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Abstract
We study projective dimension, a graph parameter (denoted by pd(G) for a graph G), introduced
by Pudlák and Rödl (1992). For a Boolean function f(on n bits), Pudlák and Rödl associated a
bipartite graph Gf and showed that size of the optimal branching program computing f (denoted
by bpsize(f)) is at least pd(Gf ) (also denoted by pd(f)). Hence, proving lower bounds for pd(f)
imply lower bounds for bpsize(f). Despite several attempts (Pudlák and Rödl (1992), Rónyai
et.al, (2000)), proving super-linear lower bounds for projective dimension of explicit families of
graphs has remained elusive.

We observe that there exist a Boolean function f for which the gap between the pd(f) and
bpsize(f)) is 2Ω(n). Motivated by the argument in Pudlák and Rödl (1992), we define two variants
of projective dimension – projective dimension with intersection dimension 1 (denoted by upd(f))
and bitwise decomposable projective dimension (denoted by bpdim(f)). We show the following
results:
(a) We observe that there exist a Boolean function f for which the gap between upd(f) and

bpsize(f) is 2Ω(n). In contrast, we also show that the bitwise decomposable projective
dimension characterizes size of the branching program up to a polynomial factor. That is,
there exists a large constant c > 0 and for any function f ,

bpdim(f)/6 ≤ bpsize(f) ≤ (bpdim(f))c .

(b) We introduce a new candidate function family f for showing super-polynomial lower bounds
for bpdim(f). As our main result, we demonstrate gaps between pd(f) and the above two
new measures for f :

pd(f) = O(
√
n) upd(f) = Ω(n) bpdim(f) = Ω

(
n1.5

logn

)
.

(c) Although not related to branching program lower bounds, we derive exponential lower
bounds for two restricted variants of pd(f) and upd(f) respectively by observing that they
are exactly equal to well-studied graph parameters – bipartite clique cover number and
bipartite partition number respectively.
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1 Introduction

A central question in complexity theory – the P vs L problem – asks if a deterministic Turing
machine that runs in polynomial time can accept any language that cannot be accepted
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37:2 Lower Bounds for Projective Dimension of Graphs

by deterministic Turing machines with logarithmic space bound. A stronger version of the
problem asks if P is separate from L/poly (deterministic logarithmic space given polynomial
sized advice). The latter, recast in the language of circuit complexity theory, asks if there
exists an explicit family of functions (f : {0, 1}n → {0, 1}) computable in polynomial time (in
terms of n), such that any family of deterministic branching programs computing them has to
be of size 2Ω(n). However, the best known non-trivial size lower bound against deterministic
branching programs, due to Nechiporuk [11] in 1970s, is Ω( n2

log2 n
).

Pudlák and Rödl [12] described a linear algebraic approach to show size lower bounds
against deterministic branching programs. They introduced a linear algebraic parameter
called projective dimension (denoted by pdF(f), over a field F) defined on a natural graph
associated with the Boolean function f . For a Boolean function f : {0, 1}2n → {0, 1}, fix a
partition of the input bits into two parts of size n each, and consider the bipartite graph
Gf (U, V,E) defined on vertex sets U = {0, 1}n and V = {0, 1}n, as (u, v) ∈ E if and only if
f(uv) = 1. We call Gf as the bipartite realization of f . For a bipartite graph G(U, V,E),
the projective dimension of G over a field F, denoted by pdF(G), is defined as the smallest
d for which there is a vector space W of dimension d (over F) and a function φ mapping
vertices in U, V to linear subspaces of W such that for all (u, v) ∈ U × V , (u, v) ∈ E if and
only if φ(u) ∩ φ(v) 6= {0}. We say that φ realizes the graph G.

Pudlák and Rödl [12] showed that if f can be computed by a deterministic branching
program of size s, then pdF(f) ≤ s over any field F. Thus, in order to establish size lower
bounds against branching programs, it suffices to prove lower bounds for projective dimension
of explicit family of Boolean functions.

By a counting argument, Pudlák and Rödl in [12] showed that for most Boolean functions
f : {0, 1}n×{0, 1}n → {0, 1}, pdR(f) is Ω(

√
2n
n ). In a subsequent work, the same authors [13]

also established an upper bound pdR(f) = O( 2n
n ) for all functions. More recently, Rónyai,

Babai and Ganapathy [15] established the same lower bound over all fields. Over finite
fields F, Pudlák and Rödl [12] also showed (by a counting argument) that there exists a
Boolean function f : {0, 1}n × {0, 1}n → {0, 1} such that pdF(f) is Ω(

√
2n). However, till

date, obtaining an explicit family of Boolean functions (equivalently graphs) achieving such
lower bounds remain elusive. The best lower bound for projective dimension for an explicit
family of functions is for the inequality function (on 2n bits, the graph is the bipartite
complement of the perfect matching) where a lower bound of εn for an absolute constant
ε > 0 is known [12] over R. For a survey on projective dimension and related linear algebraic
techniques, refer [13, 9]. However, the best known size lower bound that was achieved using
this framework is only Ω(n) which is not better than trivial lower bounds.

Our Results: Our starting point is the observation that projective assignment appearing in
the proof of [12] also has the property that the dimension of the intersection of two subspaces
assigned to the vertices is exactly 1, whenever they intersect (See Proposition 2.2(2)). We
denote, for a function f , the variant of projective dimension defined by this property as
upd(f) (see Section 4). From the above discussion, for any Boolean function f , pd(f) ≤
upd(f) ≤ bpsize(f). A natural question is whether this restriction helps in proving better
lower bounds for the branching programs. By observing properties about the measure of
projective dimension, choosing a new candidate function1, we demonstrate that the above
restriction can help by proving the following quadratic gap between the two measures.

1 The candidate function is in NC2 but unlikely to be in NL.
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I Theorem 1.1. For any d ≥ 0, for the function SId (on 2d2 variables, see Definition 2.3),
the projective dimension is exactly equal to d, while the projective dimension with intersection
dimension 1 is Ω(d2).

