
Combinatorial Problems in Energy Networks
Graph-theoretic Models and Algorithms

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenscha�en

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Franziska Wegner

aus Potsdam

Tag der mündlichen Prüfung: 12. Dezember 2019
Erste Gutachterin: Prof. Dr. Dorothea Wagner
Zweite Gutachterin: Prof. Dr. Sylvie Thiébaux





„Nach Wahrheit forschen, Schönheit lieben, Gutes wollen, das Beste thun, das ist die Bestimmung des
Menschen.“ Moses Mendelssohn (1729–1786)

I dedicate this work to my beloved parents and my beloved deceased brother Nico.





0Acknowledgements

This thesis would not have been possible without the help of di�erent people. I would
like to thank Dorothea Wagner for giving me the opportunity to work in her group
and to take care of the funding. During that time I was part in di�erent projects such as
the Helmholtz Program Storage and Cross-linked Infrastructure (SCI), Energy System
Integration (ESI), and as an associate in the GRK Energy Status Data, where I learned
a lot. In addition, I would like to thank my reviewers Sylvie Thiébaux and Dorothea
Wagner for their comments and their advises.

Working on such a complex topic alone would have been impossible and thus,
I would like to thank my coauthors Alban Grastien, Sebastian Lehmann, Thomas
Leibfried, Tamara Mchedlidze, Nico Meyer-Hübner, Martin Nöllenburg, Ignaz Rutter,
Peter Sanders, Dorothea Wagner, and Matthias Wolf for their discussions and collabo-
ration. I owe a big thanks to Andreas Gemsa, Sascha Gritzbach, Matthias Wolf, and
Philipp Bohnenstengel who proofread parts of my thesis. A special thanks goes to
Philipp, who read the whole thesis and �xed my “-ly”, and “analysis” problems, and
found the “conjured complex” to be a bit magical.

To get a broader knowledge, I was lucky to work on other topics, collaborate with
other groups, and learn from di�erent colleagues. A special thanks here goes to Moritz
Baum from whom I learned how to collaborate on a paper and who gave me very
good advises. In addition, I would like to thank for the numerous colleagues Moritz
Baum, Thomas Bläsius, Johannes Garttner, Andreas Gemsa, Sascha Gritzbach, Sören
Hohmann, Heiko Maaß, Carina Mieth, Martin Pfeifer, Ignaz Rutter, Philipp Staudt,
Torsten Ueckerdt, Dorothea Wagner, Christof Weinhardt, and Matthias Wolf with
whom I was allowed to work together on di�erent papers in external projects.

Research is one thing, but we have also the responsibility to communicate our
knowledge in a better and more understandable way. I was very lucky to work with
Anna Caroline Hein on an article that describes our work in a more accessible way.
She taught me how to write an article for non-specialists and what are common tools
to spread our knowledge.

I thank the colleagues at NICTA for the very good working atmosphere. I learned a
lot from the team about electrical �ows and optimization. Major parts of the switching
paper were developed during that time and afterwards with Matthias Wolf, from
whom I learned theoretical techniques and who is a kind reviewer of my writings.
Furthermore, I thank also my colleagues at the institute from whom I learned a lot
in algorithmics and theoretical computer science. Especially, I would like to thank
Spyros Kontogiannis, who was my �rst temporary o�ce mate in the “exile” o�ce, and

v



my o�ce mates Benjamin Niedermann and Matthias Wolf with whom I enjoyed the
daily vending machine trips and “apple walks” a lot. In addition, I recall the times with
most of my coworkers when we spent long nights at the institute, the Dibbelt ghost
and its hectic squeak of shoe soles, the weekends at work with the Italian course at the
Pizzahaus and the pizza “Quattro Fromage”, the Saboteur counterpart, the members of
the Escorial committee, the Obstfreunde meetings, the soccer games after work, the
legendary “Frauenwasserballweltmeisterschaft” in Gernsbach, and the illegal o�ce
chair race. I would like to thank especially these colleagues that made long or bad
days enjoyable.

There are people in the background that help out with all the administration and
technical belongings, which helped me to focus on my main work. This part was
perfectly done by Lilian Becker, Isabelle Junge, Ralf Kölmel, Laurette Lau�er, and Tanja
Wehrmann, whom I would particularly like to thank.

Starting a thesis template from scratch would take a lot of time. I inherited the
template and improvements from Thomas Bläsius and Moritz Baum, respectively. I
would like to thank both, since it was super easy to add additional �xes and ideas to
the template.

In the end, I would like to thank my friends, my family, dedicated teachers (especially
Eva Pudewell and Jana Schreiber), inspiring research sta� such as Ingo Boersch that
invested time for students from school, and all people who brought me back on track
and supported me over all this years. A special thanks goes to Katja and Marius Rothe,
Philipp Bohnenstengel, Moritz Baum, Anna Caroline Hein, Andreas Gemsa, Thomas
Bläsius, Benjamin Niedermann, and Cli� Mändl, who supported me mentally and
emotionally very much.

vi



0Abstract

In this thesis, we study combinatorial problems in energy networks with the focus on
power grids. At present we see a paradigm shift in power grids towards renewable
energy, while making use of the traditional power grid. This shift changes the pro-
duction pattern from a centralized way towards a distributed production, leading to
bottlenecks and other problems. We try to e�ciently exploit the existing infrastructure
by analyzing the structure of and developing algorithms for electrical �ows, placement
problems, and layout problems to improve the existing power grid. We remark that
the results of this work might be applicable to other energy networks as well [Gro+19]
and certain phenomena such as the Braess’s Paradox (i. e., for road network it means
that adding a road to the tra�c network can cause longer travel times) indicate that
the provided techniques in this thesis could be used for tra�c networks, too.

One main task of this work was the identi�cation of problem statements in energy
networks. We �rst translate the problems to graph-theoretical models such that we are
able to analyze the problems, study their complexity, develop algorithms, and evaluate
them using either existing data sets or generated data if there are no publicly available
suitable data sets. We develop algorithms that provide in most cases quality guarantees
on certain graph classes that can be then used as good heuristics on general graphs.
At �rst we focus on the modeling of power grids and the behavior of electrical �ows
in power grids using a linearized model that makes use of some simpli�cations. These
simpli�cations are based on realistic assumptions for high-voltage power grids on
which we lay our focus.

This thesis has four main content chapters. The �rst part focuses on algorithms
to compute electrical �ows. We describe the mathematical structure and focus on
some major properties of electrical �ows. Note that apart from solving a system of
linear equations or an exponential time algorithm there are no known algorithms to
compute electrical �ows. One way to tackle this problem are electrical preserving
transformations. Electrical preserving transformations are common techniques in
the electrical �ow analysis. Based on these transformations, we will present a �rst
algorithm for electrical �ows on s-t-planar biconnected graphs. In addition to that, we
discuss di�erent representations and formulations of electrical �ows that increase the
understanding of the electrical �ow’s behavior. We make use of these representations
to describe the balancing property by separating the quadratic relationship of voltage
and current. This leads us to the duality of the two Kirchho� laws and another
algorithmic approach.
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The second and third part of this thesis focus on the increasing of the e�ciency of the
electrical network. We exploit the Braess’ Paradox by switching lines (i. e., temporarily
removal of a line or cable) or by using an edge weight scaling (i. e., susceptance
scaling). We design novel algorithms that improve the throughput of the power grid or
decrease the overall operating costs. These algorithms are the �rst that provide some
quality guarantees or bounds. Each of these parts includes simulations to evaluate the
algorithms on a realistic data set.

The last part of this thesis is about transmission network expansion planning on a
green�eld motivated by the wind farm cabling problem. Algorithmically, it represents
a layout problem. Within this part, we present a �rst proper model formulation for this
particular problem, give a benchmark generator, and design a meta-heuristic approach
to tackle the wind farm cabling problem that is then evaluated on a generated data set.
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1 Introduction

The power grid represents one of the major backbones of the human civilization. It
determines our supply chain, which includes important infrastructures such as water
supply and heating. Elsberg [Els17] gives an impression—although �ctional—of how
essential the power grid is and which parts of our daily life are actually a�ected by a
blackout. However, to sustain the basic human needs we have to change towards a
more sustainable and environmentally friendly behavior in general and in power grids
in particular. Thus, the future power grid has to become more e�cient to handle the
increasing demand for energy as well as the planned increasing number of generators
that transform renewable energies [Jus14], e. g., wind into electrical energy. We call
these generators renewable energy producers. Renewable energy producers such as
wind turbines are independent power producers (IPP) that have a volatile power
production pattern—meaning that the amount of production is in�uenced by many
uncertainties such as the weather—that is totally di�erent from conventional power

generators (e. g., nuclear and coal power plants), where the production is stable.
The power grid has evolved historically and the traditional structure interconnects

few central conventional power generators with many consumers (Figure 1.1 left side)
in such a way that the demand of the consumers is always satis�ed. Similar to the
road network, where we distinguish roads by their speed limits and size into rural
roads, highways, and motorways, we are able to distinguish the lines in the power
grid depending on the amount of power they are able to transfer. The power grid’s hi-
erarchical structure in Germany consists of high (110 kV, 220 kV, and 380 kV), medium
(1 to 50 kV), and low voltage layers (230V and 400V; see Figure 1.1) representing
transmission and distribution power grids, respectively. In a conventional power
grid the power producers are connected to the high voltage layer directly and the
consumers are either connected to the medium voltage layer (e. g., industries), or low
voltage layer (e. g., households and small industries). Within this hierarchical structure
the power grid consists of edges that are represented by power lines or cables that
interconnect producers with consumers. These edges are often denoted as elements
(or branches) as they could also represent power electronics such as transformers,
resistors, and conductors.

Renewable energy producers are often added to the medium and low voltage layer
(Figure 1.1 right side). This eventually causes a bidirectional power �ow which the
conventional power grid was not designed for. This change in the power grid usage
might cause instabilities and new critical lines. Critical lines represent lines, which
removal might cause a blackout. The idea of the latter problem is exemplary shown

1
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Figure 1.1: Two exemplary power grids showing the conventional power grid (left) and the
current development of the power grid (right). Both power grids consists of three voltage
layers. On the high voltage layer there are the conventional power plants (e. g., coal and
nuclear power plants) as well as bigger collections of wind farms and virtual power plants
located. The industrial consumers are usually located on the medium voltage layer that mainly
presents a distribution layer. In the low voltage layer, we have the households and small
industrial consumers. Note that on the right side, participants of the last two layer might have
photovoltaics and wind turbines and are thus denoted by the term prosumers (i. e., acting as
producer and consumer simultaneously).

in [Wit+16]. O�shore wind farms in the North and Baltic Sea (see Figure 1.2) provide
another example for such producers. In this particular case, the suitability of a location
for such farms highly depends on the wind pro�le and available space. Thus, the
location for wind farms is not as �exible as for conventional power plants. These
o�shore wind farms produce—similar to conventional power plants—a high amount of
electrical energy that is not used on-site. However, it is largely required in areas such
as the Ruhr region, and southern regions of Germany [ent18, ent19a, ent19b, ent19c],
since a large number of industrial consumers are located there. Sending such an amount
of energy through the power grid causes new bottlenecks or is simply impossible.
Switching these wind farms o� to sustain the grid safety is not a desirable solution.
Thus, to cope with these new challenges the transmission system operator (TSO) can
follow at least two possible strategies.

(S1) The expansion of the power grid by adding new transmission lines and

(S2) the installation of advanced control units such as Flexible AC Transmission
Systems (FACTS) and switches for a better utilization of the existing power grid.

The mentioned power grid structure and strategies lead to the dynamic and static

transmission design problem [BPG01a]. Binato et al. [BPG01a] consider Strategy 1
as dynamic transmission design problems [BPG01a, Cho+06, GMM92] under which
long-term power grid con�guration such as Transmission Network Expansion
Planning (TNEP) is encountered. TNEP [HHK13] is the design problem of adding new
transmission lines or circuits under di�erent objectives such as the cost minimization of

2
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Figure 1.2: The German o�shore wind farms in the North Sea, where the green, orange,
yellow, and gray areas represent wind farms that are operating, under construction, approved,
and planned, respectively. There are many restricted zones that are prohibited for wind
farm planning such as shipping routes, areas reserved for gas pipelines, biota (violet hatched
area), and bird sanctuaries (orange hatched area). A substation represents roughly speaking
a collection point that collects the produced energy of wind turbines and forwards it. The
connections from the last on-water substation to the �rst substation on the land-side (e. g.,
Dörpen West, Diele and Büttel have substations) are usually implemented by high-voltage
direct current (HVDC). Note that this �gure is a modi�cation of [Dör17].

the new added transmission lines or maximization of the throughput of the power grid.
Adding new transmission lines decreases the total power grid resistance [Cof+14],
which results in less energy losses. However, adding lines can also decrease the
operation limit—meaning the throughput—of the power grid, which becomes more
clear in Chapter 5.

Long-term power grid con�guration has the major disadvantage that the planning
horizon is often in terms of decades [ent18], which is counterproductive for the desired
plan to change the power grid quickly in the next few years [Jus14]. In addition, each
expansion planning is done for a certain topological scenario meaning a �xed power
grid, generation, and demand con�guration. Di�erent scenarios already occur with
di�erent productions and consumptions. Thus, another strategy that covers di�erent
scenarios and di�erent topology changes is the placement of advanced control units
(Strategy 2). This is known as static design problem, which is a subproblem of the

3



Chapter 1 Introduction

dynamic design problem. The latter is less cost intensive and represents a short-term
con�guration.

For Strategy 2 devices such as circuit breakers (known as switches) and Flexible AC
Transmission Systems (FACTS) are able to manipulate the power �ow by opening
a circuit (switching a transmission line o�) or rerouting a certain fraction of power
by changing the susceptance of a transmission line in a device-speci�ed interval,
respectively. Both switches and FACTS are able to reduce the generation cost while
increasing the power grid operation limit and satisfying the N − 1 criterion [Li+13].
The N − 1 criterion is a security and reliability criterion to ensure a stable operation
while one element is removed or has a failure. Fisher et al. [FOF08] mentioned that
switching is already used by TSOs in certain cases of emergency to decouple parts of
the grid, avoid abnormal voltage situations, or improve voltage pro�les. However, it is
currently not used to extend the operability of the grid or reduce costs and losses, since
the TSOs wish to interfere as little as possible in the power grid to avoid instabilities.

Since power grids are one of the major backbones, their reliability is crucial. A
common and natural belief is that only TNEP has the ability to maintain and im-
prove the reliability and operability of the power grid. However, placing switches
and FACTS is another way—though counterintuitive—to improve the e�ciency and
reliability of the power grid. This counterintuitive behavior is known as Braess’s
Paradox [BNW05, Bra68] that is a common phenomenon in many physical networks
(see Section 2.3). Furthermore, Schnyder and Glavitsch [SG90] mentioned that both
switches and FACTS have the possibility to control over- and under-voltage situations,
and line overloads. Other papers con�rm loss and cost reductions [SG90], system
security improvements [SG88], and combinations of all [HOO11a].

In this work, we mainly focus on Strategy 2 by placing elements such as switches
or FACTS in such a way that we increase the operability of the power grid and thus,
the power grid’s capacity. Note that increasing the power grid capacity makes the
power grid more reliable. Both electrical elements can increase the maximum load.
Switching provides a possibility to remove a transmission line from the power grid
temporarily. To the contrary, FACTS are control units that are able to in�uence the
power �ow in a certain range. However, FACTS are also more expensive and complex.
We will look on Strategy 1 from the perspective of a plane grid with generators and
consumers, but no preinstalled interconnection. We motivate this scenario by a wind
farm planning problem denoted by wind farm cabling problem.

1.1 Main Contributions

The contributions of this thesis are mainly covered by four parts. The �rst part is about
algorithms and structural results on electrical �ows (also known by the term power

�ows) and is called the Direct Current Feasibility Problem. The following two
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Main Contributions Section 1.1

parts cover an overview of the results that concern the e�cient utilization of the
existing power grid by placing switches (i. e., discrete changes to the power grid)
and Flexible AC Transmission Systems (FACTS; i. e., continuous changes to the power
grid), respectively. In the fourth part of this work, the wind farm cabling results are
outlined that cover Strategy 1.

The Direct Current Feasibility Problem. One main tool that we use in this thesis
are electrical �ows commonly known under the term power �ows. In this part, we will
focus on the Direct Current Feasibility Problem (DC FEAS) that is an approxima-
tion of the Alternating Current Feasibility Problem (AC FEAS) (see Section 3.3).
An algorithmic approach to computing electrical �ows will be our �rst contribution in
this thesis and our most fundamental result. We �rst give a mathematical description
and structural overview of the problem structure. This description is used to develop
algorithms for the electrical �ow. One result shows that electrical �ows do not consti-
tute totally unimodular (TUM) bases. However, we show a possible way to solve the
integer DC FEAS.

The �rst algorithm for DC FEAS is based on commonly known reduction rules that
will give us an algorithm that runs in O(|V |3) time for an s-t planar power grid (i. e., a
power grid with one generator and one consumer). We give another algorithmic idea
for planar graphs that separates the quadratic relationship of voltage and current by
using two graphs and a mapping of their edges. In addition to that, we are able to use a
geometric interpretation of the problem to improve the understanding for discrete and
continuous changes. Note that for linear systems the superposition principle holds
in the physics and thus, calculating DC FEAS for all generator and consumer pairs
results in an electrical �ow for the whole power grid.

Discrete Changes in Power Grids. The placement of switches represents a dis-
crete change in the power grid and is the �rst placement contribution we will focus on
in this work. Note that a discrete change represents a topology change. In particular,
we address a subproblem of the static design problem called Maximum Transmission
Switching Flow Problem (MTSFP), which we model based on the DC electrical �ow
(see Section 5.1). The problem’s combinatorial nature makes it hard to solve [LGH14]
and the current ways to tackle the problem are exact but slow methods such as Mixed-
integer Linear Program (MILP) [FOF08] or even more complex models [Hag15,
KGD13], or heuristics without provable quality guarantees. In contrast, we focus
on structural properties and algorithms with provable performance guarantees for
the MTSFP. While it was known that MTSFP is NP-hard in general [LGH14], we show
that it is also NP-hard if the network contains only one generator and one consumer
(s-t-networks). The latter is a generalization of another NP-hardness proof given
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by Kocuk et al. [Koc+16]1. For s-t-networks on restricted graph classes (including
cacti) we present an exact algorithm based on Dominating Theta Paths (DTPs;
see Section 5.4.1). These paths can be computed on general graphs and form the basis
for a new centrality measure resulting in a new algorithm that works well in practice.
To the best of our knowledge, we are the �rst to provide an approximation and an
exact algorithm for MTSFP on special graph classes. Simulations on the NICTA Energy
System Test Case Archive (NESTA) benchmark set show that these algorithms produce
near-optimal results on most of the practical instances and thus, much better solutions
compared to the proven guarantee.

Continuous Changes in Power Grids. Another way to use the grid more e�-
ciently is by placing FACTS. Contrary to switches that allow discrete changes, FACTS
represent a control unit that change the electrical �ow by scaling the susceptance. This
represents another static design problem and makes use of the existing power grid, too.
We assume that a �ow control unit is an ideal FACTS [GAG96] controlling the electrical
�ow on its branch without any restrictions. In the �rst work, we placed FACTS on buses
and in the follow-up, we considered ideal FACTS as elements that can be only placed
on branches. In general, the FACTS placement was shown to be NP-hard [LGH16].
Thus, most of the literature uses exact methods such as Quadratic Programming (QP)
for the general formulation and for ideal FACTS we will use an MILP.

Using the well-known IEEE power systems test cases [Alb+79, AS74, Bil70, Cro15,
Dem+77, GJ03, Gri+99, Jos+16, LB10, Les+11, Mat13, Uni14, WWS13, ZMT11], we
performed simulation experiments related to two key questions, which take into
account that the FACTS needed for implementing our �ow control vertices in the real
power grid constitute a signi�cant and expensive investment and hence their number
should be as small as possible. We investigate the following two research questions.

(Q1) How many ideal FACTS are required and where do they have to be placed in
order to obtain a lower bound for the operating costs?

(Q2) If the number of available ideal FACTS is given, do we still see a positive e�ect
on the operating costs and on the operability of the grid during peak periods of
the grid?

In our simulations we determine the minimum number of �ow control units necessary
to achieve the same solution quality as in a power grid in which each element is
controllable and which clearly admits a best bound on what can be achieved with
the network topology. Interestingly, it turns out that a relatively small number of
ideal FACTS are su�cient for this. In fact, we can prove a theorem stating a structural

1We thank Thomas William Brown for mentioning the paper of Kocuk et al. [Koc+16] to us after the
conference talk of our paper [Gra+18], since this work was not known to us.
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graph-theoretic property, which, if met by the placement of �ow control units, implies
the optimality of the power �ow and serves as a theoretical explanation of the observed
behavior. Research Question 1 becomes increasingly relevant as the consumption of
electrical energy grows faster than the grid capacities. The Optimal Power Flow
(OPF) minimizes the total generation costs of the power grid while maintaining a
feasible electrical �ow. Our experiments indicate that installing few ideal FACTS in a
power grid is su�cient not only to achieve lower costs compared to an OPF solution,
but also allows to operate the grid at capacities for which no feasible OPF solution
exists any more.

Transmission Network Expansion Planning on the Green Field. Wind farms
are an important and powerful possibility to convert wind into electricity. There are
di�erent challenges that come with the planning of wind farms such as the placement
of turbines, the con�guration/pro�le of turbines and substations, and the cabling of
turbines. The con�guration of the whole farm is computationally too expensive and
even the cabling with multiple cable types is in general NP-hard (see Section 2.4). To
solve this NP-hard problem, we use a heuristic approach called Simulated Annealing
(see Section 7.2). We structure the problem into multiple layers that decrease the
overall complexity of the problem. The problem is decomposed into circuits, substation
problem, and full wind farm cabling problem. We created a �rst openly available wind
farm benchmark set that is generated randomly and therefore is less structured than
the standard wind farm.

1.2 Thesis Outline

We give a brief overview of the organization of this thesis. In particular, we would like
to emphasize that parts of this thesis appeared in previously published proceedings,
and reports [Gra+18, Leh+17, Lei+15a, Lei+15b, Mch+15].

Chapter 2 To understand the state of the art, we give a literature overview that is
related to our research and di�erentiate our work to the known literature. In
the beginning, we give a short summary on results concerning (electrical) �ows
and the development of digital techniques to compute such �ows. A synergy
of techniques known from graph-theoretical and power grid analysis is given
in Section 2.2 that will provide us with techniques to understand and analyze
power grids. Since our focus is on combinatorial problems in power grids, we
describe the paradox (see Section 2.3) that makes switching a possible way to
extend the operability of the power grid. Note that a similar e�ect is observed
with FACTS. We show that there are works describing the Braess’s Paradox
not only for power grids and present known theoretical results. As already
mentioned, switching increases the operability of the power grid. In Section 2.3.1,
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we give an overview of known techniques to tackle the switching problem and
show how we classify our work in the current literature. We analyze similar
things for the FACTS placement in Section 2.3.2 and for the wind farm cabling
problem in Section 2.4.

Chapter 3 In this chapter, we introduce basic terms and notions that will be used in
this thesis with regards to graph theory (see Section 3.1), graph-theoretical �ows
(see Section 3.2), and electrical �ows (see Section 3.3). For the two latter sections,
we de�ne the feasibility problems and show the relationships between the
di�erent models. In Section 3.3, we do not only de�ne the feasibility problems,
but give a broad overview of the models, describe the assumptions, advantages
and disadvantages of certain model assumptions as well as common problems
and the complexity of the power �ow analysis.

Chapter 4 To analyze networks, we describe that the electrical �ow (see Section 3.3)
is a subproblem of many problems that optimize and analyze power grids.
In the literature overview, we commonly see the usage of the mathematical
formulation that is solved using a solver such as Gurobi [Gur16]. However, in
this chapter, we analyze the mathematical structure of the Direct Current
Feasibility Problem. We develop some algorithms for the DC electrical �ow
using the developed structural knowledge of the problem and show that the
matrices are separately totally unimodular (TUM). The whole system is not TUM.
The �rst algorithm is based on contraction rules with worse runtime than
solving the system of linear equations of the mathematical formulation. Using a
reformulation of the electrical �ow, we are able to design another algorithmic
approach that is much simpler.

Chapter 5 This chapter is published in [Gra+18]. Switching is one of the problems
that show the existence of Braess’s Paradox. We classi�ed our work already
in Section 2.3.1. A fundamental problem de�nition of Optimal Transmission
Switching Problem (OTSP) and Maximum Transmission Switching Flow
Problem (MTSFP) is given in Section 5.1 describing the relationships between
di�erent problems. Several transformations of the network model are introduced
in Section 5.3. In Section 5.4, we describe algorithms and structural properties
of switching on s-t-networks as well as showing when it becomes NP-hard. A
2-approximation on special graph structures is provided in Section 5.6. In Sec-
tion 5.7, we evaluate our algorithms with methodical extensions. We conclude
our work in Section 5.8 by summarizing the obtained results and outline future
work including open problems.

Chapter 6 This chapter is published in [Lei+15a, Lei+15b, Mch+15]. Whereas switch-
ing represents a discrete change in the power grid, FACTS allow a change of
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the electrical �ow within an interval by scaling parameters such as the suscep-
tance. Thus, it represents another possibility to “rebalance” the electrical �ow
by changing line parameters that have temporary in�uence on the topology of
the power grid. In this chapter, we show that FACTS as well as switches are
able to increase the operability of the power grid, while decreasing the overall
generation costs. In addition, we give theoretical evidence that certain graph
structures provide an optimal electrical �ow that is equivalent to the min-cost
�ow.

Chapter 7 This chapter is published in [Leh+17]. A fundamental problem de�nition
for the wind farm cabling problem is given in Section 7.1, where we introduce
a �rst formal hierarchical structure de�nition of the wind farm problem; we
further di�erentiate the full farm problem into the substation and circuit problem.
The basic simulated annealing algorithm is introduced in Section 7.2 and we
give our methodical extensions to this algorithm for the wind farm cabling
problem. In Section 7.4, we evaluate our algorithm by using generated graphs
as benchmark set. These benchmark sets are often harder than the current real
world wind farms. We conclude our work in Section 7.5 by summarizing the
obtained results and outline future work.

Chapter 8 This chapter summarizes the work we have done on the previously intro-
duced placement problems in power grids that can in�uence the e�ect of the
Braess’s Paradox and thus, are able to improve the e�ciency of power grids.
However, this work is just a start to look at these problems from an algorithmic
point of view and a lot of further investigations are necessary to improve existing
algorithms and to understand these problems in more detail. Some ideas for
possible future investigations are outlined in this chapter.
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2 Literature Overview

In this chapter, we give a literature overview of the state of the art that is relevant for
this thesis. We start with a brief literature summary with regards to (electrical) �ows.
Note that we will discuss (electrical) �ows formally in more detail in Chapter 3. For
now it su�ces that an electrical �ow represents some physical �ow that di�ers from
a graph-theoretical �ow in the sense that it has some (roughly speaking) balancing
properties that makes it ine�cient in most cases with regards to optimization criteria
that we focus on (e. g., maximizing the throughput). However, it reduces the overall
energy loss (see Equation 4.26) making it more energy e�cient. In addition, there are
di�erent approximation levels for electrical �ows that are used for certain scenarios,
which we discuss in more detail in Chapter 3. A common way to calculate electrical
�ows is by using solvers that search for a feasible solution. However, this gives us very
little structural insights in how electrical �ows work and thus, we give an overview
of common reduction and transformation rules from the literature in Section 2.2 that
make use of the superposition principle for linear systems. Note that we use the term
network analysis in the context of calculating an electrical �ow by using techniques
that give more insights into the problem structure. There is currently not much known
about structural insights to solve electrical �ows using algorithms. We only found
reduction and transformation rules that are not much investigated for a more complex
power grid analysis. The only problem speci�c algorithm known is an exponential
time algorithm [Sha87, SR61].

A major contribution of this work are placement problems. Placement problems
exploit the structure in the sense that they modify the electrical �ow such that some
objective is optimized such as the throughput. This optimization is possible since the
electrical �ow has the property of balancing itself and thus, does not represent the best
possible �ow for a given topology. A literature overview on the behavior of electrical
�ows and the placement problems we focus on is given in Section 2.3. For the placement
problems, we distinguish between discrete (see Section 2.3.1) and continuous placement
problems (see Section 2.3.2), on which we give literature overviews by considering the
placement of switches and Flexible AC Transmission Systems (FACTS), respectively.
For transmission network expansion planning, we will focus on literature for the wind
farm planning with the focus on wind farm cabling in Section 2.4. In this literature
overview, we will see that there is little known about the problem with regards to
structural results. Since there are not a lot of structural results, there are not a lot of
algorithms to tackle electrical �ows and because of that to tackle the aforementioned
placement problems using algorithms.
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2.1 Graph-theoretical Flows and Electrical Flows

The graph-theoretical �ow complies with the conservation of �ow meaning that
the incoming �ow is equal to the outgoing �ow. This is similar to the principle of
conservation of energy. If maximized it is called Maximum Flow Problem (MFP;
Section 3.2). If each edge has a cost function, the problem of minimizing the total
cost is called Minimum Cost Flow Problem (MCFP; Section 3.2). Both optimization
variants are well known problems with e�cient algorithms for both MFP [GT14]
and MCFP [EK72, GT89, GT90, Kle67, Orl97]. The graph-theoretical �ow complies
with the conservation of �ow (i. e., incoming is equivalent to the outgoing �ow at
each vertex) and the capacity constraints at each edge. However, electrical �ows that
we also call power �ows have to obey some physical laws. The physical relationship
between current, voltage, and resistance was �rst formalized by Kirchho� [Kir47]
in Kirchho�’s Voltage Law (KVL) and Kirchho�’s Current Law (KCL). The latter is
equivalent to the �ow conservation of graph-theoretical �ows. The KVL represents a
conservation of �ow on cycles and not on vertices. The latter law states that the �ows
in a cycle (also known as mesh) sum up to zero. A base is a maximum independent set.
Kirchho� introduces for the KVL the concept of cycle bases, which we will discuss
in more detail in Chapter 4. He shows which equations form a cycle base (i. e., a
number of equations that su�ce to compute the KVL), and he reformulates the voltage
law in terms of a cycle base. This basically means that the number of equations for
the KVL is reduced from potentially exponentially many equations to polynomially
many equations while assuming simple graphs. Later, Maxwell [Max65] describes the
electrical charge, electrical current, electrical �eld and magnetic �eld in more detail.
These works formalize the operation of power grids and thus, build the foundation
that is used in the power �ow literature.

(Optimal) Electrical Flow Solution Techniques. In the aforementioned para-
graph, we described that an electrical �ow complies with the KCL and KVL. These
laws constrain the electrical �ow. A usual question in power grids is if the demand can
be ful�lled with the currently available generation. This problem is called Feasibility
Problem (FEAS). If we constraint the �ow with the KCL and KVL law, we call it the
electrical �ow feasibility problem. We will see in Section 3.3 that there are di�erent
approximations for electrical �ow and thus, di�erent feasibility problems. In the
following, we will give a brief overview of existing solution techniques for electrical
�ow feasibility problems in general. We will also mention the Optimal Power Flow
Problem (OPFP) that is an optimization problem that minimizes the generation costs
while complying with an electrical �ow (here called power �ow).

