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Abstract

We consider the size of the representation of Boolean functions by several classes of binary
decision diagrams (BDDs) (also called branching programs), namely the classes of arbitrary
BDDs of real time BDD (RBDD) (i.e. BDDs where each computation path is limited to the
number of variables), of free BDDs (FBDD:s) (also called read-once-only branching programs),
of ordered BDDs (OBDDS) i.e. FBDDs where variables are tested in the same order along all
paths), and binary decision trees (BDTS).

Using well-known techniques, we first establish asymptotically sharp bounds as a function of
n on the minimum size of arbitrary BDDs representing almost all Boolean functions of
n variables and provide asymptotic lower and upper bounds, differing only by a factor of two,
on the minimum size OBDD:s representing almost all Boolean functions of n variables.

We then, using a method to obtain exponential lower bounds on complexity of computation
of Boolean functions by RBDD, FBDD and OBDD that originated in (Breitbart, 1968), present
the highest such bounds to date and also present improved bounds on the relative economy of
description of particular Boolean functions by the above classes of BDDs. For each nontrivial
pair of BDD classes considered, we exhibit infinite families of Boolean functions representable
much more concisely by BDDs in one class than by BDDs in the other.

1. Introduction

Binary decision diagrams (BDDs) play an important role in several application
areas including VLSI design, pattern recognition, decision table programming, and
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Computer aided design (CAD). Thus they have attracted a great deal of attention both
from theoreticians [3,6-11,15,16,19,24,29,30,32,34-38] and from applied re-
searchers [1,2,4,5,12-14,18,20,27,28,31].

Theoreticians used restricted classes of branching programs for proving exponen-
tial lower bounds on computational complexity of different problems [29, 30, 32,
34-38,23,21]. It appears that it is easier to develop lower bound techniques for
branching programs than for Turing machines and yet both these models have an
equivalent computational power. Recently, it was shown that lower bound techniques
developed for branching programs can be extended to obtain nonlinear lower bounds
for VLSI circuit complexity [21].

Engineering community has advocated uwsing BDDs and OBDDs as a CAD
specification language for Boolean functions [4, 12]. The use of OBDDs, rather than
arbitrary BDDs, facilitates the solution of various analysis and synthesis problems.
However, there has been concern in the CAD community with the size of OBDDs
representing particular Boolean functions.

These considerations have generated considerable interest in the comparative
complexity of a Boolean function description by different BDD models.

Formally, a BDD is a labeled directed acyclic graph with the following properties:

1. There is exactly one source node.

2. Each nonsink node has outdegree 2, is labeled by a Boolean variable, and is

called an internal node.

3. Each internal node has one outgoing edge labeled by 0 and the other labeled

by 1.

4. Each sink node is labeled by 0 or 1, and 1s called a terminal node.

By the size of BDD A, denoted by L(A4), we mean the number of internal nodes of A.
Let n (n > 1) be a number of Boolean variables that are used to label BDD nodes. For
each assignment to the variables labeling a given BDD, there is a unique path from the
source node to a terminal node. A Boolean function f(x,...,x,) (where n = 0) is
computed (or represented) by a given BDD if for each sequence of n Boolean values
o =ay,...,q,, the path corresponding to « ends with a terminal node whose label is
Slog, .. 0).

A real-time BDD (RBDD) is a BDD for which the length of each path does not
exceed n, where n is the length of the input word. A free BDD (FBDD) is a BDD for
which each path has at most one occurrence of each variable. An ordered BDD
(OBDD) is a FBDD such that the order of occurrences of variables on all its path is
consistent with some linear order, i.e. if variable x occurs before variable y on some
path, then there is no path where y occurs before x. A binary decision tree (BDT) is
a BDD for which each node has indegree at most one.

The relative succinctness of two BDD classes can be captured by results showing
that there are functions succinctly representable via BDDs in the first class, but for
which a much larger size is required if the representing BDD must be in the second
class. The strongest such result would say that BDD in the second class is exponenti-
ally larger than the BDD in the first class. For instance, it is well known [36] that
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there are Boolean functions representable by OBDDs of size linear in the number of
variables n, but for which any BDT has size exponential in n. Here we consider the
reverse case, and exhibit a family of Boolean functions { f,|n > 1} for which we show
that they can be computed by BDT of size @(n?/logn) but require at least Q(2"/'°#")
nodes to be computed by any OBDD. This result says that there are BDTs of size
m such that any equivalent OBDD must be of size roughly 2v™/losm,

Complexity of computation of Boolean functions by FBDD were studies by several
researchers. Wegener [35] exhibited a family of Boolean functions {f,|n > 1} for
which any FBDD computing f must have at least Q(2°*'"”) size. Zak [38] exhibited
a family {f,|n = 1} such that any FBDD computing f must have size of at least
Q(2‘\/;/ n). Similar results were obtained by Dunne [17] and Krause [22]

These results were improved by Wegener [37] and by Ajtai et al. [3,6]. In [6] a family
{f.In > 1} is exhibited such that each function requires at least Q(2”) nodes to be
computed by FBDD. Their constant ¢, however, is very small, namely ¢ < 107!

Clearly, each FBDD is also RBDD but not vice versa. Kriegel and Waack [24]
exhibit a family {f,|n > 1} of Boolean functions each of which requires RBDD of
Q(2"*®) size. In contrast, we exhibit a family { f,|n > 1} such that each such function
can be computed by BDD of size @(n?) and yet each RBDD computing the function
must have at least 2> nodes. In addition, we exhibit another family { f,|n > 1} such
that each such function can be computed by RBDD of @(n?) size and yet each FBDD
computing the function requires at least ¢2™® nodes.

It appears that the above result provides the largest lower bound for RBDD (and,
by implication, for FBDD and OBDD) achieved so far. Our construction uses
methods developed in [8-11].

The relationship between FBDDs and OBDDs was considered by Fortune et al.
[19]. They exhibited a family {f,in > 1} such that each such function can be
computed by FBDD of @(n?) size and yet each OBDD computing the function
requires at least (-‘)(2\/; °{) size. In contrast, we exhibit here a family { f,|n > 1} such
that each such function can be computed by FBDD of ®(n?) size and yet each OBDD
computing the function requires at least 2™° nodes.

The rest of the paper is organized as follows. Section 2 contains basic definitions
and outlines our method for proving exponential lower bounds for computations on
BDD:s. In Section 3, we consider the asymptotic size of general BDDs and OBDDs
representing Boolean functions. It contains asymptotically sharp bounds as a function
of n on the minimum size of BDDs representing almost all Boolean functions of
n variables. Our asymptotic lower and upper bounds as a function of n on the
minimum size OBDDs representing almost all Boolean functions of n variables are
asymptotically differ only by a factor or two. We have been informed that a similar
result concerning BDDs appears in [25], which seems to be part of a series of technical
reports. However, we have been unable to obtain it, and have not found citations to it
in the literature on BDDs. The asymptotic result for OBDD is obtained by a straight-
forward analysis of a well known general OBDD construction. Both these results are
included here for the sake of completeness of our presentation and a lack of single
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place where asymptotic bounds are presented. Our main results are contained in the
next three sections.