However, this does not directly improve the known branching program size lower bound for
SId, since it leads to only a linear lower bound on upd(SId). We demonstrate the weakness
of this measure by showing the existence of a function (although not explicit) for which
there is an exponential gap between upd over any partition and the branching program
size (Proposition 5.1). This motivates us to look for variants of projective dimension of graphs,
which is closer to the optimal branching program size of the corresponding Boolean function.
We observe more properties (see Proposition 2.2) about the subspace assignment from the
proof of the upper bound from [12]. We call the projective assignments with these properties
bitwise decomposable projective assignment and denote the corresponding dimension2 as
bitpdim(f) (See Definition 5.2). Thus, for any Boolean function f , pd(f) ≤ bitpdim(f). We
also show that bitpdim(f) ≤ 6 · bpsize(f) (Lemma 5.3). To demonstrate the tightness of the
definition, we first argue a converse with respect to this new parameter.

I Theorem 1.2. There is an absolute constant c > 0 such that if bitpdim(fn) ≤ d(n) for a
function family {fn}n≥0 on 2n bits, then there is a deterministic branching program of size
(d(n))c computing it.

Thus, super-polynomial size lower bounds for branching programs imply super-polynomial
lower bounds for bitpdim(f). The function SId (on 2d2 input bits – see Definition 2.3) is a
natural candidate for proving bitpdim lower bounds as the corresponding language is hard3
for the complexity class C=L under logspace Turing reductions.

However, the best known lower bound for branching program size for an explicit family
of functions is Ω

(
n2

log2 n

)
by Nechiporuk [11] which uses a counting argument on the number

of sub-functions. By Theorem 1.2 , bitpdim(f) (for the same explicit function) is at least
Ω
(

n2/c

log2/c n

)
. The constant c is large4 and hence implies only weak lower bounds for bitpdim.

Despite this weak connection, by combining the counting strategy with the linear algebraic
structure of bitpdim, we show a super-linear lower bound for SId matching the branching
program size lower bound5.

I Theorem 1.3 (Main Result). For any d > 0, bitpdim(SId) is at least Ω
(

d3

log d

)
.

Theorems 1.1 and 1.3 demonstrate gaps between the pd and the new measures considered.
In particular, for n = d2, pd(SId) = O(

√
n), upd(SId) = Ω(n), and bitpdim(SId) = Ω

(
n1.5

logn

)
.

We remark that Theorem 1.3 implies a size lower bound of Ω( n
1.5

logn ) for branching programs
computing the function SId (where n = d2). However, note that this can also be derived
from Nechiporuk’s method. For the Element Distinctness function, the above linear algebraic
adaptation of Nechiporuk’s method for bitpdim gives Ω( n2

log2 n
) lower bounds (for bitpdim and

hence for bpsize) which matches with the best lower bound that Nechiporuk’s method can
derive. This shows that our modification of approach in [12] can also achieve the best known
lower bounds for branching program size.

2 We do not use the property that intersection dimension is 1 and hence is incomparable with upd.
3 Assuming C=L 6⊆ L/poly, SId cannot be computed by deterministic branching programs of size poly(d).
4 However, the value of c can be shown to be at most 5. See proof of Theorem 1.2 in Section 5.1.
5 A lower bound of Ω

(
d3

log d

)
for the branching program size can also be obtained using Nechiporuk’s

method.
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37:4 Lower Bounds for Projective Dimension of Graphs

Continuing the quest for better lower bounds for projective dimension, we study two
further restrictions. In these variants of pd and upd, the subspaces assigned to the vertices
must be spanned by standard basis vectors. We denote the corresponding dimensions as
spd(f) and uspd(f) respectively. It is easy to see that for any 2n-bit function, both of these
dimensions are upper bounded by 2n.

We connect these variants to some of the well-studied graph parameters. The bipartite
clique cover number (denoted by bc(G)) is the smallest collection of complete bipartite
subgraphs of G such that every edge in G is present in some graph in the collection. If
we insist that the bipartite graphs in the collection be edge-disjoint, the measure is called
bipartite partition number denoted by bp(G). By definition, bc(G) ≤ bp(G). These graph
parameters are closely connected to communication complexity as well. More precisely,
log(bc(Gf )) is exactly the non-deterministic communication complexity of the function f ,
and log(bp(Gf )) is a lower bound on the deterministic communication complexity of f (see
[6]). In this context, we show the following:

I Theorem 1.4. For any Boolean function f , spd(f) = bc(Gf ) and uspd(f) = bp(Gf ).

Thus, if for a function family, the non-deterministic communication complexity is Ω(n), then
we will have spd(f) = 2Ω(n). Thus, both spd(DISJ) and uspd(DISJ) are 2Ω(n).

2 Preliminaries

In this section, we introduce the notations used in the paper. For definitions of basic
complexity classes and computational models, we refer the reader to standard textbooks [6,
16].

Unless otherwise stated we work over the field F2. We remark that our arguments do
generalize to any finite field. All subspaces that we talk about in this work are linear
subspaces. Also ~0 and {0} denote the zero vector, and zero-dimensional space respectively.
For a subspace U ⊆ Fn, we call the ambient dimension of U as n. We denote ei ∈ Fn as the
ith standard basis vector with ith entry being 1 and rest of the entires being zero.

For a graph G(U, V,E), recall the definition of projective dimension of G over a field
F(pdF(G)), defined in the introduction. For a Boolean function f : {0, 1}2n → {0, 1}, fix a
partition of the input bits into two parts of size n each, and consider the bipartite graph Gf
defined on vertex sets U = {0, 1}n and V = {0, 1}n, as (u, v) ∈ E if and only if f(uv) = 1. A
φ is said to realize the function f if it realizes Gf . Unless otherwise mentioned, the partition
is the one specified in the definition of the function. We denote by bpsize(f) the number of
vertices (including accept and reject nodes) in the optimal branching program computing f .

I Theorem 2.1 (Pudlák-Rödl Theorem [12]). For a Boolean function f computed by a
deterministic branching program of size s and F being any field, pdF(Gf ) ≤ s.

The proof of this result proceeds by producing a subspace assignment for vertices of Gf from
a branching program computing f . We derive the following proposition by a careful analysis
of the aforementioned proof in [12].