There are di�erent techniques to solve electrical �ow feasibility problems. One
of the �rst surveys outlines digital techniques to solve the electrical �ow [SJ67].
Another survey of electrical �ow and optimal electrical �ow solution techniques is
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given by Huneault and Galiana [HG91] outlining the �rst automated digital solution
technique by Ward and Hale [WH56], and the Gauss-Seidel method introduced by Car-
pentier [Car62, Car79], that is later replaced by the Newton-Raphson method [dMP99,
Pes+68].

The problem of generating the required amount of power while obtaining minimum
operation cost is called Economic Dispatch Problem (EDP). To cope with the EDP
while incorporating an electrical �ow feasibility problem is called the Optimal Power
Flow Problem (OPFP) that was introduced by Carpentier [Car62]. The development
of solution techniques on OPFP is summarized by Frank et al. [FSR12a, FSR12b].

Stott [Sto74] reduces the memory consumption and running time for electrical �ow
feasibility problems by introducing sparsity techniques for the admittance matrix
and compares it to other methods. The idea behind the approach of Stott is that the
power grid has a very sparse network structure [COC12, p.17] and thus, techniques
that exploit the sparsity improve the running time and memory consumption. A
comparison of di�erent power formulations (see Section 3.3.1) is given by da Costa
and Rosa [dR08]. Molzahn and Hiskens [MH19] give a survey of relaxations and
approximations of the electrical �ow equations. In Section 2.2, we outline some
literature that mention possible ways to analyze power grids. Note that as far as we
know there is no “purely” algorithmical approach to solve the power �ow problem
apart from an exponential time algorithm [Sha87, SR61]. For linear systems there are
reduction and transformation rules known, which are not used so far to create an
algorithm for electrical �ows. A literature overview including known applications of
these rules is given in the following.

2.2 Reduction Rules for the Analysis of Power Grids

In this work, we focus on a linear approximation of the electrical �ow. Thus, all
equations, constraints, and objectives are linear functions. The goal of the network
analysis is to design algorithms that exploit the structure of the problem such that these
algorithms run in polynomial time in the input size. There are di�erent possibilities to
analyze power grids. The common way to compute electrical �ows is to solve a set of
linear equations using solvers such as the Gurobi Optimizer [GUR13, Gur16]. However,
the input size has often a big in�uence on the running time to solve a problem. A
possibility to reduce the input size is to use reduction rules. However, reduction rules in
power grids include contraction and transformation rules. Contraction rules are series
(see Figure 2.1a) and parallel contractions (see Figure 2.1b) and transformation rules
are ∆-Y - (delta-wye) and Y -∆- (wye-delta) transformations (see Figure 2.1c). The latter
rule transforms a triangle to a star by adding one vertex into the center and adding edges
from the center to the already existing vertices, while removing the original edges, and
vice versa for the inverse transformation, respectively. The generalization of the ∆-Y -
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Figure 2.1: Three di�erent subgraphs that lead to di�erent transformation rules each. These
common transformation rules provide possibilities to reduce the network size. (a) In a series
contraction a path with vertices of degree two can be contracted to a single edge. (b) In a
parallel contraction multiple parallel edges can be contracted to a single edge. (c) The ∆-Y -
transformation (delta-wye; respectively Y -∆-transformation known as wye-delta) represent a
possibility to increase (respectively decrease) the number of vertices and reduce (respectively
increase) the number of triangles by one.

andY -∆-transformations are the star-mesh- (or star-polygon-) transformations [Bed61,
LO73]. Other common rules are self-loop and degree-1 removals.

These reduction rules are applied on di�erent problems in di�erent �elds of research
such as in statistical physics involving the evolution of crystal lattice energy [Bax16],
network reliability [Leh63, ST93, Tra02], knot theory [Rei83, Tra02], and graph the-
ory [Ake60, CE17]. We start with some initial algorithmic results on the transformation
rules in the following.

Reducibility of Graphs and Complexity of Reduction Algorithms. The �rst
more general structural observations concerning reduction rules are by Akers [Ake60]
and Lehman [Leh63]. Both independently introduce the conjecture that by using
a combination of Y -∆- and ∆-Y -transformations, as well as series and parallel con-
tractions the connected, two-terminal, undirected, planar graph can be reduced to a
single edge connecting the given terminals [Leh63, pp.795�.]. The latter conjecture is
then independently proven by Grünbaum and Kaibel [GK03] using a graph without
terminals, and a complicated and non-constructive proof by Epifanov [Epi66]. Us-
ing ∆-Y - and Y -∆-transformations Epifanov proves that any polyhedral graph (i. e., an
undirected graph that is a representation of a convex polyhedron) can be reduced to
a K4 (i. e., complete graph with four vertices). The proofs of the conjecture is simpli�ed
by Truemper [Tru89] using a constructive proof incorporating graph minors. One
major property used in Truemper’s proof is that planar graphs can be embedded as
grid graphs. Truemper provides a much simpler polynomial time algorithm for planar
graphs than the one by Feo [Feo85]. Truemper’s [Tru89] algorithm requires O(|V |2)
space, but he did not mentioned the running time of the algorithm. However, Feo
[Feo85] designed a more complex algorithm that runs in O(|V |2) time and needs O(|V |)
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space. Valdes et al. [VTL79] showed that the series, parallel, loop, and single degree
reductions for series-parallel-graphs can be done in O(|V |) time. In addition, Politof
[Pol83] showed that every Y -∆ graph (i. e., a graph that can be reduced to a vertex by
the aforementioned reduction rules) is planar. The term Ci (also known as i-cyclic
graph) represents a closed walk of length i ∈ N with i being the number of vertices. A
planar graph is a Y -∆ graph if and only if it is a (C5 + 2K1,K2 ×C4)-free graph [Pol83]
or (K5,K2,2,2,C8(1, 4),K2 ×C5)-free graph [APC90, ST90], respectively. To the extent
of our knowledge, it is unknown whether these algorithms are applicable to power
grids or not. Some application to graph-theoretical problems are given in the next
paragraph.

Preservation of Optimization Properties. Regardless of the structural point of
view, these transformations are used when solving algorithmic problems. Dependent
on the problem, it is necessary to show that the transformation and contraction rules
preserve a solution space. This is roughly done by Akers [Ake60] for the Maximum
Flow Problem (MFP) and Shortest Path Problem (SPP). He used the transforma-
tions to simplify the network such that algorithmic problems become easier to solve.
Akers [Ake60] applied the transformations to solve SPP and MFP on undirected 2-
and 3-terminal graphs while preserving the optimal length or �ow value. Interestingly,
the transformations shown in Akers [Ake60] also behave dually meaning that, e. g.,
the calculation of the capacities of the series reduction is the calculation of the parallel
reduction in the dual problem. The duality of the transformations is shown for example
in Akers [Ake60]. Another work by Chang and Erickson [CE17] uses these reduction
rules to untangle planar curves meaning to simplify a planar graph with a certain
number of self-crossings. In the next paragraph, we show the usage of the reduction
rules with regards to network reliability. Within network reliability there is a lot of
literature available that gives structural results on the hardness of the problem and
uses methodology to tackle NP-hard problems, which we will use for some placement
problems.

Preservation of Network Reliability. In network reliability these reductions rules
are used extensively. Network reliability studies the probability that at least one
path connecting two terminals operates successfully. The edges in such a network
have success probabilities. The problem of computing the all-terminal reliability for
arbitrary networks is known to be NP-hard [PB83, Val79]. The hardness remains even
for planar graphs [Ver05]. Lehman [Leh63] showed that series, parallel, degree-1, and
loop reductions preserve reliability in the two-terminal and undirected network case.
The ∆-Y - and Y -∆-transformations for boolean functions (also known as switching-
functions) are introduced by Lehman [Leh63, Section 4]. However, he shows that
these transformations do not calculate the exact probability, but an approximation
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to it. Since the problem is in general NP-hard, Satyanarayana and Tindell [ST93]
developed e�cient algorithms for special graph classes, which run in O(|V | log|V |)
time. The latter work [ST93] uses the technique of forbidden minors (i. e., a minor H
is a graph that can be extracted from a graph G by applying vertex and edge deletions
and edge contractions) to develop e�cient algorithms for reliability analysis on graph
subclasses. Satyanarayana and Tindell not only focused on the two terminal case, but
on theK-terminal reliability that focuses on the probability that there is a path between
every pair of terminals. Where Lehman [Leh63] showed that not all transformations
are reliability preserving reductions, Satyanarayana and Tindell [ST93] focused on
reliability preserving reductions and introduced a trisubgraph-Y-reduction. They
focused on block-cut-trees, 3-connected graphs, and series-parallel graphs. For the
latter graph structure they observed that it depends on the distribution of the terminals
whether the graph is reducible or irreducible and thus, reliability preserving using the
standard reduction rules or not. The K-terminal reliability on series-parallel-reducible
networks can be computed in O(|E |) time using series, parallel, degree-1, and -2
contractions [SW85, pp.827�.]. However, for series-parallel-irreducible graphs these
reduction rules are not su�cient and thus, Satyanarayana and Wood [SW85] designed
a linear time algorithm using the polygon-to-chain reduction that reduces two parallel
paths π 1(s, t) and π 2(s, t) with inner vertices of degree-2 to one path having a length
of max{|π 1(s, t)|, |π 2(s, t)|}. For basically series-parallel directed graphs (i. e., graphs
where the underlying graph is a series-parallel graph) Agrawal and Satyanarayana
[AS84, AS85] provide an O(|E |) time algorithm to compute source-to-K-terminal
reliability. Politof and Satyanarayana [PS86, PS90] show that for K2 ×C4-free graphs
the reliability can be computed in linear time and Politof et al. [PST92] show that the
all-terminal reliability of a (K5,K2,2,2)-free graph can be computed in O(|V | log|V |)
time. Satyanarayana and Tindell [ST93, p.13, Proposition 2] show that a Y -∆ graph
allows a trisubgraph-Y reduction resulting in a Y -∆ graph.

Further Results. There are results on reducibility for planar graphs, non-planar
graphs, and special graphs that we outline here. Gitler [Git91] proofs for reducibility
for graphs with no K5 minor and graphs with no K3,3 minor. The reducibility for
projective-planar graphs (i. e., a projective plane is an extension of the euclidean space,
where parallel edges intersect in a point and thus, all edges intersect in some point)
and graphs with crossing number one was shown by Archdeacon et al. [Arc+00].
For 4-terminal reducibility of planar graphs, Demasi and Mohar [DM15] show that a
su�ciently connected cubic graph (i. e., a graph, where all vertices have a degree of
three) are reducible if and only if it does not contain a Petersen graph as minor. Later
Wagner [Wag15] presents a reducibility for almost-planar graphs with the condition
that all graphs in the reduction sequence remain almost-planar. Other works de�ne
the reducibility with a set of forbidden minors [Yu04, Yu06] and design algorithm for
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3-terminals, special cases of 4-terminal planar graphs, k-cofacial terminals in planar
graphs [Git91, GS].

2.3 Braess’s Paradox – E�ects that Influence the Power
Grid E�iciency and Stability

The main focus of this thesis is on placement problems with additional physical
properties. In the introduction (see Chapter 1), we discuss two strategies to improve
the power grid e�ciency. In contrast to our intuition, not only the expansion of the
power grid (TNEP; Strategy 1 in Chapter 1), but also switching can be used to improve
the e�ciency of the power grid. This implies that adding a new line to the power grid
can also decrease the throughput of the power grid or increase the overall generation
costs.

A similar phenomenon exists for road networks and is called Braess’s paradox
[BNW05, Bra68]. Introducing a new road to the tra�c network might cause longer
travel times [YGJ08]. The main reason is that every participant wants to indepen-
dently minimize its own travel time, while ignoring the decision’s e�ect on other
travelers [PP97]. In addition, Pas and Principio [PP97] show that the occurrence of
the Braess’s paradox highly depends on the instance parameters, i. e., demand and
congestion functions. Thus, the paradox usually occurs within some bounds that
make it possible that the network might “grow in” and “grow out” of the paradoxical
situation with increasing (tra�c) demand.

Cohen and Horowitz [CH91] describe the existence of the paradox in mechani-
cal [PV12] and electrical networks (for both see [PP03]). Other works show that the
paradox also appears in oscillator networks [WT12], where adding a line can cause
instabilities and even power outages, which con�rms once more the existence of the
Braess’s paradox in real power grids [WT12, p.11]. Another example for this exists in
quantum physics [Pal+12].

Cohen and Horowitz [CH91] also emphasize the non-intuitive behavior of the Nash
equilibrium that arises in most physical networks. We know from Dubey [Dub86, p.4,
Section 3] that Nash Equilibria “tend to be ine�cient in the Pareto sense”. We will
give an explanation of that in Chapter 4. The Nash Equilibrium is a known �x point
in Game Theory and represents a state, where no player wants to change its choice.
In contrast, the Pareto optimum means that there is no possible better choice of one
player that does not decrease the payo� of another player. Thus, it is the optimum
with regards to a cost function. The Pareto front represents the set of Pareto optima.
However, the Pareto optimization plays a crucial role in the multi-criteria optimization.
We show an example for a Pareto front in Figure 6.7a. An easy example that shows
Pareto optima and Nash Equilibriums is given in Dubey [Dub86, p.5, Figures 2–4].
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Another theoretical insight given by Valiant and Roughgarden [VR06] explaining
that the Braess’s paradox occurs very often in random graphs. Note that many of the
networks in the real world have properties similar to random graphs [Hof19, p.xiii].
Thus, in Chapter 5, we exploit the Braess’s paradox to improve the e�ciency of the
power grid, whereas in the TNEP problem, we have to add lines in a way that the
e�ciency of the power grid increases and thus, the e�ect of the Braess’s paradox
does not appear. The e�ect that the Braess’s Paradox highly depends on the instance
parameters [PP97] is shown in Chapters 5 and 6, where we use switches and FACTS
to in�uence these parameters.

2.3.1 Switching – A Discrete Manipulation of the Power Grid
Topology

Recall that switching is the process of temporarily removing a transmission line from
the power grid by using devices such as circuit breakers. Kirchho� model this behavior
by changing the resistance to in�nity [Kir47, p.501]. Switching was �rst analyzed as
a negative e�ect in the power grid [Gla85] responsible for overloads, voltage drops,
and the loss of network stability. Koglin and Müller [KM80] introduce transmission
switching as a corrective control action to reduce transmission line overloads. Later
other positive switching e�ects were recognized such as improving currents, decreasing
loads and angles, creating voltage drops, and changing the short-circuit power [Gla85,
HOO11a, RM99].

O’Neill et al. [ONe+05] and Fisher et al. [FOF08] introduce the Optimal Trans-
mission Switching Problem (OTSP) and its formulation based on the Direct Cur-
rent Optimal Power Flow (DCOPF) [Cho+06], respectively. The OTSP using DC-
constraints is called DCOTS. Fisher et al. [FOF08] observe that switching may im-
prove the economic e�ciency of the Economic Dispatch Problem (EDP). How-
ever, they could not �nd any general trend in the physical characteristics of the
switched lines. Many models were presented that are more complex [Bai+15, SF14] or
minimize either the overload [MTB89, MWH86, Wru+96], voltage problems [BM87,
RIM95], losses [BG88], or generation costs [FOF08, ONe+10]. Others enhance the
security [BDD89, SG90], reliability [DK15, ZS17, ZW14], economic seasonal [JWV15],
or Transmission Network Expansion Planning (TNEP) costs [KSK10, VP12].

DCOTS is known to be NP-hard [LGH14, LGH15] and solving it by running an Inte-
ger Linear Programming (ILP) has impracticable running times [FOF08]. The complex-
ity is reduced by limiting the solution set, i. e., number of switches [Hed+08, Hed+09,
SV05]. Often a small number of switches is su�cient to reach the optimum. This is
a central property in most heuristics [CW14, FRC12, Hed+11] that use a ranking of
the transmission lines based on di�erent criteria. Pourahmadi et al. [PJH16] show
that switching lines with high congestion costs is a reasonable criterion to reduce
the overall cost. Other pre-screening techniques rank the lines on their dual prices
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for each bus [LWO12]. Other approaches are Evolutionary Algorithms [AF09, DV01],
branch-and-bound [TC14b], and partitioning [Bai+17, Li+13, Mäk+14]. Yang et al.
[YZX14] use a soft rounding heuristic [Jün+10, p.629] not �xing all variables to a
value but obtaining this by changing the objective function coe�cient of the binary
variables.

However, there is not a lot known with regards to structural exploits of the power
grid topology. Ostrowski et al. [OWL12, OWL14] exploited the symmetry of trans-
mission lines for the switching problem by removing identical parallel transmission
lines. Di�erent network parameters lead to a di�erent system performance and are
connected in some sense to switching [Ari+09, BNX09, HB08]. Barrows et al. [BB11,
BB12, BBB13] use topological and electrical parameters as a heuristic. In addition, they
investigate parameters concerning OTS such as resistance, reactance, susceptance,
vertex degree, thermal limits, and edge-betweenness centrality [HB08] (number of
shortest paths through an edge) but �nd no statistically signi�cant relationship. Recall
that Pas and Principio [PP97] show that the Braess’s Paradox highly depends on the
instance parameters and that a single parameter evaluation lacks in this particular
case as it is in�uenced by multiple parameters such as topology, susceptance, and
capacity. In addition, there exist also screening and ranking systems based on network
�ows [MWH86, Wru+96].

Most of the work so far tries to adapt OTS to other problems, reformulates the
model, or analyzes it for di�erent power grids. However, the majority of the papers
have problems to solve their models to optimality even on small instances. Thus, most
heuristics try to decrease the search space, a few concentrate on structural aspects of
power grids, while others try to �nd correlations between power grid parameters and
switching. A common observation is that the e�ects of transmission switching are
relatively localized [BB11, BB12, Gla85]. This observation is debatable as it is made
without solving the problem to optimality and using test cases such as the reliability

test system 1996 RTS-96 test case that is three copies of the 24-bus power system linked
together. However, in general there is no network property found to distinguish the
switched lines [BB11]. Thus, current techniques do not provide a deeper understanding
of the problem structure. The latter will be our contribution to the community for
certain graph structures, which we give in Chapter 5.

2.3.2 FACTS – A Continuous Manipulation of the Power Grid
Topology

Recall that the graph-theoretical �ow is a �ow mainly controlled by the KCL and
capacity constraints, whereas the electrical �ow has to obey physical laws. The graph-
theoretical �ow and the electrical �ow give us, while maximized (respectively when
the generation cost is minimized), the upper and lower bounds (respectively lower and
upper bounds), respectively (more on that in Chapter 4). In addition, Pas and Principio
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[PP97] show that di�erent instance parameters in�uence the e�ect of the Braess’s
Paradox. Thus, changing the parameter helps to change the e�ect the Braess’s Paradox
has on the network. With FACTS the idea is to exploit the network structure such that
the �ow behaves more like a graph-theoretical �ow and thus, closer to the best bound.
Recall that a similar approach is done by switching.

With the increasing availability and technological advancement of FACTS researchers
began to study the possible bene�ts of their installation in power grids from di�erent
perspectives to approach the Research Questions 1–2 (see Section 1.1 on Page 6).

From an economic perspective, it is of interest to support investment decisions in
power grid expansion planning by considering alternative investment strategies that
either focus on new transmission lines or allow mixed approaches including FACTS
placement. Blanco et al. [Bla+11] present a least-squares Monte-Carlo method for
evaluating investment strategies and argue that FACTS allow for a more �exible, mixed
strategy that fares better under uncertainty. Tee and Ilić present an optimal decision-
making framework for comparing investment decisions, including FACTS [TI12].

From the perspective of operating a power grid, the main question is how many
ideal FACTS are required and where do they have to be placed in order to optimize a
certain criterion. Cai et al. [CES04] propose and experimentally evaluate a genetic
algorithm for allocating di�erent types of FACTS in a power grid in order to optimally
support a deregulated energy market. Gerbex et al. [GCG01] and Ongsakul and
Jirapong [OJ05] study the placement of FACTS with the goal of increasing the amount
of energy that can be transferred. Gerbex et al. [GCG01] present a genetic algorithm
that simultaneously optimizes the energy generation costs, transmission losses, line
overload, and the acquisition costs for FACTS. Ongsakul and Jirapong [OJ05] use
evolutionary programming to place FACTS such that the total amount of energy
that can be transferred from producers to consumers is maximized. In contrast to our
setting, they may also increase the demands of consumers arbitrarily. Contrary to these
heuristic approaches Melo Lima et al. [Mel+03] use mixed-integer linear programming
to optimally increase the loadability of a system by placing FACTS subject to limits
on their number or cost. Similar to our approach, they do not distinguish di�erent
types of FACTS but rather assume “ideal” FACTS that can control all transmission
parameters of a branch. However, they focus only on loadability and do not consider
generation costs and line losses. The latter two objectives will be considered in our
work.

All related work mentioned so far considers the DC model for electrical networks as
an approximation to the AC model (more on that in Section 3.3) and aims at providing a
preliminary step in an actual planning process, where this approximation is su�cient.
There are also a few attempts to solve the placement problem for FACTS in the
more realistic but also more complicated AC models [MEA99]. These models can be
categorized as follows:
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Figure 2.2: The wind farm topology consists typically of turbines ⊗ and substations . The
complexity of cabling a wind farm di�ers depending on the cost function. If we assume unit
costs—meaning we have only one cable type available—then the problem is slightly easier
to solve (see left side) than when allowing multiple cable types (see right side). The di�erent
cable types are shown in the table. The complexity of the problem also increases dependent on
the problem layers. The easiest layer is the Circuit Problem (CP), followed by the Substation
Problem (SP) and Full Farm Problem (FFP).

• AC models with sinusoidal loads (non-convex and non-linear formulation),

• AC quadratic approximations (non-convex and quadratic formulation),

• AC piece-wise-linearization (non-convex and integer linear programming for-
mulation), and

• AC linearization (convex and linear formulation).

Sharma et al. [SGV03] develop an evaluation whether transmission lines are critical
and propose to place FACTS at critical lines in order to improve voltage stability in the
grid. Ippolito and Siano [IS04] present a genetic algorithm for FACTS placement in AC
networks and experimentally evaluate it in a case study. In contrast to these heuristic
approaches, Farivar and Low [FL13] observe exact OPF evaluation in a relaxed AC-
model. In this context, they place phase shifters to exploit structural characteristics
that are similar to our approach.

2.4 The Wind Farm Cabling Problem

The amount of renewable energy producers started to increase signi�cantly a few
years ago. However, there is not a lot of research done in the �eld of wind farm
planning. From an algorithmic point of view and using just a single cable type,
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the Circuit Problem (CP) can be solved using a Minimum Spanning Tree (MST)
algorithm [Gab+86, HK71], whereas the Substation Problem (SP) can be solved
using Capacitated Minimum Spanning Tree (CMST) [Voß09]. However, CMST is
already NP-hard, but approximation algorithms and heuristics exist for this type of
problem [EW66, Mar67, Voß09]. This is visualized in Figure 2.2. We are interested
in the layout problem using multiple cable types with di�erent capacities and costs
per meter, which is already NP-hard for two cable types in the Circuit Problem.
Using brute force for |K | di�erent cable types and |E | possible interconnections would
mean that there are |K | |E | possible combinations to compute. However, to compute
cabling layouts with multiple cable types some work is done in the area of cluster-
based, MST-based and genetic algorithms. Dutta and Overbye [DO11] used the Quality
Threshold (QT) Clustering algorithm to group the turbines into collector systems or
even groups within a collector system. They evaluate—based on reliability, power
losses and cabling costs—three di�erent layouts namely the radial, cluster-based, and
mixed layout.

If the wind farm planning does not consider the cabling of turbines, but the connec-
tion of entire o�shore wind farms among themselves and to the mainland, then the
clustering approach based on k-mean [Kan+02] from Svendsen [Sve13] tries to model
and propose an algorithm for that kind of problem by taking investment costs and
operational costs with di�erent stakeholders into account.

A more general attempt—not using clustering, but a MST-based approach—was
given by Berzan et al. [Ber+]. It solves the circuit problem for multiple cable types.

In contrast, evolutionary algorithms present a very promising approach to solve
complex, multi-variable and multi-objective optimization problems with many design
variables (see Chapter 7). Within evolutionary algorithms, a genetic algorithm (GA) is
usually applied to problems with huge solution space and discrete variables. There
are GA approaches introducing di�erent encodings and solution methods for electrical
systems integrating di�erent electrical components to be optimized such as type of
turbine and substation [Gon+12, LYX09, ZCB04, ZCB09, ZCH06].

A di�erent modeling approach was proposed by Hertz et al. [Her+12] including
unsplittable electrical �ows into the Mixed-integer Linear Program (MILP) for the
wind farm design problem, which forbids to split the incoming power from one cable.

In general, the cabling problem has a lot in common with transportation of goods,
where the cost of laying a cable does not necessarily depend on the actual amount of
power it transports. If the maximum power exceeds the capacity (thermal limit) of
a cable, a di�erent and more expensive cable is deployed. This raises the costs in a
non-convex manner and makes it NP-hard [YK12]. In transportation of goods, trucks
and goods are an analogous example of cables and power, respectively. Heuristical
approaches to solve the problem in logistics are Tabu Search [GL99], Ant Colony
Optimization [Dor01] and simulated annealing (SA) [OL96]. Yaghini and Kazemzadeh
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solved the Multicommodity Capacitated Network Design (MCND) Problem in the
�eld of logistics with a SA approach. This algorithm serves as basis for our algorithm
and is improved for the wind farm cabling problem.

In contrast to the GA approaches, we are not interested in solving the con�guration,
but the physical layout. Furthermore, the choice of the GA’s cost function is debatable,
since integrating the throughput of a farm might be also important. Our model omits
unsplittable �ows, since it increases the complexity of the problem without bringing
an additional bene�t and distorts the electrical reality.

Most of the papers evaluate their algorithms on a small instance or on a small set of
benchmark data. Especially for evolutionary algorithms, this can lead to a falsi�cation
of the results, since the con�guration of the algorithm is improved with regards to
one speci�c data set, but might perform poorly on others. Thus, we generate a test
data benchmark set on which we perform our simulations to avoid such e�ects and
give a more general statement.
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3 Fundamentals

In this chapter, we introduce fundamental terms concerning graph theory (Section 3.1)
and graph-theoretical �ows (Section 3.2). For complexity theory, we refer to the com-
mon literature [Aus+99, GJ79]. The Feasibility Problem (FEAS) checks whether for
a given supply and demand there is a feasible (electrical) �ow. We give an overview
of the di�erent feasibility problems in power grids in Section 3.3 that form the basis
of any problem in the power grid analysis. We start with the Alternating Cur-
rent Feasibility Problem (AC FEAS) and its di�erent formulations in Section 3.3.1.
In the latter section, we de�ne di�erent functions that are used in this thesis and give
a short overview of the common transmission line representations that are used in
the literature. Furthermore, we give an idea of how we are able to add more complex
elements such as transformers and Flexible AC Transmission Systems (FACTS) to the
models without changing the models themselves, but a component of the analysis.

AC FEAS is NP-hard [LGH16, Ver10]. Since FEAS is a subproblem of all placement
problems, we use an approximation of AC FEAS that is polynomial time solvable to
increase the (structural) understanding. In Section 3.3.2, we introduce di�erent as-
sumptions that result in such a (linear) feasibility problem commonly known as Direct
Current (DC) FEAS. While the model is derived from an AC model, we will give the
analogies to the DC model of the DC network to understand the meaning of the name.
A feasibility problem that uses one assumption less than the DC feasibility problem
is denoted by the Voltage Normalized Lossless Real Power Flow FEAS (VNLP),
which is described in Section 3.3.3. The problem is known to be NP-hard [BV19,
Ver10]. Afterwards, we discuss the practicability of the simplifying model assumption
in Section 3.3.4.

3.1 Fundamental Graph-theoretic Terminology

The underlying power grid is in our case reciprocal (also known as bilateral), i. e., a
bidirectional power �ow is allowed, and it is common to give each edge an orien-
tation for notational convenience. Thus, the power grid’s topological structure can
be represented by a (simple) undirected graph G = (V ,

←→
E ) with a set V (G) of vertices,

representing buses in our case, and a set ←→E (G) ⊆
(V
2
)

of edges that is represented by
unordered pairs of vertices ←→e = {u,v} ∈ ←→E (G) representing electrical elements such
as cables or lines. Note that buses represent electrical junction points and that an edge
can represent devices such as transformers, circuit breakers, or FACTS; or simpler
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elements such as inductors, resistors, or capacitors. Depending on the literature edges
are sometimes denoted as branches or circuits. The term simple denotes that there is
at most one edge per vertex pair allowed.

Even though the underlying power grid is in our case reciprocal, it is common
to give each edge an orientation for notational convenience. A directed graph is a
tuple G = (V , E), where each edge in the set E(G) of edges has an orientation that
is represented by an ordered pair of vertices e = (u,v) ∈ E(G). If not ambiguous,
for V (G), ←→E (G), and E(G) we simply write V , ←→E , and E, respectively.

In general, power grids can have multiple edges between to vertices. There are
multi-graphs G = (V , E, µpara) with the multiset E ⊆ V × V of edges. Thus, there
is a mapping µpara :

←→
E → {{u,v} | u,v ∈ V ;u , v} identifying edges ←→e i : {u,v}i

with 1 ≤ i ≤ k being the k parallel edges (i. e., in our case conductors) that belong
to the same electricity link {u,v}. Note that in terms of power grids a multi-graph
can be easily simpli�ed to a simple graph (see Section 4.2). Thus, if not mentioned
otherwise, we assume that our graphs are simple and for notational simplicity use
both the directed graph and the underlying undirected graph that are distinguished
by the notation of the edge set.

Vertices that have an edge in common are called adjacent and are neighbors. The
set of neighbors, i. e., the neighborhood, of a vertex v in an undirected graph is
denoted by N (v) = {u ∈ V | {u,v} ∈

←→
E }. For a vertex v in a directed graph, we

distinguish between incoming edges (u,v) ∈ E and outgoing edges (v,w) ∈ E for
all u,w ∈ V . The neighborhood created by incoming and outgoing edges is denoted
by N +(v) B {u ∈ V | (u,v) ∈ E} and N −(v) B {u ∈ V | (v,u) ∈ E}, respectively.
A vertex that represents an endpoint of an edge is incident to that very edge. The
degree of a vertex v denotes the number of edges it is incident to. We distinguish
between degree, in-degree, and out-degree de�ned by |N (v)|, |N +(v)|, and |N −(v)|,
respectively.

Cain et al. [COC12, p.13] mention that power grids are planar. A graph is called pla-

nar if it can be embedded into the plane without any edge crossings, i. e., the edges
have no common point, but the two vertices representing the endpoints of an edge.
However, note that there is usually more than one embedding for a graph G that is
planar. Thus, let us assume a �xed planar embedding E of a graph G into the plane
withG(E) � G (i. e.,G(E) is isomorphic toG) and an injective function µE : V → R×R

meaning there is a correspondence between the vertices V of the graph and the ge-
ometrical points P of the plane embedding. An edge set E(G) of G(E) is a subset
of a topological space T , where each edge in G(E) is a Jordan curve in T and the
incidences and adjacencies are de�ned accordingly [GT01].

An induced subgraphG[V ′] of a graphG is a graphH = (V ′ ⊆ V (G), {(u,v) ∈ E(G) |
u,v ∈ V ′}) whose vertices V ′ are a subset of V (G) and that has exactly these edges
that have both endpoints in V ′. Note that this de�nition also applies to undirected
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graphs with the set of edges ←→E . Note that a subgraph that is not induced does not
necessarily incorporate all edges, where both endpoints are in V ′.