In Section 4, we consider the relative succinctness of OBDDs and BDTs. In Section
5, we define a family of Boolean functions {f,|n > 1} for which we show that any
RBDD computing a function from our class requires 23 size. In Section 6 we
construct Boolean functions that can be easily computed by BDD (RBDD, FBDD,
respectively) and require exponential size for RBDD (FBDD, OBDD, respectively).
Section 7 concludes the paper.

2. Basic definitions and lower bound technique

Let A be a BDD, t be a class of BDDs, f be a Boolean function, and n > 1 be an
integer. We define the 7-size of f, denoted by L.(f), as

L.(f)=min{L(A)| A represents fand A4 € t}.

We define L (n) as

L.(n)=max{L.(f)|g is an n variable Boolean function}.

Since BDD = RBDD = FBDD = OBDD and BDD =2 RBDD = FBDD = BDT,
the following relationships hold trivially for all Boolean functions f:

Lypp(f) < Lgepp(f) < Lespp(f) < min {Loppp(f), Lepr(f)}.

Let f,g:N—-R be such that f(n),g(n)>0. We write f(n)~gn), if
lim, ., f(n)/g(n) = 1.

Let X = (x4,...,x,) and X 2 Y =(x;,, ..., Xx; ), where k > 1. If f(X) is a Boolean
function of n variables and « = «; ,...,«; are values for variables from Y, then we
denote f* the Boolean function obtained from f by substitution of «;,...,a; for
variables from Y. It is well known that every Boolean function has a unique ring sum
representation [33].

We say that a Boolean function f(X) is linear in variables from Y if every product in
its ring sum representation contains at most one variable from Y. If a Boolean
function f(X) is linear in all of its variables, then f is called linear. We say that
a Boolean function f(X) is symmetric in variables from Y, if f(X) does not change
under any permutation of variables from Y. If a function is symmetric in all of its
variables, then it called symmetric. A Boolean function f(Xy,...,Xi—1sXisXit1s--+»
x,) depends essentially on x; iff f(x;,...,%i-1,0,Xi41,.03%0) FSXi5 e Xi 1,
1,Xi+1,....%,). From the above definitions, it can be easily derived that if f(X) is
symmetric in Y, then either f(X) depends essentially on all variables from Y, or it does
not depend essentially on any variable from Y. Hence, any symmetric and noncon-
stant Boolean function depends essentially on all of its variables.
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Lemma 1. If f(X) is symmetric and linear in Y, then
fX)=0,(X,Y) + P(X, Y) ) X, t)
x'eY

where + is taken by modulo two.

Proof. Two cases are possible: (1) either f does not depend essentially on any variable
from Y, or (2) it depends essentially on all variables from Y. In the first case, assuming
&,(X, Y) = 0, we derive (1). In the second case, consider those products from ring sum
representation of f that contain variables from Y. Since f is linear in Y, each such
product contains exactly one variable from Y. Let P; (1 <j< k) be a sum of all
products that contain variable x; from Y. Since fis symmetric in ¥, we obtain that all
P; are the same, and, thus, (1) holds. O

Corollary 1. If f(X) is symmetric and linear and not a constant, then
fX)=x; 4+ x, + -+ + x, + a, where o is a constant from {0, 1} (i.e. f (X) is linear in all
of its arguments).

Proof. Since f is linear, functions ¢; and &, in (1) are constants. Since f is not
a constant, we obtain that ¢, isequalto 1. O

Let S{(X) be the symmetric Boolean function that is equal to one iff exactly
0 < i < n of its variables are equal to one. Si(X) is called an elementary symmetric
function. By definition, S{ =0 if i > n or i < 0. It is well known [33] that if k-tuple
o contains exactly s ones among its k values, then

Si*=§i75,. (a)

Lemma 2. Let X =(x,,...,x,) and Y = (yy, ..., ¥,) be disjoint sets of variables. Let
X Y) =31 LMX)SUY) and f2(X,Y) = Y7_, LA(X)Si(Y), where L} and L? are
arbitrary Boolean functions. Then

fl=f*iff forallO<i<n L!=L?

Proof. Let us assume to the contrary, f! = f2, but there is a k such that L} # LZ.
Then

SLIT=0= Y (LEEX) + LEAX)SHD) @

i=0

Since L} + L} # 0, there is an o such that Li(x) + L?(2) = 1. Let f be an n-tuple that
contains exactly k ones. Then S¥(B)=1, and Si(B)=0 for each i # k. Thus,
fYaB) + f*(ap) = 1, which contradicts (2). O

Using Lemma 2 straightforwardly, we derive the following lemma.

Lemma 3. Iff=Y"_, L(X)Si(Y)(where again X and Y are disjoint sets of n variables),
then f depends essentially on x, from X if and only if there is a j such that L ; depends
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essentially on x;. Moreover, if f depends essentially on at least one variable from X, then
it depends essentially on all variables from Y.

Our lower bounds estimates are based on the following lemma.

Lemma 4. Let f(X) be a Boolean function and k be an integer such that 0 < k < n.
Suppose that for any k variables x; ---x;, , the functions obtained by substituting con-
stants for these variables are all different and depend essentially on all the remaining
variables. They any RBDD for f contains at least 2* internal nodes.

Proof. Let A be a RBDD computing f. Any path in 4 to a terminal node must contain
more than k edges. Therefore there are 2* paths of length k, each reaching an internal
node.

Consider any pair of such paths. If the two paths involve different sets of k variables,
then the Boolean functions of the remaining variables after traversing the two paths
are different, since these functions depend essentially on different sets of variables. If
the two paths involve the same set of k variables, then by the hypothesis, the functions
of the remaining variables are different. Therefore, each of the 2* paths of length
k must reach a distinct internal node of A. [

3. Representation of Boolean functions by BDDs

Since it is very difficult to find a specific Boolean function whose representation by
a BDD requires exponential size, researchers have attempted to find such a function
using an asymptotic approach. Such methods allow us to find a uniform method that
builds minimal size BDDs for the most complex Boolean functions.

Although it is well known that Lgpp(n) is, roughly, exponential in n, the exact size
complexity does not seem to be well known. For instance, in his widely cited book
[36], Wegener presents the following bounds on Lypp(n):

2" 2"
— < Lgpp(n) and Lgpp(n)is O<—>.
3n : n

However, the original results on Lgpp(n) in [26] are stronger, namely

2n—1 2n+2
< Lgpp(n) <

-1

Our Theorem 1 provides an asymptotically exact estimate on Lgpp(n).

Theorem 1. For alln > 1,(2"/n)(1 — &,) € Lypp(n) < (2"/n) (1 + &,), where ¢, — 0 as
n— oo. Thus, Lypp(n) ~ 2"/n.
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Proof. We prove a stronger statement, namely, that “almost all” Boolean function of
n variables require (2"/n) (1 — ¢,) internal nodes for their computation by BDDs,
where g, > 0asn— .