I Proposition 2.2. For a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} computed by a
deterministic branching program of size s, there is a collection of subspaces of Fs denoted
C = {Uai }i∈[n],a∈{0,1} and D = {V bj }j∈[n],b∈{0,1}, where we associate the subspace Uai with
a bit assignment xi = a and V bj with yj = b such that if we define the map φ assigning
subspaces from Fs to vertices of Gf (U, V,E) as φ(x) = span

1≤i≤n
{Uxii }, φ(y) = span

1≤j≤n
{V yjj }, for

x ∈ X, y ∈ Y then the following holds true. Let S = {ei − ej | i, j ∈ [s], i 6= j}.
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1. for all (u, v) ∈ U × V , φ(u) ∩ φ(v) 6= {0} if and only if f(u, v) = 1.
2. for all (u, v) ∈ U × V , dim (φ(u) ∩ φ(v)) ≤ 1.
3. For any W ∈ C ∪ D, ∃S′ ⊆ S such that W = span {S′}.

We define the following family of functions and family of graphs based on subspaces of a
vector space and their intersections.

I Definition 2.3 (SId, Pd). Let F be a finite field. Denote by SId, the Boolean function
defined on Fd×d × Fd×d → {0, 1} as for any A,B ∈ Fd×d SId(A,B) = 1 if and only if
rowspan(A) ∩ rowspan(B) 6= {0}. Note that the row span is over the field F (which, in our
case, is F2). Denote by Pd, the bipartite graph (U, V,E) where U and V are the set of all
subspaces of Fd. And for any (I, J) ∈ U × V , (I, J) ∈ E ⇐⇒ I ∩ J 6= {0}

We collect the definitions of Boolean functions which we deal with in this work. For
(x, y) ∈ {0, 1}n × {0, 1}n, IPn(x, y) =

∑n
i=1 xiyi mod 2, EQn(x, y) is 1 if ∀i ∈ [n] xi = yi

and is 0 otherwise, INEQn(x, y) = ¬EQn(x, y) and DISJn(x, y) = 1 if ∀i ∈ [n] xi ∧ yi = 0 and
is 0 otherwise. Note that all the functions discussed so far has branching programs of size
O(n) computing them and hence have projective dimension O(n) by Theorem 2.1.

Let m ∈ N and n = 2m logm. The Boolean function, Element Distinctness, denoted EDn
is defined on 2m blocks of 2 logm bits, x1, . . . , xm and y1, . . . , ym bits and it evaluates to 1 if
and only if all the xis and yis take distinct values when interpreted as integers in [m2]. Let
q be a power of prime congruent to 1 modulo 4. Identify elements in {0, 1}n with elements
of F∗q . For x, y ∈ F∗q , the Paley function PALqn(x, y) = 1 if x− y is a quadratic residue in F∗q
and 0 otherwise.

We observe for any induced subgraph H of G, if G is realized in a space of dimension
d, then H can also be realized in a space of dimension d. For any d ∈ N, Pd appears as an
induced subgraph of the bipartite realization of SId. Hence, pd(SId) ≥ pd(Pd).

3 Properties of Projective Dimension

In this section, we observe properties about projective dimension as a measure of graphs and
Boolean functions. We start by proving closure properties of projective dimension under
Boolean operations ∧ and ∨.

I Lemma 3.1. Let F be an arbitrary field. For any two functions f1 : {0, 1}2n → {0, 1}, f2 :
{0, 1}2n → {0, 1}, pdF (f1 ∨ f2) ≤ pdF (f1) + pdF (f2) and pdF (f1 ∧ f2) ≤ pdF (f1) · pdF (f2)

The proof is based on direct sum and tensor product of vector spaces. The ∨ part of the
above lemma was also observed (without proof) in [13]. We remark that the construction
for ∨ is tight up to constant factors. Assume n is a multiple of 4. Consider the functions
f(x1, . . . , xn4 , x

n
2 +1, . . . , x 3n

4
) and g(xn

4 +1, . . . , xn2 , x 3n
4 +1, . . . , xn) each of which performs

inequality check on the first n
4 and the second n

4 variables. It is easy to see that f ∨ g is
the inequality function on n

2 variables x1, . . . , xn2 and the next n
2 variables xn

2 +1, . . . , xn.
By the fact that they are computed by n size branching programs and using Theorem 2.1
(Pudlák-Rödl theorem) we get that pd(f) ≤ n and pd(g) ≤ n. Hence by Lemma 3.1,
pd(f ∨ g) ≤ pd(f) + pd(g) ≤ 2n. Lower bound on projective dimension of inequality function
comes from [12, Theorem 4], giving pd(f ∨ g) ≥ ε.n2 for an absolute constant ε. This shows
that pd(f ∨ g) = Θ(n). We also cannot expect a general relation connecting pdR(f) and
pdR(¬f) since it is known [12] that pdR(INEQn) is Ω(n) while pdR(EQn) = 2.

We now observe a characterization of bipartite graphs having projective dimension at
most d over F.

FSTTCS 2016



37:6 Lower Bounds for Projective Dimension of Graphs

I Lemma 3.2 (Characterization). Let G be a bipartite graph with no two vertices having
same neighborhood, pd(G) ≤ d if and only if G is an induced subgraph of Pd.

It follows that pd(Pd) ≤ d. Observe that, in any projective assignment, the vertices with
different neighborhoods should be assigned different subspaces. For pd(Pd), all vertices on
either partitions have distinct neighborhoods. The number of subspaces of a vector space of
dimension d− 1 is strictly smaller than the number of vertices in Pd. Thus, we conclude the
following theorem.

I Theorem 3.3. For any d ∈ N, pd(Pd) = pd(SId) = d.

For an N vertex graph G, the number of vertices of distinct neighborhood can at most be N .
Thus, the observation that we used to show the lower bound for the graph pd(Pd) cannot be
used to obtain more than a

√
logN lower bound for pd(G). Also, for many functions, the

number of vertices of distinct neighborhood can be smaller.
We observe that by incurring an additive factor of 2 logN , any graph G on N vertices can

be transformed into a graph G′ on 2N vertices such that all the neighborhoods of vertices in
one partition are all distinct. Let f : {0, 1}2n → {0, 1} be such that the neighborhoods of
Gf are not necessarily distinct. We consider a new function f ′ whose bipartite realization
will have two copies of Gf namely G1(A1, B1, E1) and G2(A2, B2, E2) where A1, A2, B1, B2
are disjoint and a matching connecting vertices in A1 to B2 and A2 to B1 respectively. Since
the matching edges associated with every vertex is unique, the neighborhoods of all vertices
are bound to be distinct. Applying Lemma 3.1 and observing that matching (i.e, equality
function) has projective dimension at most n, pd(f ′) ≤ 2pd(f) + 2n. This shows that to
show super-linear lower bounds on projective dimension for f where the neighborhoods may
not be distinct, it suffices to show a super-linear lower bound for f ′.