A path from a vertex s to a vertex t (or s-t-path) is a sequence of edges π (s, t) B(
(s,v1), (v1,v2), . . . , (vk−1,vk ), (vk , t)

)
, where two successive edges have an endpoint in

common. We call a path simple if no vertex is visited twice and thus, all vertices s,v1,v2,
. . . ,vk , t are distinct. In general, there is more than one path from s to t . We denote
the set of simple paths from s to t by Π(s, t). A cycle c is a path π (s, t), where the �rst
and the last vertex are identical meaning s = t . A cycle is called simple if all vertices
are distinct with the exception of s and t . A graph with no cycles is called acyclic.

A connected component is a subgraph, where there is a path between each pair of
vertices. Furthermore, we call a graph G connected if it has one connected component.
A tree is a connected graphT = (V ,←→E ) that has no simple cycles. A treeT that connects
all vertices of a connected graphG = (V ,←→E ) is called a spanning tree withV (T ) = V (G)
and ←→E (T ) ⊆ ←→E (G) with |←→E (T )| = |V | − 1 being the number of edges. If graph G is
not connected and has k connected components then we construct a spanning tree
for each connected component. The set of spanning trees is called spanning forest T
and thus, the number of edges in a spanning forest is |V | − k . Let T be some �xed
spanning forest inG . Edges of graphG that are not branches of that spanning forest T
are given by ←→E (G) \ ←→E (T ) and are called chords with respect to T . The number of
chords is given by |←→E | − |V | + k , where k is the number of connected components.

An edge cut-set K (
←→
E is a set of edges with ←→E \ K that decomposes the graph G

into at least two new components. In terms of Whitney [Whi32] or Seshu and Reed
[SR61, p.27] this means that the rank rk(G) of the graphG reduces by at least one. The
rank of a graph is de�ned by |V | −k , where k is the number of connected components.
Note that cycles and cut-sets are closely related to each other as shown in Chapter 4.

A graph can be represented in di�erent ways as a matrix. Note that we represent
a matrix with bold capital letters and vectors with an overhead arrow. The oriented

adjacency matrix A ∈ {−1, 0, 1} |V |× |V | represents the connections of a graph by vertex
adjacencies meaning an entry in row u and column v is 1 (respectively −1) if there
is an edge (u,v) ∈ E(G) (respectively (v,u) ∈ E(G)). The entry is 0, if there is no
such edge in the graph. The oriented incidence matrix I ∈ {−1, 0, 1} |V |× |E | is another
matrix that represents connections of a graph. An entry in row u and column e of the
oriented incidence matrix I is 1 (respectively −1) if e is an incoming edge (respectively
outgoing edge) at vertex u, and 0 otherwise (see for example Figure 4.6 on Page 69).
The following properties of the incidence matrix illustrate the importance of spanning
forests.

(I–P1) The rank rk(I) of the incidence matrix I is |V | − k , where k is the number of
connected components [SR61, p.62, Theorem 4-3], and

(I–P2) a square submatrix of the incidence matrix I of size rk(I) × rk(I) is nonsingular
(i. e., the determinant is either 1 or −1) if and only if the submatrix’s columns
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constitute a spanning forest T , otherwise the determinant is 0 [SR61, p.69,
Theorem 4-10].

An example for incidence property I–P2 is given in Figure 4.6 on Page 69. Within this
example adding a cycle edge (e. g., edge д) and removing a spanning tree edge (e. g.,
edge d) would destroy the consecutive one diagonal in the upper left partition and
thus, the determinant becomes 0. Note that the subgraph with the latter con�guration
is disconnected.

Another possibility to represent the graph G is the oriented circuit matrix B ∈
{−1, 0, 1} |C |× |E | , where C is the set of simple cycles. Assume we de�ne a direction for
each cycle. The matrix has a 1-entry if the edge is in the cycle and aligned with the
cycle direction, −1 if it is opposite to the de�ned direction, and 0 otherwise (see for
example Figure 4.6 on Page 69). The properties of the circuit matrix give a hint of the
duality of the incidence and circuit matrix that we describe in more detail in Section 4.1.

(B–P1) The rank rk(B) of a circuit matrix B is |E | − |V | + k , where k is the number of
connected components, and

(B–P2) a square submatrix of B of size rk(B) × rk(B) is nonsingular if the submatrices
columns constitute a set of chords that belong to a spanning forest T .

Note that the circuit matrix property B–P2 becomes clear from Figure 4.6 on Page 69.
Swapping a chord with a spanning tree edge destroys the consecutive one diagonal of
the bottom right section.

The oriented cut-set matrix Q ∈ {−1, 0, 1} |K |×|E | , where K is the set of cut-sets. The
entry is 1 (respectively −1) if the edge is in the cut-set and oriented in the arbitrarily
prede�ned direction (respectively in the opposite direction), otherwise it is 0. The
oriented cut-set matrix Q has rank rk(Q) = |V | − 1 for any connected graph.

Note that all previously shown matrices exist also in a nonoriented fashion that
represent undirected graphs with entries {0, 1} representing if an element is in the
graph, i. e., 1, or if it is not an element, i. e., 0, of the graph G.

The unnormalized Kirchho� matrix—better known as Laplacian matrix—is de�ned
by L B I Iᵀ = D − A, where D is the diagonal matrix with the vertices’ degrees. The
relationship I Iᵀ = D − A comes from the matrix multiplication, where the diagonal
entries are the scalar product of the row vector ai with its transposed aᵀi , where i ∈ V .
The latter means the scalar product ai · aᵀi , which is equivalent to entry Di . Otherwise,
the entries are −1 if two vertices have an edge in common, since we take the scalar
product of a row au of u ∈ V with another transposed row aᵀw ofw ∈ V . The entries of
both rows have a 1 or −1 entry if they are incident to an edge. Thus, if both vertices
are incident to the same edge the scalar product is −1. The latter is represented by the
subtraction of the adjacency matrix A.
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3.2 Fundamentals in Graph-theoretic Flows

Problems in di�erent domains are modeled with graph-theoretic �ows. We usually
distinguish between the Maximum Flow Problem (MFP), and the Minimum Cost Flow

Problem (MCFP).
Assume a graph G as mentioned in the previous section with additional properties

of the edges and certain vertices that in�uence a �ow. Thus, they become part of the
graph’s description. The edge property is the capacity that are functions cap : ←→E →
R≥0 associating each edge with a capacity. In terms of power grids, the capacity
represents a thermal line limit. In addition, we introduce two special vertices to the
topology of a graph that are denoted by source s and sink t with s, t ∈ V . These vertices
are usually called terminals. Often such a graph is denoted as capacitated source-sink-
graph that is a tuple G = (V , E, cap, s, t). We prefer to distinguish between the pure
topology that is given by the tuple G = (V , E) and the properties that have in�uence
on the topology by introducing the tuple N = (G = (V , E), s, t, cap,pд,pд,pd ,pd ) with
minimum and maximum generation pд,pд : {s} → R≥0 ∪ {∞}, and minimum and
maximum demand pd ,pd : {t} → R≥0 ∪ {∞}. Note that the p will later stand for real
power, but this is of no importance in this section. We call such a tuple a �ow network.

With these terms it is possible to describe �ows. A �ow is a function f : E → R

that maps each edge to a value representing its �ow. Recall that we give each edge an
orientation and thus, the graph is directed. In general, we allow a bidirectional �ow
on each edge. The �ow f satis�es the skew-symmetry property f (u,v) = −f (v,u) for
all (u,v) ∈ E. The net �ow fnet(u) describes the behavior of a �ow at a vertex u and is
de�ned by fnet(u) B

∑
{u ,v }∈

←→
E f (u,v) for all u ∈ V . It basically de�nes the di�erence

of incoming and outgoing �ow. We distinguish between the net �ow at the source s
(Equation 3.2), sink t (Equation 3.3), and all other vertices v ∈ V \ {s, t} (Equation 3.1).

fnet(u) = 0 ∀u ∈ V \ {s, t}, (3.1)
pд(s) ≤ fnet(s) ≤ pд(s), (3.2)

−pd (t) ≤ fnet(t) ≤ −pd (t). (3.3)

The Equations 3.1–3.3 that describe the behavior at each vertex are known as conser-
vation of �ow. In the electrical engineering community these constraints are more
commonly known under the name Kirchho�’s Current Law (KCL) as we will see later
in this chapter.

The capacity cap : ←→E → R≥0 is a function that represents a property of each edge
that restricts the �ow on each edge (see Equation 3.4).

| f (u,v)| ≤ cap(u,v) ∀(u,v) ∈ E. (3.4)

Note that we allow negative �ows and the skew symmetry describes the interpretation
of such �ows meaning f (u,w) = −f (w,u). We call a �ow complying with Equa-
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tions 3.1–3.4 a feasible �ow. If the generation and demand bounds permit zero genera-
tion and consumption, respectively, then a possible feasible �ow f can be the trivial
solution with f ≡ 0. The decision problem is de�ned in the following problem box.

Flow Feasibility Problem FEAS(N)

Instance: A �ow network N = (G, s, t, cap,pд,pд,pd ,pd ).
Question: Is there a feasible �ow f complying with the constraints in Equa-

tions 3.1–3.4?
We will see that the �ow feasibility problem is a subproblem of all power �ow

feasibility problems. A one terminal-pair graph is a graph with one source s and
one sink t that are directly connected by an edge, which is often used for circula-
tion problems. The latter simulates a �ow circulation that simpli�es the constraints
in Equations 3.1–3.3 to one constraint of the form shown in Equation 3.1 for all vertices.

The Maximum Flow Problem. As mentioned above, the �ow feasibility problem
is a subproblem of many problems that exist in ecology, economics, and information
theory (see for example Ahuja et al. [AMO93]). The �ow FEAS is a decision problem
and the Maximum Flow Problem (MFP) is an optimization problem that maximizes
the throughput of the network. Note that we are always able to transform an opti-
mization problem into a decision problem. To formalize the problem, we introduce
the �ow value F (N, f ) of a �ow f and a �ow network N that is de�ned by fnet(s). A
feasible �ow f that maximizes fnet(s) is called a maximum �ow and its value is given
by OPTMFP(N). We de�ne the optimization problem as follows.

Maximum Flow Problem MFP(N)

Instance: A �ow network N = ( G, s , t , cap, pд , pд , pd , pd ) .
Objective: Is there a feasible �ow f that maximizes the �ow value F (N, f ).

The MFP is a well known problem [GTT89, pp.19�.]. The dual problem is the Mini-
mum Cut Problem (MCP) that asks for an edge cut-set with minimum capacity. The
max-�ow min-cut theorem is proved by Dantzig and Fulkerson [DF57] and shows the
duality of both problems.

The Minimum Cost Flow Problem. Another problem that incorporates the fea-
sibility problem is the Minimum Cost Flow Problem (MCFP), where we introduce
for the �ow on an edge e ∈ E a cost function γe : R → R≥0 representing the cost
for a �ow of f (e), where γe is an even function, i. e., γe (x) = γe (−x). We require
that the generations or the demands have a positive lower bound meaning pд(s) > 0
or pd (t) > 0. The optimization problem is de�ned as follows.
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Minimum Cost Flow Problem MCFP(N)

Instance: A �ow networkN = (G, s, t, cap,pд,pд,pd ,pd ) and a cost function γe .
Objective: Find a feasible �ow f such that the sum of the cost over all

edges
∑

e ∈E γe (f (e)) is minimized.

The MCFP has the same constraints as the MFP, but a di�erent objective. The
problem has two special cases in which it transforms to another problem while �xing
some of the constraints. If the capacities are set to in�nity cap(u,v) = ∞ for all (u,v) ∈
E, then the problem becomes a Shortest Path Problem (SPP). However, if we would
set the cost to zero γ(u ,v)(x) = 0 for all x ∈ R and all edges (u,v) ∈ E the problem is
equivalent to FEAS.

There are di�erent algorithms to tackle the MCFP. Since the MCFP constitutes
an LP, the simplex algorithm can be used. There is a special network simplex al-
gorithm [OPT93, Orl97, Tar97] that can be used in this case. Others are the cycle
canceling [Kle67][GTT89, p.6, p.10, p.50], minimum mean cycle canceling [GT89,
p.875], and cost scaling [GT90][GTT89, Chapter 3], successive shortest path and capa-
city scaling [EK72][GTT89, Chapter 5], and the out-of-kilter algorithm [DK67, Ful61,
SW73].

Note that a graph-theoretical �ow is not necessarily a valid power �ow, since it
neglects physical constraints. However, it represents a subproblem in the power �ow
feasibility problem, which we see in the next section.

3.3 The Power Flow Feasibility Problem

A power grid operates correctly if the total generation in the power grid is equal to
the total power consumption (also called demand). The problem—checking whether
the demand and generation sum up to zero under model speci�c constraints—is called
the Feasibility Problem (FEAS; see Figure 3.1). In this section, we show di�erent
models with their assumptions and constraints.

The Feasibility Problem represents one of the most fundamental problems the trans-
mission system operator (TSO) has to tackle in the power grid. While operating the
power grid, the feasibility check can be done online using the grid frequency (Fig-
ure 3.1b). The European grid frequency s (nominal frequency) is 50Hz. Note that there
are countries such as Japan that run two frequencies, i. e. 50Hz and 60Hz [Gor19]. Re-
gions with di�erent frequencies are connected via high-voltage direct current (HVDC)
lines. For the following example [Jas19], we assume a nominal grid frequency of 50Hz.
The normal grid frequency operation is in the range of [49.8Hz; 50.2Hz]. Exceeding
this interval on the upper end means that there is more production than demand. A
usual reaction after 50.2Hz is to shut down generators that make use of renewable en-
ergies (i. e., solar panels) or reduce their power injection; after 51.5Hz all solar panels
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(a) (b)

Demand
Generation

Goal

50.2 Hz

50 Hz

49.8 Hz

Figure 3.1: The aim of the feasibility problem is to check whether the generation and demand
are equivalent. This idea is shown by the two schematic sketches in (a) and (b). (a) gives a
rough idea of the feasibility problem in terms of the power grid’s generation and demand, (b)
represents the same idea in the context of the (nominal) frequency of 50Hz (top scale). The
latter shows that any imbalance leads to a frequency that deviates from the nominal frequency
in either way. If the generation is to high the frequency increases (bottom left scale). However,
if the consumption is to high the frequency drops (bottom right scale).

are shut down, before reaching the critical value of 52.5Hz, other renewable generators
and power plants are reduced or removed from the grid. On the other end, the TSO
activates power reserves at 49.8Hz, in the range of (48.7Hz; 49.0Hz] load shedding
(i. e., a TSO-planed shutdown of parts of the power grid for grid security reasons)
of 10 − 15%, in the range of (48.4Hz; 48.7Hz] load shedding of 20 − 30%, in the range
of (48.1Hz; 48.4Hz] load shedding of 35 − 50%, and in the range of (47.5Hz; 48.1Hz]
load shedding of 50 − 70% is done [Jas19]. After that the TSO separates the power
plants from the power grid with resulting blackouts. The latter is done to secure the
grid equipment. So the total operating frequency range is (47.5Hz, 52.5Hz). After a
blackout the power grid has to be reconstructed. Thus, the TSO is confronted with
the problem in which order the power grid elements have to be added to the power
grid without risking another blackout or risking any damage to power grid equipment.
The latter problem is denoted by Restoration Order Problem (ROP) that contains
the Feasibility Problem (FEAS), too.

Recall that the subproblem of any power grid analysis and thus, every placement
problem, is FEAS, i. e., whether there is a feasible power �ow for a given generation
and demand. This problem is solved to check the reliability of the power grid, to do
short- and long-term planning (i. e., placement problems; see Chapters 5 and 6) and to
solve other power grid related problems. In this section, we will give an overview of
the di�erent basic models, complexities, and relaxations.

3.3.1 Alternating Current Power Flow Model

The Alternating Current (AC) power �ow models are the standard models for the
power �ow analyses. Models are a description of the real-world that make certain
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assumptions such that we have to explain why the models that we use are reasonable
for the problems that we tackle in this thesis. In this section, we brie�y introduce and
describe AC FEAS that describes the power �ow in an AC power grid. We start with the
dynamic AC model that is a very precise model, but also a very complex model. Note
that most placement problems in power grids are long-term decisions. For long-term
scenarios, it is reasonable—since the power grid converges towards a stable state—to
make an assumption such that the AC model becomes time-independent (see Equa-
tion 3.7). The time-independent model is called static AC model. Using di�erent trans-
formations, we derive di�erent formulations for AC FEAS shifting the non-convex
and non-linear formulas in di�erent parts of the system of equations (see Table 3.2).
For problems that are long-term decisions these models are good approximations.
However, AC FEAS is already NP-hard on star-shaped networks [LGH16]. In this
work, we focus on high-voltage power grids only, so we can make some assumption
that lead to a linearization of AC models. The linearization is called DC FEAS, which
will be described in the next section (Section 3.3.2).

Typically, the theoretical structure of an AC model represents a subproblem of
di�erent power grid problems that have to be solved within di�erent time ranges
depending on the purpose. For instance, for power grid planning (i. e., Transmission
Network Expansion Planning; in short TNEP) the model has to be solved every
year [COC12], whereas for day-ahead markets the particular model has to be solved
every day [COC12]. For the AC model there are no known fast and robust solution
techniques [COC12], which is due to the solver technologies not being able to guarantee
global optimality since they get stuck in local optima [Fou96, p.391, Chapter 18].

Dynamic AC Model. The AC power �ow in general consists of functions rep-
resenting complex current injection i : V × R → C and complex voltages injec-
tion v : V ×R→ C at a vertex u ∈ V and timestamp t ∈ R that are sinusoid functions
with amplitude |i | and |v |, respectively, angular frequency ω B dθ/dt (i. e., s being the
frequency; e. g., 50Hz or 60Hz), initial phases for voltage and current θv : V → R

and θ i : V → R, respectively, and complex coe�cients.
The electrical power is de�ned by complex current i and complex voltage v such

that the complex power s(u, t) is de�ned by Equation 3.5.

s(u, t) B v(u, t) · i(u, t)? ∀u ∈ V , t ∈ R, (3.5)

where i(u, t)? is the complex conjugate of the current. Since we use the complex
conjugate of the current, we get the relationship between voltage and current (see
also Figure 3.2) that is the di�erence between the voltage angle θv and the current
angle θ i meaning θv − θ i (see Equation 3.7). The latter di�erence is also called power

angle. Thus, the function that represents the complex power injection is de�ned
by s : V × R → C. The real and imaginary part of a complex number z ∈ C is
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Figure 3.2: The left side of the �gure presents voltage v(u, t), current i(u, t), and total in-
stantaneous electric power s(u, t) in terms of trigonometric function for timestamp t ∈ R

and vertex u ∈ V . The Argand diagram is shown on the right side of the �gure, where volt-
age v(u, t) and current i(u, t) are described by polar coordinates. The current i(u, t) is shifted
by π/2 to the right of voltage v(u, t) (i. e., voltage acts as reference point). The shift between
voltage v(u, t) and current i(u, t) by θv − θ i is also called power angle. In the right diagram at
timestamp t = 0 the voltage vector v(u, t) completes a full cycle (i. e., a time period), whereas
the current vector i(u, t) is on the negative imaginary axis and thus, lags behind the voltage
vector v(u, t) by π/2. An inductive load could be a cause of that particular shift, since the
voltage v(u, t) leads the current i(u, t). The product of voltage v(u, t) and current i(u, t) is
equivalent to the total instantaneous electric power s(u, t). Note that the magnitude of the
total instantaneous electric power corresponds to the product of the root-mean-squared (RMS)
of the voltage magnitude |v(u)| denoted by VRMS(u) and the current magnitude |i(u)| denoted
by IRMS(u). The derivation of this �gure can be found in Appendix B.1.

denoted by Re(z) and Im(z), respectively. The voltage magnitude |v(u)| (Equation 3.6)
represents the wave crest (see left side of Figure 3.2) at vertex u ∈ V .

|v(u)| =

√
Re(v(u, t))2 + Im(v(u, t))2. (3.6)

The current magnitude |i(u)| is de�ned accordingly to Equation 3.6. The voltage
and current magnitude are time independent, since Equation 3.6 can be written us-
ing trigonometric function |v(u)|·

√
cos2(θv (u) + ωt) + sin2(θv (u) + ωt), where the

Pythagorean identity
√
cos2(θv (u) + ωt) + sin2(θv (u) + ωt) = 1 follows from the com-

plex plane representation.
The idea behind this is that the assumption of time-invariance results in an un-

changing (i. e., constant) wave crest over time. If we assume that all functions are
time-invariant—having the same behavior for the same input at any timestamp, i. e., the
angular frequency dθ/dt = 2π s is constant—then we call them current and voltage pha-
sors. This allows us to use the phasor transform of Charles Proteus Steinmetz [RM12,
YL08] such that we can use simple algebraic equations on the phasors instead of di�er-
ential equations of the sinusoid signals. Note that the assumption of time-invariance
might be acceptable for some power �ow analyses and planning problems. However,
for smaller periods of time such as the in�uence of switching processes on the grid
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stability this assumption might not be suitable anymore. However, then we get into
the range of dynamic analyses [Roh+12, Str18, TC14a, Tim18].

We get the trigonometric relationship depicted in Equation 3.7. The derivation can
be found in Equation B.2.
s(u, t) = v(u, t) · i(u, t)? (3.7a)

= Re(v(u, t)) · Re(i(u, t)) + Im(v(u, t)) · Im(i(u, t))︸                                                         ︷︷                                                         ︸
Cp(u)

− j ·
(
Re(v(u, t)) · Im(i(u, t)) − Im(v(u, t)) · Re(i(u, t))

)︸                                                             ︷︷                                                             ︸
Cq(u)

(3.7b)

= |v(u)| |i(u)|
(
cos

(
θv (u) + ωt − θ i (u) − ωt

)
+ j · sin

(
θv (u) + ωt − θ i (u) − ωt

) )
(3.7c)

= |v(u)| |i(u)| cos
(
θv (u) − θ i (u)

)︸                                 ︷︷                                 ︸
=p(u)

+ j · |v(u)| |i(u)| sin
(
θv (u) − θ i (u)

)︸                                 ︷︷                                 ︸
=q(u)

(3.7d)

Note that we have to use the root-mean-squared (RMS) values in Equation 3.7c,
since |v(u)| |i(u)| would lead in a magnitude that is twice as high as of v(u, t) · i(u, t)?,
which is graphically illustrated in Figure 3.2. To illustrate the time-varying power
in Figure 3.2, we use the concept of instantaneous electric power (see Appendix B.1),
since the complex power becomes time-independent in Equation 3.7 and thus, constant.
To illustrate the signals of the complex power a common way is to use the real part of
a signal (in our case the real part of the current i and voltage v , see Appendix B.1 for
more details).

The penultimate step in Equation 3.7 follows from the trigonometric addition and
product formulas. In the last step, the complex power equation becomes independent
from time t and angle frequency ω. The intuition behind this is that in an ideal AC
network we start with the initial phase angles θv and θ i , but the angular frequency
stays constant meaning ω B dθ/dt = 2π s. Thus, the rotation velocity is the same for
both current and voltage. This simpli�es the system such that it only depends on
the initial phases (see Figure 3.2) and leads to a static analysis by using the resulting
time-independent models that are also called static models.

Static AC Models. For general cases a common way to analyze power grids is to
use a constant angular frequency and analyze steady-state power grids that have one
�xed timestamp per analysis. This will be our main focus in this work. However, the
idealization of the angular frequency to a constant is not suitable for certain scenarios,
as mentioned above. For this work it means that all previous functions f become
time-independent f : S → F , where F is a �eld and S is the set we do the mapping
from such that for example the voltage function becomes v : V → R.

Equation 3.7c can be rewritten to s(u) B |v(u)| |i(u)|e j·(θ
v (u)−θ i (u)) using Euler’s

formula. The functions p : V → R and q : V → R represent the real and the reactive
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Figure 3.3: The time varying sinusoid curves of voltage v(u, t) with magnitude |v(u)| = 1
and e�ective value VRMS(u) = 1/

√
2, current i(u, t) with magnitude |i(u)| = 0.8 and e�ective

value IRMS(u) = 0.8/
√
2, total instantaneous electric power s(u, t), its real part p(u, t), and its

imaginary part q(u, t) are given for di�erent voltage angle di�erences ∆θv . The voltage
angle di�erences are (a) ∆θv = π/4, (b) ∆θv = −π/2, (c) ∆θv = 3π/4, and (d) ∆θv = π . The
total instantaneous electric power s(u, t) is the sum of the real part p(u, t) and the imaginary
part q(u, t) of the power. The same behavior is shown for the complex power s(u) and its real
power p(u) and reactive power q(u). (a) A stable case is represented that is an operation of
current i and voltage v within an angle shift of [−π/2; π/2]. (b) One of the stability borders
is −π/2, where the real part of the total instantaneous electric power s(u, t) is zero over time t .
(c) With a voltage angle di�erence of 3π/4 the power is within the instable section. All power
curves are in the negative part. (d) The current i(u, t) and voltage v(u, t) waves are in a state,
where the waves cancel each other out. The reactive part of the total instantaneous electric
power curve is zero and the real power part is negative. The derivation of this �gure can be
found in Appendix B.1.

power, respectively. This equation shows very clearly the current angle θ i and voltage
angle θv that describe the real and reactive power on each edge. Figure 3.2 shows the
relationship of current i and voltage v . The di�erence between voltage and current
is the phase angle di�erence. The more we increase the phase angle di�erence (e. g.,
see Figure 3.3 on Page 36) between current and voltage the smaller the real power
gets until a certain point (see Figure 3.3b), where the real power becomes zero. The
case, where the wave crests of voltage and current cancel each other out is shown
in Figure 3.3d. Note that the reactive power (also known as phantom power) increases
while the real power decreases, since current and voltage amplitudes do not decrease.
The latter basically describes the principle of conservation of energy. The described
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relationship between voltage, current, and power can be used to maintain the voltage
stability by changing real power demands. A decrease in real power demand can be
maintained by an increase in reactive power by changing the phase angle di�erence
between voltage and current. This mechanism helps to maintain voltage on a certain
level.

The complex power injection can be written in terms of real and reactive power
injection that represent decoupled parts (see Equation 3.8 and its derivation in Equa-
tion 3.7).

s(u) = Re(s(u)) + j · Im(s(u)) = p(u) + j · q(u) ∀u ∈ V . (3.8)

This relationship is shown in Figure 3.3, where the total instantaneous power s(u, t)
(respectively complex power s(u)) is the sum of the real part p(u, t) and imaginary
part q(u, t) of the power (respectively real power p(u) and reactive power q(u)). The
total instantaneous power curve s(u, t) (respectively complex power s(u)) has the same
magnitude independent of the power angle. The latter emphasize the principle of
conservation of energy.

The real power p is the power that is actually doing work such as heating. However,
reactive power is seldom consumed by consumers. Exceptions are motors, generators
and transformers that use a magnetic �eld (inductive components) of industrial con-
sumers that need reactive power. In general reactive power is used to maintain the
voltage stability. Increasing the amount of reactive power increases the voltage that
has to be kept in a certain range. So reactive power is necessary for the power grid to
have a more e�cient real power �ow. The stability of the power grid is maintained
by a balance between real and reactive power and the latter depends highly on the
consumed real power.

We usually do a vertex-based analysis meaning that �ows are usually modeled by
disturbance and injection at a vertex. We introduced for each vertex eight variables
denoted bypд(u), qд(u), pd (u), qd (u),v(u), i(u), θv (u), and θ i (u) for allu ∈ V . However,
we can always reformulate current i and current angles θ i in terms of voltage v and
voltage angle θv using Ohm’s law and thus, we have just six variables. We will see later
that depending on the vertex type (see Table 3.1) or on the problem some variables are
given and thus, �xed to a certain value.

Up to now, we just looked at the power injections and not the power �ows. However,
the complex, real, and reactive power �ow, as well as the complex current �ow are
de�ned by the functions s : E → C (in Volt Ampere; short VA), p : E → R (in W),
q : E → R (in Volt Ampere Reactive; short VAr), and i : E → C (in Ampere; short A),
respectively. We distinguish between the injection at the source and sink vertex of
each edge, since there are power losses at each electrical element.

Network Parameters. The AC network N = ( G = (V , E), VG , VD , cap, r , x , b, д,
∆θv , ∆θv , v , v , pд , pд , qд , qд , pd , pd , qd , qd ) is de�ned by the topological structure
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Figure 3.4: Both (a) and (b) represent the atomic structure of one element and of multiple
elements, respectively. The conductivity is dependent on the outermost shell denoted by
valence shell. (a) The copper-29 isotope that has fully �lled electron shells, but the valence
shell (outermost shell). The valence shell has just one electron that is highly reactive. (b) Part
of the description of the atomic structure of elements. The green marked elements represent
common conductors and the red marked elements are strong insulators that are all in the last
column.

that is given by the graph G = (V , E), the set VG ⊆ V of generators, the set VD ⊆ V of
consumers, the resistance function r : ←→E → R≥0∪{∞}, the reactance functionx : ←→E →
R≥0 ∪ {∞}, the susceptance function b : ←→E → R (Equation 3.12), the conductance
functionд : ←→E → R (Equation 3.11), the admittance functiony : ←→E → C (Equation 3.9),
and the apparent power’s thermal line limit function cap : ←→E → R, which can be
either i, s,p, or q, and combinations of them. The resistance r and the reactance x
are measured in Ohm Ω. The admittance y(u,v) (Equation 3.9) is de�ned by the
conductance д(u,v) (Equation 3.11) and the susceptance b(u,v) (Equation 3.12) that
de�nes how easy the current is able to �ow through an element such as a transmission
line {u,v} ∈ ←→E . Note that all three are measured in Siemens S. The conductivity of
an electrical element is mainly in�uenced by the conductance of the material, length,
and wire gauge. The conductance of the material is mainly in�uenced by the atomic
structure (see Figure 3.4). Elements that have just one electron on the valence shell (i. e.,
outermost shell) have a high conductivity such as copper, gold, and silver (Column 11 of
the periodic system; see Figure 3.4b green markers). However, elements that have a full
valence shell are very good insulators since the conductivity is very low, e. g., helium
(last column of the periodic system; see Figure 3.4 red markers). The admittance y,
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impedance z, conductance д, and susceptance b are de�ned in Equations 3.9–3.12.

y(u,w) B
1

z(u,w)
= д(u,w) + j · b(u,w) ∀{u,w} ∈

←→
E , (3.9)

z(u,w) =
1

y(u,w)
= r (u,w) + j · x(u,w) ∀{u,w} ∈

←→
E , (3.10)

д(u,w) B
r (u,w)

r (u,w)2 + x(u,w)2
∀{u,w} ∈

←→
E , (3.11)

b(u,w) B −
x(u,w)

r (u,w)2 + x(u,w)2
∀{u,w} ∈

←→
E . (3.12)

Note that the admittance matrixY is de�ned by the self-admittances representing the
diagonal entries y(u,u) = y(u, 0) −

∑
{u ,w }∈

←→
E y(u,w), where y(u, 0) is the admittance

to ground, and the entries of Equation 3.9 that represent the entries for the incident
edge.

Power Grid Bounds. There are lower and upper bounds restricting the voltage
angle di�erences ∆θv and ∆θv , the voltages v and v , the real power generation pд , pд ,
the reactive power generation qд , qд , the real power demand pd , pd , and the reactive
power demand qd , qd , respectively. The constraint of the voltage angle di�erence
(Equation 3.13) restricts the power �ow on each edge (Equation 3.7).