Upper bound: Lgpp(n) < (2"/n)(1 + ¢,), where ¢, —» 0 asn— 0. To prove the upper
bound we design a computation method that for any Boolean function f of n
arguments constructs a BDD computing f that has no more than (2"/n) (1 + ¢,)
internal nodes, where ¢, — 0, as n — o0. The computation utilizes a representation of
Boolean functions described in [33].

Let f(X) be a Boolean function of n variables. We choose a parameter k, where
1 < k < n. Then f(X) can be represented by a 2* x 2"~ * matrix, whose rows are
numbered by k-tuples of values for x,,...,x; and whose columns are numbered by
(n — k)-tuples of values for x;41,...,x,. The value of the function for a,...,a, is
placed at the intersection of the <a;,...,a;) row and the {oy+4,...,%,» column.

Let us also choose a parameter s where 1 < s < 2%, and subdivide the rows of the
table into [ 2*/s7] groups with s consecutive rows per group.

We define f;(X), where 1 < i< [2*/s], as follows:

f(X) if {ay,...,0q)> is a member of the ith group of rows,

(X) =
HX) {0 otherwise.

Therefore, the function f (X ) is a disjunction of all the functions f;(X ) and the following
relation holds (where ¥ here denotes disjunction).

2451

fO =% fiX) ©

It is easy to see that any column of values for the function f;(X') has zeros outside of ith
group of rows and possible nonzero values within the ith group of rows. The possible
number of different columns in the matrix of values for the ith function is no more
than 2° since a column may contain only s nonzero values. The columns of the ith
function can be subdivided into p groups, where 1 < p < 2°. Two columns belong to
the same group if and only if they are identical for the function f;.

We define f;;(X) as follows:

£i(X) = fi(X) for the columns of the jth group,
Y 0 otherwise.
Thus
[24s7 23
fX)= Y ¥ fi(X) @

i=1 j=1

A function f;; has columns of only two types: either a column consisting of only zeros
or a column with §,, ..., B, in the ith group of rows and zeros outside of it. Therefore,
every f;; can be considered as a conjunction of two functions: f{}’(xy,...,x,) and
S X+ 1,05 %), Where fP(xy,...,x.) depends only on variables x,, ..., x, and is
equal to one in rows where the jth group of columns for the ith group of rows has at
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least one 1, and f ) (x4 +1, ..., X,) depends only on variables x; 1, ..., X, and is equal
to 1 in columns of the jth group.
Thus, combining representations (3) and (4) we derive that f(X) can be represented

as follows.
ry/s] 2s
)= BT 1 Ce8) S 00r1s-0 %) (5)
1 j=1
Representation (5) has the following properties:
1. Every f{}(x1,..., %) has no more than s values equal to 1.
2 f,,l (xk+1, o Xn) [P X150 %) = 0, if jy # .
An example of the described representation is shown in Fig. 1 for a function of
7 variables,. where k and s are equal to 3.
Based on the representation (5) we construct a BDD A4 computing f(X). The
constructed BDD consists of three block — Bl, B2, B3 described below.

0000000011111111 X,
0000111100001111 X
0011001100110011 Xg

x, x, X, 0101010101010101 X,

0 0 0 0000001110011011 First

0 0 1 0011110001111100 group

0 1 0 0101100000011111 of rows

0 1 0011110000000111 Second

1 0 0001110001100010 group

1 0 1 1100011111000000 of rows

0 0001110000000001 Third group
1 0110001110011111 of rows

() SOx, %5, X5, %, %65 X, X5)
0000000011111111 X,
0000111100001111 X
0011001100110011 Xg

X, X, X, 0101010101010101 X,

0 0 0 0000000000000000

0 0 1 0000000000000000

0 1 0 0000000000000000

0 1 0011110000000111

1 0 0 0001110001100010

1 0 1 1100011111000000

1 0 0000000000000000

1 1 0000000000000000

(b) S0, Xy, X3, X 4, X5, Xg, %)

Fig 1.
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0000000011111111 X4
0000111100001111 Xs
0011001100110011 X¢

X, Xa X3 0101010101010101 X4

0 0 0 0000000000000000

0 0 1 0000000000000000

0 1 0 0000000000000000

0 i 1 0001100000000010

1 0 0 0001100000000010

1 0 1 0000000000000000

1 0 0000000000000000

1 1 0000000000000000

© Sa9(x1,%2, X3, X4, X5, X6, X7)
0000000011111111 Xq
0000111100001111 Xs
0011001100110011 Xg

Xy X3 X3 0101010101010101 X4

0 0 0 0000000000000000

0 0 1 0000000000000000

0 1 0 0000000000000000

0 1 1111111111111

1 0 0 1111111111111

1 0 1 0000000000000000

i 0 0000000000000000

1 1 0000000000000000

@ S {)7()‘1,351,"3,Xuxs,mev)
0000000011111111 Xq
0000111100001111 Xs
0011001100110011 X¢

X3 X3 X3 0101010101010101 X

0 0 0 0001100000000010

0 0 1 0001100000000010

0 1 0 0001100000000010

0 i 1 0001100000000010

1 0 0 0001100000000010

1 0 1 0001 100000000010

1 1 0 0001100000000010

1 1 1 0001100000000010

(e) SE(x1,%2, X3, X4, X5, X6, X7)

Fig. 1 (continued).
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1. Block BI values x4, ..., x, determines a group number. Let L(BI) be the number
of internal nodes of Bl. Block B1 consists of a binary tree of k levels whose nodes are
labeled with x, through x;, and a number of nodes at the (k + 1)th level equal to the
number of different subfunctions f in the representation (3). Therefore,

k1 Y 1
LB Y 2'+—+1= Y(l +—).
1=0 s §

2. Block B2 using a group number determined by block Bl, determines a column
group number based on the values of the last (n — k) variables of the function f.
Block B2 consists of no more than [ 2*/s7] smaller blocks B2;. Each such subblock
consists of a binary tree whose root is labeled with x, , ; and was counted as a part of
block BI, a sequence of n — k — 1 levels labeled with variables x; , , through x,, and
a final level containing a node for each column group. Since there are no more than 2°
nodes in the final level of each subblock, the number of nodes in all B2; blocks is

L(B2) < (§+ 1) (n_fl 2+ 23> = <§+ 1) "k —-2+29
1=1

n k+1 2k+s

== 42"k —-24+2°4+
S N N

3. Block B3 using a row group number and a column group number computes
fij(x12,...,x,) and, thereby completes the computation of the function value for
a given set of input values. Block B3 consists of no more than (2*/s + 1)2° smaller
blocks B3;;, where each such block computes function fj;(x;, ..., x,). Since each such
function can be represented as shown in (5), each B3;; is a binary tree. The root of this
tree is labeled with x; and was counted as part of block B2. The tree then has k — 1
levels labeled with variables x, through x,. Finally, there is a level containing terminal
nodes. The number of internal nodes in block B3 is