4 Projective Dimension with Intersection Dimension 1

Motivated by the proof of Theorem 2.1, we make the following definition.

I Definition 4.1 (Projective Dimension with Intersection Dimension 1). A Boolean function
f : {0, 1}n × {0, 1}n → {0, 1} with the corresponding bipartite graph G(U, V,E) is said to
have projective dimension with intersection dimension 1 (denoted by upd(f)) d over field F,
if d is the smallest possible dimension for which there exists a vector space K of dimension d
over F with a map φ assigning subspaces of K to U ∪ V such that

for all (u, v) ∈ U × V , φ(u) ∩ φ(v) 6= {0} if and only if (u, v) ∈ E.
for all (u, v) ∈ U × V , dim (φ(u) ∩ φ(v)) ≤ 1.

By the properties observed in Proposition 2.2,

I Theorem 4.2. For a Boolean function f computed by a deterministic branching program
of size s, updF(f) ≤ s for any field F.

Thus, it suffices to prove lower bounds for upd(f) in order to obtain branching program
size lower bounds. We now proceed to show lower bounds on upd. Our approaches use the
fact that the adjacency matrix of Pd has high rank.

I Lemma 4.3. Let M be the bipartite adjacency matrix of Pd, then rank (M) ≥
[
d
d/2
]
q
≥ q d

2
4

Proof. For 0 ≤ i ≤ k ≤ d, and subspace I,K ⊆s Fdq with dim(I) = i, dim(K) = k, define
matrix Wik over R as Wik(I,K) = 1 if I ∩ K = {0} and 0 otherwise. This matrix has
dimension

[
d
i

]
q
×
[
d
k

]
q
.
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Consider the submatrix Mi of M with rows and columns indexed by subspaces of
dimension exactly i. Observe that Wii = J −Mi where J is an all ones matrix of appropriate
order. These matrices are well-studied (see [5]). Closed form expressions for eigenvalues are
computed in [3, 10] and the eigenvalues are known to be non-zero. Hence for 0 ≤ i ≤ d/2
the matrix Wii has rank

[
d
i

]
q
. Since Wii = J − Mi, rank (Mi) ≥ rank

(
Wii

)
− 1. This

shows that rank (M) ≥ rank (Mi) =
[
d
i

]
q
for all i such that 2i ≤ d. Choosing i = d/2 gives

rank (M) ≥
[
d
d/2
]
q
− 1 ≥ q d

2
4 − 1. J

We now present two approaches for showing lower bounds on upd(f) – one using intersec-
tion families of vector spaces and the other using rectangle arguments on Mf .

Lower Bound for upd(Pd) using intersecting families of vector spaces: To prove a lower
bound on upd(Pd) we define a matrix N from a projective assignment with intersection
dimension 1 for Pd, such that it is equal to (q − 1)M . Let D = upd(Pd). We first show
that rank (N) is at most 1 +

[
D
1
]
q
. Then by Lemma 4.3 we get that rank (N) is at least q d

2
4 .

Let G = {G1, . . . , Gm}, H = {H1, . . . ,Hm} be the subspace assignment with intersection
dimension 1 realizing Pd with dimension D.

I Lemma 4.4. For any polynomial p in qx of degree s, with matrix N of order |G| × |H|
defined as N [Gr, Ht] = p(dim(Gr ∩Ht)) with Gr ∈ G, Ht ∈ H, then rank (N) ≤

∑s
i=0
[
D
i

]
q

Proof. This proof is inspired by the proof in [4] of a similar claim where a non-bipartite
version of this lemma is proved. To begin with, note that p is a degree s polynomial in qx,
and hence can be written as a linear combination of polynomials pi =

[
x
i

]
q
, 0 ≤ i ≤ s. Let the

linear combination be given by p(x) =
∑s
i=0 αipi(x). For 0 ≤ i ≤ s define a matrix Ni with

rows and columns indexed respectively by G, H defined as Ni[Gr, Hs] = pi(dimGr ∩Hs). By
definition of Ni, N =

∑
i∈[s] αiNi.

To bound the rank of Ni’s we introduce the following families of inclusion matrices.
For any j ∈ [D], consider two matrices Γj corresponding to G and ∆j corresponding to
H defined as Γj(G, I) = 1 if dim(I) = j,G ∈ G, I ⊆s G and 0 otherwise. ∆j(H, I) = 1 if
dim(I) = j,H ∈ H, I ⊆s H and 0 otherwise. Note that rank of the these matrices are upper
bounded by the number of columns which is

[
D
j

]
q
. We claim that for any i ∈ {0, 1, . . . , s},

rank (Ni) ≤
[
D
i

]
q
. This completes the proof since N =

∑
i∈[s] αiNi.

To prove the claim, let Fi denote the set of all i dimensional subspace of FDq . We show that
Ni = Γi∆T

i . Hence rank (Ni) ≤ min {rank (Γi) , rank (∆i)} ≤
[
D
i

]
q
. For (Gr, Ht) ∈ G × H,

Γi∆T
i (Gr, Ht) =

∑
I∈Fi Γi(Gr, I)∆T

i (I,Ht) =
∑
I∈Fi Γi(Gr, I)∆i(Ht, I) =

∑
I∈Fi [I ⊆s

Gr] ∧ [I ⊆s Ht] =
∑
I∈Fi [I ⊆s Gr ∩Ht] =

[dim(Gr∩Ht)
i

]
q

= Ni(Gr, Ht) J

We apply Lemma 4.4 on N defined via p(x) = qx − 1 with s = 1, to get qd2/4 ≤
[
d
d/2
]
q
≤

1 +
[
D
1
]
q

= 1 + (qD − 1)/(q − 1). By definition, rank (N) = rank (M). This gives that
D = Ω(d2) and proves Theorem 1.1.

