433 research outputs found

    Combinatorial Problems in Energy Networks - Graph-theoretic Models and Algorithms

    Get PDF
    Energienetze bilden das Rückgrat unserer Gesellschaft, die unter anderem unsere Nahrungskette und andere wichtige Infrastrukturen, wie die Wasser- und Wärmeversorgung, bestimmen. Um die grundlegenden menschlichen Bedürfnisse zu befriedigen, müssen wir ein nachhaltigeres und umweltfreundlicheres Verhalten im Allgemeinen und in Energienetzen im Speziellen an den Tag legen. In dieser Arbeit geht es um Energienetze, wobei wir uns auf Stromnetze spezialisieren und uns darauf fokussieren, wie wir die vorhandene Infrastruktur besser ausnutzen können. Wir merken an, dass die Ergebnisse aus dieser Arbeit auch auf andere Energienetze übertragen werden können [Gro+19] und bestimmte auftretende Phänomene legen es nahe, dass sich einige Ergebnisse eventuell auch auf Verkehrsnetze übertragen lassen. Diese Arbeit besteht aus vier inhaltlichen Teilen. Der erste Teil beschäftigt sich mit der Funktionsweise und Struktur von elektrischen Flüssen. Der zweite und dritte inhaltliche Teil der Arbeit beschäftigt sich jeweils mit der effizienten Ausnutzung der vorhandenen Energienetzinfrastruktur. Dabei verstehen wir hier unter effizienter Ausnutzung entweder die Maximierung der Gesamterzeugung und die damit verbundene Erweiterung des Betriebspunktes oder die Minimierung der Erzeugungskosten verstehen. Das elektrische Netz besteht aus drei Spannungsebenen, die wir als Hoch-, Mittel-, und Niederspannungsebene bezeichnen. Das traditionelle elektrische Netz ist auf eine zentrale Energieversorgung ausgelegt, bei der die Erzeuger sich in der Hochspannungsebene befinden. Der elektrische Fluss im klassischen Sinne fließt von der Hoch- in die Mittel- und Niederspannungsebene. Die industriellen Verbraucher befinden sich zumeist auf der Mittelspannungsebene, während sich die Haushalte und kleineren Industrien in der Niederspannungsebene befinden. Durch nachhaltige Erzeuger, die ihre Energie aus erneuerbaren Energien wie beispielsweise Wind gewinnen, findet nun ein Paradigmenwechsel im elektrischen Netz statt. Diese nachhaltigen Erzeuger befinden sich zumeist im Nieder- und Mittelspannungsnetz und der elektrische Fluss könnte nun bidirektional fließen. Dieser Paradigmenwechsel kann zu Engpässen und anderen Problemen führen, da das elektrische Netz für ein solches Szenario nicht konzipiert ist. Eine Hauptaufgabe dieser Arbeit war die Identifizierung von Problemstellungen in elektrischen Netzen. Die extrahierten Problemstellungen haben wir dann in graphentheoretische Modelle übersetzt und Algorithmen entwickelt, die oftmals Gütegarantien besitzen. Wir haben uns dabei zunächst auf die Modellierung von elektrischen Netzen und das Verhalten von Flüssen in diesen Netzen mit Hilfe von Graphentheorie konzentriert. Zur Modellierung des elektrischen Flusses nutzen wir eine linearisierte Modellierung, die mehrere vereinfachende Annahmen trifft. Diese linearisierte Modellierung ist für Hochspannungsnetze im Allgemeinen eine gute Annäherung und macht das Entscheidungsproblem für elektrische Flüsse, das heißt, ob ein gültiger elektrischer Fluss für eine bestimmte Konfiguration des Netzes und für einen bestimmten Verbrauch und eine bestimmte Erzeugung existiert, in Polynomialzeit lösbar. Leistungsfluss. Fokusiert man sich auf das vereinfachte Zulässigkeitsproblem von elektrischen Flüssen und den Maximalen Leistungsflüssen, so existieren verschiedene mathematische Formulierungen, die den Leistungsfluss beschreiben. Auf allgemeinen Graphen ist es oftmals der Fall, dass graphentheoretischen Flüsse keine zulässigen Leistungsflüsse darstellen. Im Gegensatz zu graphentheoretischen Flüssen balancieren sich Leistungsflüsse. Wir diskutieren diese Eigenschaft aus graphentheoretischer Sicht. Die verschiedenen mathematischen Formulierungen geben uns strukturelle Einblicke in das Leistungsflussproblem. Sie zeigen uns die Dualität der zwei Kirchhoffschen Regeln. Diese nutzen wir um einen algorithmischen Ansatz zur Berechnung von Leistungsflüssen zu formulieren, der zu einem Algorithmus für Leistungsflüsse auf planaren Graphen führen könnte. Die Einschränkung auf planare zweifachzusammenhängende Graphen ist vertretbar, da elektrische Netze im Allgemeinen planar sind [COC12,S.13]. Zudem hilft uns diese Sichtweise, um Analogien zu anderen geometrischen Problemen herzustellen. Kontinuierliche Änderungen. Da graphentheoretische Flüsse sich in vielen