2i

L(B3) < (§+ 1)25 Y

i=1

- (2“5 + 28) (Y —2)
A

22k+s k+s+1
- + 2k+s~
N

k-1

- 2s+1

N
Hence, the complexity of 4 is equal to the sum of L(B1)-L(B3),
L(4)= L(B1) + L(B2) + L(B3)

Y bl 2k+1 2k+s 22k+s
=Y+;+?+2”"‘— —242°+ +

s

k+s+1

+ 2k+s _ _ 2s+1

N
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=2n—k+2k+s+2k_2s_2+§(2n+22k+s_2k_2k+s)

2k+s
+ 2k*s 4 2k,

27!
<=+2"F4
s
Let us choose k = 2| logn |and s = n — 6| logn |. Since 2logn — 2 < k < 2logn and
n—o6logn<s<n—6logn+ 6, we obtain

2n 2n+2 2n+6 2n+6 2n
2<=(1+¢g).
n—6logn+ n? +n2(n—6logn)+ n* o n( + &)

L(A)<

This completes the proof of the upper bound.

Lower bound: Lgpp(f) = (2"/n) (1 — ¢,). To prove that for almost all Boolean
functions f of n arguments, Lgpp(f) = (2"/n) (1 — ¢,) where ¢, > 0 as n— co, we use
counting arguments. Consider a BDD with k internal nodes and let us assign to each
node a unique tag consisting of a number from 1 through k, assigning different tags to
different nodes. Each internal node in the BDD is labeled by one of the variables from
X. Without loss of generality, we assume that there are only two terminal nodes in
each BDD. One terminal node is labeled with 0 and assigned tag k + 1, and the other
is labeled 1 and assigned tag k + 2.

Each BDD with k tagged internal nodes can be uniquely represented as follows.
Consider a table of k rows. Row i represents internal node i, and contains an entry
with three values ( g,j;,/2). Suppose internal node i of the BDD is labeled by variable
X4, 1s connected to node j; by an edge labeled 0, and is connected to node j, by an edge
labeled 1. Then row i contains the entry (q,j,,j,).

Since each row of the table has (k + 2)2n possible values, there are (k + 2)%*n* such
tables (not all of which represent BDDs). However a BDD with k internal nodes can
be assigned tags in k! different ways, and therefore is represented by k! isomorphic
tables. The number of nonisomorphic BDDs with k internal nodes is thus no more
than

(k + 2)2knk

k! < (ckn)¥,

where ¢ is some constant.

It is well known that there are 22" Boolean functions of n variables. Therefore, the
number of different nonisomorphic BDDs with k internal nodes should be large
enough to compute every Boolean function of »n variables.

Thus (ckn)* > 22". Consequently, k > (2"/n) (1 —¢,). O

It should be noted that the asymptotically minimal size BDD to evaluate any
Boolean function of n variables obtained by our method reads each variable no
more than twice. Perhaps this fact explains why it is so difficult to obtain an expo-
nential lower bounds for read-only twice branching program without any additional
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restrictions. Obtaining an exponential lower bound for read-only twice branching
program would in effect allow to exhibit the most complex Boolean functions to be
computed by general BDDs.

The next theorem provides a general construction of an OBDD (and hence
a FBDD and a RBDD) whose size differs from the lower bound of Theorem 1 by
a factor of at most 2.

Theorem 2. For all n>1, 2"*1/n) (1 + &,) = Loppp(n) = (2"/n) (1 —¢,), where
g, 0asn— 0.

Proof. Upper bound: To prove the upper bound we design a computation method
that for any Boolean function f of n variables constructs a OBDD computing f that
has no more than (2"*!/n) (1 + ¢,) internal nodes.

Let us select a parameter k, where 1 < k < n. Each function of n variables can be
uniquely represented as follows [33]:

f(X)=ZXq"”x;k.f;(xk+l’"-,xn)’ (6)

where a = a,, ..., o, ranges over the 2* possible assignments to variables x, ..., X;.
The distinct functions f; occurring in this representation can be enumerated as f; where
the number of such functions £ is at most max (2¥,22" 7). Based on representation (6)
we construct an OBDD A computing f as follows.

1. Block B1 computes all possible conjunctions of length k from variables
Xy,...,X;. This block is a k-level tree. Each node of the ith level is labelled with
variable x;, where 1 < i < k. Therefore,

k-1
LBl =Y 2"=2*—1.
i=0

2. Block B2 using a conjunction computed by block Bl, computes a function
JSi(Xk+15---,X%a), for each f; from the representation (6). Block B2 can be constructed to
have at most one internal node for each of the 22" ~“ — 2 nonconstant functions of
variables xy + 1, ..., X,. Suppose a given function of x, ,,, ..., X, depends essentially on
X;, but does not depend essentially on any x;, where j < h. Then this function is
represented in B2 by a node labeled by variable x,,. Thus, the number of internal nodes
in B2 is at most 22"~ “ — 2. An alternate way to see this is that the number of nodes
labeled with x, ., is the number of functions n — k variables that depend essentially
on Xi.,; (e 22 °—2%7“"") the number of nodes labeled by x;., is
2277%=1 _22"7%=2 and the number of nodes labeled by x, is 22' — 2. Therefore,

L(B2)<2¥ " -2

From the representation (6) we derive that the constructed OBDD computes Boolean
function f. The size of the OBDD is a sum of L(B1) and L(B2). Thus, we obtain

L(A)= L(B1)+ L(B2) < 2¥+2%™" -3
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Let us choose k=n—|log(n —2logn)| Then k <n —log(n —2logn)+ 1 and
n — k < log(n — 2logn), so we derive

n+1 2n
L(A)<:;i:?ﬁ6£;-F;3.
This yields
n+1
L(A4) < (1 + &),

n

where ¢, —» o0 as n— co. Thus the upper bound is proven.
Lower bound: Since every OBDD is also a BDD, the lower bound from Theorem 1
also applies to OBDDs. O

In Theorem 1, we showed that asymptotically Lgpp(n) is 2"/n and in Theorem 2 we
showed that Logpp(n) is asymptotically between 2"/n and 2"*!/n. This raises the issue
of exactly characterizing Logpp(n), asymptotically. The upper bound construction in
Theorem 1 produces a BDD that is not free because blocks Bl and B3 involve the same
variables. However, suppose the value of s in the construction is a power of 2, say s = 24,
Then of the k variables that determine the row number, the first k — g variables
determine the row group, and the remaining g variables determine the row within
the group. Thus Block Bl can determine the group number by testing variables
X1, ..., Xk—q. Furthermore, block B3 need not test these variables again; it can determine
the relative row number within the row group by testing variables x; ;4 , ..., x;. Thus,
when s is a power of 2, the constructed BDD is an OBDD. However, the construction
sets s =n — 6| logn |, and thus produces an OBDD only for a certain values of n.