Lower Bound for upd(Pd) from Rectangle Arguments: We now give an alternate proof
of for Theorem 1.1 using combinatorial rectangle arguments.

I Lemma 4.5. For f : {0, 1}n × {0, 1}n → {0, 1} with Mf denoting the bipartite adjacency
matrix of Gf , rankR(Mf ) ≤ qO(updF(f)) where F is a finite field of size q.

FSTTCS 2016



37:8 Lower Bounds for Projective Dimension of Graphs

Proof. Let φ be a subspace assignment realizing f of dimension d with intersection dimension
1. Let S(v) for v ∈ Fdq denote {(a, b) ∈ {0, 1}n × {0, 1}n | φ(a) ∩ φ(b) = span {v}}. Also let
Mv denote the matrix representation of S(v). That is, Mv(a, b) = 1 ⇐⇒ (a, b) ∈ S(v).
Consider all 1 dimensional subspaces which appear as intersection space for some input
(x, y). Fix a basis vector for each space and let T denote the collection of basis vectors of
all the intersection spaces. Note that for any (x, y) ∈ f−1(1), there is a unique v ∈ Fdq (up
to scalar multiples) such that (x, y) ∈ S(v) for otherwise intersection dimension exceeds
1. Then Mf =

∑
v∈T Mv. Now, rank(Mf ) ≤

∑
v∈T rank(Mv). Since rank(Mv) = 1,

rank(Mf ) ≤ |T |. The fact that the number of 1 dimensional spaces in Fd can be at most
qd−1
q−1 completes the proof. Note that the rank of Mf can be over any field (we choose R). J

We get an immediate corollary. Any function f , such that the adjacency matrix of Mf of the
bipartite graph Gf is of full rank 2n over some field must have upd(f) = Ω(n). There are
several Boolean functions with this property, well-studied in the context of communication
complexity (see textbook [8]). Hence, we have for f ∈ {IPn,EQn, INEQn,DISJn,PALqn},
updF(f) is Ω(n) for any finite field F.

For arguing about PALqn, it can be observed that the graph is strongly regular (as q ≡ 1
mod 4) and hence the adjacency matrix has full rank over R [2]. Except for PALqn, all the
above functions have O(n) sized deterministic branching programs computing them and
hence the Pudlák-Rödl theorem (Theorem 2.1) gives that upd for these functions (except
PALqn) are O(n) and hence the above lower bound is indeed tight.

From Lemma 4.3, it follows that the function SId also has rank 2Ω(d2). To see this, it
suffices to observe that Pd appears as an induced subgraph in the bipartite realization of
SId. Thus, upd(SId) is Ω(d2). We proved in Theorem 3.3 that pd(SId) = d. This establishes
a quadratic gap between the two parameters. This completes the proof of Theorem 1.1.

Let D(f) denote the deterministic communication complexity of the Boolean function
f . We observe that the rectangle argument used in the proof of Lemma 4.5 is similar to
the matrix rank based lower bound arguments for communication complexity. This yields
the Proposition 4.6. If upd(f) ≤ D, the assignment also gives a partitioning of the 1s in
Mf into at most qD−1

q−1 1-rectangles. However, it is unclear whether this immediately gives a
similar partition of 0s into 0-rectangles as well. Notice that if D(f) ≤ d, there are at most
2d monochromatic rectangles (counting both 0-rectangles and 1-rectangles) that cover the
entire matrix. However, our proof does not exploit this difference.

I Proposition 4.6. For a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} and a finite field
F, updF(f) ≤ 2D(f) and D(f) ≤ (pdF(f))2 log |F|

Proof. We give a proof of the first inequality. Any deterministic communication protocol
computing f of cost D(f), partitions Mf into k rectangles where k ≤ 2D(f) rectangles.
Define fi : {0, 1}n × {0, 1}n → {0, 1} for each rectangle Ri i ∈ [k], such that fi(x, y) = 1 iff
(x, y) ∈ Ri. Note that updF(fi) = 1 and f = ∨ki=1fi. For any (x, y) ∈ {0, 1}n × {0, 1}n if
f(x, y) = 1, there is exactly one i ∈ [k] where fi(x, y) = 1. Hence for each j ∈ [k], j 6= i, the
intersection vector corresponding to the edge (x, y) in the assignment of fj is trivial. Hence the
assignment obtained by applying Lemma 3.1, to f1,∨f2∨ . . . fk will have the property that for
any (x, y) with f(x, y) = 1, the intersection dimension is 1. Hence updF(f) ≤ k ≤ 2D(f). To
prove the second inequality, consider the protocol where Alice sends the subspace associated
with her input as a pdF(f)× pdF(f) matrix. J

Note that the first inequality is tight, up to constant factors in the exponent. To see this,
consider the function f : {0, 1}n × {0, 1}n → {0, 1} whose pdF(f) = Ω(2n/2) [12, Proposition
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1] and note that D(f) for any f is at most n. Tightness of second inequality is witnessed by
SId since by Lemma 4.3 D(SId) = Ω(d2) while pd(SId) = d.

5 Bitwise Decomposable Projective Dimension

The restriction of intersection dimension being 1, although potentially useful for lower bounds
for branching program size, does not capture the branching program size exactly. We start
the section by demonstrating a function where the gap is exponential. We show the existence
of a Boolean function f such that the size of the optimal branching program computing it is
very high but has a very small projective assignment with intersection dimension 1 for any
balanced partition of the input.

I Proposition 5.1 (Implicit in Remark 1.30 of [6]). There exist a function f : {0, 1}n×{0, 1}n

that requires size Ω( 2n
n ) for any branching program computing f but the upd(f) ≤ O(n) for

any balanced partitioning of the input into two parts.

The above proposition can be shown by adapting the counting argument presented in
Remark 1.30 of [6].

5.1 A Characterization for Branching Program Size
Motivated by strong properties observed in Proposition 2.2, we make the following definition.