∆θv (u,w) ≤ θv (u) −θv (w) ≤ ∆θv (u,w), (3.13a)

∆θv (u,w) ≤ arctan
(
Im(v(u))

Re(v(u))

)
− arctan

(
Im(v(w))

Re(v(w))

)
≤ ∆θv (u,w), (3.13b)

for all {u,w} ∈ ←→E . In Equation 3.13b, we use the trigonometric relationship of
the real part Re(v(u)) and imaginary part Im(v(u)) that is de�ned by tan

(
θv (u)

)
=

adjacent/opposite = Im(v(u))/Re(v(u)) = sin
(
θv (u)

)
/cos

(
θv (u)

)
. The voltage angle di�erence is

often restricted to the interval of [−π/2; π/2] for stability reasons (see Figure 3.3 for
di�erent voltage angle di�erences). If the balance between real power generation and
demand cannot be maintained (i. e., is not zero), then there is an issue in the angle
stability, i. e., the voltage angle di�erence cannot be maintained within the stability
interval. This in particular means the smaller the angle di�erence the more balance
between real power generation and demand exists. This is due to the fact that the
reactive power is used to compensate the lack of real power generation and demand
by shifting voltage and current using devices such as capacitor banks. Figure 3.3
explains why exceeding the π/2 would lead to instabilities in the power grid. Note
that mainly generators are able to in�uence the voltage, power curves, and the power
angle (see Table 3.1). Thus, the network stability is mainly driven by generators
(including devices such as capacitor banks). If the power angle exceeds the stability
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range the power curves shift into the negative quadrant and the e�ective power
values are negative, too (see Figure 3.3b–d). However, a power grid has a prede�ned
�ow direction and a negative real power can be interpreted as a “backward power
movement” (see Figure 3.3a). A rough idea of the latter is given by a simple DC circuit
with a preinstalled diode. Note that a diode has a prede�ned direction making the
network nonreciprocal. The prede�ned direction de�nes the anode and cathode for
the battery connection. Connecting the battery in the wrong sense would lead to a
diode that does not �ash.

In addition, the smaller the shift the less losses and the more stable the power grid
works. In Section 3.3.4, we will see that the di�erences are often smaller than π/6.
However, the voltage angle di�erence ∆θv also correlates with the real power that
�ows from one vertex to another over the power grid. The relationship becomes much
clearer if we look at the linearization of the AC model in Section 3.3.2.

In some literature there is a constraint restricting the voltage angles θv (u) for
all u ∈ V themselves (see Equation 3.14).

θv (u) ≤ θv (u) ≤ θv (u) ∀u ∈ V . (3.14)

The latter restricts the solution space and might exclude feasible solutions, but does
not represent a physical constraint. However, it improves the running times to solve
the feasibility problem and to ful�ll assumptions such as the stability range or later
the Assumption 2 in Section 3.3.2.

The voltage magnitude is bounded by either Equation 3.15a, or by Equation 3.15b
and Equation 3.15c depending on the formulation that is either polar or rectangular,
respectively.

|v(u)| ≤ |v(u)| ≤|v(u)| , (3.15a)
v(u)2 ≤ Re(v(u))2 + Im(v(u))2 , (3.15b)

Re(v(u))2 + Im(v(u))2 ≤ v(u)2, (3.15c)

for all vertices u ∈ V . This is mainly motivated by the power grid elements that work
within a certain voltage range. Most elements perform poorly on the lower voltage
end—e. g., inductive motors overheat—and on the upper end the elements can get
destroyed. The thermal line limits can be represented in di�erent ways that mainly
depend on the formulation. If the formulation uses current and voltage, Equations 3.16a
and 3.16b are used. Otherwise, if it uses real power, reactive power, and voltage angles,
Equations 3.16c and 3.16d are used.

{i(u,w) ∈ C | Re(i(u,w))2 +Im(i(u,w))2 ≤ i(u,w)2}, (3.16a)
|i(u,w)| ≤ i(u,w), (3.16b)

{s(u,w) ∈ C | Re(s(u,w))2+Im(s(u,w))2 ≤ s(u,w)2}, (3.16c)
|s(u,w)| ≤ s(u,w), (3.16d)
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for all (u,w) ∈ E. Note that these constraints are convex and quadratic as the geometric
�gure of its boundary is a closed disk. In addition, the reactive power might increase
the voltage stability, but it also consumes bandwidth of the transmission line capacity.
Thus, to maximize the throughput of real power in the power grid the reactive power
has to be minimized such that the voltage stays in its range. Note that increasing the
real power decreases the losses.

The power injection constraints basically constrain the injection (Equations 3.17a
and 3.17b) or demand (Equations 3.17c and 3.17d) of a vertex depending on it being a
generator or demand, respectively.

pд(u) ≤ pд(u) ≤ pд(u) ∀u ∈ VG , (3.17a)

qд(u) ≤ qд(u) ≤ qд(u) ∀u ∈ VG , (3.17b)

pd (u) ≤ pd (u) ≤ pd (u) ∀u ∈ VD, (3.17c)

qd (u) ≤ qd (u) ≤ qd (u) ∀u ∈ VD . (3.17d)

The losses heavily depend on the voltage level (Figure 1.1) and the amount of real
power that �ow through an element.

Real powerp and voltage angles θv strongly depend on each other, as well as reactive
powerq and voltage magnitudes |v | (see Section 3.3.2 Assumption 3 with Equation 3.31).
The P-θv and Q-V problems are weakly dependent on each other. Thus, the AC
power �ow is usually solved in a decoupled way (see for example [Gao+18]). This is
reasonable if we follow the assumption that phase angle di�erences ∆θv (u,v) are small
and high-voltage transmission lines are mainly reactive meaning r (u,v) � x(u,v) for
all {u,v} ∈ ←→E (note that the latter relationship is used in Assumption 1 in Section 3.3.2).
The approach separates both subproblems and iterates between them. The decoupled
version decouples the AC power �ow into two separate problems. However, the full AC
power �ow includes both problems without these assumptions.

Assuming that the demands are �xed, then out of the six variables ∆θv ,v,pд,qд,pd ,
and qd only four remain. Each vertex speci�es a certain type that is denoted by vertex

type that actually de�nes which variables are �xed. The common vertex types are
shown in Table 3.1. In Chapter 4, we describe the mathematical structure and rela-
tionship of the linearized AC model. Within that structure it becomes obvious why
we chose exactly one vertex per connected component as slack vertex. The basic idea
is that a slack vertex represents a reference for the voltage angles of the system and
thus, choosing a voltage angle for that vertex de�nes the voltage angles for all others.
In Table 3.1 there are exactly two types that are able to work as slack vertex that are
denoted by slack, or slack demand. The PQ vertices are vertices without generation
and thus are, pure demand vertices. The PV is separated into two classes that are
both able to control voltage by adjusting the reactive power within certain limits by
either controlling the reactive power generation or demand. A source of reactive
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Table 3.1: This table is adopted from [WW96, p.70, Figure 4.4] and speci�es the di�erent
vertex types in a power grid. The known variables at a vertex u ∈ V are marked by X and the
unknowns by 7. Note that this table is for the PQV formulation of an AC model.

Vertex Type Variables Comments Code
p(u) q(u) v(u) θv (u)

Load X X 7 7 Usual load represen-
tation

PQ

Voltage
Controlled X 7 X 7 |v(u)| is held con-

stant
CV

Generator or
Synchronous
Condenser

X 7
X,

when
qд(u)<qд(u)<qд(u)

7

Generator or syn-
chronous condenser
(p(u) = 0) has VAr
limits; |v(u)| is held
as long as qд(u)
and qd (u) are within
limit

PV

X
X,

when
−qd (u)<qd (u)<−qd (u)

7 7

Fixed Z to
Ground 7 7 7 7 Only Z is given

Reference,
Slack 7 7 X X

Swing bus must ad-
just net power to hold
voltage constant (es-
sential for solution)

Vθ v

Slack
demand or

tie
7 X 7 X

The tie has no gener-
ation and demand at-
tached

Qθ v

power uses a capacitor such as a capacitor bank resulting in a leading current �ow
by π/2 to voltage, whereas a sink of reactive power uses an inductive device such as
a coil resulting in a lacking current �ow by π/2. An example for the latter is given
in Figure 3.2 and Figure 3.3. Note that reactive power cannot be transmitted over long
distances as the losses are too high. However, the real and reactive power production
is restricted by the generators operation limits. If these limits are not su�cient to reach
the voltage stability additional equipment for reactive power is required. Another
vertex that is able to control voltage is the CV vertex that is either a special transformer
that is able to control its tap ratio or a FACTS.

The network parameters show the dependencies of the model and how complex it is
to maintain network stability in such networks. We already saw di�erent formulations
of the complex AC model using either complex numbers or real numbers with sinusoid
functions. These non-linearities and the dependencies of certain variables make the AC
model hard to solve. In the following, we describe the di�erences of these formulations.
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Polar and Rectangular Formulations. In the previous part, we could see the
di�erent formulations of the voltage angle di�erences and the power grid bounds.
Depending on which formulation we choose, we shift the complexity of the AC model
to di�erent parts as shown in Table 3.2. We distinguish between the rectangular and
the polar formulation of the complex terms.

The polar formulation is given by the magnitude (i. e., length of the vector) and the
angle of its vector. We represented the complex power in its polar form in Equation 3.7d,
where |v(u)| is the voltage magnitude (also known as voltage amplitude) and θv (u)
represents the corresponding voltage angle. Contrary to that, the rectangular form of
a complex number is given by the real Re(·) and imaginary part Im(·) of the complex
number representing the horizontal (x-axes) and vertical (y-axis) components in the
Argand diagram (i. e., geometric interpretation of a complex number; see Equation 3.7b
and Figure 3.2 right side). In addition to that we are able to reformulate the power �ow
to calculate it in terms of real powerp, reactive powerq, and voltagev . This formulation
is often denoted as PQV model (see Equations B.5 and B.6). Another alternative
is the IV model that formulates the AC model in terms of current i and voltage v
(see Equations B.7 and B.8). We already saw parameter-dependent formulations in the
power grid bounds part.

Note that the literature standard is the polar PQV model [WW96, ZM11] (see Equa-
tion B.5).

PQV Formulations. The complex power injection at a vertex was introduced
in Equation 3.7d using voltage and current as unknowns, which is denoted as IV
formulation. However, the formula can be restated to a complex power �ow on an
edge by introducing the relationship that the current on an edge is de�ned by i(u,w) B
y(u,w) ·

(
v(w) −v(u)

)
for all (u,w) ∈ E. Using this relationship we get Equation 3.18

in its rectangular formulation. The derivation can be found in Equation B.3.

s(u,w) = v(u) · i(u,w)? (3.18a)
= v(u) · y(u,w)? ·

(
v(w)? −v(u)?

)
(3.18b)

= д(u,w)
(
Re(v(u)) Re(v(w)) + Im(v(u)) Im(v(w)) − Re(v(u))2 − Im(v(u))2

)
+b(u,w)

(
Re(v(w)) Im(v(u)) − Re(v(u)) Im(v(w))

) }
C p(u,w)

+j ·
(
д(u,w)

(
Re(v(w)) Im(v(u)) − Re(v(u)) Im(v(w))

)
+b(u,w)

(
Re(v(u))2 + Im(v(u))2 − Re(v(u)) Re(v(w)) − Im(v(u)) Im(v(w))

) ) C q(u,w)

(3.18c)

for all (u,w) ∈ E. The rectangular Equation 3.18c has only quadratic terms. It is
possible to decompose the equation into the real and reactive part of the complex power,
which we already saw in Equations 3.7d and 3.8. The real part can be transformed into
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the polar form (see Equation 3.19).

p(u,w) = д(u,w)
(
|v(u)| |v(w)| cos

(
θv (u) − θv (w)

)
− |v(u)|2

)
+ b(u,w)|v(u)| |v(w)| sin

(
θv (u) − θv (w)

) (3.19a)

Similar, the reactive part can be transformed into the polar form (see Equation 3.20).

q(u,w) = д(u,w)|v(u)| |v(w)| sin
(
θv (u) − θv (w)

)
− b(u,w)

(
|v(u)| |v(w)| cos

(
θv (u) − θv (w)

)
− |v(u)|2

) (3.20a)

The disadvantage of the polar formulations of the real and reactive power in Equa-
tions 3.19 and 3.20 are the quadratic terms of the voltages and the trigonometric
functions of the voltage angle di�erences.

IV Formulation. The KCL describes the �ow of current at a vertex (see Equa-
tion 3.21). It states that the net �ow of current at each vertex is equal to zero that is
similar to the graph-theoretical conservation of �ow shown in Equation 3.1.

i(u) B
∑

w : {u ,w }∈←→E

i(u,w) ∀u ∈ V . (3.21)

The complex current can be restated in terms of voltages using Ohm’s law. This is
shown in Equation 3.22 that is a linear function of complex voltages.

i(u) = y(u, 0) · v(u) +
∑

{w : {u ,w }∈←→E |u,w }

(
y(u,w)(v(w) −v(u))︸                    ︷︷                    ︸

Ci(u ,w )

)
∀u ∈ V (3.22)

The current injection i(u) at a vertexu ∈ V is described by the voltage to ground—using
admittance to ground y(u, 0)—and the current-based net �ow. Note that the voltage
to ground represents disturbances at the vertex. The complex current �ow can be
rewritten into two decoupled parts representing the real and imaginary part of the
complex current �ow of an edge (u,w) ∈ E (see Equation 3.23). The derivation can be
found in Equation B.4.

i(u,w) =
(
д(u,w) + j · b(u,w)

) (
v(w) −v(u)

)
=

(
д(u,w) + j · b(u,w)

) (
Re(v(w)) + j · Im(v(w)) − Re(v(u)) − j · Im(v(u))

)
= д(u,w)

(
Re(v(w)) − Re(v(u))

)
− b(u,w)

(
Im(v(w)) − Im(v(u))

)︸                                                                              ︷︷                                                                              ︸
CRe(i(u ,w ))

+

j ·
(

д(u,w)
(
Im(v(w)) − Im(v(u))

)
+ b(u,w)

(
Re(v(w)) − Re(v(u))

)︸                                                                              ︷︷                                                                              ︸
CIm(i(u ,w ))

)
(3.23)
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More generally, we can write the problem of checking whether generation and con-
sumption agree as AC FEAS, which decision problem depends on the formulation
(see Table 3.2) and is de�ned in the following problem box.

Alternating Current Feasibility Problem AC FEAS(N)

Instance: An AC network N = (G = (V , E), VG ,VD , cap, r , x , b, д, ∆θv , ∆θv , v ,
v , pд , pд , qд , qд , pd , pd , qd , qd ) .

Question: Is there a feasible electrical �ow complying with one of these model
constraints in Table 3.2?

Summarizing the AC FEAS problem is a non-linear non-convex problem that is
under the assumption of time-invariance a model that is a good approximation to a
realistic power grid. Furthermore, it represents a subproblem of all problems that have
the power grid as an input.

Lehmann et al. [LGH16] discuss that the decoupled AC power �ow model is weakly
NP-hard on trees (stars). It represents a stronger result in terms of graph classes, but
includes real and reactive power as decoupled formulation. An outline of the proof is
given by Lavaei and Low [LL12].

Normalization. Note that for the power �ow analysis it is common to normalize
the system using the per-unit-system (p.u.). The normalization is done for the complex
power, real power, reactive power, and voltage using the base units Sbase, Pbase, Qbase,
and Vbase, respectively. The other units can be normalized by the bases derived from
the previous power and voltage base such that Ibase = Sbase/Vbase, Zbase = Vbase/Ibase,
and Ybase = 1/Zbase.
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Table 3.2: This table is inspired by Cain et al. [COC12] from FERC that analyzed AC OPF and compares the di�erent AC models. The
columns represent di�erent constraint types that are related with the network �ow, voltage angle di�erences, and vertices. For each
formulation, the property describes the complexity of the constraint and the Ref. represents the equation’s reference number either in this
chapter or for some of the complete models in the appendix.

Constraints

Polar Rectangular DC

PQV IV PQV IV

Property Ref. Property Ref. Property Ref. Property Ref. Property Ref.

Network Flow

Quadratic
equation and
trigonomet-
ric functions

3.19,
3.20.

Quadratic
equation and
trigonometric
functions

based
on

3.22,
3.23.

Quadratic
equations 3.18c. Linear

constraints

3.21,
3.22,
3.23.

Linear
equations 3.37

Voltage Angle
Di�erence ∆θv

Linear
constraints 3.13a. Linear

constraints 3.13a.

Non-convex
constraints
with trigono-
metric func-
tions

3.13b.

Non-convex
constraints
with trigono-
metric func-
tions

3.13b. Linear
constraints 3.38.

Vertices &
Edges

Linear
constraints

3.15a,
3.17.

Linear
constraints

3.15a,
3.16a,
3.16b,
3.7d
ineq.

Quadratic
inequali-
ties (some
non-convex)

3.15b,
3.15c,
3.7b
with
3.16a.

Quadratic
inequali-
ties (some
non-convex)

3.15b,
3.15c,
3.16b.

Linear
constraints

3.33–
3.36

Models Equation B.5 Equation B.7 Equation B.6 Equation B.8 Equations 3.33–3.38
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(b)(a)

j bch
2 j bch

2

i(u) i(w)

v(u) v(w)

y = 1
r+jx = z

j bch
2 j bch

2

i(u) N · i(u)

N = τejθv
shift

i(w)

v(u)
N

|N | : 1

v(u) v(w)

y = 1
r+jx = z

Figure 3.5: The Pi-equivalent circuit represents a model of a transmission line with medium
length. Note that this �gure is partly adopted from Zimmerman and Murillo-Sanchez [ZM11,
p.17, Figure 3-1]. (a)&(b) The two capacitors model the transmission line charging bch, the
impedance z models the resistive behavior of a transmission line (red). (b) If the line represents
a phase shift transformer then the transformer is modeled on one of the two end vertices (blue).
The transformer (blue) is usually modeled at the vertex with the primary coil with a �x tap
ratio τ and in that particular case with a �x phase shift angle θvshi�. The voltage v and current i
change with respect to the number of windings |N | on the side of the secondary coil.

Transmission Line Representation. We use transmission line representations
(also known as branch or transmission line models) to simplify the power �ow analysis
to a purely vertex-based analysis using the admittances between adjacent vertices
(see Equations 3.18b and 3.22).

For the model formulation of the previous part of this section, we used a single line
model and considered a transmission line model that is denoted by short transmission

line representation that neglects shunt elements such as the shunt capacitance bch
representing the charging of a line (see Figure 3.5). The short transmission line
representation approximates lines that are up to 80 km long by using a similar model
as the RLC circuit, meaning resistance, impedance, and capacitance are in series (see
also Kirchho�’s 3rd postulate [SR61, p.127]). Note that the assumption for the short
transmission line representation is reasonable, since the line charging is negligible.
Within the AC model terminology, we often model the shunt conductance and shunt

susceptance as elements connected to the vertices. These elements are purely model-
based theoretical elements used to model elements such as transmission lines or
synchronous condensers. Depending on which transmission line representation is
used, the shunt elements are included or not.

For high voltage power grids it is more common to model the transmission lines
using the medium line approximation that includes a lumped shunt admittance. There
are two di�erent models denoted by pi representation (see Figure 3.5(a)) and T represen-

tation. Wood and Wollenberg [WW96, p.75] and applications such as Matpower [ZM11,
pp.16�.] and Pypower [Lin11] use the pi representation. However, there is much more
investigation in this topic as can be seen by Cano et al. [Can+17], who introduce
di�erent transmission line representations. Note that the standard pi representation
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does not include transformers (see the next paragraph on transmission line elements).
In Figure 3.5(b), we can see the pi representation with a tap transformer. Note that
there are also long line approximations that are not considered in this work. However,
the pi representation is the standard model for medium length transmission lines that
are up to 250 km long, which is a realistic assumption for AC models. Note that most
of the transmission lines are up to 100 km long [Nov+12, p.112].

The line charging susceptancebch(u,w) is a parameter of a transmission line {u,w} ∈
←→
E as medium to long transmission lines tend to have an inherent capacitance. The
pi model provides us with the ability to introduce the impedance z(u,w) and line
charging susceptance bch(u,w) to the admittances y(u,w) for all {u,w} ∈ ←→E and use
the standard power �ow analysis as shown in the previous part of this section. The only
di�erence are the charge elements in the complex power equations (see Equation 3.24).

p(u,w) + j · q(u,w) (3.24a)

= v(u)
( (
v(u) −v(w)

)
y(u,w)

)?
+v(u)

(
v(u)ych(u,w)

)? (3.24b)

=
(
|v(u)|2 − |v(u)| · |v(w)| cos (θv (u) − θv (w)) − j · |v(u)| |v(w)| sin (θv (u) − θv (w))

)
· y(u,w)? − |v(u)|2ych(u,w)

?

(3.24c)

for all (u,w) ∈ E. However, the admittance changes a bit. Using the pi representation
with transformer (see Figure 3.5b), the admittance y changes in the following way.
Each transformer has two di�erent windings, one on the primary side and the other
one on the secondary side. We denote the ratio by turn ratio (or tap ratio) τ (u,w) B
|v(w ) |/|v(u) | = v(w )/v(u) = −i(u ,w )/i(w ,u) that can be calculated by the voltage ratios of
both sides. The self-admittance is de�ned by ych(u,u) B

(
y(u,w) + jbch2

)
1
τ 2 and the

edge admittance is de�ned by ych(u,w) B −y(u,w) 1
τ e−jθ

v
shi�

. Note that the transformer
tap ratio τ only in�uences the admittance at u, but not at w . However, the admittance
for the edge is symmetric apart from the sign of the exponent.

In the latter line model, we added a transformer that changed the admittance entries
only. Adding transformers or FACTS on an edge {u,w} ∈ ←→E changes the entries of
the admittances y(u,w). However, it does not in�uence the power grid analysis, which
we describe in the following.

Transmission Line Elements. One possibility to model transformers or FACTS
is by adjusting the entries of the admittance matrix Y (see Equation 3.25). Thus, it
has no e�ect on the steps of the previously shown vertex-based analysis. From Cain
et al., we know that the matrix is usually sparse [COC12, p.17]. The lowest density
is given by a spanning forest and the highest density by a complete graph. It is very
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uncommon for power grids to correspond to the latter graph structure for more than
three vertices.

An ideal in-phase transformer usually has two sides denoted by primary and sec-
ondary side that we denote by u and w , respectively. Ideal means that there is no
resistance in the windings, no leaking �ux, and no hysteresis losses [COC12, p.17].
Thus, the phases on both ends are assumed to be equal meaning θv (u) = θv (w).
Recall from the previous paragraph that each transformer has two di�erent wind-
ings, one on the primary side and the other one on the secondary side and that the
turn ratio is de�ned by τ (u,w) B |v(w ) |/|v(u) | = v(w )/v(u) = −i(u ,w )/i(w ,u) that can be
calculated by the voltage ratios of both sides. However, the voltage angles at the
primary and secondary coil change for a phase shift transformer. Thus, we have
an additional parameter that is called the phase angle shift θvshi� that changes the
voltage angle di�erence to θv (u) − θv (w) − θvshi�(u,w). Thus, the ratios are de�ned
by |v(w ) |/|v(u) | = τ (u,w)e jθ

v
shi�(u ,w ) and i(u ,w )/i(w ,u) = −τ (u,w)e−jθ

v
shi�(u ,w ). In Equa-

tion 3.25 the entries of the admittance matrix Y for an edge (u,w) ∈ E are given for
two di�erent transformers and the third setting is when there is no transformer (i. e.,
standard pi representation).

Y =



y(u,w) = y ′(u,w) No Transformer
y(u,w) · τ (u,w)2 = y ′(u,w) Ideal Transformer
τ (u,w)2y(u,u) = y ′(u,u)

−τ (u,w)e−jθ
v
shi�(u ,w )y(u,w) = y ′(u,w)

y(w,w) = y ′(w,w)

−τ (u,w)e jθ
v
shi�(u ,w )y(w,u) = y ′(w,u)


Phase Shift Transformer

(3.25)
The self-admittancesy(u,u) is de�ned by the admittance-to-groundy(u, 0) and the sum
of the admittances of all adjacent edges, where y(u,w) is de�ned as above (see Equa-
tion 3.26).

y(u,u) = y(u, 0) +
∑

w : {u ,w }∈←→E

y(u,w) ∀u ∈ V . (3.26)

This shows that the integration of transmission elements such as di�erent line types
or transformers can be done by the admittances in the vertex-based analysis.

3.3.2 Linearized Alternating Current Power Flow Model

The Alternating Current power �ow models represent the standard models to
analyze the networks. However, they are non-linear, complex, and slow to compute.
Since the feasibility problem for the AC power �ow model is already NP-hard on
trees [LGH16], an approximation of that model might be reasonable. We go through
the di�erent steps of the approximation until we reach the linearized AC power �ow
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model that is often denoted as DC power �ow model. After reaching the DC power
�ow model, we will discuss the analogies to the model for DC networks to understand
the meaning of the name. The DC assumptions of the power �ow model are as follows.
(A1) The series resistance is negligible, i. e., r (u,w) � x(u,w) for all {u,w} ∈ ←→E ,

(A2) the voltage angle di�erences θv (u) − θv (w) are small for all (u,w) ∈ E, and

(A3) the voltage magnitudes are equal among all vertices’ voltages, meaning |v(u)| =
|v(w)| for all u,w ∈ V .

In the DC Assumption 1, we assume that the ratio between resistance r (u,w) and
reactance x(u,w) is very small such that we may approximate the resistance to
be r (u,w) ≈ 0 for all edges {u,w} ∈ ←→E . Zimmerman and Murillo-Sanchez [ZM11,
p.20] neglects the resistance r and the line charging capacitance bch meaning bch ≈ 0.
This means that we assume that the network is lossless as has no charging e�ects.
Thus, all models using these assumption are denoted as lossless models. If we apply
this assumption to the AC model this simpli�es in particular the conductance д(u,w)
in Equation 3.11 and the susceptanceb(u,w) in Equation 3.12 to Equation 3.27 and Equa-
tion 3.28 for all edges {u,w} ∈ ←→E , respectively.

д(u,w) B
r (u,w)

r (u,w)2 + x(u,w)2
r≈0
= 0 ∀{u,w} ∈

←→
E , (3.27)

b(u,w) B −
x(u,w)

r (u,w)2 + x(u,w)2
r≈0
= −

1
x(u,w)

∀{u,w} ∈
←→
E . (3.28)

Thus, the conductance д(u,w) is zero and the susceptance b(u,w) is purely recip-
rocal to the reactance. This simpli�es Equations 3.19a and 3.20a to Equation 3.29a
and Equation 3.29b, respectively.

p(u,w)
(A1)
= |v(u)| |v(w)|

(
b(u,w) sin

(
θv (u) − θv (w)

) )
(3.29a)

q(u,w)
(A1)
= −b(u,w)

(
|v(u)| |v(w)| cos

(
θv (u) − θv (w)

)
− |v(u)|2

)
(3.29b)

Recall from the transmission line representation (see Section 3.3.1) that in literature the
standard representation of a transmission line is the pi representation (see Figure 3.5).

In the DC Assumption 2 , we assume that the voltage angle di�erence θv (u)−θv (w)
is small such that the cosine is approximately 1 (i. e., constant) and we are able to
approximate the sine by sin(x) ≈ x . The voltage angle di�erence—when assumed
to be small—is at most 30◦ (i. e., π/6) that corresponds to 0.52 radian. However, a
typical value is 15◦ or even less [Pur+05]. Applying this assumption to Equation 3.29a
and Equation 3.29b yields Equation 3.30a and Equation 3.30b, respectively.

p(u,w)
(A2)
= |v(u)| |v(w)|b(u,w)

(
θv (u) − θv (w)

)
(3.30a)

q(u,w)
(A2)
= −|v(u)| |v(w)|b(u,w) + |v(u)|2b(u,w) (3.30b)
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In the DC Assumption 3 the voltage magnitudes |v(u)| for all u ∈ V are assumed to
be equal. Thus, we can normalize all voltage magnitudes to 1 p.u.. The idea behind this
assumption is that the voltage range should be in a certain bound such that all electrical
devices work properly or (at least) are not damaged. The voltages in p.u. typically
range in practice between 0.95 p.u. and 1.05 p.u. [Pur+05]. Thus, the maximum voltage
magnitude di�erence is 0.1 p.u..

p(u,w)
(A3)
= b(u,w)

(
θv (u) − θv (w)

)
∀(u,w) ∈ E (3.31a)

Reformulating Equation 3.30b into a vertex-based equation, since we do a vertex-based
analysis, the reactive power is given in Equation 3.32 (derivation Equation B.9).

q(u)
(A3)
= −b(u,u) −

∑
w : {u ,w }∈←→E

b(u,w) (|v(w)| − |v(u)|) ∀u ∈ V (3.32a)

A similar transformation can be done for the real power yielding a similar equation in-
cluding the sum over all adjacent edges, but with the phase angle di�erences. Note that
the real and reactive power both depend on the susceptance, but are either dependent
on the voltage angle di�erence or on the voltage magnitude di�erences, respectively.
From the maximum value of the voltage angle di�erence and the voltage magnitude
di�erence, we know that p � q, which implies that we can neglect the reactive power.
The net �ow at a vertex u ∈ V is de�ned by fnet(u) B

∑
w : {u ,w }∈←→E p(u,w).

fnet(u) = 0 ∀u ∈ V \ (VG ∪VD ) (3.33)
−pd (u) ≤ fnet(u) ≤ −pd (u) ∀u ∈ VD (3.34)

pд(u) ≤ fnet(u) ≤ pд(u) ∀u ∈ VG (3.35)

|p(u,w)| ≤ cap(u,w) ∀(u,w) ∈ E (3.36)
b(u,w) ·

(
θv (u) − θv (w) − θvshi�

)
= p(u,w) ∀(u,w) ∈ E (3.37)

∆θv (u,w) ≤ θv (u) − θv (w) ≤ ∆θv (u,w) ∀(u,w) ∈ E (3.38)

The above Equations 3.33–3.38 describe a linearization of the AC model. The DC Fea-
sibility Problem is a linear convex model that can be solved in O(|V |2.5) time [BC75,
Vai89] and its decision problem is de�ned in the following box.

Direct Current Feasibility Problem DC FEAS(N)

Instance: A DC network N = ( G, VG , VD , cap, b, pд , pд , pd , pd ) .
Question: Is there a feasible electrical �ow complying with the Equations 3.33–

3.38?
Note that the DC FEAS(N) constitutes a system of linear equations that can be

solved in polynomial-time.
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Analogies to the DC Model. The DC model is de�ned by Ohm’s Law (Equa-
tion 3.39), which states that voltage and current are directly proportional to each
other. The resistance is usually a known value representing the constant of pro-
portionality. The latter can be seen as a property of a conductor that is (usually)
�xed.

I (u,w) B
V (u,w)

R(u,w)
(3.39)

= G(u,w) ·V (u,w) (3.40)

In the linearized AC model, the real power �ow p(u,w) behaves like the current I (u,w)
in the DC network (see Equations 3.41 and 3.42). In addition, the susceptanceb(u,w) B
−1/x (u ,w ) behaves like the electrical conductanceG(u,w) B 1/R(u ,w ). The voltage angle
di�erence ∆θv (u,w) behaves like the voltage V (u,w) in the DC network.

p(u,w) = b(u,w) · ∆θv (u,w) (3.41)
I (u,w) = G(u,w) ·V (u,w) (3.42)

In literature it is common to use capital letters, since in an ideal DC model voltage,
current and power do not change over time (see Figure 3.6a), neglecting temperature
and other in�uences over time.