The upper bound construction of Theorem 2 always produces an OBDD, but
the asymptotic size of the constructed OBDD is often greater than 2"/n. However,
for any & >0 there are infinite number of values of n for which log(n — 2logn)

—| log(n — 2logn) | < &, so that the constructed OBDD 4 is close to the right size:

nte 2

LAY ———— + —.

) n—210gn+n2
Thus the construction of Theorem 1 always produces a BDD whose size is right, but
only occasionally produces a BDD that is ordered, whereas the construction of
Theorem 2 always produces an OBDD, but only sometimes produces one whose size
is almost right. Perhaps some merger of the constructions can be used to more exactly

characterize Logpp(n).

4. Comparative sizes of BDTs and OBDDs

In this section we consider the relative succinctness of OBDDs and BDTs. 1t is well
known that Lgpr(n) = 2" — 1. To see that this is an upper bound, consider any
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Boolean function f of n variables, say x;,x;, ..., x,. A complete binary tree 7 can be
constructed whose nodes at level [ are labeled with x;, and whose bottom level
contains terminal nodes. The number of internal nodes of this tree, L(7y), is
Y7242 =2""1 To see that it is a lower bound, note that for the parity function of
n variables, each BDT path to a terminal node must test all the variables. Conse-
quently, a BDT for the parity function must have at least 2" terminal nodes, and at
least 2" — 1 internal nodes.

It is easy to see that the parity function of n variables can be computed by an
OBDD with 2n — 1 internal nodes [36]. Thus the parity functions are a family of
Boolean functions { f,|n > 1} such that f, depends on n variables and

Lppr(fn) _2"—1

Lespo(fa) T 2n— 1,

which is 2"~ 1/n asymptotically. It is much less obvious that there are Boolean
functions f, that have very large minimal size OBDDs and small size BDTs. We prove
that this is so in the next theorem.

Theorem 3. For each n of the form 2, where k > 1, there is a Boolean function f, of
n variables such that

Logpp(fs) _ 20/'8 W%
Lgpr(f) g "2/10g" ‘

Proof. We specify a Boolean function f, of n = 2¥ variables such that any OBDD
computing f; has size at least 2"/18" =3 byt there is a BDT computing f, with size
2n%/logn. Function f, is defined as follows. Let f, have n variables labeled
Xg,...sXax—1. Let m =| 2¥/k |. The 2* variables can be envisioned as partitioned into
m groups, each consisting of k variables, with possibly some variables left over. Let
group 0 contain x, contain xq through x,_, group 1 contains x; through x,,_, etc.
Let group 0 be termed the selection group. Let groups 1 through m — 1 be termed
candidate groups. Let N; be the integer represented by group j when the k variables in
group j are interpreted as the binary encoding of an integer. Thus, 0 < N; <2k — 1.
When the integer N, represented by the selection group is between 1 and m — 1, it can
be envisioned as the index of one of the candidate groups. Let this candidate group be
termed the selected group. The selected group can in turn be envisioned as encoding
the identity of one of the 2* variables. Let this variable be called the selected variable.
Then, the value of function f, is defined to be the value of the selected variable. Thus,
when 0 < Ny < m, f, is defined to be

f;,(xO, ...,ka_l) = xNNo.

Otherwise (When Ny = 0 or Ny = m), f, is defined to equal 0.
Consider an OBDD A that computes f,, using total order I'L. Consider the position
in 11 immediately after encountering m — 2 variables from candidate groups. At this
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point in order I7, there is at least one candidate group, say group j, such that none of
the variables in group j have been encountered yet. Suppose the selected group is
indeed group j. Then the variables in group j might potentially make any of the m — 2
already encountered candidate group variables the selected variable. Thus 4 must
have at least 2™~ 2 internal nodes in order to remember the value of these m — 2
variables. More formally, consider the 2™~ 2 partial assignments to the variables of f,,
where the variables in group 0 have values encoding integer j, and the first m — 2
candidate group variables in IT have all 2™~ 2 possible assignments. Each of these
partial assignments makes f, a function of the remaining candidate group variables.
Furthermore, each of these subfunctions is a distinct Boolean function. For, if two
partial assignments differ in variable i, then if the variables in group j have values such
that N; =i, the value of f, would be different. Thus, these partial assignments
correspond to 2™~ 2 distinct Boolean functions of the untested variables. As a conse-
quence, OBDD A must have at least 2™~ 2 internal nodes. Since m =| n/logn |, and
| n/logn | > (n/logn) — 1, A must have at least 2"/8*)~3 internal nodes.

Now consider the following BDT, tree T, for computing function f,. Tree T has an
upper portion consisting of a complete binary tree testing all the variables in group 0,
the selection group. Let the exiting arcs of this upper tree be labeled O through n — 1,
so that arc j corresponds to the case when Ny = j. Consider arc j. If j=0 or j = m,
then arc j enters a terminal node labeled with value 0. If 0 < j < m, then arcj enters the
root of a complete binary tree that tests all the variables in group j. Each of the
n exiting arcs of a given lower tree, say lower tree j, corresponds to a possible value of
N;. An exiting arc corresponding to a variable in group 0 or in group j refers to an
already tested variable, and so enters a terminal node. Each of the remaining n — 2k
exiting arcs enters an internal node labeled by variable xy, the exiting arcs of which
enter terminal nodes.

Now consider the number of internal nodes of tree 7. The upper tree contains n — 1
internal nodes. There are m — 1 lower trees, each with n — 1 internal nodes labeled by
variables in its group, and leading to n — 2k internal nodes. The total number of
internal nodes in tree T is

2

2
n—14+(m—1)2n—2k—1)<2mm<
logn

5. Construction

By Lemma 4, to establish exponential lower bounds for Boolean functions com-
puted by RBDD, FBDDs or OBDDs, it would be sufficient to exhibit a family of
Boolean functions {f,|n > 1} such that each function f, has exponential in n the
number of subfunctions obtained from f, by substituting constants instead of any of its
m variables, where m < n and each such subfunction depends essentially on all its
remaining variables.
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In [8-10] we exhibit a family of Boolean functions {f,|n > 1} such that by
substituting instead of any of its n/2 variables we obtain 2"/8 different subfunctions. In
[11] we exhibit a different family of Boolean functions {f,|n > 1} such that by
substituting instead of any of its n/3 variables we obtain 2" different subfunctions.
From those results it follows that Lggpp(f,) > 2"°.

In this Section we exhibit a family { f,|n > 12} of Boolean functions such that by
substituting instead of any its n/3 variables we obtain 2" different subfunctions each
depending essentially on its remaining variables.

