obtain that f2,= +f2,@ = 0 and 
j-3,” +f3J = 0. 

Therefore each off’,” +f’*fi,f’*” +J‘-‘,~, and f3,= +f3*8 is identically 0. From 
Lemma 3, the coefficient of each Si;‘,‘; - ’ in representation (9) equals 0. Therefore 
a,. = fi=.. Similarly cl,,. = fly* and a=. = /I=+. We conclude that IX = /I. 0 

6. Comparative complexity of BDD classes 

In the next three theorems we compare the relative economy of description of 
Boolean functions by BDDs, RBDDs, FBDDs and OBDDs. We prove that each class 
is exponentially more complex comparatively with its superset in this sequence. At the 
same time, for RBDDs, FBDDs and OBDDs we also establish the largest lower 
bound known to date. First we compare relative economy of computation by BDDs 
and RBDDs. 

Theorem 5. For each n > 4, there is a Boolean function F of 3n variables, such that any 
RBDD computing F requires at least 2” internal nodes, and there is a BDD that 

computes F with O(n2) nodes. 

Proof. Consider function F defined by Eq. (7a). From Theorem 4, it follows that for 
any n variables selected from the 3n variables of the function F, if n-tuples, a # /3, then 
F” # FB. Furthermore, from Lemma 5. F” and FB depend essentially on all the 
remaining 2n variables. Therefore, from Theorem 4 and from Lemma 4, any RBDD 
computing F requires 2” internal nodes. 

To complete the proof we design a BDD for F with 10n2 + 10n nodes. First note 
that for p variables u = (ul,u2, . . . , u,} , a subBDD can be constructed consisting of 
p(p + 1)/2 internal nodes, such that for each exiting edge of the subBDD, all 
assignments to u which cause the subBDD to be exited via that edge have the same 
number of 1’s. The subBDD consists of p levels, where level i, for 1 < i < p, consists of 
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a sequence of i nodes each of which is labeled by variable Ui. Let the nodes at level i be 
denoted as ni,j, where 0 < j < i. For 1 < i < p, let the O-edge exiting ni,j enter ni+ i,j, 
and let the l-edge exiting hi,j enter ni+ l,j+ 1. Using this scheme, node ni,j is entered 
only for those assignments in which the number of l’s among variables ul, . . . , Ui _ 1 is 
exactly j. Furthermore, the edge exiting the subBDD for any given assignment to u can 
be envisioned as representing the number of l’s in u. 

A BDD forf’ can begin with a subBDD which counts the number of l’s among the 
2” variables y and z. The number of l’s from among y and z either determines the value 
off’, or determines that the value off’ depends on a single selected variable from x. 
Thus by adding n interior nodes labeled with variables from x, a subBDD can be 
constructed that computes the value off’. This BDD has (2n)(2n + 1)/2 nodes 
labeled with variables from y and z, and n nodes labeled with variables from x, for 
a total of 2n2 + 2n internal nodes. 

A BDD for F can be constructed using a BDD for f’, two copies of a BDD 
for f2, and two copies of a BDD for f 3. The value off 1 selects one of the copies 
of the BDD for fz . The value off 1 + f2 selects one of the two copies of the BDD 
for f 3. The edges exiting each copy off 3 enter a sink node based on the value of 

(f’+f2)+f3. 
The size of the constructed BDD is 5 times the size of a BDD for f I, i.e. the size is 

10n’ + 10n. 0 

Since every OBDD and FBDD are also RBDD, the lower bound on number of 
internal nodes to compute F by RBDD also applies to FBDD and OBDD as well. In 
the next two theorems we exhibit Boolean functions of n variables that have smaller 
(but still exponential in n) lower bound for a number of internal nodes to be computed 
by either FBDD or OBDD. However, these functions would only require O(n2) sizes 
to be computed by a superset class of BDDs. 

Theorem 6. For every n > 4, there exists a Boolean function @ of 6n + 4 variables, such 
that ev’ery FBDD computing @ contains at least 2” nodes, but there is an RBDD 
computing @ with no more than O(n’) nodes. 