I Definition 5.2 (Bitwise Decomposable Projective Dimension). Let f be a Boolean function
on 2n bits and Gf be its bipartite realization. The bipartite graph Gf (X,Y,E) is said to
have bit projective dimension, bitpdim(G) ≤ d, if there exists a collection of subspaces of Fd2
denoted C = {Uai }i∈[n],a∈{0,1} and D = {V bj }j∈[n],b∈{0,1} where a projective assignment φ
is obtained by associating subspace Uai with a bit assignment xi = a and V bj with yj = b

satisfying the conditions listed below.
1. for all (x, y) ∈ {0, 1}n×{0, 1}n, φ(x) = span

1≤i≤n
{Uxii }, φ(y) = span

1≤j≤n
{V yjj } and f is realized

by φ.
2. Let S = {ei−ej | i, j ∈ [d], i 6= j}. For any W ∈ C∪D, ∃S′ ⊆ S such that W = span {S′}.
3. for any S1, S2 ⊆ ([n]× {0, 1}) such that S1 ∩ S2 = φ, span

(i,a)∈S1

{Uai } ∩ span
(j,b)∈S2

{U bj } = {0}.

Same property must hold for subspaces in D.

We show that the new parameter bitwise decomposable projective dimension (bitpdim)
tightly characterizes the branching program size, up to constants in the exponent.

I Lemma 5.3. Suppose f : {0, 1}n × {0, 1}n → {0, 1} has deterministic branching program
of size s then bitpdim(f) ≤ 6s

We show that given a bitpdim assignment for a function f , we can construct a branching
program computing f .

I Theorem 5.4 (Theorem 1.2 restated). For a Boolean function f : {0, 1}n×{0, 1}n → {0, 1}
with bitpdim(f) ≤ d, there exists a deterministic branching program computing f of size dc
for some absolute constant c.

Proof. Consider the subspace associated with the variables C,D of the bitpdim assignment
as the advice string. These can be specified by a list of n basis matrices each of size d2. Since
d = bitpdim(f) = poly(n), the advice string is poly(n) sized and depends only on n.
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We construct a deterministic branching program computing f as follows. On input x, y,
from the basis matrices in C,D, construct an undirected graph6 G∗ with all standard basis
vectors in C,D as vertices and add an edge between two vertices u, v if eu − ev ∈ Uxii or
eu − ev ∈ V

yj
j for i, j ∈ [n]. For input x, y, f(x, y) = 1 iff G∗ has a cycle. To see this, let

C = C1 ∪ C2 be a cycle in G∗ where C1 consists of edges from basis matrices in C and
C2 contain edges from basis matrices in D. Note that if one of C1 or C2 is empty then
there is a cycle consisting only of vectors from C which implies a linear dependence among
vectors in C. But this contradicts Property 3 of bitpdim assignment. Hence both C1 and C2
are non-empty. Then, it must be that

∑
(u,v)∈C1

eu − ev +
∑

(w,z)∈C2
ew − ez = 0. Hence∑

(u,v)∈C1
eu − ev = −

∑
(w,z)∈C2

ew − ez. Hence we get a vector in the intersection which
gives f(x, y) = 1. Note that if f(x, y) = 1, then clearly there is a non-zero intersection vector.
If we express this vector in terms of basis, we get a cycle in G∗.

Hence, to check if f evaluates to 1, it suffices check if there is a cycle in G∗ which is
solvable in L using Reingold’s algorithm [14]. The log-space algorithm can also be converted
to an equivalent branching program of size nc for a constant7 c. J

Assuming C=L 6⊆ L/poly, the function SId (a language which is hard for C=L under Turing
reductions) cannot be computed by deterministic branching programs of polynomial size.
Thus, using Theorem 1.2, we conclude that the function SId is a candidate function (under
standard complexity theoretic assumptions) for super-polynomial bitpdim lower bounds.

5.2 Lower Bounds for Bitwise Decomposable Projective dimension

From the results of the previous section, it follows that size lower bounds for branching
programs do imply lower bounds for bitwise decomposable projective dimension as well.
As mentioned in the introduction, the lower bounds that Theorem 1.2 can give for bitwise
decomposable projective dimension are only known to be sub-linear.

To prove super-linear lower bounds for bitwise decomposable projective dimension, we
show that Nechiporuk’s method [11] can be adapted to our linear algebraic framework (thus
proving Theorem 1.3 from the introduction). The overall idea is the following: given a
function f and a bitpdim assignment φ, consider the restriction of f denoted fρ where ρ
fixes all variables except the ones in Ti to 0 or 1 where Ti is some subset of variables in the
left partition. For different restrictions ρ, we are guaranteed to get at least ci(f) different
functions. We show that for each restriction ρ, we can obtain an assignment from φ realizing
fρ. Hence the number of different bitpdim assignments for ρ restricted to Ti is at least the
number of sub functions of f which is at least ci(f). Let di be the ambient dimension of the
assignment when restricted to Ti. By using the structure of bitpdim assignment, we count
the number of assignments possible and use this relation to get a lower bound on di. Now
repeating the argument with disjoint Ti, and by observing that the subspaces associated
with Tis are disjoint, we get a lower bound on d as d =

∑
i di.

I Theorem 5.5. For a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} on 2n variables,
let T1, . . . , Tm are partition of variables to m blocks of size ri on the first n variables. Let
ci(f) be the number of distinct sub functions of f when restricted to Ti, then bitpdim(f) ≥∑m
i=1

log ci(f)
log(log ci(f))

6 Note that this is not a deterministic branching program.
7 Using more space efficient methods than [14], the constant c can be estimated to be at most 5.
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Proof. Let (x, y) denote the 2n input variables of f and ρ : {x1, . . . , xn, y1, . . . , yn} →
{0, 1, ∗} be a map that leaves only variables in Ti unfixed. Let φ be a bitpdim assignment realiz-
ing f and let Gf (X,Y, Z) denote the bipartite realization of f . Let C = {Uai }i∈[n],a∈{0,1} ,D =
{V bj }j∈[n],b∈{0,1} be the associated collection of subspaces. Let ρ be a restriction that does
not make fρ a constant and (x, y) ∈ {0, 1}n × {0, 1}n which agrees with ρ. We use x, y to
denote both variables as well as assignment. From now on, we fix an i and a partition Ti.