We show the construction for N = 3n. Let X, Y, Z be three disjoint sets of variables,
each containing n variables, where n > 4. We define an auxiliary function f 1(X, Y, Z)
as follows: Function f! is equal to the value of the variable in group X with an index
one less than the number of ones mod (n + 1) among variables in groups Y and Z. Itis
easy to see that

FUXY,Z)= 3 % (85, 1(Y,Z) + §5,'(Y, Z)). (7

i=1
Let f2(X,Y,Z)=f (Y, Z,X);, f3(X,Y,Z) =f1(Z, X, Y). It is easy to see that f'(f2,
and f3, respectively) is symmetric in (Y, Z) (X, Z), (X, Y), respectively) and linear in
X (Y, Z, respectively). Thus, by Lemma 3, it depends essentially on all of its variables.
Let function F (X, Y, Z) be a Boolean function of 3n arguments defined as follows:

F(X,Y,Z)y=f'"+f*+[3, (7a)

In the rest of the section we prove that for any n selected variables of F, the
functions obtained from F by substituting different n-tuples « and B for the selected
variables, are different and depend essentially on all its nonselected variables. To do
that we need first to establish some structural properties of F that are formulated in
several next Lemmas.

Let us choose x*, y*, z* where x* contains k, variables chosen from X, y* contains
k, variables chosen from Y, and z* contains k; variables chosen from Z, where
ki+k,+ki=nLetx’=X—x* y =Y—y*and z'=Z — z* It is easy to see
that x’ contains (k, + k3) variables, y’ contains (k, + k3) variables, and z’ contains
(ky + k,) variables.

Let o = v atys 00 and f = a, fy« B+ be two different n-tuples. Let oo otye( fys Bye)
contain ty,(t5,) ones, o » o+ S, B,+) contain t, ,(t,,) ones and o« a,+( f,« B.+) contain
t,3(t23) ones. Without loss of generality, let us assume that ¢, < 55 (o1 £,, < ¢35, OF
t;1 < tay, respectively)

Since oys olze( Hn, Oy U, %ys, TESPECtively) contains ¢13(¢12,¢11, respectively) ones,
using representation (7) and (1a), we obtain (8) given below.

1, ayex o __ 0 1 t 1
St = 1 Sheky ¥ X4 2 Saek T+ XaSpl T
n—ty3+1 +k
T X8R T X Sk, F o Xy ey, ShTRE ®

Similar expressions can be easily obtained for f2 *x%* and for f 3 *x%~
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Lemma 5. f* depends essentially on all of its variables.

Proof. From representation (8) it follows that each variable from x’ is present as
a coefficient for some Si.,, (0 < i< n). The lemma’s assertion follows now from
Lemma 3. O

Similar lemmas hold for f** and f3*. From representation (8) by an appropriate
change in the summation variable in (8) and assuming that variable indices are
interpreted by modulo (n + 1), we obtain (9) and analogous equations give representa-
tions (10) and (11) below:

n+ky+eygz+1

1, ayet_» 1, ByeB o _ i—ti3—1
florte 4 f1 by = Z (Xi + Xivez-113) Spail when t,3 < £33,
i=ty3t+1

©)

ntkz+r2+1

froste g bk =N (Y Yikagyon,) SEIE2TY when ty, < 1y, (10)

i=t1a+1
ntki+e+1 .
frowty 4 f3beby = Z (Zi + Zitray—1,,)Snaid ™ when £y <8y, (11)
i=t11+1
where variable indices are taken modulo (n + 1) and x, is equal to 0, by definition.
Analogous representations hold when t;3 > t53, t15 > t3,, OF tyy > t,;, respectively.

Lemma 6. If t,3 # ty3, then f1* + f1-# depends essentially on all variables from x'. If
t13 = ty3, then f* + f1F does not depend essentially on any variables from x'.

Proof. Without loss of generality, assume t;3 < t,5. Using representation (9) for
f1* +f!# and substituting a,- and B,- for variables from x* in the first and second
addends, respectively, we obtain that

n+ky

fretftf= % LiSyn. (12)
i=0
If t,, = t,5, then from (9) we obtain each L, in (12) is a constant and therefore
f1* 4 f1# does not depend on any variable from x’.

Ift,3 # t53,theniand i + t,5 — ¢, are distinct values modulo (n + 1). Therefore, in
{9) the coefficient of each S is the sum of two different variables from x’. Note that each
variable from x' is a part of the coefficient of at least one of the S’s. Therefore (9) leads
to representation (12) of f** + f1# in which regardless of what the selected k, vari-
ables from x are, for each variable in x’, the coefficient of at least one of the elementary
symmetric functions of y’ and z’, and thus depends essentially on that variable.
Therefore, by Lemma 3, f'* + f 1'# depends essentially on all variables from x’. O

Similar lemmas hold for f 2% + f2# and f3* + 34,
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Lemma 7. If F* = F* then f* + f % is symmetric in x'.

Proof. Since F* + F# = 0, it is symmetric in x’. Since both f2* + f2# and f 3% + 34
are symmetric in x/, it follows that f* + f-# is symmetric in x’. O

Lemma 8. If t,3 # t,3 and x’ contains at least two variables, then f1* + f1-8 is not
symmetric in x'.

Proof. From (9) we conclude that f!* + f1-# is linear in x’. Let us assume that it is
also symmetric in x’. Then by Lemma 1, we derive that

freftl =0y, 2) + 920y, 2)) ( Z’xi>, (13)

where, from Lemma 6, @, is not the constant 0. On the other hand, considering (9), we
obtain that each coefficient for $;3%2 ! involves no more than two variables from x’.
If x’ contains more than two variables, then (13) contradicts (9).

Suppose x’' contains exactly two variables. Let i be the smallest value >t,5 + 1
such that imod (n + 1) is the index of a variable in x'. Since representation (9) contains
the term

i—ti13—1
(X,- + xi‘*'tza—113)Sn+k113 ’

symmetry in x’' implies that the index of the other variable in x' is
i+ ty3 — tyymod(n + 1). But representation (9) also contains the term

i+taa—2t13— 1
(xi+tzz—113 + xi+2(tzs-r13))Sn+k1

Since x’ only contains two variables, we obtain i+ 2(t;3 — t;3)mod(n + 1) =
imod(n + 1),ie. 2(t,3 — t13)mod (n + 1) = 0. But since x* contains n — 2 variables,,
t,3 — ty3 i at most 2. Since n > 4, we have a contradiction. [J

Lemma9. Ift,; =t,3,k, <|n/2 ] andf* + f 1 is not a constant function, then it is
a non-linear function.
Proof. From (9), we obtain that, since ;3 = 53,
fl‘ay.az. +f1-ﬁy*tiz. = xls:Iél—m + xzsﬂif,_“’ 4+ e F meﬁH‘l
+ Xy + 1(Shiky + SalE) + - + Xiys i (Siiat + Shiih)
+ x113+k,+lsﬁl+k, + -t anﬁIi‘,’“-
Consequently,
et frt= ')’1S"+1 s 4 YzS:if,-m + oot Ve Stk
+ Vot 1Sk + ShTa) + - + Vs +ia(Shi%l + Snis

k1 n—tiz+1
+V'13+k1+lsn+k1+ "'+7nsn+k1 s
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where y; is 1 if x; is in x* and variable x; has different values in « and f§, and is
0 otherwise.