3.3.3 The Voltage Normalized Lossless Real Power Flow Model – A
Model between AC and DC Model

In Section 3.3.1, we discussed nonlinear power �ow models (AC power �ow models)
that are also non-convex. The nonlinear and non-convex model makes the Feasibility
Problem (FEAS) di�cult to solve to optimality as most nonlinear solvers provide
locally optimal solutions, since they get stuck in a local optima. Thus, a common way
is to simplify the model. In Section 3.3.2, we showed how to simplify the AC model
by linearizing it to the so called DC model. Though it is not the model for the DC
network, we could show the analogies to it that make algorithms for the linearized AC
model applicable to DC networks.

Donde et al. [Don+05, pp.60, Equation 1] and Pinar et al. [Pin+10, p.1791, Equation
3.1] introduced another power �ow model that is either called “lossless” model or
Sin model. However, we denote it as Voltage Normalized Lossless Real Power
Flow (VNLP) model for a clear description and distinction from the other models. It
represents a hybrid model between the AC and DC model. This model is not as general
as the AC model as it incorporates DC Assumption 1 and DC Assumption 3, but more
general than the DC model as it neglects DC Assumption 2. From DC Assumption 1,
the model is often denoted by the term “lossless”. By introducing DC Assumption 3
(i. e., �xing all—i. e., for all u in V—voltage magnitudes |v(u)| to 1 p.u.), we know
from Section 3.3.2 that the reactive power becomes negligible.
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As the previous models do, the VNLP model incorporates the conservation of �ow
(KCL; Equations 3.43a–3.43c), the power �ow equation (KVL-like; Equation 3.43d),
and the voltage angle di�erence bounds (Equation 3.43e). The latter constraints model
the steady-state stability [Ver10, p.113]. Recall that fnet(u) B

∑
w : {u ,w }∈←→E p(u,w).

fnet(u) = 0 ∀u ∈ V \ (VG ∪VD ), (3.43a)
pд(u) ≤ fnet(u) ≤ pд(u) ∀u ∈ VG , (3.43b)

−pd (u) ≤ fnet(u) ≤ −pd (u) ∀u ∈ VD . (3.43c)

b(u,w) · sin
(
θv (u) − θv (w)

)
= f (u,w) ∀(u,w) ∈ E (3.43d)

|θv (u) − θv (w)| ≤
π

2 ∀(u,w) ∈ E (3.43e)

| f (u,w)| ≤ cap(u,w) ∀(u,w) ∈ E (3.43f)

Recall that we look at the real part Re(·) of the power �ow model and that the angle
di�erences are restricted to [−π/2; π/2]. The Equations 3.43d–3.43f can be reformulated
to Equations 3.44 and 3.45, respectively. Note that Equation 3.44 is just a reformulation
of Equation 3.43d. Since the sine for ±π/2 (voltage angle di�erence restriction; Equa-
tion 3.43e) is ±1 the voltage angle di�erence is the minimum of 1 and x(u,w) ·cap(u,w).

θv (u) − θv (w) = arcsin
(
x(u,w) · f (u,w)

)
(u,w) ∈ E, (3.44)

|θv (u) − θv (w)| ≤ arcsin(min{1, x(u,w) · cap(u,w)}) (u,w) ∈ E. (3.45)

Equation 3.45 incorporates the voltage angle di�erences (Equation 3.43e) and the
capacity constraint (Equation 3.43f). Verma [Ver10, p.114, Lemma 4.2.1 & Theorem
4.2.2] showed the uniqueness of a feasible power �ow in the VNLP-model. Note
that in general the power grid has no hard capacities. The thermal line limits for
the calculation is usually to maintain the safety of the lines such that they are not
overheating. Since the power �ows are unique, we can neglect the capacity constraints
for the Feasibility Problem. Note that we prove and use the same observation
in Chapter 4 in a di�erent way. When neglecting the capacity constraint the right-
hand side of Equation 3.45 becomes arcsin(1). The decision problem of the VNLP is
de�ned in the following problem box.

Voltage Normalized Lossless Real Power Flow Feasibility Problem

Instance: A VNLP network N = ( G, VG , VD , cap, b, pд , pд , pd , pd ) .
Question: Is there a feasible electrical �ow complying with Equations 3.43a–

3.43f?
Note that the model is non-linear and non-convex [Ver10]. On general graphs, Verma

[Ver10] shows that the capacitated version of VNLP is NP-complete (see Section 3.3.3).
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Figure 3.6: The plots for AC and DC models di�er in their power, current and voltage curves.
(a) The curves of the linearized AC model can be interpreted like the curves of the DC model
as constant functions over time. Thus, power P , current I , and voltageV are time-independent
functions. (b) The AC model consists of sinusoid functions. The instantaneous power s(u, t),
current i(u, t), and voltage v(u, t) are functions over time. The root-mean-squared (RMS) of
voltage VRMS and current IRMS are represented by the dashed-colored horizontal lines.

In this work they do a reduction from one-in-three 3-SAT, where each clause has exactly
one true literal. Bienstock and Verma [BV19] extended that to strong NP-hardness.

For the VNLP model (Section 3.3.3), the feasibility problem can be solved in polyno-
mial time in the size of the network and 1/ϵ for graphs with bounded tree-width and
any given tolerance ϵ .

3.3.4 Alternating vs. Direct Current Model

Historically, the question of whether AC or DC would be used arose in the 1800s.
There was a competition between two companies of Thomas Edison and George
Westinghouse that developed and spread the use of DC and AC, respectively. This
competition is also known as “war of the currents”. In the end AC imposed, since
the �rst transformers were invented for AC, allowing a simple change in voltage
level and long distance transmission as well as usage of electricity in households.
The �rst long distance transmission of three-phase AC was in 1891. It is impressive
that the �rst pure DC transformer was invented in 1976, since technologies such
as semiconductors had been developed. Nowadays, the question arises in terms of
distribution systems [Ham07].

However, if we look at the current power grid, we mainly have an AC power grid
with a few HVDC lines. So we focus on the question of whether our model assumptions
are reasonable and when the errors would become signi�cant. Recall that the DC
power �ow model introduces three assumptions (DC Assumptions 1–3) that simplify
the AC power �ow to a DC power �ow model. The question of when the DC model
is useful, thus, depends on three parameters: resistance of the lines, voltage angle
di�erences, and voltage magnitude deviations. An evaluation that tests the three
assumptions is given by Purchala et al. [Pur+05].
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The TSOs usually say that the resistance of the transmission network is negligible.
This statement is basically covered in DC Assumption 1. The transmission network
in Germany has voltages of 110 kV, 220 kV, and 380 kV. These voltage layers de�ne
the high voltage level. The higher the voltage the lower the current and thus, the
lower the in�uence of the resistance (see Equations 3.18b and 3.39). So our expectation
would be that this assumption mainly depends on the voltage level and on the line
resistances. Purchala et al. [Pur+05, p.4] show that for the Belgian grid with voltage
levels of 70 kV, 150 kV, 220 kV, and 380 kV the X/R ratio ranges from 0.8 for the 70 kV
voltage level to 12.5 for the 380 kV voltage level. The real power estimation error (that
increases with increasing resistance) for these voltage levels is less than 5% and for
the 380 kV power grid drops below 2.5%. Both errors are small and thus, the resistance
for such X/R ratios in high voltage levels is negligible.

The DC Assumption 2 assumes that the voltage angle di�erence is small enough
such that the sine function is negligible. The system’s stability is guaranteed in the
range of [−π/2; π/2]. However, 30◦ or [−π/6; π/6] is the range where the sine can be
approximated by sin(x) = x . Thus, if the di�erence is within this range, the real power
error should be small. Purchala et al. [Pur+05, p.2] evaluate for the Belgian power grid
with voltages ranging from 70 kV to 380 kV that the highest voltage angle di�erence
was 7◦ and in 94% of the lines it was less than 2◦. One explanation is that the inductive
and conductive properties of an edge are quite small. However, the lines inductive
property is usually slightly higher, though for long distances the capacitive property
increases (see the transmission line representation section in Section 3.3.1 on Page 47).

The last assumption—DC Assumption 3—is about a �at voltage pro�le, e. g., all
voltages are equal to 1 p.u.. If there is a voltage deviation then this would automatically
lead to a voltage di�erence that is simply not modeled in the DC model. The real
power error increases with increasing voltage deviation [Pur+05, p.4, Figure 7]. Thus,
a �at voltage pro�le is important but di�cult to establish in power grids.

This particularly means that the most critical assumption is the �at voltage pro�le.
The others can be at least established quite well in a high voltage power grid. However,
�at voltage pro�les are di�cult to establish and thus, the results have to be carefully
interpreted in terms of an AC power grid. However, this discussion also shows that the
more complex Sin-model including the sine function might be a more realistic model,
but that the assumption is not critical for the real power error and thus, it might increase
the complexity unnecessarily. However, from a theoretical perspective this model is
quite interesting as the feasibility problem is already strongly NP-hard Bienstock and
Verma [BV19].

Problems. The AC feasibility problem is a subproblem of many optimization prob-
lems such as the Transmission Network Expansion Planning (TNEP) problem,
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the Optimal Transmission Switching Problem (OTSP) and the Maximum Power
Flow Problem (MPFP).

The Economic Dispatch Problem (EDP) minimizes the total cost represented by
the sum of all generator cost functions γ . It is the simplest problem formulation that
checks whether demand and supply match by abstracting from the power grid and
incorporates the energy balance equation, and the generator constraints (see Equa-
tions 3.17a and 3.17b). After adding the power grid speci�cs, the problem is called
either AC or DC Optimal Power Flow Problem (OPFP). All the problems mentioned
so far have continuous variables only. In terms of planning problems, we introduce
integer or binary variables. The most commonly known problems for �nding an
optimal topology are TNEP, OTSP, and MTSFP.
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An Algorithmic Approach to Computing Electrical Flows

The Alternating Current Feasibility Problem (AC FEAS; see Section 3.3.1) and Di-
rect Current Feasibility Problem (DC FEAS; see Section 3.3.2) are subproblems of
most power grid related problems such as switching (see Chapter 5) and ideal FACTS
placement (see Chapter 6). In this chapter, we formalize the operation of the power
grid in such a way that we are able to develop algorithmic approaches for the elec-
trical �ow computation. With the latter formulations, we are able to develop better
algorithms for problems that incorporate the electrical �ow computation as a subprob-
lem. Recall that one of the �rst persons who increased the knowledge in DC FEAS
was Kirchho� [Kir47], who formalized the electrical �ow and introduced structural
properties.

In Section 3.3, we described di�erent models and approximations to analyze the
network by calculating the power �ow, which we call more generally electrical �ow.
In this chapter, we focus on the Direct Current Feasibility Problem (DC FEAS;
commonly known as Power Flow; in short PF) and the DC Maximum Power Flow
Problem (DC MPFP). We describe their mathematical models using di�erent formula-
tions and give some structural insights that will be important to develop algorithms
for DC FEAS and DC MPFP (see Section 3.3.2). Note that one of the �rst algorithms—
though with exponential running time—to compute electrical �ows uses spanning trees
(see Lemma 4.6; [Sha87, SR61]). We describe the latter algorithm [Sha87, SR61] brie�y
in Section 4.1. This algorithm was used by Felsner [Fel13] to construct a squaring of a
rectangle [Fel13, pp.17�.]. Felsner shows that the �ow of a graph that represents such
a squaring of a rectangle is equivalent to a solution of an integer DC FEAS, meaning
all �ows have to be integral. Since this problem uses integral electrical �ows (i. e., the
�ow is a function f : E → Z), we usually cannot apply an LP from Section 3.3.2, but
have to use an ILP. In general solving ILPs is NP-hard [GJ79, p.245, MP1]. However, if
the solution space has some properties, it is possible to solve it with other techniques
and algorithms in polynomial time. One possibility would be to relax the variables
of DC FEAS, which means that a solution of an LP yields an integral solution. However,
we show that this technique does not necessarily result in an integral �ow. However,
if we do not have a �xed generation, a �xed demand, and neglect the capacities, mean-
ing cap ≡ ∞, but ask for a generation and demand such that we get integral electrical
�ows, we can make use of some properties of the solution space.

1I would like to thank especially Matthias Wolf and Torsten Ueckerdt for questions, discussions, and
comments. In addition, I would like to thank Marc Timme for some initial conversations, his time,
and that he encouraged me (more or less) to write this chapter.
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In Section 4.2, we �rst give an overview over known transformation and contraction
rules. In the end of Section 4.2, we give an algorithm for the s-t-DC FEAS and -MPFP on
planar biconnected graphs that runs in O(|V |3) time. Recall that DC FEAS and MPFP
can be formulated as a linear system of equations and an LP, respectively, that can be
solved in O(|E |2.5) time [BC75, Vai89]. Thus, using the contraction and transformation
rules in the fashion described in Section 4.2 does not yield an algorithm that has a
better running time than the known mathematical methods. However, it gives some
structural information.

While restricting our graphs to biconnected planar s-t-graphs, we develop an al-
gorithm that transforms the formulation given in Section 3.3 and Section 4.1 to an
equivalent formulation of simultaneous �ows (Section 4.3.2). For this formulation, we
are able to develop an algorithmic approach for s-t- DC FEAS and -MPF algorithm for
biconnected graphs (Section 4.5) that can be extended to an algorithm for multiple
sources and multiple sinks on planar graphs by using the superposition principle for
linear physical systems.

4.1 A Mathematical Model for the
Feasibility Problem of Electrical Flows

Cain et al. [COC12, p.13] give the structural hint that power grids are often planar.
Note that this might not be true in general. In addition, power grids are quite sparse.
The electrical network’s topology is described by a bidirected graph G = (V , E),
where V is the set of vertices representing the buses (i. e., line junctions), and E is
the set of edges representing the lines or cables (the conventional name is branch).
Though the underlying graph is undirected [COC12, p.13], we are always able to direct
its edges {u,w} ∈ ←→E by inserting two edges in opposite direction (u,w), (w,u) ∈ E.
Introducing the direction is motivated by the electrical network’s direction that is
usually de�ned by the voltage or current source representing the reference vertex (also
known as slack or datum; see Table 3.1 on Page 42). The direction is used for notational
convenience and for electrical networks that are nonreciprocal. Nonreciprocal electrical
networks have components on their edge that have a prede�ned direction such as
diodes. However, in our case the electrical network is reciprocal (also known as
bilateral) and thus, the �ow on each edge is allowed to �ow in both directions. The
underlying graph is undirected, and we de�ne for notational convenience the set ←→E of
undirected edges by ←→E = {←→e | e ∈ E}, i. e.,

←−−−−→
(u,w) =

←−−−−→
(w,u) = {u,w}.

Each edge has a thermal limit and a susceptance that are represented by the func-
tions cap : ←→E → R and b : ←→E → R, respectively. The set VG of generators repre-
sents the energy sources and the demands are represented by a set VD of consumers.
Without loss of generality, we assume that VG ∩ VD = ∅ and VG ∪ VD ⊆ V . An
electrical network is de�ned by a tuple N = (G,VG ,VD, cap,b,pд,pд,pd ,pd ) with min-
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imum and maximum generation pд,pд : V → R≥0 ∪ {∞}, and minimum and max-
imum demand pd ,pd : V → R≥0 ∪ {∞}, respectively. In general, we distinguish
between bounded (i. e., u ∈ VG : pд(u) < ∞ and u ∈ VD : pd (u) < ∞), unbounded (i. e.,
pд ≡ pd ≡ ∞), and exact (i. e., pд ≡ pд and pd ≡ pd ) networks.

The power is de�ned by current and voltage functions. These functions over time
map an edge and a point in time to voltage and current values (see Section 3.3.1).
However, in this work we focus on steady-state systems that are invariant and thus,
bind the functions to one particular timestamp. The latter means that all functions
become time independent. A �ow is a function f : E → R, (u,w) 7→ f (u,w). A �ow
complies with the skew-symmetry property f (u,w) = −f (w,u) for all (u,w) ∈ E. The
net �ow at a vertex u ∈ V is de�ned by fnet(u) B

∑
{u ,w }∈

←→
E f (u,w). We de�ne the

�ow value F (N, f ) to be the sum of all generator excesses
∑
u ∈VG fnet(u).

The behavior of voltage and current in the classical physics are described by the
Kirchho�’s laws [Kir47][SR61, p.120, De�nition 6-1]. Since we are interested in power
�ows while using a linearization of an AC power �ow (known as DC FEAS), we
map DC currents i to real power p, which we denote by f and DC voltage v to voltage
angle di�erences ∆θv (see Section 3.3.2 on Page 52).

Kirchho�’s Current Law (KCL). The �rst law is called the Kirchho�’s Current

Law (KCL; Equations 4.1–4.3) and describes that the power entering a vertex u ∈ V is
equal to the power exiting u. This is equivalent to the conservation of �ow in graph
theory.

fnet(u) = 0 ∀u ∈ V \ (VG ∪VD ), (4.1)
pд(u) ≤ fnet(u) ≤ pд(u) ∀u ∈ VG , (4.2)

−pd (u) ≤ fnet(u) ≤ −pd (u) ∀u ∈ VD . (4.3)

The Equations 4.1–4.3 constrain the �ow on the edges incident to a vertex u ∈ V . We
distinguish between intermediate vertices (Equation 4.1), vertices with a generator
(Equation 4.2) having an excess of power, and vertices with a consumer (Equation 4.3)
having a demand (disturbance) in power. Recall from Section 3.3.2 that the latter
equations (Equations 4.1–4.3) are equivalent to Equations 3.33–3.38. Note that as long
as we only consider the KCL, we can always connect generator vertices u ∈ VG with
a super source s using pд(u) as capacity, and demand vertices u ∈ VD with a super
sink t using pd (u) as capacity. This results in a single-source and single-sink �ow that
is a notational simpli�cation. Note that we can connect the super source s and super
sink t with each other resulting in a circulation problem.

Though, the aforementioned formulation is our standard way to describe the KCL,
we need the algebraic formulation of the KCL to get some structural insights. We
assume from now on—if not stated otherwise—that we have an exact network. Thus,
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Equations 4.2 and 4.3 become Equations 4.5 and 4.6 withpд ≡ pд ≡ pд andpd ≡ pd ≡ pd ,
respectively. Recall from Section 3.1 that an oriented incidence matrix (also known
as connection matrix) represents the graph’s connections in terms of the vertex-edge
incidence relations, i. e., an entry in row u and column e is 1 (respectively −1) if
edge e is an incoming (respectively outgoing) edge, and 0 otherwise. The properties of
such a matrix are given in Section 3.1. The Equations 4.1–4.3 can be restated using
the oriented incidence matrix I ∈ {−1, 0, 1} |V |× |E | and the vector of �ows #»

f ∈ R |E |

with #»

f B
(
f (u,w)

)
(u ,w )∈E . The KCL in matrix form is given in Equations 4.4–4.6.

IV \(VG∪VD )
#»

f =
#»0 , (4.4)

IVG
#»

f = #»pд, (4.5)
IVD

#»

f = #»pd , (4.6)

where #»0 is the zero vector of size |V \ (VG ∪VD )|, IV \(VG∪VD ) is a submatrix of the
incidence matrix I constituted by the vertices that are neither generators nor con-
sumers. Similar notion is used for the submatrix of the generators and consumers
in Equation 4.5 and Equation 4.6. Note when (s, t) ∈ E the �ow vector #»

f would
have a �xed entry with #»

f (s ,t ) =
∑
u ∈VG pд(u) =

∑
w ∈VD pd (w) and Equation 4.4 is

su�cient. Equations 4.4–4.6 constitute an incidence matrix I ∈ R |V |× |E | with I B
(IV \(VG∪VD ), IVG , IVD )

ᵀ and right-hand side vector #»pI ∈ R |V | with #»pI B (
#»0 , #»pд,

#»pd )
ᵀ .

The whole system of linear equations is given in Equation 4.7.

I ·
#»

f = #»pI . (4.7)

The system I ·
#»

f = #»pI represents a translation of the solution set I · #»

f =
#»0 . The

latter equation is also called homogeneous equation (or homogeneous problem) and has
always the trivial solution #»

f =
#»0 . If we have a solution #»

f nh for the nonhomogeneous
system then the whole solution space can be described by #»

f nh + {
#»

f h |
#»

f h ∈ R
|E |, I ·

#»

f h =
#»0 }, where #»

f h is a solution vector of the homogeneous system.

KCL Flow. We call a �ow f complying with the KCL as a KCL �ow. Recall that
we can interpret vectors in the euclidean space geometrically as a line segment from
the origin with magnitude and direction. Two vectors are orthogonal to each other
if the angle α between them is 90◦ and cos(π/2) = 0. Thus, the dot product is zero
meaning #»

iu ·
#»

f =
#»0 , since #»

iu
#»

f =
 #»
iu


2

 #»

f

2
cos(α) for all vertices u ∈ V . If we

have I ·
#»

f =
#»0 this implies that every vector #»

iu in the vector space (here a row u in I)
is orthogonal to the vector #»

f .

Properties of the Incidence Matrix. Note that Equation 4.4 means that the inci-
dence matrix I and the vector #»

f are orthogonal to each other—meaning every row
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vector of I is orthogonal to #»

f . Note that this implies that the vectors are also linear
independent, since there is no scalar that makes #»

f colinear to one of the vertices in I.
The latter is equivalent to #»

f ∈ ker (I) with ker (I) B { #»

f ∈ R |E | | I ·
#»

f =
#»0 } ⊆ R |E | .

img (I)ker (I)

#»0
#»pI1

#»pIi

#»
f I #»

f

#»0

I #»
f =#»0

I #»
f =#»pI

trivial element

R|E| R|V |

Figure 4.1: The image img (I)
and kernel ker (I) of the inci-
dence matrix I for the linear
map I : R |E | → R |V | .

Note that a trivial element of the kernel is the neutral
element, i. e., in the vector space this is the zero vec-
tor #»0 (see Figure 4.1 left side). If the kernel consists
of the neutral element only then the linear map is
injective. From Seshu and Reed [SR61, p.66, The-
orem 4–3], we know that the rank of the matrix I
is rk(I) = |V | − k with k being the number of con-
nected components. The idea is that summing up the
rows leads to one row of zeros per connected compo-
nent, since every column of the incidence matrix I—
representing an edge—consists of exactly one 1 entry

and one −1 entry, which gives us rk(I) ≤ |V | − k (see Figure 4.6b on Page 69 as ex-
ample). The aforementioned structure of the incidence matrix I leads to an upper
triangle matrix for each connected component that cannot be reduced further leading
to rk(I) ≥ |V | −k and thus, rk(I) = |V | −k . Recall that the rank of the incidence matrix I
(i. e., rk(I)) corresponds to the number of edges in a spanning forest. To determine
the nullity n(I) B dim(ker (I)) of the incidence matrix I, we introduce the rank-nullity

theorem.

Theorem 4.1 (Rank-nullity Theorem). For any matrix A ∈ Rr×c
with r rows and c

columns the rank rk(A) and nullity n(A) sum up to the number of columns.

rk(A) + n(A) = c .

The generalization to linear maps A : R |C | → R |R | is given by

dim(img (A)) + dim(ker (A)) = dim(R |C |) = |C |.

The incidence matrix I can be viewed as a linear map I : R |E | → R |V | with #»

f 7→ I ·
#»

f .
The kernel ker (I) and image img (I) of the incidence matrix I are given in Equation 4.8.

ker (I) B { #»

f ∈ R |E | | I ·
#»

f =
#»0 } ⊆ R |E | (4.8a)

img (I) B { #»pI ∈ R
|V | | ∃

#»

f ∈ R |E | : I · #»

f = #»pI} ⊆ R |V | (4.8b)

A kernel ker (I) of the incidence matrix I is a set ker (I) of vectors #»

f such that the
homogeneous system I ·

#»

f =
#»0 holds for all vectors in that set (see Figure 4.1 red
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area and text). The image img (I) of the incidence matrix are all vectors #»pI for which a
solution exist (see Figure 4.1 green area and text).

Using the rank-nullity theorem (see Theorem 4.1) we get the dimension of the kernel
(i. e., the nullity when talking about matrices) of dim(ker (I)) = dim(E)−dim(img (I)) =
|E | − |V | + k that corresponds to the number of chords (i. e., edges not on a spanning
forest). A common way to construct the incidence matrix I (see Chapter 3 on Page 27)
of row size |V | − k is to de�ne one vertex u ∈ VG per connected component as slack

R|E|

R|V |−k

R|V |

I′

I

Remove a
row u per
connected
component

Figure 4.2: Linear maps
of the incidence matrix I
and I′, where k is the
number of connected
components.

vertex and remove its row u (see example Figure 4.6 b on
Page 69, where we remove vertex 3). From the property of
the incidence matrix I we know that every square subma-
trix of I has a determinant that is either −1, 0, or 1. Since
every square non-singular submatrix of the incidence ma-
trix I of size (|V | −k)×(|V | −k) that is the maximum square
submatrix that constitutes a spanning tree is unimodular
(i. e., the determinant takes ±1 values only) and all determi-
nants are either 0, 1, or −1, the incidence matrix I is totally
unimodular (in short TUM).
If not noted otherwise, if we speak from now on of the
incidence matrix I, we mean the reduced incidence matrix

that has |V | − k rows and thus, is de�ned by I ∈ {−1, 0, 1}( |V |−k )×|E | (see Figure 4.2).

Feasible Flows and Thermal Line Limit. As already mentioned each edge has
a natural limit of �ow it is able to carry. This is usually modeled by the capacity
constraint that basically models the thermal line limit (Equation 4.9).

| f (u,w)| ≤ cap(u,w) ∀(u,w) ∈ E. (4.9)

We denote a �ow f complying with the capacity constraints as feasible �ow. A KCL
�ow (see KCL �ow on Page 60) complying with the capacity constraint is thus called
a feasible KCL �ow.

Kirchho�’s Voltage Law (KVL). Kirchho�’s second law is known as Kirchho�’s
Voltage Law (KVL) and describes the voltage angles in a cycle (also known as mesh). A
cycle is a path π (s, t) B

(
(s,u1), (u1,u2), . . . , (ui , t)

)
, where at least s = t , otherwise it

would not be closed. Cycles have by de�nition an even degree. The set C of cycles
includes all cycles of a graphG , which can be exponentially many in general. Note that
we distinguish between cycles and circuits. A circuit has a degree of 2. Thus, circuits
are the same as simple cycles. Kirchho�’s Voltage Law states that the voltages in a
cycle sum up to zero (Equation 4.10). Recall from Section 3.3.2 that in DC FEAS the
voltages are substituted by the voltage angle di�erences ∆θv and the resistances r by 1/b.
The KVL-like equation is given by

∑
(u ,w )∈C b(u,w) ·

(
θv (w) − θv (u) − θvshi�(u,w)

)
= 0.
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In this section, we assume that θvshi�(u,w) = 0, i. e., we assume that there are no
phase transformers or FACTS (see the discussion in Section 3.3.1). In terms of linear
algebra, we can rewrite the latter by using the circuit matrix B and the #     »

∆θv vector
(Equation 4.10). The oriented circuit matrix B ∈ {−1, 0, 1} |C |× |E | is a matrix, where
each row c represents a cycle c ∈ C and a column e represents an edge e ∈ E. The entry
of B is either 1 (respectively −1) when an edge e is in cycle c in direction (respectively
opposite) with some prede�ned direction for each cycle c ∈ C , or 0 if the edge is not
in the cycle c . The KVL using the circuit matrix is de�ned in Equation 4.10.

B
#     »

∆θv =
#»0 , (4.10)

whereB ∈ {−1, 0, 1} |C |× |E | [SR61, p.91] is the oriented circuit matrix (e. g., see Figure 4.6
a or b on Page 69; bottom partition), and #     »

∆θv ∈ R |E | with∆θv B (θv (w)−θv (u))(u ,w )∈E
is a vector of voltage angle di�erences at an edge with #     »

∆θv ∈ ker (B), and #»0 is the
zero vector of size |C |. The formulation in Equation 4.10 represents a homogeneous
equation and thus, has always the trivial solution #     »

∆θv =
#»0 .

Properties of the Circuit Matrix. Recall that the set C of cycles includes poten-
tially exponentially many cycles. However, it su�ces to work with a base of the
cycle space [Kir47, pp.498�.] and thus, the circuit matrix B will only incorporate a
fundamental cycle base in this work.

If we speak of the circuit matrix B and we did not mention anything else, we speak
of the circuit matrix that only has fundamental cycles as row vectors.

De�nition 4.2 (Base). A base in a vector space is a maximum independent set of vectors

that su�ce to span the vector space.

In general there are multiple bases that span the same vector space, which we will
see soon. Note that all bases have the same size [Whi35, p.514, Theorem 6].

De�nition 4.3 (Fundamental Cycle Base). Let G = (V , E) be a graph, let T = (V , E)
be a spanning forest, and let Echords B E(G) \ E(T ) be a set of chords. A walk from

one endpoint u of the chord (u,w) to the other endpoint w using the spanning forest

branches E(T ) de�nes a cycle that di�ers from the other cycles in B by at least the chord

edge (u,w). A fundamental cycle base is de�ned by a spanning forest (by a spanning

tree if the graph is connected), and a cycle in that base is de�ned by a chord (i. e., non-tree

edge).

Note that a spanning forest has |V | − k edges—also denoted as tree branches—
and |E | − |V | + k chords, where k is the number of connected components. The rank
of the circuit matrix is rk(B) = |E | − |V | + k [SR61, p.66, Theorem 4-5] and the nullity
is n(B) = |V | − k [SR61, p.64, Corollary 4-4]. In general, the circuit matrix B does not
have a determinant of ±1 [Oka55][Kav+09, p.12, Lemma 3.3].
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The circuit matrix B is a linear map B : R |E | → R |C | with #     »

∆θv 7→ B ·
#     »

∆θv . The
kernel ker(B) and image img(B) of the circuit matrix B are de�ned in Equation 4.11
and illustrated in Figure 4.3 by the red or green area, respectively.

ker (B) B {
#     »

∆θv ∈ R |E | | B ·
#     »

∆θv =
#»0 } ⊆ R |E | (4.11a)

img (B) B { #»pB ∈ R
|C | | ∃

#     »

∆θv ∈ R |E | : B ·
#     »

∆θv = #»pB} ⊆ R |C | (4.11b)

A kernel ker (B) of the circuit matrix B is a set ker (B) of vectors #     »

∆θv such that the

img (B)ker (B)

#»0
#  »pB1

#  »pBi

#      »∆θv B
#      »∆θv

#»0

B
#      »∆θv=#»0

B
#      »∆θv=#  »pB

trivial element

R|E| R|C|

Figure 4.3: The image img (B)
and kernel ker (B) of the cir-
cuit matrix B for the linear
map B : R |E | → R |C | .

homogeneous system B ·
#     »

∆θv =
#»0 holds for all vec-

tors in that set (see Figure 4.3 red area and text). The
image img (B) of the circuit matrix are all vectors #»pB
for which a solution exist (see Figure 4.3 green area
and text).
Using the rank-nullity theorem (see Theorem 4.1)
we get the dimension of the kernel (nullity when
talking about matrices) of dim(ker (B)) = dim(E) −
dim(img (B)) = |E | − |E | + |V | − k = |V | − k .
However, Cederbaum [Ced55] showed that for a fun-
damental system of circuits—that is used in our case—
the determinant can only take values of −1, 0, or 1

for every square submatrix and ±1 for a set of chords that represents a maximal square
matrix (see Figure 4.6a or b bottom right partition). As for the incidence matrix I above
this means that the matrix B is TUM.

Lemma 4.4 (TUM bases). The incidence matrix I and the circuit matrix B are TUM

bases.