Define L = span
i∈[n],ρ(i)6=∗

{Uρ(i)i } and R = span
j∈[n]
{V ρ(n+j)

j }. For any x ∈ {0, 1}n that agrees

with ρ on the first n bits, define Zx = span
j∈Ti
{Uxij } Note that for any (x, y), which agrees with

ρ, has φ(x) = L + Zx and φ(y) = R. For any fρ1 6≡ fρ2 , Gfρ1
6= Gfρ2

. Hence the number
of bitpdim assignments is at least the number of different sub functions. We need to give
a bitpdim assignment for Gfρ(V1, V2, E) where V1 = {x | x agrees with ρ}, V2 = {y} where
y = ρ[n+1,...,2n] and E = {(x, y)|x ∈ V1, y ∈ V2, f(x, y) = 1}. We use the following property
to come up with such an assignment.

I Property 5.6. Let ρ be a restriction which does not make the function f constant and
which fixes all the variables y1, . . . , yn. For all such ρ and ∀x, y ∈ {0, 1}n which agrees with
ρ, any non-zero w ∈ φ(x)∩φ(y), where w = u+ v with u ∈ L and v ∈ Zx must satisfy v 6= ~0.

Proof. Let there exists an intersection vector w ∈ (L+ Zx) ∩R with w = u+ v, u ∈ L and
v ∈ Zx and v = ~0. Since ~0 ∈ Z x̂ for any x̂, w = u+~0 is in L+Z x̂ and R. Thus the function
after restriction ρ is a constant. This contradicts the choice of ρ. J

The assignment ψρ for Gfρ defined as: ψρ(x) = Zx and ψρ(y) = span
x∈V1

{ΠZx (R ∩ (L+ Zx))}

Note that for (x, y) ∈ V1 × V2, fρ(x) = f(x, y). Following claim shows that ψρ realize fρ.

I Claim 5.7. For any (x, y) ∈ V1 × V2, f(x, y) = 1 if and only if ψρ(x) ∩ ψρ(y) 6= {0}.

Proof. For any (x, y) ∈ X×Y , φ(x)∩φ(y) 6= {0} if and only if f(x, y) = 1. Since V1 ⊆ X and
V2 ⊆ Y , it suffices to prove: ∀(x, y) ∈ V1 × V2, ψρ(x) ∩ ψρ(y) 6= {0} ⇐⇒ φ(x) ∩ φ(y) 6= {0}.

We first prove that ψρ(x) ∩ ψρ(y) 6= {0} implies φ(x) ∩ φ(y) 6= {0}. Let v be a non-zero
vector in ψρ(x)∩ψρ(y). By definition of ψρ(x), v ∈ Zx. By definition of ψρ(y), there exists a
non-empty J ⊆ V1 such that v =

∑
x̂∈J vx̂ where vx̂ ∈ Z x̂. Also for every x̂ ∈ J , there exists

a ux̂ ∈ L such that wx̂ = ux̂ + vx̂ and wx̂ ∈ R. Define u to be
∑
x̂∈J ux̂. Since each ux̂ is in

L, u is also in L. Hence w = u+ v is in L+ Zx. Substituting u with
∑
x̂∈J ux̂ and v with∑

x̂∈J vx̂ we get that w =
∑
x̂∈J ux̂ + vx̂ =

∑
x̂∈J wx̂. Since each wx̂ ∈ R, w ∈ R. Hence

w ∈ R ∩ (L+ Zx) and w is non-zero as J is non-empty.
Now we prove that φ(x) ∩ φ(y) 6= {0} implies ψρ(x) ∩ ψρ(y) 6= {0}. Let w be non zero

vector in φ(x) ∩ φ(y) with w = u + v where u ∈ L and v ∈ Zx. By Property 5.6 we have
v 6= ~0. By definition v ∈ ψρ(y). Along with v ∈ Zx, we get ψρ(x) ∩ ψρ(y) 6= {0}. J

Let Z = span
j∈Ti
{U0

j + U1
j }. We now prove that subspace assignment on the only vertex in the

right partition of Gρ which is span
x∈V1

{ΠZx(R)} is indeed ΠZ(R).

I Claim 5.8. ΠZ(R) = span
x∈V1

{ΠZx(R)}.

Proof. We show span
x∈V1

{ΠZx(R)} ⊆ ΠZ(R). Note that span
x∈V1

{ΠZx(R)} = span
x∈V1,w∈R

{ΠZx(w)}.

For an arbitrary x ∈ V1 and w ∈ R, let v = ΠZx(w). By definition of Zx and the fact that
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{
U bi
}
i∈[n],b∈{0,1} are disjoint, ΠZx(w) = +i∈[n],ρ(i)=∗ΠU

xi
i

(w). As Z = span
j∈Ti
{U0

j +U1
j }, every

ΠU
xi
i

(w) ∈ ΠZ(R). Hence the span is also in ΠZ(R).
Now we show that ΠZ(R) ⊆ span

x∈V1

{ΠZx(R)}. Let Ti = {i1, . . . , ik}. For 1 ≤ j ≤ k define

xj to be x+ej where x ∈ {0, 1}n agrees with ρ and for any index i ∈ [n] with ρ(i) = ∗, xi = 0
and ej ∈ {0, 1}n is 0 at every index other than ij . Note that for any j1 6= j2, j1, j2 ∈ Ti,
Zx

j1 ∩Zxj2 = {0} by Property 3 of Definition 5.2) Also note that span
j∈Ti
{Zxj} = span

j∈Ti
{Uxjj } =

Z. Hence, ΠZ(R) = span
j∈Ti
{ΠZx

j (R)}. But span
j∈Ti
{ΠZx

j (R)} ⊆ span
x∈V1

{ΠZx(R)}. J

For any ρ, which fixes all variables outside Ti, Z is the same. And since there is only one
vertex on the right partition, for different ρ, ρ′, ΠZ(Rρ) = ΠZ(Rρ′) implies ψρ = ψρ′ . Hence
to count the number of different ψρ’s for different fρ’s it is enough to count the number of
different ΠZ(R). To do so, we claim the following property on ΠZ(R).

I Property 5.9. Let S = {eu − ev|eu − ev ∈ Z}. Then there exists a subset S′ of S such
that all the vectors in S′ are linearly independent and ΠZ(R) = span {S′}.

Proof. By the property of the bitpdim assignment, ∀i ∈ [n] and ∀b ∈ {0, 1}, V bi = span
{
F bi
}

where F bi is a collection of difference of standard basis vectors. Recall that R = span
j∈[n]
{V ρ(n+j)

j }.