Note that foreach i, 1 < i< n,thereis aj, 0 <j < n+ ky, such that the coefficient
of S7,,, is y;. From Corollary 1, the only linear symmetric nonconstant functions are
the even and odd parity functions. Therefore, for f1:* + f1:# to be a linear noncon-
stant function, at least | n/2 | of the y; must equal 1. Since k; < | n/2 |, it follows that
f2+ 4% is nonlinear. O

Lemma 10. Let Sy(x,y) be a symmetric nonlinear function of its variables, and let
S,(x,z) be a symmetric function of its variables, where x, y and z are disjoint nonempty
groups of variables. Then S (x,y) + S,(x, z) depends essentially on x and is symmetric
in x.

Proof. Since both S, and S, are symmetric in x, their sum S, + S, is also symmetric
in Xx.

Since S, is both symmetric and nonlinear, its ring sum form contain at least one
product involving variables from both x and y. Since this product does not appear in
the ring sum form of S,, the product appears in the ring sum form of S; + S,. This
implies that function S; + S, depends essentially on each variable from x appearing in
this product. Then, by Lemma 1, §; + S, depends essentially on every variable in x.

O

Theorem 4. F* = F# then o = B.

Proof. Assume that F* = F?. Let us consider several cases.

Case 1: There is a k; such that k; = n. Without loss of generality, let us assume that
ky = n,ky = 0,k; = 0. By the definition of f*, f :* + f1-# = ¥4, 8%, (Y, Z), where each
y; is a constant. Similarly,

[P+ 2 =Y L(Y)SW2),  f>*+ 3 =Y L(Z)Sy(Y),

where L;(Y) and Lj{(Z) are either sums of two variables, or only a single variable, or
identically 0.

First, consider the case when t;; = ¢,;. Since no variables from Z and Y are
selected, ¢y, = ty5 = t13 = 1,3 = 0. From (10) and (11) we obtain that

fr*+f28=0 and f>*+f¥F=0.

Since F* = F#, we obtain f1'* = f1:#, Thus each y; = 0, where 0 < i < 2n. Since
t13 = ty3 = 0, we obtain from (9) that y; = o;4, + B;+. Thus o; = f; for each x; in x*.
Therefore « = .

Let us now consider the case where t;; # t;,. Note that f2* + f2-# is linear in Y,
and by Lemma 6, depends essentially on each variable from Y. Therefore at least one
L,(Y) is not identically 0.
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Li(Y) is either a sum of two variables, or contains exactly one variable. Since
Y contains n variables and n > 4, the function f** + f2:# is not symmetric in Y, by
Lemma 1. But since F* = F# = 0, Lemma 7 applies, so f >* + f *# is symmetric in ¥,
a contradiction.

Case 2. There is a k; such that k; = n — 1. Without loss of generality, let us assume
that k, =n— 1, k; =1 and k3 = 0. Let x; be the variable from X that was not
selected. By Lemma 6, we obtain that in case t{3 = t,3:

Sret it =385 100, 2),
where y; are constants; or, in case ty3 # {33,
Y4+t =xR (v, 2) + Zéisizn—l(}”,z),

where J; are constants and R, is a symmetric function that is equal to the sum of no
more than 4 elementary symmetric functions, (see (9)).
Also, note that

fre+ 28 =Y L(y)Sa+1 (x;,2),
[P+ f230 = Y L(Z)Su(x;, ), (14)

where each L,(y’) and L}(Z) are linear functions of no more than 2 variables. Let us
consider several cases.

Subcase 2.1: ty; # t;;. By Lemma 6, f** + f3# depends essentially on each vari-
able from z. From (14), it follows that f** + f3-f is not symmetric in z. From Lemma
7, we obtain that F* = F# implies f3* + f3# is symmetric in Z, a contradiction.

Subcase 2.2: t{, # t,,. Arguments similar to those for case 2.1 hold, with replace-
ment of /3 by f2. Thus, there is a contradiction in this case.

Subcase 2.3: t,; =ty and t;> = t,,. Then the value of the single variable selected
from y is the same in « and S, so we also have ¢,5 = t,;. From representation (10), we
obtain that f* + f2# is identically 0. Similarly, from representation (11), f** + f3#
is identically 0.

Thus, F*+ Ff=f1* 4 f1f Since F*=F? we have f"*+ (1% =0. Since
t13 = b3, Eq. (16) holds, where each y; in (14) equals 0. From representation (9), this
implies that « and f have the same value for each variable in x*. Thus a = 8.

Case 3: No k; exceeds n — 2. In this case we obtain that each group x’,y’ and z’
contain at least two variables. There are two possibilities: there is a j such that
tyy#E by orty; =ty forall 1 <j<3

Let us consider the first possibility. Without loss of generality, assume that
ty3 # t23. By Lemma 8, we obtain that f1* 4 f1# is not symmetric in x". From
Lemma 7, this contradicts F* = F#.

Let us now consider the second possibility, that is ¢, =5, ty; = t,,, and
ti3 = t33. By Lemma 6, f** + f1-# does not depend essentially on x’. It cannot be
identically 1, since it is equal to O for any tuple where y’ and z’ contain (n — t,3) ones
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(see representation (9)). Thus, f1* + f!-# is either identically 0 or a nonconstant
symmetric function of y” and z'.

By the same token, f2%+ f%f and f3* + f3# is identically 0 or nonconstant
symmetric functions of (x’,z’) and (x’, ¥’), respectively.

Let us assume that neither f 1** + f 1 nor f 2% + f2-# nor f3* + f3# is identically
0.Since k; + k, + k3 = nand n > 4, there is a k; such that k; < | n/2 | Without loss of
generality, assume k3 < | n/2 | Then from Lemma 9, f** + f># is nonlinear. Thus,
from Lemma 10, the function ( f%* + f2#) + ( f** + f*#) depends essentially on
the variables from x’. But since F*= F# we have fl*+ f1# =f22 4 2.5 4
f¥2 4+ £38 Since f1* + £1-# does not depend essentially on x’, we have a contradic-
tion.

Thus at least one of f1* + f1# or f2* + f2-# or f3* + f*# is identically 0, say
fle4+ f18 Then f2* + f2f = 32 4 38 Since f2* + f2-f is symmetric in z’, and
since f3*+ f3# does not depend on z’, we obtain that f2*+ f2f =0 and
f3,a +f3,ﬂ =0

Therefore each of f'* + f1f f22 4 2.8 and f3* + f># is identically 0. From
Lemma 3, the coefficient of each S;.%3"! in representation (9) equals 0. Therefore
O = f;». Similarly ay. = f,» and o,» = f,.. We conclude that a = . [

6. Comparative complexity of BDD classes

In the next three theorems we compare the relative economy of description of
Boolean functions by BDDs, RBDDs, FBDDs and OBDDs. We prove that each class
is exponentially more complex comparatively with its superset in this sequence. At the
same time, for RBDDs, FBDDs and OBDDs we also establish the largest lower
bound known to date. First we compare relative economy of computation by BDDs
and RBDDs.