Fällen anders als elektrische Flüsse verhalten, haben wir versucht, das Stromnetz mittels Kontrolleinheiten so auszustatten, dass der elektrische Fluss den gleichen Wert hat wie der graphentheoretische Fluss. Um dieses Ziel zu erreichen, platzieren wir die Kontrolleinheiten entweder an den Knoten oder an den Kanten. Durch eine Suszeptanz-Skalierung, die durch die Kontrolleinheiten ermöglicht wird, ist es nun prinzipiell möglich jeden graphentheoretischen Fluss elektrisch zulässig zu machen. Dabei konnten wir zeigen, dass das gezielte Platzieren von Kontrolleinheiten die Kosten der Erzeugung von elektrischer Leistung durch Generatoren im elektrischen Netz senken kann und den Betriebspunkt des Netzes in vielen Fällen auch erweitert. Platziert man Kontrolleinheiten so, dass der verbleibende Teil (d.h. das Netz ohne die Kontrolleinheiten) ein Baum oder Kaktus unter geeigneter Begrenzung der Kapazitäten ist, so ist es möglich, jeden graphentheoretischen Fluss als elektrisch zulässigen Fluss mit gleichwertigen Kosten zu realisieren. Die Kostensenkung und die Erweiterung des Betriebspunktes konnten wir experimentell auf IEEE-Benchmark-Daten bestätigen. Diskrete Änderungen. Die oben beschriebenen Kontrolleinheiten sind eine idealisierte, aktuell nicht realisierbare Steuereinheit, da sie den elektrischen Fluss im gesamten Leistungsspektrum einstellen können. Damit ist vor allem gemeint, dass sie den elektrischen Fluss auf einer Leitung von „Die Leitung ist abgeschaltet.“ bis zur maximalen Kapazität stufenlos einstellen können. Diese Idealisierung ist auch ein großer Kritikpunkt an der Modellierung. Aus diesem Grund haben wir versucht, unser Modell realistischer zu gestalten. Wir haben zwei mögliche Modellierungen identifiziert. In der ersten Modellierung können Leitungen ein- und ausgeschaltet werden. Dieser Prozess wird als Switching bezeichnet und kann in realen Netzen mittels Circuit Breakers (dt. Leistungsschaltern) realisiert werden. Die zweite Modellierung kommt der Kontrolleinheiten-Modellierung sehr nahe und beschäftigt sich mit der Platzierung von Kontrolleinheiten, die die Suszeptanz innerhalb eines gewissen Intervalls einstellen können. Diese wirkt im ersten Moment wie eine Verallgemeinerung der Schaltungsflussmodellierung. Nutzt man jedoch eine realistischere Modellierung der Kontrolleinheiten, so ist das Einstellen der Suszeptanz durch ein Intervall begrenzt, das das Ausschalten einer Leitung nicht mit beinhaltet. Sowohl ein optimales (im Sinne der Minimierung der Gesamterzeugungskosten oder der Maximierung des Durchsatzes) Platzieren von Switches als auch ein optimales Platzieren von Kontrolleinheiten ist im Allgemeinen NP-schwer [LGH14]. Diese beiden Probleme ergänzen sich dahingehend, dass man den maximalen graphentheoretischen Fluss, mit den zuvor genannten Platzierungen annähern kann. Für Switching konnten wir zeigen, dass das Problem bereits schwer ist, wenn der Graph serien-parallel ist und das Netzwerk nur einen Erzeuger und einen Verbraucher besitzt [Gra+18]. Wir haben sowohl für den Maximalen Übertragungsschaltungsfluss (engl. Maximum Transmission Switching Flow; kurz MTSF) als auch für den optimalen Übertragungsschaltungsfluss (engl. Optimal Switching Flow; kurz OSF) erste algorithmische Ansätze vorgeschlagen und gezeigt, dass sie auf bestimmten graphentheoretischen Strukturen exakt sind, und dass auf anderen graphentheoretischen Strukturen Gütegarantien möglich sind [Gra+18]. Die Algorithmen haben wir dann auf allgemeinen Netzen evaluiert. Simulationen führen zu guten Ergebnissen auf den NESTA-Benchmark-Daten. Erweiterungsplanung auf der Grünen Wiese. Eine vom Rest der Arbeit eher losgelöste Fragestellung war die Verkabelung von Windturbinen. Unter Verwendung einer Metaheuristik haben wir gute Ergebnisse im Vergleich zu einem „Mixed Integer Linear Program“ (MILP; dt. gemischt-ganzzahliges lineares Programm) erzielt, das wir nach einer Stunde abgebrochen haben. Die Modellierung der Problemstellung und die Evaluation des Algorithmus haben wir auf der ACM e-Energy 2017 veröffentlicht [Leh+17]. Schlusswort. Abschließend kann man sagen, dass mit dieser Arbeit allgemeine, tiefliegende Aussagen über elektrische Netze getroffen wurden, unter der Berücksichtigung struktureller Eigenschaften unterschiedlicher Netzklassen. Diese Arbeit zeigt wie das Netz ausgestaltet sein muss, um bestimmte Eigenschaften garantieren zu können und zeigt verschiedene Lösungsansätze mit oft beweisbaren Gütegarantien auf