Relationship between Incidence and Circuit Matrix. We get the relationship
between the incidence matrix I and the circuit matrix B in Equation 4.12.

IBᵀ = 0 and BIᵀ = 0, (4.12)

where 0 is a matrix with zeros only of dimension |V | × |C | (respectively |C | × |V |).
Thus, the incidence matrix I is orthogonal to the circuit matrix B. One way to prove
that is given by Seshu and Reed [SR61, p.66, Theorem 4-6] that uses the property of
circuits that have a degree of deg(u) = 2 at all vertices u ∈ V . Again note that both
matrices I and B are orthogonal to each other (i. e., every vector of I is orthogonal
to every vector in B). Note that this also means that the vectors are linear indepen-
dent to each other. By doing a vertex transformation, we are able to describe the
voltage angle di�erence ∆θv (u,w) vector by voltage angles θv (u) and θv (w) for all
edges (u,w) ∈ E. However, this simple transformation is based on the connection
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that B #     »

∆θv =
#»0 and based on the relationship shown in Equation 4.12. The connection

given in Equation 4.12 allows us to describe #     »

∆θv by the linear combination of the tree
branches #     »

∆θv = Iᵀ
# »

θv for each connected component (compare also Equations 3.31a
and 4.13), where # »

θv ∈ R |V |−k with k representing the number of connected compo-
nents [SR61, Theorem 6-6, p. 123]. This means, we can �nd B

#     »

∆θv =
#»0 , which is

equivalent of �nding a BIᵀ
# »

θv =
#»0 . Since we know from Equation 4.12 that BIᵀ = 0

this equation holds independent of the voltage angle vector # »

θv . In addition, we would
like to know when there is a # »

θv ∈ R |V | such that #     »

∆θv = Iᵀ
# »

θv . The latter is equivalent
to the question of when #     »

∆θv ∈ img (Iᵀ). We have to show when ker (B) ⊆ img (Iᵀ).
This is the case when we chose the same spanning tree to construct both matrices.
Note that it su�ces to compute the voltage angle di�erences along a spanning tree,
since the others result from these voltage angles.

KVL Flow. Applying the latter to Ohm’s law gives us the typical equation known
from literature (Equation 4.13).

b(u,w) ·
(
θv (w) − θv (u)

)
= f (u,w). (4.13)

A �ow f complying with Equation 4.13 is called KVL �ow and if it complies with the
capacity constraint it is called feasible KVL �ow.

Using the aforementioned relationship (Equation 4.13), we can reformulate Equa-
tion 4.10 such that we replace voltage angle di�erences #     »

∆θv by �ows #»

f . Note
that b(u,w) = 1/x (u ,w ) and that “◦” is the Schur product (or entrywise product).

#»

f =
#»

b ◦
#     »

∆θv ⇔
#     »

∆θv = #»x ◦
#»

f (4.14a)

B
#     »

∆θv =
#»0 ⇔

(
B ◦ (1 |E |×1 · #»x ᵀ)

)
︸                  ︷︷                  ︸

CB′

·
#»

f =
#»0 (4.14b)

Since #»x is a vector of constant values, we just multiply the entries in the circuit
matrix B by #»x resulting in a new circuit matrix B′, which results in Equation 4.15.

B′ ·
#»

f =
#»0 (4.15)

Feasible Electrical Flow. In the following, we de�ne feasible electrical �ows that
represent solutions to DC FEAS.

De�nition 4.5 (Feasible Electrical Flow). A KVL �ow that is also a KCL �ow is

called electrical �ow and if it complies to the capacity constraint, too, it is called a feasible
electrical �ow.
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DC FEAS and DC MPFP constitute a system of linear equations and an LP, respec-
tively. In the following, we summarize the problem de�nitions of DC FEAS and MPFP.

Direct Current Feasibility Problem DC-FEAS(N)

Instance: An exact bounded network N = ( G, VG , VD , cap, b, pд , pд , pd , pd ) ,
i. e., pд ≡ pд ≡ pд and pd ≡ pd ≡ pd .

Question: Is there a feasible electrical �ow f (see Equations 4.7, 4.9 and 4.10)?

A feasible electrical �ow that maximizes the �ow value F (N, f ) B
∑
u ∈VG fnet(u) is

called MPFP(N) and its value is denoted by OPTMPFP(N). The optimization problem
is stated in the following.

Direct Current Maximum Power Flow Problem DC-MPFP(N)

Instance: A network N = ( G, VG , VD , cap, b, pд , pд , pd , pd ) .
Objective: Find a feasible electrical �ow f (see Equations 4.7, 4.9 and 4.10) such

that the �ow value F (N) is maximum among all choices of f .

Algorithms to Solve DC FEAS. Possibilities to get a feasible power �ow are to
formulate the system of linear equations or LP and run it using a solver such as
Gurobi [Gur16], or to apply the following algorithm.

Lemma 4.6 (Shapiro [Sha87, p.36, Lemma 1]). Let every edge ofG have a resistance r ≡
1. Let T denote the number of spanning trees and let T (s,u → w, t) be the number

of spanning trees that contain the edge (u,w) in that particular direction meaning the

spanning tree has a path from s to t that visits vertex u �rst and then vertexw by using

the edge (u,w) ∈ E. Let pд ≡ pd ≡ 1 and let f (u,w) =
(
T (s ,u→w ,t )−T (s ,w→u ,t )

)
/T . Then f

is a feasible electrical �ow in G.

The generalization—where we have no unit resistances r , but arbitrary ones—given
by Shapiro [Sha87, p.38] was already given by Seshu and Reed [SR61, pp.155�.]. Instead
of just using the number of spanning trees, we calculate for each spanning tree the
product of the admittances of the branches of that spanning tree and sum over all
spanning trees. The proof of the lemma uses the Binet-Cauchy-Theorem [SR61, p.32].
Note that a graph can have exponentially many spanning trees and computing the �ow
for each edge using this techniques is quite ine�cient, but provides an exponential
time algorithm to compute the electrical �ow of the power grid.
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4.1.1 Properties of Electrical Flows

Note that we use a base for the columns of the incidence and circuit matrix denoted
by I and B, respectively, where all equations are linear independent. Since the whole
system of equations has full rank the solution to a feasible electrical �ow is unique,
which we show in the following.

Lemma 4.7 (Uniqueness of DC Electrical Flows). There is a unique solution to DC
electrical �ows if we have exact bounds.

Proof. Recall that the incidence matrix I with I ∈ R( |V |−k )×|E | and the circuit matrix B
with B ∈ R( |E |− |V |+k )×|E | are bases. Since both matrices are bases the vectors are linear
independent in each matrix (i. e., this is a property of a base shown in Equations 4.4
and 4.10). We now de�ne a matrix A by A B

( I
B′
)

with B′ from Equation 4.15,
whereA ∈ R |E |× |E | can be generalized to a linear mapA : R |E | → R |E | with #»

f 7→ A·
#»

f .
Thus, the system of equations is de�ned by A ·

#»

f = # »pA B
( #»pI

#»0
)

with vector #»0 of size |C |.
The kernel ker (A) and the image img (A) of matrix A are de�ned in Equation 4.16.

ker (A) B { #»

f ∈ R |E | | A ·
#»

f =
#»0 } ⊆ R |E | (4.16a)

img (A) B { # »pA ∈ R
|E | | ∃

#»

f ∈ R |E | : A · #»

f = # »pA} ⊆ R |E | (4.16b)

From Equation 4.12, we know that IBᵀ = 0 and BIᵀ = 0, which means that the
dimension of the image of A is the sum of the dimension of the images of the incidence
matrix I and circuit matrix B given by dim(img (A)) = dim(img (I)) + dim(img (B)) =
|V | −k+ |E | − |V |+k = |E |. Using the rank-nullity theorem (see Theorem 4.1), we know
that the dimension of the kernel is dim(ker (A)) = 0. Thus, A as linear map is injective.
The dimension of the image of A is |E |, which means that the matrix has full rank. We
conclude that the system has a unique non-trivial solution (see Figure 4.4). �

y = −x + 3

y = x − 1
y = 3/2x + 3

y = −x/2 − 2

P
y is �xed to 1

−4 −3 −2 −1 1 2 3 4

−3
−2
−1

1
2
3

x

y

Figure 4.4: The Polytope P constituted
by y ≤ 3/2x + 3, y ≥ x − 1, y ≤ −x + 3,
and y ≥ −x/2 − 2. If y = 1, we reduce the
solution space to x ∈ [−4/3, 2]. However,
if y = −5/3 the solution is unique x = −2/3. So
a unique solution corresponds to one point .

Note that the system has no non-
trivial solution if the generations and
demands are exact and the capacities
are chosen in such a way that these
generations and demands cannot be
ful�lled. In the following, we extend
the system by capacity constraints dis-
cussed in Equation 4.9.

The capacity constraint can be refor-
mulated in a matrix writing by 1 |E |× |E | ·
#»

f ≤ #   »cap, where 1 |E |× |E | is the identity
matrix of size |E | × |E | and the vector
of capacities is #   »cap ∈ R |E | . With the
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capacity constraint we get a matrix A′ = (I,B′, 1 |E |× |E |)ᵀ of size A′ ∈ R(2 |E |)× |E |

with B′ from Equation 4.15. Note that the additional submatrix has no in�uence on
the dimension of the image meaning dim(img (A′)) = |E |, i. e., using the rank-nullity-
theorem (Theorem 4.1), we get the dimension of the kernel dim(ker (A)) = 0. The
matrix remains to have a full rank, but we have inequality constraints. With exact
supplies (i. e., pд ≡ pд ≡ pд) and exact demands (i. e., pd ≡ pd ≡ pd ) the capacity
constraints have only in�uence on the feasibility of a solution, since A ·

#»

f = # »pA gives
us a unique solution the inequality 1 |E |× |E | ·

#»

f ≤ #   »cap might lead to a polytope that
does not include that solution.

If we apply upper bounds #   »pA↑ with pд,pd ∈ R≥0, and lower bounds #   »pA↓ with pд,pd ∈
R≥0 for the generations and demands, we get the following system of inequalities.

A ·
#»

f ≤ #   »pA↑ (4.17a)
−A ·

#»

f ≤ − #   »pA↓ (4.17b)

Without capacities, if we set the bound for each # »pA between #   »pA↑ and #   »pA↓ (see Equa-
tion 4.17) to exact, we would get a unique solution. Otherwise, this set of solution can
be represented by a polytope that is no longer just a point, but de�ned by the faces Hi
that build a convex hull. However, while maximized, we can simply use the upper
bound vector #   »pA↑. Thus, the solution for the MPFP is still unique. Note that this is no
longer true when we add capacity constraints.

Lemma 4.8 (Uniqueness of MPFP). There is a unique solution to (feasible) DC electrical

�ows, when maximized as long as there are no capacity constraints.

s t

x
1
2 /2 1

2 /2

3
2 /3

3
2 /3

0

1
2

11/1

Figure 4.5: A TUM counter ex-
ample with three vertices with
voltage angles θv that are writ-
ten in the vertices, �ows f and
capacities cap are written on
the edges f /cap. This exam-
ple shows that �ows are not
necessarily integral, since the
edges (s, x), (x, t) ∈ E have each
a �ow of 1/2.

Another application, where the rank of the matrix
can be used is to check whether a network with
a given set of sensors is observable (i. e., all other
variables can be calculated by the measured ones).
Kalman [Kal59, p.487, (47)] uses the property that if
a set of vectors is linear independent then the system
becomes observable. Note that another way to prove
the uniqueness was given by Verma [Ver10, p.114,
Lemma 4.2.1] and Rockafellar [Roc84, p.361].
A system of linear inequalities represents a convex
polytope P = {

#»

f ∈ R |E | | A
#»

f ≤ # »pA}. Let Hi be a
hyperplane de�ned by Hi B {

#»

f ∈ R |E | | Ai ·
#»

f =
# »pAi } that represents the ith row with 1 ≤ i ≤ |E |. The
cuts of a convex polytope P with each hyperplane Hi
is given by {P ∩Hi | 1 ≤ i ≤ |E |} and represents the
set of faces that form a convex hull.
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Figure 4.6: The structure of the matrix A B
( I
B

)
that is a construction of the incidence matrix I

(top partition) and circuit matrix B (bottom partition). The left partition of size |V | − k , with k
being the number of connected components (for (b) and (c) with one connected component k =
1), represents some spanning forest (for k = 1 a spanning tree) of the graph G. The right
partition represents the edges that are not in the spanning forest of the left partition (also
called chords). The latter partition has a size of |E | − |V | + k . The green areas have entries that
are all zero and the main diagonal with entries all ±1 is marked in red. The general structure
is given in (a) and a small example is given in (b) with the corresponding graph in (c).

Consider any objective then an optimal solution of a convex polytope P is on the
vertices of P . Thus, if the vertices of a convex polytope P lie on integral coordinates
than P is called an integral polytope. If all square submatrices of A have a determinant
of −1, 0, or 1 then A is TUM. This in particular means that the polytope of such a TUM
matrix is integral independent on the vector # »pA.

Recall that we know that the incidence matrix I and circuit matrix B are each TUM
by itself (see Lemma 4.4). In the following, we prove that the whole system A B

( I
B
)

is
not TUM and thus, the convex polytope is not necessarily integral.

Lemma 4.9. The bases of the incidence matrix I and the circuit matrix B are each TUM.

However, the whole system of linear equations A B
( I
B
)
to compute a feasible electrical

�ow using the KCL (Equation 4.7) and KVL (Equation 4.10) is not TUM.

Proof. A counter example is shown in Figure 4.5 that basically describes why a feasible
electrical �ow f is not integral for every right hand-side vector # »pA. �

The KCL (see Equation 4.7) and the KVL (see Equation 4.10) do not incorporate
network elements in any sense—i. e., these equations are purely topological [SR61,
p.127, Section 6-3]—the vector of voltage angle di�erences #     »

∆θv can be replaced by the
�ow vector #»

f .
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LetT be a spanning tree inG . The matrix A B
( IE(T ) IE(G )\E(T )
BE(T ) BE(G )\E(T )

)
can be decomposed

into two parts column-wise represented by the partitions that are the set E(T ) of
spanning tree edges (see Figure 4.6a left top and bottom partition) and the set E(G)\E(T )
of chords (see Figure 4.6a right top and bottom partitions) for some arbitrary but �xed
spanning treeT . The partition of the rows into two parts is given by construction A =( I
B
)
. Recall that all maximum square non-singular submatrices (i. e., matrices that

have a nonzero determinant) of the incidence matrices I of size (|V | − 1) × (|V | − 1)
are formed by some spanning tree T ∈ T and submatrices of the circuit matrix B of
size (|E |− |V |+1)×(|E |− |V |+1) that are formed by a set of chords, are unimodular (i. e.,
the determinant is ±1; see Figure 4.6 top left and bottom right partition, respectively).
The structure allows us to permute the entries such that the main diagonal has only ±1
entries (see Figure 4.6a and b for example). We describe in the following how we
permute the matrix A.

We can order the rows and columns of the incidence matrix I that are in the span-
ning tree partition (see Figure 4.6a and b top left partition) such that entries below
the diagonal are all zero in that partition. This particular form of a matrix is de-
noted by the term upper triangular matrix. A property of the incidence matrix I is
that it has at most two non-zero entries per column. In addition, the number of
leaves L B {u ∈ V | deg(u) = 1} in a spanning tree depend on the degree of the ver-
tices meaning |L| ≥ maxu ∈V deg(u), which means that there is always enough space to
the right of the diagonal. To construct an upper triangular matrix in A (see Figure 4.6a),
we perform a breadth-�rst search (BFS). The BFS processes the inner vertices of the
spanning tree �rst and at the end all leaves. Using the aforementioned observation
of the number of leaves, we know that there is always enough space to the right of
the main diagonal. For the chord partition of the circuit matrix B, we are always able
to adjust the entries such that the lower and upper triangle of the matrix have zero
entries only (Figure 4.6a and b; bottom right partition). We describe the BFS in the
following.

LetT be an arbitrary but �xed spanning tree and let B be the base of the columns of
the circuit matrix constructed from spanning treeT . We start at some vertex u ∈ V (G)
(see Figure 4.6c vertex 3) and process its incident edges {u,v} ∈ ←→E (T ). We add the
columns of the incident edges to an empty matrixA′ and the adjacent verticesv ∈ V (G)
as row. We proceed the aforementioned procedure with the next row’s vertex v .
Afterwards, we add the cycles c ∈ C that are in the circuit matrix base B. Since
each cycle in the base contributes one nonzero chord entry, we add for each cycle
the corresponding chord column ←→e ∈ ←→E (G) \ ←→E (T ). The resulting matrix is of the
form A′ B

( IE(T ) IE(G )\E(T )
BE(T ) BE(G )\E(T )

)
. We can conclude this discussion with the following

lemma.

70



A Mathematical Model for the Feasibility Problem of Electrical Flows Section 4.1

Lemma 4.10. Let A =
( I
B
)
be the matrix formed by the incidence matrix I and circuit

matrix B. The matrix’s columns and rows can be permuted such that we get the form

shown in Figure 4.6a.

To investigate the TUM property, we take a look at the intersections of the matrix A
that are represented by all four partitions (see Figure 4.6a). Thus, we distinguish
between the following three main cases.
Case 1: The intersection between the chord and spanning tree partition of

(a) the incidence matrix I (Figure 4.6a & b; top left and top right partition),
(b) the circuit matrix B (Figure 4.6a & b; bottom left and bottom right partition).

Case 2: The intersection between the incidence matrix I and the circuit matrix B of
(a) the spanning tree partition (Figure 4.6a & b; top left and bottom left partition),
(b) the chord partition (Figure 4.6a & b; top right and bottom right partition).

Case 3: The intersection of all four partitions.
Since each matrix is TUM by itself Case 1 is unproblematic (see Lemma 4.4). In Case 2,
we are already able to �nd a square submatrix with determinant unequal ±1 or 0
(see Figure 4.6b row 5 columns e and d). In Case 3 it is also possible to construct a
graph such that there is a submatrix, where the determinant is 2 (see the example
in Figure 4.6a and b). Inverting the direction of all cycles or edges has no in�uences
on the determinant. Same holds for Case 2. Note that inverting the direction of the
edges does not help, since the direction changes in the incidence and circuit matrix
and thus, it only changes the sign of the determinant.

Assume that a �ow is a function f : E → Z that is an integral �ow, we get a system
of integral equations (IE). Such integral systems of equations or ILPs are usually a
hint that the underlying problem is NP-hard [GJ79, p.245, MP1]. A relaxation of the
function f (i. e., mapping to R instead of Z) does not necessarily yield an integral
solution, since the polytope vertices do not lie on integral coordinates (see Lemma 4.9).

Thus, with this technique we are not able to solve the problem by Felsner [Fel13,
pp.17�., Theorem 4.1] in polynomial time. However, in Section 4.1.2 we see a technique
that leads to an integral electrical �ow. Another possibility would be to restrict the
algorithm in Section 4.5 to integral �ows only.

4.1.2 Scalability of Electrical Flows

As already mentioned by Goldberg and Tarjan [GT89, p.114] a lot of �ow algorithms use
scaling techniques. Whether it is the scaling of the capacity—introduced by Edmonds
and Karp [EK72]—or the scaling of the excess that was introduced by Ahuja and Orlin
[AO89]. For electrical �ows, we will use scaling, too. The following scaling lemma
follows directly from Equations 4.1–4.3 and 4.13.
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Lemma 4.11 (Scaling). Every non-zero electrical �ow f ′ : E → R>0 can be rescaled to

a feasible electrical �ow f by applying a scaling factor χ , where

χ B max
(
max
u ∈VD

pd (u)

pd (u)
,max
u ∈VG

pд(u)

pд(u)
,

)
≤ χ ≤ min

(
min
e ′∈E

cap(e ′)
f ′(e ′)

, min
u ∈VD

pd (u)

pd (u)
, min
u ∈VG

pд(u)

pд(u)

)
C χ

to f (e) = f ′(e) · χ for all e ∈ E.

Proof. Assume #»

f ′ is an electrical �ow complying Equations 4.7 and 4.10 or alterna-
tively Equations 4.1–4.3 and 4.13. Multiplying #»

f ′ by a scalar χ yields in a �ow χ ·
#»

f ′ =
#»

f that is still an electrical �ow, since it is only a scaling of an unrestricted vector.
The latter means that multiplying Equations 4.7 and 4.10 (assuming ∆θv ≡ f ) by a
scalar (standard operation on a �eld) yields in a magnitude increase of all vectors
including #»

f . However, to scale an electrical �ow to a feasible electrical �ow the �ow
has to comply with the capacity constraints (Equation 4.9).

For χ ≤ χ we have

f (e) = χ · f ′(e)

≤ χ · f ′(e)

= min
e ′∈E

cap(e ′)
f ′(e ′)

· f ′(e)

≤
cap(e)
f ′(e)

· f ′(e)

= cap(e).

Note that we included the maximum generation and demand pд = χ · pд
′(u) ≤

χ · pд
′(u) = minu ∈VG pд (u)/pд ′(u) · pд

′(u) = pд(u). �

Note that the last lemma would be much simpler if we make the bounded network to
an unbounded network. For this we will use Lemma 5.3 on Page 118 (see also Figure 5.5).

Lemma 4.12 (Scaling Restatement). Let N = (G,VG ,VD, cap,b,pд,pд,pd ,pd ) be a
power grid with minimum and maximum generations and demands. We model the upper

and lower bounds of the generations and demands in the same fashion as in Lemma 5.3

(Figure 5.5 on page 117) as lower and upper capacities. The edge capacities are cap ≡ 0
and cap ≡ cap. Every non-zero electrical �ow f ′ : E → R>0 can be rescaled to a feasible

electrical �ow f by applying a scaling factor χ , where

χ B max
e ′∈
←→
E

cap(e ′)
f ′(e ′)

≤ χ ≤ min
e ′∈
←→
E

cap(e ′)
f ′(e ′)

C χ

to f (e) = f ′(e) · χ for all e ∈ E.
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We can use the latter two results to up scale or down scale electrical �ows. An s-
t-network is a network with one generator {s} C VG (i. e., |VG | = 1) and one con-
sumer {t} C VD (i. e., |VD | = 1). Since there is a unique solution to a feasible elec-
trical �ow f (see Lemma 4.7) and we can rescale every electrical �ow by a factor χ
(Lemma 4.12), we chose an edge with the maximum violation of the capacity constraint,
compute the factor χ , and scale the �ow on all edges in the network down accord-
ing to χ . The next lemma follows directly from Lemma 4.12, since χ is the largest
possible scaling such that #»

f yields a feasible electrical �ow. This �ow represents the
maximum possible feasible electrical �ow for an s-t-network that is equivalent to
a DC maximum power �ow (DC MPF). Note that for s-t-networks there is only one
controllable generator that means the MPF is unique, too.

Lemma 4.13. For an s-t-network N any non-zero electrical �ow f ′ : E → R>0 can be

rescaled to an MPF by using a scaling factor of χ (see Lemma 4.12).

Note that for multiple generators the MPF is not necessarily unique, since di�erent
real power generations pд can lead to the same optimal value OPTMPFP(N).

4.1.3 Integral Electrical Flows

In general, we can assume that the parameters of a DC power grid N , such as the sus-
ceptance b, are rational Q and thus, the equations constitute a rational polytope, since
the cuts of the hyperplanes can only constitute rational numbers (see De�nition 4.14).

De�nition 4.14 (Rational Polytope; Schrijver [Sch03, p.61]). A system of linear in-

equalities of the form {
#»

f ∈ Rm | A
#»

f ≤ # »pA}, where A ∈ Qn×m
and

# »pA ∈ Qn
, is

called a rational system of linear inequalities. A rational system of linear inequalities

constitutes a rational polytope. The latter means that all vertices of the polytope lie on

rational coordinates. Such a rational polytope represents the convex hull of a �nite set of

rational vectors.

Naturally, feasible electrical �ows are not integral (see Lemma 4.9), which means
that feasible electrical �ows are not integral for every right-hand side vector # »pA. Let f
be a feasible electrical �ow. If we neglect the capacity constraints (see Equation 4.9;
or equivalently de�ne cap ≡ ∞) and relax the generation and demand constraints.
Assuming that the �ow f ∈ Q then we can rescale the �ow to an integral �ow using
the least common multiplier (LCM) and the technique presented in Lemma 4.12.

Theorem 4.15 (Integral Electrical Flow). If there is a (nonzero) solution to an electrical

�ow f with f ∈ Q then there is a nonzero integral electrical �ow that can be reached by

scaling.

Unfortunately, the scaling to integral electrical �ows (Theorem 4.15) does not answer
the question of the worst case size of integral electrical �ows. This highly depends on
the right-hand side vector.
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Figure 4.7: A plane single-source s and single-sink t graph G (dark gray vertices and edges)
and its combinatorial dual graph G? (cyan blue vertices and edges). Adding the edge e (dark
gray dashed line) divides the outer face into two faces representing the faces that include
the dual source s? and dual sink t? of the dual graph. Note that since we have a one-to-one
correspondence of the edges, adding the edge e in G is symmetrical to adding the edge e?

in G?.

4.1.4 Planar Graphs

We will focus on planar graph in this chapter, which we will introduce in this section.
Cain et al. [COC12, p.13] mention that power grids are planar. A graph is called planar

if it can be embedded into the plane without any edge crossings, i. e., the edges have no
common point, but the two vertices representing the endpoints of an edge. However,
note that there is usually more than one embedding for a graph G that is planar. Thus,
let us assume a �xed planar embedding E of a graph G into the plane with G(E) � G
(i. e.,G(E) is isomorphic toG) and an injective function µE : V → R×R meaning there
is a correspondence between the vertices V of the graph and the geometrical points P
of the plane embedding. An edge set E(G) of G(E) is a subset of a topological space T ,
where each edge in G(E) is a Jordan curve in T and the incidences and adjacencies
are de�ned accordingly [GT01].

For power grids such an embedding is usually given by the geographical location
of the network components, where P represents the locations of the buses in terms
of latitude and longitude. In addition, we assume a network N = ( G, VG , VD , cap,
b, pд , pд , pd , pd ) with |VG | = 1 and |VD | = 1. The vertices that represent the single
generator and single demand are denoted by source s and sink t , respectively.

For plane graphs, we have the concept of duality, which we will link with the results
of duality given in Section 4.1.5. The geometric dual of a plane primal graphG is called
the dual graph G?. An example is given in Figure 4.7. To construct a dual graph, we
introduce the concept of a face. We denote faces by c . An inner face is a region that
is bounded by edges and vertices in graph G. We say that these edges are incident
to the face. The outer face is the unbounded region (see Figure 4.7 face ct ). The dual
graph G? is constructed by introducing a vertex for each face and connecting two
vertices if the faces have an edge in common. Note that we introduce an edge in the
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dual graph G? for each edge in the primal graph G. Note that a face might represent
more than just a cycle, e. g., if vertex w in Figure 4.7 is a graph itself.

4.1.5 Matroids and Independence Systems

A lot of model transformations, properties, and relationships that we use in the
following with regard to matroids (see the postulates of Whitney [Whi35, p.510,
Theorem 1]) are based on the discussion by Seshu and Reed [SR61] and Whitney
[Whi31, Whi35]. A matroid [Whi35] represents a generalization of a graph [Whi31]. A
matroid is an abstraction of the independence term that is used in di�erent �elds such
as graph theory and geometry. Though di�erent matroids are considered in di�erent
�elds, the consensus stays the same. We recall the de�nition of a matroid by Korte and
Vygen [KV00, pp.279] (�rst version was given by Whitney [Whi35, p.510]). A matroid

is an ordered pair (U ,I), where U is the universe and I ⊆ P(U ) is an independence

system, which satis�es the following three axioms.

Axiom 1. ∅ ∈ I (neutral element).

Axiom 2. If I ∈ I and I ′ ⊆ I then I ′ ∈ I (monotonicity).

Axiom 3. If I1, I2 ∈ I with |I1 | < |I2 | then there is an e ∈ (I2 \I1) such that I1∪{e} ∈ I
(augmentation).

Note that the Axiom 1 and Axiom 2 represent axioms that also hold for any indepen-
dence system. However, the Axiom 3 makes it a matroid that is a generalization of the
term linear independence. Whitney [Whi35] de�nes a base as a maximal independent
submatroid and a cycle as a minimal dependent submatroid.

De�nition 4.16 (Whitney [Whi35, p.509]). A subgraph of a graph is independent if it

contains no cycles.

In this work, we use an important mathematical principle called duality. In di�erent
research areas it has di�erent meanings. However, for us it basically means that if
there is a bijection between the edges (i. e., columns) in I and the edges in B and for a
submatroid I′ of I and the corresponding dual B′ in B, we have the relationship rk(B′) =
rk(B) − n(I′), then I is a dual of B and B is a dual of I [Whi35, pp.521�.]. The latter is
called involution implying that the dual of the dual of I is I itself. Though “every matroid
has a dual” [Whi35, p.522, Theorem 22] the concept applies from a graph-theoretical
perspective to plane graphs only. Only plane graphs have a dual graph.

The following theorems state very central results that are used in this work.

Theorem 4.17 (Whitney [Whi35, p.527, Theorem 31]). For any graph G the matroids

corresponding to its incidence matrix I and its circuit matrix B are duals.
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For graphs we restricted the duality to plane graphs, since there is only a dual graph
if the primal graph is planar. For matroids this restriction does not hold and thus, if we
do not restrict ourself to the plane (i. e., sphere with genus 0) but other surfaces with
genus greater 0, we can still embed a non-planar graph on a more complex surface
without any crossing by making use of the holes. An example is the embedding of
the K5 on a torus (i. e., surface of genus 1). Note that we focus on planar graph and
genus 0.

The aforementioned duality (see Theorem 4.17) applies to the matroids I and B.
The next theorem follows from Axiom 2 and the aforementioned discussion of the
incidence matrix.

Theorem 4.18 (Whitney [Whi35, p.510, Theorem 1]). A set I′ ⊆ I is independent if
and only if it is contained in a base, or, if and only if it contains no cycles.

The next lemma follows from Theorem 4.17 and is illustrated in Figure 4.7.

Lemma 4.19 (Seshu and Reed [SR61, p.85, Corollary 4-24]). If G1 and G2 are dual
graphs, the incidence matrix of either graph is a circuit matrix of the other (with the

proper rank, and each row representing a cycle); that is

I1 = B2 and I2 = B1.

The lemma concludes the duality and is extensively used in this chapter (see Sec-
tions 4.3.2 and 4.5).

4.2 Electrical Preserving Transformations

In this section, we introduce some standard reduction rules used in literature that lead
in the end to an algorithm to solve the DC FEAS. Most transformations make use of the
superposition principle for linear power grids, e. g., the ∆-Y - and Y -∆-transformations.
The superposition principle holds (i. e., used for the superposition of, e. g., forces),
since the constraint matrix A is a linear map and thus, superposition becomes a simple
addition of linear equations (i. e., standard operation in a �eld F ). Though we give
rules to compute the capacity cap, these formulas can be dependent on the actual
�ow (see Reduction Rule 4.26). Computing any electrical �ow becomes trivial if we
contract the graph to one edge since on trees the electrical �ow is equivalent to a
graph-theoretical �ow [Lei+15a][LGH15, p.9, Lemma 4].