Proof. Consider function F defined by Eq. (7a). Let T be a set of 3n + 3 Boolean 
variables that are different from any variable of F. In addition, let u be a variable that 
does not appear either in F or in T. Function @ is defined as follows: 

@=i?F+vxt. 
tET 

Every FBDD computing @must also compute F. From Theorem 5, it follows that any 
FBDD computing F requires 2” internal nodes. To complete the proof we design 
BDD A that computes @with 10n2 + 16n + 6 nodes. BDD A starts computing @ with 
variable v. If v = 0, then A computes F as described in Theorem 5. If, on the other 
hand, v = 1, then A computes a linear Boolean function of 3n + 3 variables. Thus, 
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A has lOn2 + 16n + 6 internal nodes. Note, that the depth of any path in BDD 
computing F does not exceed 6n + 3. Thus, the total depth of A is 6n + 4. Further- 
more, every variable of @ labels at least one internal node of A. Thus, A is RBDD. The 
theorem is proven. 0 

Finally, we exhibit an example of a Boolean function that requires an exponential 
number of nodes to be computed by OBDD and O(n2) nodes to be computed by 
FBDD. 

Theorem 7. For every n 2 4, there exists a Boolean function G of 3n + 2 variables, such 
that very OBDD computing G contains at least 2”13 nodes, but there is an FBDD 
computing F with no more than 3(2n2 + 2n) + 3 nodes. 

Proof. Let v and w be two Boolean variables distinct from any variables from X, Y, 
and Z. Let fI,f2 andf3 be Boolean functions defined in (7). 

Let 

G = iTGf’(X, Y,Z) + iiwf2(X, Y,Z) + vWf3 (X, Y,Z). 

Then a FBDD computing G with 3(2n2 + 2n) + 3 nodes can be constructed as 
follows. The FBDD first test v and w and evaluates a subBDD for eitherf’,f2, orf3. 
Each of these subBDDs can be constructed, as described in the proof of Theorem 5, as 
an OBDD. 

Let us consider now an arbitrary order 0 on v, w, X, Y, Z and, without loss of 
generality, we assume that v, w among first n + 2 variables of G in the order 0. Let 
0 includes k, variables from X, k2 variables from Y, k3 variables from Z, where 
k, + k2 + k3 = n. Then there is i such that ki 2 n/3. Without loss of generality, 
assume that kl B n/3. Thusf’q” and f ‘J for CC> and fl) that differ in positions for 
selected variables from X will be different. Thus, any OBDD computing G will need at 
least 2”13 internal nodes. 0 

Theorems 5-7 are “close” to being as strong as possible. For example, the family of 
Boolean functions ( fn ) n > 1 } in Theorem 7 has the property that, for n 2 1, function 
f. depends essentially on all n variables and satisfies 

LOBDDcLl) > c .2”‘9 
LFBDD(fn) ’ n2 ’ 

But in comparison, for all n > 1 and for all Boolean functions fdepending essentially 
upon n variables, 

L OBDD(f) < 2”+ ’ . t1 + E ) 

LFBDD(f.) n2 ” ’ 
where E, + 0 as n + 00 . 
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7. Conclusions 

In this paper we compare a computational power of BDDs, RBDDs, FBDDs, 
OBDDs and BDT. Our results show that FBDD can be exponentially more complex 
than BDD computing the same Boolean function and FBDD can be exponentially 
more complex than OBDD computing the same Boolean functions. We also show 
that the computational power of BDTs and OBDDs is generally incomparable. 

A technique that we used in obtaining lower bounds on the size of FBDDs and 
OBDDs for families of functions goes back to [S] and careful application of that 
technique allows us to obtain the best known to date lower bounds for complexity of 
Boolean functions on FBDD and OBDD. 

We also establish asymptotically sharp bounds as a function of n on the minimum 
size of arbitrary BDDs representing almost all Boolean functions of n variables and 
provide asymptotic lower and upper bounds, differing only by a factor of two, on the 
minimum size OBDDs representing almost all Boolean functions of n variables. 
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