    Domination parameters with number 2: Interrelations and algorithmic consequences

    Get PDF
    In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total {2}-domination number, γt{2}(G), and the total double domination number, γt×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G), and two classical parameters, the domination number, γ(G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Brešar, Boštjan. Institute of Mathematics, Physics and Mechanics; Eslovenia. University of Maribor; EsloveniaFil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Milanič, Martin. University of Primorska; EsloveniaFil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentin

    Domination parameters with number 2: interrelations and algorithmic consequences

    Full text link
    In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 22-domination number, γw2(G)\gamma_{w2}(G), the 22-domination number, γ2(G)\gamma_2(G), the {2}\{2\}-domination number, γ{2}(G)\gamma_{\{2\}}(G), the double domination number, γ×2(G)\gamma_{\times 2}(G), the total {2}\{2\}-domination number, γt{2}(G)\gamma_{t\{2\}}(G), and the total double domination number, γt×2(G)\gamma_{t\times 2}(G), where GG is a graph in which a corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G)\gamma_R(G), and two classical parameters, the domination number, γ(G)\gamma(G), and the total domination number, γt(G)\gamma_t(G), we consider 13 domination invariants in graphs GG. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain some complexity results for the studied invariants, in particular regarding the existence of approximation algorithms and inapproximability bounds.Comment: 45 pages, 4 tables, 7 figure

    Models and Algorithms for Some Covering Problems on Graphs

    Get PDF
    2014 - 2015Several real-life problems as well as problems of theoretical importance within the field of Operations Research are combinatorial in nature. Combinatorial Optimization deals with decision-making problems defined on a discrete space. Out of a finite or countably infinite set of feasible solutions, one has to choose the best one according to an objective function. Many of these problems can be modeled on undirected or directed graphs. Some of the most important problems studied in this area include the Minimum Spanning Tree Problem, the Traveling Salesman Problem, the Vehicle Routing Problem, the Matching Problem, the Maximum Flow Problem. Some combinatorial optimization problems have been modeled on colored (labeled) graphs. The colors can be associated to the vertices as well as to the edges of the graph, depending on the problem. The Minimum Labeling Spanning Tree Problem and the Minimum Labeling Hamiltonian Cycle Problem are two examples of problems defined on edge-colored graphs. Combinatorial optimization problems can be divided into two groups, according to their complexity. The problems that are easy to solve, i.e. problems polynomially solvable, and those that are hard, i.e. for which no polynomial time algorithm exists. Many of the well-known combinatorial optimization problems defined on graphs are hard problems in general. However, if we know more about the structure of the graph, the problems can become more tractable. In some cases, they can even be shown to be polynomial-time solvable. This particularly holds for trees...[edited by Author]XIV n.s

    Inventory-Constrained Structural Design

    Get PDF

    A Constructive Heuristics and an Iterated Neighborhood Search Procedure to Solve the Cost-Balanced Path Problem

    Get PDF
    This paper presents a new heuristic algorithm tailored to solve large instances of an NP-hard variant of the shortest path problem, denoted the cost-balanced path problem, recently proposed in the literature. The problem consists in finding the origin–destination path in a direct graph, having both negative and positive weights associated with the arcs, such that the total sum of the weights of the selected arcs is as close to zero as possible. At least to the authors’ knowledge, there are no solution algorithms for facing this problem. The proposed algorithm integrates a constructive procedure and an improvement procedure, and it is validated thanks to the implementation of an iterated neighborhood search procedure. The reported numerical experimentation shows that the proposed algorithm is computationally very efficient. In particular, the proposed algorithm is most suitable in the case of large instances where it is possible to prove the existence of a perfectly balanced path and thus the optimality of the solution by finding a good percentage of optimal solutions in negligible computational time
    corecore