Recall that we have a unique electrical �ow in s-t-graphs (see Lemma 4.7), we can
scale it to a multiple such that it complies with the capacity constrains (Equation 4.9).
Thus, we are able to neglect the capacity constraints and rescale the electrical �ow
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Figure 4.8: Three example graphs in which we label each vertex u ∈ V that is represented
by a cycle with a voltage angle θv (u). If the voltage angles are not important, we just
use standard bullets . On the edges, we write the �ow f and the edge’s capacity cap in the
form f /cap. If the susceptance b is important for the transformation, we write it on the edge.
The series-parallel-contraction and contraction of super�uous edges in energy networks
simpli�es the graph structure. (a) In a series-contraction a path is contracted to a single edge.
(b) In a parallel-contraction multiple parallel edges (multi-edges) are contracted to one edge.
(c) A scenario where shortening of super�uous edges (Reduction Rule 4.25) is reasonable.
This �gure is adapted from [Ake60, p.313, Figure 4]. The upper �gure is an example, where
the capacity of edge cap(u,v) ≥ min

( ∑
{ui ,u }∈E cap(ui ,u),

∑
{vi ,v }∈E cap(vi ,v)

)
. In the bottom

�gure the resulting graph after contracting the super�uous edge {u,v} to a vertex x is shown.

afterwards such that the capacity constraints are ful�lled using Lemma 4.13. From
the Equations 4.1–4.3 and 4.13, we have only one component that has a crucial in�uence
on the electrical �ow and that is the susceptance b. The susceptance represents a ratio
that can be interpreted as how many electrons go through a path. Thus, the notion of
electrical preserving is purely susceptance based.

De�nition 4.20 (Electrical Preserving Transformation). Let f be a given �ow and

let θv (u) be the voltage angles before the transformation for all u ∈ V (G) with regard

to f . An electrical preserving transformation T onN is a function T : M(N) →M(N)
with (G = (V ,

←→
E ),b) 7→ (G ′ = (V ′,

←→
E ′),b ′) and new voltage angle assignments θv ′(u)

for all u ∈ V ′ such that the susceptances are transformed in such a way that for the

�ow f we have θv ′(u) = θv (u) for all vertices u ∈ (V ∩V ′).

Transformation rules are useful to simplify the network and compute network
parameter more e�ciently. Examples are the e�ective values, e. g., e�ective resis-
tance, conductance/susceptance, the “e�ect of earth admittances on the balance of a
Wheatstone bridge and earth capacity e�ects in AC” [But21, Ros24], and the e�ective
unbalanced capacity [Ros24, p.916].
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For edges that operate in series—meaning they represent a path—where there is no
generator or demand vertex in between, we know that the �ow f on each edge along
the path is the same. Lets assume a path with two edges {u,v}, {v,w} ∈ ←→E . Since all
mappings are linear and we work on a �eld F (i. e., here it is R), we get the following
relationship

(
∆θv 1(u ,v)+∆θv 2(v ,w )

)
/f = 1/b1(u ,v) + 1/b2(v ,w ) = 1/b(u ,w ) with f (u,v) =

f (v,w) = f , which we will generalize in the following rule.

Reduction Rule 4.21 (Series Contraction). Let π (u,w) be a simple terminal-free path

(i. e., for internal vertices of the path holds that v ∈ V \
(
{u,w} ∪ VG ∪ VD

)
) whose

internal vertices v ∈ π (u,w) with v , u,w have degree deg(v) = 2. Then, such a

path π (s, t) B
(
(s,u1), (u1,u2), . . . , (ui , t)

)
is equivalent to one edge (s, t) (see Figure 4.8a)

with the susceptance, voltage angle di�erence, and capacity being

b(u,w) =
©«

∑
e ∈π (u ,w )

b(e)−1
ª®¬
−1

, (4.18a)

∆θv (u,w) =
mine ∈π (u ,w ) cap(e)

b(u,w)
, (4.18b)

cap(u,w) = b(u,w) · ∆θv (u,w), (4.18c)

respectively.

For multiple parallel edges between two vertices u,v ∈ V (G), we can make the
observation that the voltage angles θv (u) and θv (v) are the same for each edge. Thus,
the voltage angle di�erence ∆θv (u,v) is the same. Since we work on a �eld F and
have linear maps only, we do a simple addition operation on a �eld such that we
get

(
f ({u ,v }1)+f ({u ,v }2)

)
/∆θv (u ,v) = b({u,v}1) + b({u,v}2) = b(u,v) for two parallel

edges {u,v}1, {u,v}2 ∈ ←→E . We generalize this to multiple edges in the following rule.

Reduction Rule 4.22 (Parallel Contraction). Let p : ←→E → {{u,v} | u,v ∈ V ;u , v}
with {u,v}i 7→ {u,v} with 1 ≤ i ≤ k being k parallel edges. Let the parallel edges

be ei : {u,v}i ∈
←→
E with 1 ≤ i ≤ k , i. e., p(ei ) = p(ei+1) for all 1 ≤ i ≤ k − 1. These

parallel edges are equivalent to one edge (see Figure 4.8b) with the susceptance b, voltage
angle di�erence ∆θv , and capacity cap being

b(u,v) =
∑

{u ,v }i ∈
←→
E

b
(
{u,v}i

)
, (4.19a)

∆θv (u,v) = min
{u ,v }i ∈

←→
E

(
∆θv

(
{u,v}i

) )
, (4.19b)

cap(u,v) = b(u,v) · ∆θv (u,v), (4.19c)

respectively.
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Every vertex v ∈ V has a voltage angle θv (v) that can be interpreted as a potential.
For a self-loop the voltage angles at both ends are the same and thus, the �ow f on
the self-loop is zero (see Equation 4.13).

Reduction Rule 4.23 (Self-loop Contraction). Let p : ←→E → {{u,v} | u,v ∈ V } be a
function with {u,u} 7→ {u}, where p(e) = {u} with e ∈

←→
E is a self-loop with both ends

of edge e ending in u. Then the edge e can be removed without any electrical e�ect, but

with one edge less (see Equation 4.13 with the additional note that both voltage angles

are the same and thus, the di�erence is zero).

Reduction Rule 4.24 (Degree-1 Contraction). Let u ∈ V \ (VG ∪VD ) be a vertex with
degree deg(u) = 1 with its only edge (u,v). Then u can be removed.

The next reduction rule can be used for shortest paths and graph-theoretical �ows.
However, in general it is not applicable for electrical networks. We remark that in the
next section we only work with shortest paths and graph-theoretical �ows.

Reduction Rule 4.25 (Shortening of Super�uous Edges [Ake60, p. 313, Rule 3]).
Let u ∈ V and let {u,w} ∈

←→
E be an incident edge with capacity

cap(u,w) ≥ min ©«
∑

{u ,v }∈
←→
E \{{u ,w }}

cap(u,v),
∑

{w ,v }∈
←→
E \{{u ,w }}

cap(w,v)ª®¬
(see Figure 4.8c top) then we can contract verticesu andv to a new vertex x (see Figure 4.8c

bottom).

A more general example of the latter transformation is applied on [Ake60, p. 316,
Figure 7] in the third transformation.

The next graph transformations are more complex and were �rst introduced by Ken-
nelly [Ken99]. The ∆-Y -Transformation (also known as Delta-Wye- or Triangle-Star-
Transformation) and Y -∆-Transformation are inversions to each other.

Reduction Rule 4.26 (∆-Y -Transformation). Let u, v , andw form a complete graph

with the edge set

←→
E ∆ ⊆

←→
E (see Figure 4.9a). This delta ∆ can be transformed to a wye Y

by adding a new vertex c representing the center of the wye Y to V and new edges to the

triangle’s vertices

←→
E ∪

{
{c,u} | {u,v} ∈

←→
E ∆

}
\
←→
E ∆ (see Figure 4.9b).

b(u, c) =
b(u,v) · b(u,w) + b(u,v) · b(v,w) + b(u,w) · b(v,w)

b(v,w)
(4.20a)

cap(u, c) = cap(u,v) + cap(u,w) −
(
f (v, c) − f (w, c)

)
(4.20b)

The inverse rule of the ∆-Y -transformation is denoted by Y -∆-Transformation.
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Figure 4.9: The delta-wye- (Reduction Rule 4.26) and wye-delta-transformations (Reduction
Rule 4.27) represent possible transformation rules in electrical networks. In this example, we
have a graph with three (respectively four) vertices . If we explicitly compute the susceptances
we write the susceptance b on each edge. (a) The triangle ∆ can be transformed to a star Y .
Recall that we have only linear maps and work on a �eld F (here R). Thus, we can superpose
the paths that is a simple addition operation, e. g., (v,w) is equal to the series circuit of (v,u)
and (u,w), which is parallel to (v,w) meaning

(
(v,u), (u,w)

)
| |(v,w). This electrical addition

can be done for the susceptances b and electrical (e. g., power) �ows p. The voltage angle
(potential) di�erence stays the same ∆θv . (b) This star Y can be transformed to a triangle ∆ and
can use similar properties as described in (a). (c) The ∆-Y -transformation increases the number
of vertices by one and decreases the number of cycles by one. (d) The Y -∆-transformation
increases the number of cycles by one and decreases the number of vertices by one.

Reduction Rule 4.27 (Y -∆-Transformation). Let c ∈ V \ (VG ∪VD ) be a vertex with a

degree of deg(c) = 3 (see Figure 4.9b and d). Thus, vertex c forms the center of a wyeY with

neighbors u, v , andw . The transformation of the wye Y results in a equivalent network

that is a delta ∆ by

←→
E ′′ ∪

{
{u,v} | {c,u} ∈

←→
E , {c,v} ∈

←→
E with u , v

}
\
{
{c,u} ∈

←→
E

}
and V \ {c} (see Figure 4.9a and c) with the susceptances

b(u,v) =
b(u, c) · b(v, c)

b(u, c) + b(v, c) + b(w, c)
. (4.21)

The basic idea of the latter transformation is that we remove a vertex c that is the
center of a wye Y and connect all its neighbors by an edge. Note that the previous
transformation removes a vertex from the graph, which reduces the size of the network.
The next transformation is a generalization of Reduction Rule 4.27.

Note that a star of arbitrary degree deg(c), where c is the center of a star, is a
more general notation for wye and in this case a polygon is a complete graph Kdeg(c)
representing a generalization of a triangle (i. e., K3).
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Reduction Rule 4.28 (Star-Polygon-Transformation [Ros24, p.916]). Let c ∈ V \(VG ∪
VD ) be a vertex with a degree of deg(c). Thus, vertex c forms the center of a star with

neighbors N (c). Transforming a star into a polygon by E ′ = E ∪
{
{u,v} | u ∈ N (c),v ∈

N (c) with u , v
}
\
{
{c,u} ∈ E | u ∈ N (c)

}
and V ′ = V \ {c}, we get the susceptances

b(u,v) =
b(u, c) · b(v, c)∑
{u ,c }∈E b(u, c)

∀u,v ∈ N (c). (4.22)

One of the �rst applications is given by Butterworth [But21] on the earth capacity
e�ects. Rosen [Ros24, p.917, Figure 3] calculates the e�ective conductance between
two terminals using the next transformation. Rosen [Ros24, p.917, Figure 4] calculates
the e�ect on the balance of Wheatstone bridges by the earth admittance between two
terminals using the latter transformation.

Note that if there is already an edge {u,v} ∈ ←→E , we can apply in addition to Reduc-
tion Rule 4.28 a parallel contraction in form of Reduction Rule 4.22. We now reference
two other reduction rules for the sake of completeness.

Reduction Rule 4.29 (Polygon-to-Chain-Reduction [SW85]). See Satyanarayana and
Wood [SW85] for more information.

Reduction Rule 4.30 (Trisubgraph-Y-Reduction [ST93]). See Satyanarayana and

Tindell [ST93] for more information.

We denote a graph G to be k-edge reducible if there is a series of application of
reduction rules (Reduction Rules 4.21, 4.22, 4.26 and 4.27) such that the resulting graph
has only k remaining edges.

Theorem 4.31 (Epifanov [Epi66]). Every biconnected plane s-t-graph with an (s, t)-edge
is 1-edge reducible.

0 1 2 3

n−1

1

n−2

0
m−2 m−1

2

Figure 4.10: A grid graph G of
size n ×m with n,m ≥ 2.

To understand the next result, we de�ne grid
graphs and minors. A (square) grid graph Ggrid =
(V grid, Egrid) (also known as lattice graph) is a plane
graph, where each edge has unit length and is drawn
either by a horizontal or a vertical straight curve.
The grid points are crossings represented by vertices
(Figure 4.10). A minor is a graph that can be obtained
from a graphG by contracting edges and by deleting
vertices and edges.
We use the following results to provide a �rst algo-
rithm for DC FEAS and MPFP on plane s-t-graphsG .
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Algorithm 1: s-t Planar DC FEAS(N ) & s-t Planar MPFP(N )
Data: A network N = ( G, VG , VD , cap, b, pд , pд , pd , pd ) with |VG | = 1 (i. e.,

{s} = VG ), |VD | = 1 (i. e., {t} = VD ), pд = pд = pд , and pd = pd = pd .
Result: Flow f (u,w) for all (u,w) ∈ E, �ow value F (f ,N), and voltage angles θv (u)

with u ∈ V .
1 E = planarEmbeddingOf(G) ; . PQ-Tree; see Section 4.5.2
2 Egrid = gridEmbeddingOf(G(E)) ; . see Lemma 4.34
3

(
N = N 0, . . . ,Nk =

(
({s, t}, {e ′}), {s}, {t}, cap′,b ′,pд,pd )

) )
= contractGridGraphToEdge(N(Egrid)) ; . see Lemma 4.35

4 f (e ′) = pд = pd ;
5 f = decontractEdgeToGridGraph((N 0, . . . ,Nk ), f (e

′)) ;
6 f = rescalePowerFlow(N, f ); . see Lemma 4.12
7 return f ;

Lemma 4.32 ([Tru89, p.144, Lemma 6]). Every plane graph is a minor of some grid

graph.

Let a grid graphGgrid = (V grid, Egrid) be a graph that is numbered column-wise from
left to right with 1, . . . ,m and row-wise from top to bottom with 1, . . . ,n (see Fig-
ure 4.10). Similar to Truemper [Tru89], we de�ne an extended grid graph G`

ex as a
graph on a grid with ` ≥ 2, where ` ∈ N represents the number of columns and
rows with 0 ≤ i ≤ ` − 1. Since the grid is quadratic, we have `2 vertices, and edges
connecting a vertex vi ,0 on the left border at row i

t

s v̀ -1,1 v̀ -1,̀ -1

v0,0

Figure 4.11: An extended
grid graph G`

ex with a grid of
dimension `×` and `2 vertices.

column 0 of the grid to a vertex v`−1,i on the bottom
border (see Figure 4.11) such that either the source s
or the sink t is located on the inner face (in Figure 4.11
the source s is on the inner face). We illustrated such
a graph G`

ex in Figure 4.11.

Lemma 4.33 ([Tru89, p.145, Lemma 13]). Any plane
graphG with (s, t) ∈ E and with one of the two terminals

(i. e., source s or sink t) on the outer face, is a minor of

some extended grid graph G`
ex with ` ≥ 2.

Note that it is always possible to use the inverse of
all reduction rules but Reduction Rule 4.28. In the following, we try to embed the
graph G such that the embedding has the form of an extended grid graph. We need
the concept of a face in the following (Section 4.1.4). For a plane graph G a face c is a
region that is bounded by the edges and vertices of G. Two faces are incident if they
share at least one edge.

Lemma 4.34. Any plane s-t-electrical-networkN with at least one terminal on the outer

face can be embedded into a grid in O(|V |) time.
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Figure 4.12: A graph with four vertices, �ve edges, and one additional edge e ′ = (s, t) ∈ E.
The shown steps represent the reduction of the smallest possible extended grid graph G`

ex
with ` = 2. The steps are given in Truemper [Tru89] for graphs in general. From (a) to
(b) we just swap the outer edge to the inner face. From (b) to (c), we do a triangle to star
transformation (see Reduction Rule 4.26) of the lower left triangle. In the last step from (d) to
(e), we do a series contraction (see Reduction Rule 4.21) and contract the edge in the bottom left
with e ′. To contract the remaining graph to one edge e ′ = {s, t}, we do two series contractions
and one parallel contraction.

Proof. Note that the maximum degree of a grid graph Ggrid = (V grid, Egrid) is at
most 4. Thus, we split all vertices v ∈ V (G) with degree of at least deg(v) ≥ 5.
With deg(v) ≤ 2nv + 2, we split them into nv = ddeg(v)−2/2e = ddeg(v)/2e − 1 vertices vi
with 1 ≤ i ≤ nv with Vv B {vi | 1 ≤ i ≤ nv ,v ∈ V : deg(v) ≥ 5} such that V grid =⋃
{v ∈V |deg(v)≥5}Vv ∪ (V (G) \ {v}) and Egrid = E(G) ∪

{
{vi ,vi+1} | vi ,vi+1 ∈ Vv ,∀v ∈

V grid \V (G)
}

with susceptance b(e) = ∞ with e ∈ Egrid \ E(G). We set the susceptance
to in�nity such that ∆θv (vi ,vi+1) = f (vi ,vi+1)/b(vi ,vi+1) = f (vi ,vi+1)/∞ ≈ 0 meaning that
the voltage angles θv (vi ) are the same for all vi ∈ Vv with 1 ≤ i ≤ nv . Since the
average degree of a �nite plane graph is strictly less than 6, we get 2 new vertices per
vertex on average and thus, we have O(|V |) vertices.

Assume an arbitrary planar embedding of Ggrid. Thus, we choose an inner face cs1
that is incident to the vertex s and choose a cut in the dual graph S ⊆ E between cs1 and
the outer face co . LetG ′grid = (V

′
grid, E

′
grid) be a new graph with vertex setV ′ = V ∪{s ′}

and edge set E(G ′) = E(G)∪
{
{s, s ′}

}
\S with b(s, s ′) = ∞. This graph can be embedded

in O(|V |) time into a grid of size at most |V | × |V | using, e. g., the algorithm of Biedl
and Kant [BK98]. Thus, we need O(|V |2) space. This takes O(|V |) time. �

We note that the outer edges that make the grid graph into an extended grid graph
can be added by applying the following steps: We add the remaining edges in S . We
place s ′ on the bottom left corner. Each time we add an edge {u,v} ∈ ←→E we check
if uiu ,0 = v`−1,iv . If neither is true then we add iv − iu new rows if iu < iv or new
columns if iv < iu .

Every plane electrical network can be embedded into a grid by using the aforemen-
tioned algorithm. Thus, we make use of the following lemma.
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Lemma 4.35 ([Tru89, pp.142�., Theorem 2 & Lemma 14]). Every (extended) grid graph
with one source and one sink is 1-edge reducible.

So far we explained the di�erent parts of the algorithm. Note that we assume a
plane s-t-graphG for the algorithm. The algorithm (see Algorithm 1) works as follows.
From Lemmas 4.34 and 4.35, we know that any plane graph can be embedded into
a grid (see Algorithm 1 Line 2) and that every grid graph can be contracted to a
single edge e ′ (see Algorithm 1 Line 3 and Figure 4.12). In each ∆-Y -reduction, we
compute the susceptances by the aforementioned rules (see Reduction Rules 4.26
and 4.27). In the decontraction step (see Algorithm 1 Line 5), we compute based on
the given susceptances on the di�erent contraction levels the voltage angles θv (u)
with u ∈ V i and the �ow for each contraction level i . We start withNk consisting of a
single edge e ′, over Nk−1, and in the end we compute the voltage angles and the �ow
for the original network N 0. For each level transition, we apply the reverse of the
applied transformation rules given in Reduction Rules 4.21–4.24, 4.26 and 4.27. Note
from Lemma 4.12 on Page 72 that the capacities can be neglected, since we are always
able to rescale a nontrivial electrical �ow. This rescaling is not necessary for DC FEAS,
since a capacity violation would imply a non-existing feasible electrical �ow. However,
assume that we apply an arbitrary �ow on e ′ (see Algorithm 1 Line 4) resulting in
an electrical �ow that is not necessarily feasible, since the capacity constraint might
be violated. To �x the violation, we use Lemma 4.13 on Page 73 on the decontracted
graphG with �ow f to rescale the �ow to a feasible, e. g. MPF (see Algorithm 1 Line 6).
From Truemper [Tru89], we get the following running time.

Lemma 4.36. The algorithm runs in O(|V |3) time.

The contraction step of the algorithm Algorithm 1 Line 3 is illustrated in Figures 4.12
and 4.13 for an extended grid graph.

Lemma 4.37. A planar s-t-graph G can always be contracted to one edge by a series of

reduction rules (see [Tru89]).

For the reverse operation, we remark that the voltage angles in a parallel and series
contraction do not change. For the series contraction, we have to compute the voltage
angles for the inner vertices using Equation 4.13. For the ∆-Y - andY -∆-transformation,
the voltage angles at the three outer vertices do not change. For the center of the star,
we have to compute the voltage angle using Equation 4.13. The reconstruction steps
can be done during the recursive return. If the capacities are violated, we rescale the
�ow f using Lemma 4.12. From the previous discussion follows the next theorem.

Theorem 4.38. The algorithm computes a feasible electrical �ow for a planar s-t-
graph G.
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Figure 4.13: A general extended grid graph G`
ex with `2 vertices. Blue edges and blue vertices

represent the edges and vertices of the transformation and replace the orange marked edges.
The steps are basically given by Truemper [Tru89] for graphs in general. From (a) to (b) we
use the steps already shown in Figure 4.12.

4.3 Representations and Formulations of Electrical Flows

Cain et al. [COC12, p.13] mention that power grids are planar (see Section 4.1.4) and
undirected. Recall from Section 3.1 that we can transform any undirected graph to a
directed graph, which we do for notational conveniences. The planarity of graph G is
a crucial property of the network N for this section. In addition, we assume that the
graph G is biconnected.

4.3.1 The Duality Concept for Graphs

Using the duality of the incidence matrix I and circuit matrix B that was shown
in Section 4.1.5, we translate the algebraic duality of the two matrices into a graph
theoretical duality (Section 4.1.4). Recall that a base of a matroid (see De�nition 4.2) is
a maximum independent set. The complement of a base in the primal graph G is the
base in the dual graph G? (see Lemma 4.19).

Theorem 4.39 ([Whi35, p.522, Theorem 23]). Let E be a planar embedding of a graphG .
The graphs G and G?

are duals if and only if there is a bijection µdual : E(G) → E(G?)

between their edges such that bases in one correspond to base complements in the other.

The construction in Section 4.1.4 implies a bijection of edges in the primal graph G
to edges in its dual graph G?. It is called a combinatorial dual in terms of the Whitney
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duality (bijection of edges; and a set of edges forming a cut corresponds to a cycle in
the combinatorial dual). Note that the dual of a dual graph G? is isomorphic to the
primal graph G as long as G is connected.

From Equations 4.1–4.3, we know that a feasible KCL �ow on the primal graph G is
equivalent to a graph theoretical �ow in the primal graphG . It follows from Lemma 4.19
that a feasible KVL �ow corresponds to a graph theoretical �ow in the dual graph.
Thus, we get the following lemma.

Lemma 4.40. A feasible KVL �ow f G in the primal graph G is equivalent to a feasi-

ble KCL �ow f G? in the corresponding dual graph G?
.

Note that we can apply any �ow f on a self-loop e = (u,u), since it is redundant.
Thus, we get the following observation.

Observation 4.41. Let the primal graphG be a tree. Thus, there is only one face that is

equivalent to the outer-face ct . The dual graph consists of self-loops only. Let f be any

feasible �ow on G. Then, �ow f is also a feasible electrical �ow.

Recall from Section 4.2 that every self-loop can be removed (see Reduction Rule 4.23).
The aforementioned observation is a geometrical explanation for planar graphs of the
results of Lehmann et al. [LGH15, p.9, Lemma 4] and Leibfried et al. [Lei+15a] that
on trees any graph-theoretical �ow is also electrical feasible.

We note that a series contraction (see Reduction Rule 4.21) inG is an equivalent trans-
formation to the parallel contraction (see Reduction Rule 4.22) in the dual graph G?.
We highlight that by the following structural observation.

Observation 4.42. The series contraction in the primal graph G is equivalent to the

parallel contraction in its dual G?
and vice versa.

Observation 4.43. The ∆-Y -transformation in the primal graph G is equivalent to

the Y -∆-transformation in the dual graph G?
and vice versa.

In the following section, we will make use of the duality by reformulating the
problem.

4.3.2 Simultaneous Flow Representation

We use the aforementioned duality and structure of the problem to reformulate DC FEAS
in terms of the Simultaneous Flow Problem (SFP). For SFP the graphs are not neces-
sarily duals, but share some edges.
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Figure 4.14: We use the example graph of Felsner [Fel13, p.18]. The susceptances are b ≡ 1,
the feasible electrical �ow f (e) is written on each edge e ∈ E, and we neglect the capacities
meaning cap ≡ ∞. (a) The example graph’s feasible electrical �ow is in this case the minimum
integer feasible electrical �ow f and the corresponding voltage angles θv . (b) The �ow f and
the voltage angle di�erences ∆θv can be separated into two graphs, which are the primal
graph G and its dual graph G?, respectively. (c) Since the susceptances are b ≡ 1 a similar
representation is a squaring of a 55 × 56 rectangle, where the width and the height of each
square is represented by the �ow in the primal and dual graph, respectively. Each vertex in the
primal and dual graph represents a horizontal or vertical segment, respectively. For clarity we
labeled the vertices for the primal graph only, since otherwise this �gure seems overloaded.
An edge represents a side of a square.

Simultaneous Flow Problem 2 SFP(N)

Instance: Two graphs G1 and G2, subsets E1 ⊆ E(G1) and E2 ⊆ E(G2), and a
bijection µSFP : E1 → E2.

Question: Are there nonzero KCL-feasible �ows f G1 and f G2 in G1 and G2 such
that for every edge e ∈ E1 we have f G1(e) = f G2(µSFP(e))?

The reformulation of DC FEAS separates the constraints—meaning KCL and KVL—
by the usage of two graphs, which we de�ne in the following. Recall that our graph is
planar and biconnected, and that we denote by µdual : E(G(E)) → E(G?) the bijection
of the edges with ei 7→ µdual(ei ) = e?i . An edge (u,w) = ei ∈ G corresponds to an
edge (c1, c2) = e?i ∈ G? and vice versa if and only if ei is incident to both faces c1
and c2, and e?i is incident to the faces u and w . Since there is no unique embedding of
a biconnected planar graph the mapping is not unique. This means that the bijection
is always related to some planar embedding of graph G.

Without loss of generality, we assume that �ow f is a function f : E → Z. Re-
call that we can always rescale f to a feasible electrical �ow that is non-integral
(meaning f : E → R) by using the scaling from Lemma 4.12.

From Theorem 4.17, we know that a graph’s base of the incidence matrix and the
corresponding base of the circuit matrix are duals. Given a graph and its dual, we

2After showing our results to Guido Brückner, he mentioned the SFP generalization to us. We would
like to thank him for that generalization of the biconnected planar s-t-DC FEAS-problem.
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know from Lemma 4.19 that the incidence matrix of either graphs is equivalent to
the circuit matrix of the other, whereby equivalent means here that an edge-cut at
a vertex in one graph represents a simple cycle in the other graph and vice versa.
The latter means that for a spanning tree T in graph G the set E ′ = E(G) \ E(T ) of
chords in one graph corresponds to a set E ′′ = {µdual(e) | e ∈ E ′} of edges in the
dual graph, where E ′′ constitutes a tree. Now, Theorem 4.39 and Lemma 4.40 can
be used to transform DC FEAS in terms of simultaneous �ows. An edge cut H at
vertex u ∈ V (G?) with H (u) = {e ∈

←→
E (G?) | u ∈ e} is a cycle c in the biconnected

planar graphG . A conservation of �ow atu means that the incoming �ow is equivalent
to the outgoing �ow. For the corresponding cycle c this means that �ows along the
cycle sum up to zero. Note that a �ow direction in G corresponds to a �ow direction
in G? and vice versa.

The following problem is equivalent to DC FEAS on s-t plane graphs.

s-t Planar DC FEAS(N )

Instance: A plane s-t-graph G, its dual graph G?, and the corresponding bijec-
tion µdual : E(G) → E(G?).

Question: Are there simultaneous �ows on G and G? such that f G (e) =
f G?

(
µdual(e)

)
· b(e) for all e ∈ E(G)?

In the objective of the reformulated s-t planar DC FEAS and DC MPFP, we can
easily see that this is a restatement of Equation 4.13 by replacing the phase angle
di�erence ∆θv (u,w) B θv (w) − θv (u) with the �ow in the dual graph f G?(µdual(e))
with e = (u,w) ∈ E. An example for the reformulation is given in Figure 4.14b.
In Figure 4.14a and b an electrical �ow with its unique voltage angle assignment
and its translation to simultaneous �ows is shown, respectively. Using simultaneous
�ows Equation 4.13 becomes Equation 4.23.

f G (e) = f G?

(
µdual(e)

)
· b(e) ∀e ∈ E (4.23)

Roughly speaking, the susceptanceb represents a gear ratio between the primal graph’s
�ow f G and the dual graph’s �ow f G? .

Theorem 4.44. A �ow f inG is an electrical �ow if and only if the primal �ow f G ≡ f
and the �ow f G? in the dual graph G?

comply the �ow conservation (KCL) and if for

every edge e ∈ E the �ow complies f G (e) = f G?

(
µdual(e)

)
· b(e).

Proof. The left-hand side of Equation 4.24a and Equation 4.24b comes from Equa-
tion 4.7 and Equation 4.10, respectively. Recall that we can reformulate Equation 4.10
with B(G) ·

#     »

∆θv =
#»0 in terms of �ows using Equation 4.14 with B′(G) ·

#»

f =
#»0 .

From Lemma 4.19, we know that the incidence matrix I and the circuit matrix B are
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duals meaning I(G) = B′(G?) and B′(G) = I(G?). Using the duality, we get for Equa-
tion 4.7 and Equation 4.10 the following.

I(G) ·
#  »

f G =
#»0 ⇔ B(G?) ·

#           »

∆θvG? =
#»0 (4.24a)

B(G) ·
#        »

∆θvG =
#»0 ⇔ I(G?) ·

#     »

f G? =
#»0 (4.24b)

From Equation 4.13 and Equation 4.24b we get Equation 4.25.

f G (e) = b(e) · ∆θ
v
G (e) (4.25a)

f G (e) = b(e) · f G?(µdual(e)) (4.25b)

The illustration of the relationship is given in Figure 4.15. �

Another equivalent representation is given in Figure 4.14c, which we describe in
the following.

4.3.3 Rectangular Representation

Another representation of simultaneous �ows was given by Felsner [Fel13, p.18] and is
shown in Figure 4.14c. We note that this is basically an adopted idea of Rosenstiehl and
Tarjan [RT86] that use a similar construction for rectilinear planar layouts but do not
use it for a squaring of an outer rectangle. This representation is in general denoted
by rectangular dissection R. Within this representation a vertex is either a horizontal
or vertical line segment dependent on whether the vertex is in the primal graph G or
dual graph G?. In Figure 4.14c, a horizontal segment corresponds to a vertex in the
primal graph G and a vertical segment corresponds to a vertex in the dual graph G?.
We illustrate the latter in Figure 4.14c for the primal graph by labeling the segments
with the corresponding vertices s,u1,u2,u3,u4, t ∈ V . An edge represents a side of a
square. Dependent on the graph a �ow on that edge a�ects either the horizontal or
vertical side ratio (i. e., the width or height of a rectangle).

Felsner shows that a special case of simultaneous �ow can be represented by squaring
of an outer rectangle. The case in Figure 4.14c shows such a special case, where all
inner partitions of an outer rectangle are squares. The reason for that is that the
susceptance b is b ≡ 1 and thus, Equation 4.23 becomes f G (e) = f G?