Let F =
{

(eu − ev) | eu − ev ∈ F ρ(n+j)
j , j ∈ [n]

}
. Since projections are linear maps and the

fact that F ρ(n+j)
j spans V ρ(n+j)

j we get that, ΠZ(R) = span
w∈F
{ΠZ(w)}. Since Z is also a span

of difference of standard basis vectors, ΠZ(eu − ev) is one of ~0, eu − ew or ew − ev where ew
is some standard basis vector in Z. Let S′′ = ∪eu−ev∈FΠZ(eu − ev). Hence S′′ ⊆ S. Clearly,

span
eu−ev∈S′′

{eu − ev} = ΠZ(R). Choose S′ as a linear independent subset of S′′. J

Property 5.9 along with the fact that ΠZ(R) is a subspace of Z, gives us that the number of
different ΠZ(R) is upper bounded by number of different subsets S′ of S such that |S′| = di
where di = dim(Z). As S′ is a set of difference of standard basis vectors from Z, |S′| ≤

(
di
2
)
.

Thus the number of different such S′ are at most
∑di
k=0

(
d2
i
k

)
= 2O(di log di).

Hence the number of restrictions ρ (that leaves Ti unfixed) and leading to different
fρ is at most 2O(di log di). But the number of such restrictions ρ is at least ci(f). Hence
2O(di log di) ≥ ci(f) giving di = Ω

(
log ci(f)

log(log ci(f))

)
. Using d =

∑
i di completes the proof. J

Theorem 5.5 gives a super linear lower bound for Element Distinctness function. From a
manuscript by Beame et.al, ([1], See also [6], Chapter 1), we have ci(EDn) ≥ 2n/2/n. Hence
applying this count to Theorem 5.5, we get that d ≥ Ω

(
n

logn ·
n

logn

)
= Ω

(
n2

(logn)2

)
.

Now we apply this to our context. To get a lower bound using framework described above
it is enough to count the number of sub-functions of SId.

I Lemma 5.10. For any i ∈ [d], there are 2Ω(d2) different restrictions ρ of SId which fixes
all entries other than ith row of the d× d matrix in the left partition.

Proof. Fix any i ∈ [d]. Let S be a subspace of Fd2. Define ρS to be SId(A, B) where B is a
matrix whose rowspace is S. And A is the matrix whose all but ith row is 0’s and ith row
consists of variables (xi1 , . . . , xin). Thus for any v ∈ {0, 1}d, rowspace of A(x) is span {v}.

We claim that for any S, S′ ⊆S Fd2 where S 6= S′, (SId)ρS 6≡ (SId)ρ′
S
. By definition

(SId)ρS ≡ SId(A, B) and (SId)ρ′
S
≡ SId(A, B′) where B and B′ are matrices whose rowspaces
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are S and S′ respectively. Since S 6= S′ there is at least one vector v ∈ Fd2 such that it belongs
to only one of S, S′. Without loss of generality let that subspace be S. Then SId(A(v), B) = 1
as v ∈ S where as SId(A(v), B′) = 0 as v 6∈ S′. Hence the number of different restrictions is
at least number of different subspaces of Fd2 which is 2Ω(d2). Hence the proof. J

This completes the proof of Theorem 1.3 from the introduction. This implies that for SId, the
branching program size lower bound is Ω

(
d2

log d × d
)

= Ω
(

d3

log d

)
= Ω

(
n1.5

logn

)
where n = 2d2

is the number of input bits of SId.

6 Standard Variants of Projective Dimension

In this section, we study two stringent variants of projective dimension for which exponential
lower bounds and exact characterizations can be derived. Although these measure do not
correspond to restrictions on branching programs, they illuminate essential nature of the
general measure. We define the measures and show their characterizations in terms of
well-studied graph theoretic parameters.

I Definition 6.1 (Standard Projective Dimension). A Boolean function f : {0, 1}n×{0, 1}n →
{0, 1} with the corresponding bipartite graph G(U, V,E) is said to have standard projective
dimension (denoted by spd(f)) d over field F, if d is the smallest possible dimension for which
there exists a vector space K of dimension d over F with a map φ assigning subspaces of K
to U ∪ V such that

for all (u, v) ∈ U × V , φ(u) ∩ φ(v) 6= {0} if and only if (u, v) ∈ E.
u ∈ U ∪ V , φ(u) is spanned by a subset of standard basis vectors in K.

In addition to the above constraints, if the assignment satisfies the property that for all
(u, v) ∈ U × V , dim (φ(u) ∩ φ(v)) ≤ 1, we say that the standard projective dimension is with
intersection dimension 1, denoted by uspd(f).

For N ×N bipartite graph G with m edges, consider the assignment of standard basis
vectors to each of the edges and for any u ∈ U ∪ V , φ(u) is the span of the basis vectors
assigned to the edges incident on u. Moreover, the intersection dimension in this case
is 1. Hence for any G , spd(G) ≤ uspd(G) ≤ m. We show that bc(Gf ) = spd(Gf ) and
uspd(Gf ) = bp(Gf ). We refer the reader to the full version [7] for the details of the proof.

Even though pd(G) ≤ spd(G), there are graphs for which the gap is exponential. For
example, consider the bipartite realization G of EQn with N = 2n. We know pd(G) = θ(logN)
but spd(G) ≥ N since each of the vertices associated with the matched edges cannot share
any basis vector with vertices in other matched edges. Hence dimension must be at least N .
We show that standard projective dimension of bipartite G is equal to biclique cover number.

7 Discussion & Conclusion

In this paper we studied variants of projective dimension of graphs with improved connection
to branching programs. We showed lower bounds for these measures indicating the weakness
and of each of the variants.

An immediate question that arises from our work is whether Ω(d2) lower bound on
upd(Pd) is tight. In this direction, since we have established a gap between upd(Pd) and
pd(Pd), it is natural to study how pd and upd behave under composition of functions, in
order to amplify this gap.

The subspace counting based lower bounds for bitpdim that we proved are tight for
functions like EDn. However, observe that under standard complexity theoretic assumptions
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the bitpdim assignment for Pd is not tight. Hence it might be possible to use the specific
linear algebraic properties of Pd to improve the bitpdim lower bound we obtained for Pd.
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