Theorem 5. For each n > 4, there is a Boolean function F of 3n variables, such that any
RBDD computing F requires at least 2" internal nodes, and there is a BDD that
computes F with O(n?) nodes.

Proof. Consider function F defined by Eq. (7a). From Theorem 4, it follows that for
any n variables selected from the 3n variables of the function F, if n-tuples, o # f, then
F* # F?. Furthermore, from Lemma 5. F* and F# depend essentially on all the
remaining 2n variables. Therefore, from Theorem 4 and from Lemma 4, any RBDD
computing F requires 2" internal nodes.

To complete the proof we design a BDD for F with 10n? + 101 nodes. First note
that for p variables u = {u;,u,,...,u,} , a subBDD can be constructed consisting of
p(p + 1)/2 internal nodes, such that for each exiting edge of the subBDD, all
assignments to u which cause the subBDD to be exited via that edge have the same
number of 1’s. The subBDD consists of p levels, where level i, for 1 < i < p, consists of
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a sequence of i nodes each of which is labeled by variable u;. Let the nodes at level i be
denoted as n; ;, where 0 < j < i. For 1 < i < p, let the 0-edge exiting n; ; enter n;, ;,
and let the 1-edge exiting n; ; enter n;,, ;+,. Using this scheme, node n; ; is entered
only for those assignments in which the number of 1’s among variables u,, ..., u; is
exactly j. Furthermore, the edge exiting the subBDD for any given assignment to u can
be envisioned as representing the number of I’s in u.

A BDD for f'! can begin with a subBDD which counts the number of 1’s among the
2" variables y and z. The number of 1’s from among y and z either determines the value
of f1, or determines that the value of /! depends on a single selected variable from x.
Thus by adding »n interior nodes labeled with variables from x, a subBDD can be
constructed that computes the value of f!. This BDD has (2n)(2n + 1)/2 nodes
labeled with variables from y and z, and n nodes labeled with variables from x, for
a total of 2n? + 2n internal nodes.

A BDD for F can be constructed using a BDD for f', two copies of a BDD
for f2, and two copies of a BDD for f3. The value of f! selects one of the copies
of the BDD for f? . The value of f! + f2 selects one of the two copies of the BDD
for 3. The edges exiting each copy of /2 enter a sink node based on the value of
(f1+1+17

The size of the constructed BDD is 5 times the size of a BDD for f !, i.e. the size is
10n2 + 10n. O

Since every OBDD and FBDD are also RBDD, the lower bound on number of
internal nodes to compute F by RBDD also applies to FBDD and OBDD as well. In
the next two theorems we exhibit Boolean functions of n variables that have smaller
(but still exponential in n) lower bound for a number of internal nodes to be computed
by either FBDD or OBDD. However, these functions would only require O(n?) sizes
to be computed by a superset class of BDDs.

Theorem 6. For every n > 4, there exists a Boolean function @ of 6n + 4 variables, such
that every FBDD computing @ contains at least 2" nodes, but there is an RBDD
computing @ with no more than O(n?) nodes.

Proof. Consider function F defined by Eq. (7a). Let T be a set of 3n + 3 Boolean
variables that are different from any variable of F. In addition, let v be a variable that
does not appear either in F or in 7. Function @ is defined as follows:

®=0F+v )t
teT
Every FBDD computing ¢ must also compute F. From Theorem §, it follows that any
FBDD computing F requires 2" internal nodes. To complete the proof we design
BDD A that computes @ with 10n2 + 16n + 6 nodes. BDD 4 starts computing @ with
variable v. If v = 0, then 4 computes F as described in Theorem 5. If, on the other
hand, v = 1, then A computes a linear Boolean function of 3n + 3 variables. Thus,
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A has 10n? + 16n + 6 internal nodes. Note, that the depth of any path in BDD
computing F does not exceed 6n + 3. Thus, the total depth of 4 is 6n + 4. Further-
more, every variable of @ labels at least one internal node of A. Thus, A is RBDD. The
theorem is proven. [

Finally, we exhibit an example of a Boolean function that requires an exponential
number of nodes to be computed by OBDD and O(n?) nodes to be computed by
FBDD.

Theorem 7. For every n > 4, there exists a Boolean function G of 3n + 2 variables, such
that very OBDD computing G contains at least 2™3 nodes, but there is an FBDD
computing F with no more than 3(2n? + 2n) + 3 nodes.

Proof. Let v and w be two Boolean variables distinct from any variables from X, Y,
and Z. Let fi, f, and f; be Boolean functions defined in (7).
Let

G=iwfYX,Y,Z)+ owf2X,Y,Z) + vw f3 (X, Y, Z).

Then a FBDD computing G with 3(2n® + 2n) + 3 nodes can be constructed as
follows. The FBDD first test v and w and evaluates a subBDD for either {1, f 2, or f 3.
Each of these subBDDs can be constructed, as described in the proof of Theorem 5, as
an OBDD.

Let us consider now an arbitrary order O on v,w, X, Y,Z and, without loss of
generality, we assume that v, w among first n + 2 variables of G in the order O. Let
O includes k, variables from X, k, variables from Y, k; variables from Z, where
ki + k; + k3 = n. Then there is i such that k; > n/3. Without loss of generality,
assume that k; > n/3. Thus f* and f!'# for «} and B} that differ in positions for
selected variables from X will be different. Thus, any OBDD computing G will need at
least 2"3 internal nodes. O

Theorems 5-7 are “close” to being as strong as possible. For example, the family of
Boolean functions { f,|n > 1} in Theorem 7 has the property that, for n > 1, function
[, depends essentially on all n variables and satisfies

Lowon(fa) _ , 2""°
Legpo(fa) n?

But in comparison, for all n > 1 and for all Boolean functions f depending essentially
upon n variables,

n+1
Logoo(/) < 2 (1 +¢,), wheree,—»0 asn— o0.
Lggpo( fa) n
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7. Conclusions

In this paper we compare a computational power of BDDs, RBDDs, FBDDs,
OBDDs and BDT. Our results show that FBDD can be exponentially more complex
than BDD computing the same Boolean function and FBDD can be exponentially
more complex than OBDD computing the same Boolean functions. We also show
that the computational power of BDTs and OBDD:s is generally incomparable.

A technique that we used in obtaining lower bounds on the size of FBDDs and
OBDD:s for families of functions goes back to [8] and careful application of that
technique allows us to obtain the best known to date lower bounds for complexity of
Boolean functions on FBDD and OBDD.

We also establish asymptotically sharp bounds as a function of n on the minimum
size of arbitrary BDDs representing almost all Boolean functions of n variables and
provide asymptotic lower and upper bounds, differing only by a factor of two, on the
minimum size OBDDs representing almost all Boolean functions of n variables.
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