(
µdual(e)

)
for

all e ∈ E.
However, a more general de�nition that is closer to power grids would be to allow

arbitrary susceptances b(←→e ) with ←→e ∈ ←→E . Than the representation is not a squaring

of an outer rectangle. Meaning that the inner partitions are not necessary squares,
but can be rectangles with di�ering aspect ratio dependent on the susceptance b. An
example is given in Figure 4.15.

Note that from Lemma 4.40 we know that a feasible �ow in the primal graph G
models the actual (power) �ow that is equivalent to a current �ow i (see Section 3.3.2
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on Page 52) and that a feasible �ow in the dual graph G? models the voltage angle
di�erences ∆θv that is equivalent to the voltage drops v (see Section 3.3.2 on Page 52).
Recall that a �ow f G in the primal graph G represents one side of the rectangle
(in Figure 4.15c this would be the width) and the f G? in the dual graph G? represents
the other side of the rectangle (in Figure 4.15c this would be the height). Thus, the
surface of a rectangle represents the powerp, which explains the quadratic relationship
(see Lemma 4.45).

Lemma 4.45. The primal graphG and the dual graphG?
model the quadratic relation-

ship between voltage v and current i meaning p = v · i (see Equation 3.5).

Felsner [Fel13, p.8] restricted R to the case, where there is no point where four
rectangles meet each other. However, in Figure 4.15c we can see that this is possible
and does not cause any problem. Such a representation can be also seen as a segment
contact representation. We refer for the latter representation to Felsner [Fel13].

For a given graph the drawing of a squaring of rectangles is unique, which follows
from Lemma 4.7. In Section 4.5.1, we will see that a bipolar orientation exists if the
graph is biconnected. The embedding of biconnected planar graph is not unique, since
we can switch for example the order of parallel paths. However, from Lemma 4.7 we
know that the �ows are unique.

Lemma 4.46 (Unique Partition of a Rectangular Representation). The rectangles of a
rectangular representation have unique minimum integral sizes. The embedding of these

rectangles can vary.

This concludes a very important property of simultaneous �ows and a rectangular
representation. These representations separates the quadratic relationship and help
to understand important properties of electrical �ows, which we will see in the next
section. In the following, we will discuss the balancing property that will be used as a
criteria for termination and basically describes the con�ict resolution in each graph.

4.4 The Balancing Property

Electrical �ows have a property of balancing meaning the �ows do not congest certain
edges but spread the load over multiple paths from s to t . Note that this is the main
di�erence to graph-theoretical �ows that try—while maximized—to congest all edges
as much as possible. The balancing property of electrical �ows is equivalent to �ows
that minimize the total losses (Equation 4.26).

min
∑
e ∈
←→
E

f (e)2/b(e), (4.26)
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Figure 4.15: We use the example graph of Felsner [Fel13, p.18] that is also used in Figure 4.14.
The susceptances are b ≡ 1 and we neglect the capacities meaning cap ≡ ∞. We write the
�ows f on the edges or on the rectangle’s side. (a) We apply some feasible �ow f (i. e.,
complying the KCL and capacity constraints only) on graph G. The feasible �ow f is not a
feasible electrical �ow, since the voltage angles (distance labels)) θv at the vertices are not
unique. The latter can be seen in the double assignments at u3,u4, t ∈ V . Thus, the KVL is
violated. (b) It is always possible to transform a feasible �ow f into a feasible electrical �ow f ′

by scaling the susceptances b at certain edges such that the ratio f/∆θv ≡ f G/f G? ≡ b changes
the �ow f G? in such a way that it becomes feasible (i. e., complying KCL and thus, KVL) as
long as the susceptance b is not restricted meaning b ∈ [0,∞]. (c) In the geometric setting a
susceptance scaling represents an aspect ratio scaling (indicated by the arrows ↑). The bottom
right box would exceed the outer rectangle by one unit without the susceptance scaling of 2.
Without the susceptance scaling of 1/2 there would be a gap of one unit in the right center.

which is a quadratic function [Chr+11, p.275, Section 2.2, Energy Equation]. In this
section, we describe this property in terms of simultaneous �ows using algorithmic
properties that exploit the aforementioned structure (see Lemma 4.45)

Ford and Fulkerson [FF56, p.404, Section 3] introduced the duality between maxi-
mum �ows and shortest paths in which a minimum cut in G corresponds to a shortest
path in the dual graph G?. To use shortest paths, we �rst introduce a distance metric
for power grids. The distance between two vertices is usually the length of an edge or
time to pass that edge. The distance in an electrical network, is given by the potential
di�erence θv (w) − θv (u) that is the voltage angle di�erence ∆θv (u,w).

For a given �ow f the voltage angle di�erence on any u-w-path π (u,w) is given
in Equation 4.27 and is derived from Equation 4.13. We now give a generalization of
the voltage angle di�erence ∆θv that is original de�ned on edges to the voltage angle
di�erence on paths that is a distance function ∆θv : Π → F , where F is a �eld (e. g.,
R) and Π is a set of paths. Note that the equations that are build from Equation 4.27
constitute a matrix and the generalization is a simple sum of the rows that result
in Equation 4.13.

∆θv (π (u,w)) B
∑

(i , j)∈π (u ,w )

f (i, j)

b(i, j)
, (4.27)
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for a path π (u,w) ∈ Π with u,w ∈ V . For electrical �ows the metric is f (e)/b(e)

deduced from Equation 4.27. The Shortest Path Problem (SPP) computes a path
with minimum length π SP(s, t) Bminπ (s ,t )∈Π

∑
e ∈π (s ,t ) f (e)/b(e). Contrary, the Longest

Path Problem (LPP) computes a path that has the longest distance between two vertex
pairs π LP(s, t) B maxπ (s ,t )∈Π

∑
e ∈π (s ,t ) f (e)/b(e).

From the previous section (see especially Equations 4.10 and 4.13) we know that the
voltage angle assignments are unique and thus, we get the following observation that
is illustrated in Figure 4.16.

The distance between to vertices u,w ∈ V with (u,w) ∈ E is given by the voltage
angle di�erence ∆θv (u,w) B θv (w) − θv (u) with voltage angles θv that can be inter-
preted as distance labels. The voltage angle di�erence (i. e., the electrical distance) for a
path π (s, t) is given by ∆θv (π (s, t))=

∑
(u ,w )∈π (s ,t )∆θ

v (u,w)=
∑
(u ,w )∈π (s ,t )f (u ,w )/b(u ,w ).

Lemma 4.47 (Balancing Flow Property). Given a primal graphG and its dual graphG?
,

for which the shortest path π SP(s, t) ∈ Π(G) in G (respectively longest path π LP(s, t) ∈
Π(G)) can di�er to the shortest path π SP(s, t) ∈ Π(G?) in G?

(respectively longest

path π LP(s, t) ∈ Π(G?)). A �ow f is an electrical �ow if and only if the longest and

shortest path have the same length ∆θv (π SP(s, t)) = ∆θv (π LP(s, t)) inG with s, t ∈ V (G)
and ∆θv (π SP(s

?, t?)) = ∆θv (π LP(s
?, t?)) inG?

with s?, t? ∈ V (G?) (with respect to the

distance metric f/b).

Proof. ⇒ : First we show the one direction, where f is a feasible electrical �ow, which
implies that the length of all paths is equivalent ∆θv (π SP(s, t)) = ∆θv (π LP(s, t)).

Let f be a feasible electrical �ow. If ∆θv (π SP(s, t)) , ∆θv (π LP(s, t)) in G with s, t ∈
V (G) then there is no unique voltage angle assignment θv (u) for all u ∈ V (G). This
implies that f does not comply with the KVL (see Equation 4.13). If ∆θv (π SP(s

?, t?)) ,
∆θv (π LP(s

?, t?)) in G? with s?, t? ∈ V (G?) then there is no unique voltage angle
assignment in G? (see Equation 4.24), which means that f does not comply with
the KCL (see Equations 4.4–4.6). Any one of the two cases would be a contradiction
to f being a feasible electrical �ow (see De�nition 4.5).
⇐ : With the other direction, we show that if ∆θv (π SP(s, t)) = ∆θv (π LP(s, t)) then

this implies that f is a feasible electrical �ow. Given two paths from s to t denoted
by π 1(s, t), π 2(s, t) ∈ Π that merge at vertex x , meaning π 1(x, t) = π 2(x, t) C π . In
addition, we have given the distance metric f (u ,w )/b(u ,w ) then from ∆θv

(
π 1(s, t)

)
=

∆θv
(
π 2(s, t)

)
using the distance metric follows∑

(u ,w )∈π 1(s ,t )

f (u,w)

b(u,w)
=

∑
(u ,w )∈π 2(s ,t )

f (u,w)

b(u,w)
.

We de�ne the voltage angles on the source s and sink t to be θv (s) B 0, and θv (t) B
∆θv

(
π 1(s, t)

)
= ∆θv

(
π 2(s, t)

)
.
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θv (s) +
∑

(u ,w )∈π 1(s ,x )

f (u,w)

b(u,w)
+ π = θv (t)

θv (s) +
∑

(u ,w )∈π 2(s ,x )

f (u,w)

b(u,w)
+ π = θv (t)

Sinceπ = π 1(x, t) = π 2(x, t), θv (s) = 0, and the voltage angleθv (t) = ∆θv
(
π 1(s, t)

)
=

∆θv
(
π 2(s, t)

)
. It follows that∑

(u ,w )∈π 1(s ,x )

f (u,w)

b(u,w)
=

∑
(u ,w )∈π 2(s ,x )

f (u,w)

b(u,w)
= θv (t) − θv (s) − π .

Thus, the distances from the source s to the vertexx are the same meaning∆θv
(
π 1(s, x)

)
= ∆θv

(
π 2(s, x)

)
C θv (x). We can recursively proceed, which gives us the following

equality. ∑
(u ,w )∈π 1(s ,x )

∆θv (u,w) =
∑

(u ,w )∈π 2(s ,x )

∆θv (u,w)

This relationship is known from Equation 4.13 and restated by ∆θv (u,w) B
(
θv (w) −

θv (u)
)
=

f (u ,w )
b(u ,w ) . The phase angles on each side cancel each other out, but the source s

and the sink t .(
θv (u1) − θ

v (s)
)
+

(
θv (u2) − θ

v (u1)
)

+
(
θv (u3) − θ

v (u2)
)
+ . . .

. . . +
(
θv (un) − θ

v (un−1)
)
+
(
θv (ut ) − θ

v (un)
)
=

(
θv (t) − θv (s)

)
Since the source s and the sink t are for both paths π 1(s, t), π 2(s, t) ∈ Π the same
and both paths have the same distance ∆θv

(
π 1(s, t)

)
= ∆θv

(
π 2(s, t)

)
the voltage

angle assignments are unique. We get
(
θv (t) − θv (s)

)
=

∑
(u ,w )∈π 1(s ,t )

f (u ,w )
b(u ,w ) =∑

(u ,w )∈π 2(s ,t )
f (u ,w )
b(u ,w ) =

f (s ,t )
b(s ,t ) .

�

The intuition that electricity follows the path of the least resistance and tries to
balance itself leads us to a balanced �ow, where all paths have the same length from
any vertex to any other vertex. First, we introduce shortest paths for power grids that
represent one part of the intuition namely the path with the least resistance. Note that
vertex label di�erences always sum up to zero and thus, these labels, too. Recall that
this is exactly the same behavior as in Equation 4.13 for the voltage angles. A vertex v
that violates Equations 4.4–4.6 has an excess fnet(v) , 0. The excess represents the
amount of �ow that has to be reduced or increased in v’s incoming or outgoing �ow,
respectively. From the duality of the Maximum Flow Problem and Shortest Path
Problem [FF56, p.404, Section 3] and the aforementioned discussion on the duality of
the KCL and KVL constraints, we get the following observation.
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Figure 4.16: We use the example graph of Felsner [Fel13, p.18]. The susceptances are b ≡ 1
and we neglect the capacities meaning cap ≡ ∞. (a) Assuming unit distances the shortest
path π SP(s, t) and longest path π LP(s, t) in the original graph with the corresponding distance
labels at the vertices have length 2 and 4, respectively. (b) The shortest and longest path
in the primal graph G and dual graph G? have the same length. However, adding an edge
from s to t describes that this is not always the case. (c) The shortest path π SP(s, t) and longest
path π LP(s, t) describe the minimum and maximum number of rectangles (here squares) that
are stacked in either directions.

Observation 4.48. A feasible KVL �ow can be computed by a shortest path in the primal

graph G.

Note that a feasible KVL �ow is not restricted to shortest paths as long as the
voltage angle assignment is unique. Contrary a feasible KCL �ow can be computed by
a shortest path in the dual graph G?. This provides us a deeper understanding of why
shortest paths work in some cases quite well [Gra+18]. In addition, the maximum �ow
values of the primal graph F (G) and dual graph F (G?) represent upper bounds for the
maximum feasible electrical �ow.

Lemma 4.49. A maximum �ow (MF) in graph G and its dual graph G?
represent two

upper bounds for the Maximum Power Flow Problem (MPFP).

However, the electrical �ow does not always reach a MF. We discuss this in more
detail in Chapters 5 and 6. We use the balancing property in the next section to
tackle KCL con�icts.

4.5 An Algorithm for Electrical Flows on s-t Planar
Graphs

In this section, we discuss an algorithm for s-t planar graphs for DC FEAS and MPFP.
For the algorithm, we mainly use the duality concepts of the aforementioned sections
and the reformulation of DC FEAS using simultaneous �ow onG andG? (Section 4.3.2).

The basic idea of the algorithm is that we switch between the primal graph G and
the dual graph G? and �x each time the KCL property of the �ow that might lead
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Algorithm 2: s-t Planar DC FEAS(N ) & s-t Planar MPFP(N )
Data: A network N = ( G, VG , VD , cap, b, pд , pд , pd , pd ) with |VG | = 1 (i. e.,

{s} = VG ), |VD | = 1 (i. e., {t} = VD ), cap ≡ 0, and cap ≡ ∞.
Result: Flow f (u,w) for all (u,w) ∈ E, �ow value F (f ,N), and voltage angles θv (u)

with u ∈ V .
1 G = bipolarSubgraphOf(G, s, t); . see Section 4.5.1
2 E = planarEmbeddingOf(G); . PQ-Tree; see Section 4.5.2
3

(
G?,b?, µdual : E(G) → E(G?)

)
= constructDualGraphOf(G(E),b); . Section 4.5.2

. Augment �ow along an incident edge at source s
4 f ≡ 0; f (s,u) = 1 for some edge (s,u) ∈ E(G);
5 (H ,b, s, t) = (G,b, s, t);
6 X = {u ∈ V (H ) | fnet(u) , 0};
7 while X , ∅ do . Check KCL property in H
8 f H = resolveKclConflict(H , X , b, s , t , f H);
9 (H?,b?, s?, t?) = (H ,b, s, t); (H ,b, s, t) = dualGraphOf(H?,b?, s?, t?);

10 f H (e) = f H?(µdual(e)) · b(e);
11 X = {u ∈ V (H ) | fnet(u) , 0}; . New KCL con�icts in the dual graph
12 end

to KCL con�ict in its dual graph. The property of balancing (see Section 4.4) is used to
describe how we �x KCL con�icts and that the algorithm terminates. In Algorithm 2,
we show the algorithm to compute an electrical �ow in an s-t biconnected planar
graph. In the following, we will describe each part of the algorithm in more detail.

4.5.1 Bipolar Orientation

In this section, we focus on the function bipolarSubgraphOf(G, s, t) in Line 1 of Al-
gorithm 2. Each simultaneous �ow has a speci�c direction, which is naturally given
by an electrical �ow that is in general a directed acyclic graph (DAG). Another in-
terpretation can be given from the rectangular representation that has a DAG as a
visibility graph [Fel13, pp.12f.]. The latter means that there is an edge between two
vertices if there is a segment between them. See for example Figure 4.14c, where the
horizontal segments u3 and t are visible to each other, since there is a vertical segment
that connects both segments directly. The visibility graph is given in Figure 4.14b,
where we represent the visibility of u3 and t by an edge (u3, t). So if we de�ne a
visibility direction, e. g., from bottom to top (horizontal segment visibility) and from
left to right (vertical segment visibility), we get two directed acyclic visibility graphs as
shown in Figure 4.14b. Note that the directed acyclic graphs (DAGs) are either called
bipolar orientation [FMR95] or s-t-numbering [ET76]. Such a numbering gives each

95



Chapter 4 An Algorithmic Approach to Computing Electrical Flows

vertex u ∈ V a number within the range of [s = 1, . . . , |V | = t], which represents a
topological order of the vertices.

Observation 4.50 (Bipolar Duals [Fel13, p.13]). A bipolar orientation in the primal

graph G implies a bipolar orientation in the dual graph G?
.

To see the latter, observation let us assume a directed edge (u1,u2) ∈ E(G). This edge
is incident to two faces c1, c2 ∈ V (G?). Looking in the direction of the edge (u1,u2),
meaning that we look fromu1 tou2 then the face c1 is to the left of that edge and c2 is to
the right of that edge. Since we have a bijection of the edges there is an edge {c1, c2} ∈
←→
E (G?). We de�ne that a direction from u1 to u2 implies a direction from c1 to c2 and
thus, a direction from left to right. Thus, if there is a bipolar orientation for graph G
this implies a bipolar orientation for its dual graph G? by de�nition. An illustration is
given in Figures 4.14 and 4.15 b.

Observation 4.51 (Biconnectivity Assumption [Fel13, p.13]). If graphG has a bipolar

orientation then it is biconnected.

Calculating a bipolar orientation takes O(|V |) time [Fel13]. An overview of the
graph classes that ful�ll the latter property are given by Battista et al. [Bat+98, p.212,
Theorem 6.19]. The most interesting classes to us are planar s-t-graphs, series-parallel
digraphs, and planar bipartite digraphs.

4.5.2 Planar Embedding and Dual Graph Construction

Recall that we assume that graph G is planar. To compute a planar embedding E, we
use in planarEmbeddingOf(G) (Algorithm 2 in Line 2) a linear-time planarity testing
algorithm [HT74][RT86, p.345]. These algorithms construct circular lists in O(|V |) that
represent for each vertex an ordered list of its incident edges in clock-wise order. The
latter represents a set of rotations, which we will use to construct the dual graph G?.
This can be done by selecting any edge {u,w} ∈ ←→E and traverse it in one direction such
as from u tow . Then select the next edge clockwise atw ∈ V . We proceed this method
until we reach u. The walk represents a traversal of a face, where (u,w) represents
one boundary edge. We traverse the edge in the other direction meaning (w,u) that
gives us the boundary edges of the other face that is incident to edge {u,w} ∈ ←→E .
We proceed with an edge that was not traversed in both direction and apply the
aforementioned method. This extracts for each edge the left face c` and right face cr
with c`, cr ∈ V (G

?) and within that, we construct implicitly the edge {c`, cr } ∈
←→
E (G?).

The dual graph G? of a graph G can be constructed in O(|V |).
Since we use the same construction as Rosenstiehl and Tarjan [RT86, pp.344�.,

Section 2], we assume that the graph is biconnected for the aforementioned construc-
tion. Otherwise, we add—similar to Rosenstiehl and Tarjan [RT86, p.345]—dummy
edges such that G stays planar and becomes biconnected, which is possible in O(|V |).
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After the construction of the layout, we will remove the dummy edges, otherwise
we would get an electrical �ow for another graph than the input graph. In addi-
tion, to simplify the translation from one graph into the other one, we de�ne the
susceptance b(e) for e ∈ ←→E (G) for the dual graph G? by b?(µdual(e)) B 1/b(e). This is
necessary for Line 10 in Algorithm 2.

4.5.3 KCL Conflict Resolution

Recall that an s-t electrical �ow on planar graphs is a simultaneous �ow on G and G?

with a weighting b(e) for all e ∈ E that represents the susceptance of an edge (see Equa-
tion 4.24). For now, we assume that the source s and the sink t lie on the outer face.
From the previous step we have given a plane graph G (i. e., a planar graph with a
planar embedding) and its dual graph G?. We assume that the given bipolar direction
represents the direction of an electrical �ow. W. l. o. g. we neglect the mapping step by
assuming that f G ≡ b · f G? ≡ f meaning a change in f G represents a direct change
in f G? without applying an explicit mapping step.

Let the initial �ow be f ≡ 0. The distance labeling is a function θv : V → R≥0
such that the initial labels are θv ≡ 0. To �nd an electrical �ow—meaning a feasible
electrical �ow with capacities cap ≡ ∞—in a plane graph we use the duality between
the incidence matrix I and circuit matrix B described in the aforementioned section
(Lemma 4.19). Initially, we apply one unit of �ow to an s incident edge (s,u) ∈ E. Recall
that the net �ow is de�ned by fnet(u) B

∑
{u ,w }∈

←→
E f (u,w) for all u ∈ V . Applying a

unit �ow yields either in an excess at u or if not, we switch the graphs (Algorithm 2
in Line 9). If there is an excess at a vertex u ∈ V \ {s, t} then fnet(u) , 0. Thus, a
con�ict can be expressed by the net �ow (see De�nition 4.52).

De�nition 4.52 (KCL & KVL Con�ict). A KCL or a KVL con�ict at a vertex u ∈ V is

de�ned by a net �ow with an excess unequal zero fnet(u) , 0 in the primal graph G or

dual graph G?
, respectively. We distinguish between the following cases dependent on

the net �ow fnet(u).

(CC–1) fnet(u) > 0: Vertex u is de�ned as temporary source us ∈ Ts , and
(CC–2) fnet(u) < 0: Vertex u is de�ned as temporary sink ut ∈ Tt .

From the previous discussion we know that a con�ict resolution in graphG creates a
con�ict in its dual graphG? and vice versa until the �ow f corresponds to an electrical
�ow.

One naïve implementation to solve the KCL con�ict would be to de�ne the excess
vertices as local source or local sink and run an ordinary �ow algorithm. However,
using this naïve implementation would skip a feasible solution. The latter approach can
lead to an algorithm that does not terminate at all. We made the following observation,
which is illustrated in Figure 4.17.
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Figure 4.17: A primal graph G and its dual graph G? that have each six vertices, nine edges,
one source and one sink are shown in (a), (c), (d), and (f). A geometrical representation of
both graphs is given in (b) and (e). Each edge in either graphs represents a line segment in
the appropriate color and the �ow on an edge de�nes the aspect ratio of a rectangle, e. g., the
edges (c3, t?) and (u4, t) describe the height and width of the upper right rectangle, respectively.
(a) A change in �ow in the dual graph causes a mapping, which e�ect is shown in (b) and (c).
(b) The mapping causes a rescaling of some rectangles sides, i. e., in this case the width of four
rectangles are changed. The outer hull changes from a rectangle to a non-rectangle (shown in
the background). (c) After the mapping step the one-to-one-correspondence is retained. (d) In
this case the mapping result in a KCL con�ict (red) in the primal graph G . (e) Resizing the two
rectangles resolves the con�ict. (f) The �ow on the edges (u2,u3), (u4, t) ∈ E(G) resolves the
con�ict.

Observation 4.53 (Resolve KCL Con�icts). In each resolveConflict step, we have

to minimize the total resizing of the outer rectangle, since a too large increase might skip

a valid solution.

This observation leads us to the de�nition of a minimum con�ict resolution. Recall
that a KCL resolution means a KVL resolution in the dual graph. Resolving a KVL
con�ict leads to an alignment of the length of the longest path π LP(s, t) and the shortest
path π SP(s, t) in the dual graph.

De�nition 4.54 (Minimal Con�ict Resolution). The shortest path π SP and the longest

path π LP are de�ned by π SP(s, t) B argminπ (s ,t )∈Π
∑

e ∈π (s ,t ) f (e)/b(e) with a length

of ∆θv (π SP(s, t)) and π LP(s, t) B argmaxπ (s ,t )∈Π
∑

e ∈π (s ,t ) f (e)/b(e) with a length of

∆θv (π LP(s, t)), respectively. A con�ict resolution in one graph causes a �ow change in

either graphs and thus, the minimum con�ict resolution is de�ned in G and G?
by:
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(CR–1) Let π SP(s
?, t?), π LP(s

?, t?) ∈ Π(G?) then a con�ict resolution in G?
is of

minimum size if and only if ∆θv (π SP(s
?, t?)) = ∆θv (π LP(s

?, t?)).
(CR–2) Let π LP(s, t) ∈ Π(G), and let ∆θv ′(π LP(s, t)) and ∆θv (π LP(s, t)) be the

longest path before and after the change. Then a con�ict resolution in G
is minimum if and only if the change of the longest path ∆LP(s, t) B
∆θv ′(π LP(s, t)) − ∆θ

v (π LP(s, t)) is minimized min∆LP(s, t).
We call a con�ict resolution minimum if and only if CR–1 and CR–2 holds.

The con�ict resolution CR–1 does not change the length of the longest path, but
adjusts the length of the shortest path to the longest path resulting in a KVL feasible
�ow. The only con�ict resolution that changes the length of the longest path is CR–2.
However, this represents the smallest possible change, since we chose the smallest
change of the longest path among all choices of changes.

This can be formulated as an LP, where CR–2 is an objective and CR–1 is a con-
straint. CR–1 is illustrated in Figure 4.17d–f, where the width of the outer rectangle
does not change, which is equivalent to not changing longest path. CR–2 is shown
in Figure 4.17a–c, where we solved a con�ict in the dual graph G?, which leads in
the mapping step to a change of the width (i. e., change in the longest path of the
primal graph G). We now use the aforementioned de�nition (see De�nition 4.54)
for a minimum con�ict resolution to formulate an algorithm for the con�ict resolu-
tion step resolveKclConflict(H ,X , s, t, f H). The set of KCL con�icts is given
by X B {u ∈ V (H ) | fnet(u) , 0}, where H is either G or G?. The con�ict resolution
CR–1 implies that the edges for the con�ict resolution should lie on path π (s?, t?)
with π (s?, t?) < π LP(s

?, t?) of H? = dualGraphOf(H , s, t). Thus, a possibility is to
compute the shortest path graph inH?. We save all edges in a set of candidate edges E ′.
We de�ne excesses accordingly by s,us ∈ Ts and t,ut ∈ Tt .

The con�ict resolution CR–2 corresponds to a minimum change of the longest path
in H . We have to evenly distribute the �ow excess at each vertex u ∈ X ⊆ V along
all paths. Since we wish to minimize ∆LP(s, t) B ∆θv (π ′LP(s, t)) − ∆θ

v (π LP(s, t)), we
increase the �ow only at edges on the shortest paths π SP(s

′, t ′) in the dual graph until
either s ′ or t ′ are saturated.

We augment iteratively one unit of �ow along the shortest s-t-path from s ′ ∈ Ts \ s
to t ′ ∈ Tt \ t using the metric f/b until all s ′ ∈ Ts , t ′ ∈ Tt have fnet(u) = 0 with u ∈
(Ts ∪Tt ) \ {s, t}.

Conjecture 4.55. Algorithm 2 computes a correct s-t electrical �ow of minimum integral

size.

We give an idea how we think the proof could work. Let f (e) be a minimal integral
electrical �ow. Let f ′(e) be some �ow with f ′(e) ≤ f (e) for all e ∈ E and the �ow f ′

ful�lls the KVL. We claim that there is a f ′′(e) = f (e) for all e ∈ E. Assume that
there is an edge f ′′(u, t) = f ′(u, t) + 1 > f (u, t) meaning the �ow would skip a
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minimal integral solution. This would mean that there is another path from u to t

with f ′′′. Since minπ (u ,t )∈Π
∑
(u ,v)∈π (u ,t )

f (u ,v)
b(u ,v) = minπ (u ,t )∈Π

∑
(u ,v)∈π (u ,t ) ∆θ

v (u, t)
this represents a contradiction.

We assume that the conjecture is correct for any s-t plane graph G as long as G
constitutes an electrical �ow. Assuming a graph with |←→E | = 1 then applying a �ow
of f (s, t) = 1 along an edge incident to s (which is here the only edge (s, t)) results in
a feasible �ow f G in G and in a feasible �ow f G? in G? accordingly.

Now, we assume an arbitrary s-t plane graph G. The construction of the graph is
correct (see Section 4.5.2). Since we resolve each con�ict optimal meaning using the
minimum number of changes in each con�ict resolution (see De�nition 4.54) and we
push only �ow in the prede�ned direction, we get an order of increasing �ows and
using the minimum con�ict resolution does not skip a solution. Since we know that G
has an electrical �ow the algorithm terminates.

4.6 Conclusion

This chapter provides a thorough analysis of electrical �ows. In the beginning, we
showed di�erent properties of electrical �ows as well as methods that are essential
in the �rst place to design an electrical �ow algorithm for planar graphs and ma-
troids. We give a �rst algorithm for s-t electrical �ows that uses electrical preserving
transformations and has a running time of O(|V |3). This is better than the known
exponential time algorithm mentioned in Lemma 4.6. Even though both algorithms
are constructive and exploit some structure, there is a comparable computation of
electrical �ows that needs polynomial time for arbitrary networks. To give electrical
�ows more structure, we present di�erent graph-theoretic representations. These
representations help us to separate the quadratic relationship and lead to the balancing
property, which will be used in an algorithmic approach that computes s-t electrical
�ows by using two graphs that are dual (see Section 4.5).

There are still some open conjectures and research questions that we would like to
investigate. One of the �rst questions, we try to investigate is the running time and
correctness of Algorithm 2 that depends on the unknown minimum integral generation
and demand vector. For arbitrary susceptances b the resolution can have exponential
size. However, if we restrict the resolution to some ratio, we might be able to restrict
the vector and the running time.

Recall that one assumption on our graphs is that they are planar. On general graphs
that cannot be embedded planar on a plane surface (i. e., surface with genus 0), we
do not have the concept of faces. However, if we chose a surface with higher genus
that allows a plane embedding of the graph, we can make use of the aforementioned
algorithms. Thus, we raise the following conjecture.
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Conjecture 4.56. 3
Algorithm 2 or the algorithm from Theorem 4.38 are FPT in the

genus.

We note that computing all s-t electrical �ows, adding them, and scaling them leads
to a multi-source multi-sink electrical �ow algorithm that is not very e�cient. Though
it might be in general ine�cient, it is worth investing these algorithms for dynamic
power grids that make use of the s-t-decompositions while starting with some initial
electrical �ow.

3We thank Peter Sanders for the discussion on that topic. In addition, we like to thank Thomas William
Brown for mentioning and describing Cohomology to us.
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5 Discrete Control Units1

Switching – A Temporary Removal of Links and Cables

Future power grids will change towards e�cient and environmentally friendly energy
operation while handling increasing demands and renewable energy sources [ALH01].
Renewable energy sources are often added to the medium and low voltage layer,
leading to a bidirectional power �ow which the power grid was not originally designed
for. The bidirectional �ow dynamically causes new critical lines and instabilities in the
power grid and this e�ect is ampli�ed by the increasing demand. Thus, the network
operators have to adapt their power grid to the new challenges by either expanding it
(i. e., adding lines) or operating it more e�ciently and �exibly by adding control units.

This leads to the dynamic and static transmission design problem [BPG01a]. Dynamic
transmission design [BPG01a, Cho+06, GMM92] is a long-term power grid con�gu-
ration denoted by Transmission Network Expansion Planning (TNEP) that adds
new transmission lines and circuits to the existing power grid. Although adding lines
to the power grid decreases the aggregated grid resistance [Cof+14, PH12], it may
decrease the operational limit (i. e., a state of power grid congestion is reached earlier).
However, it is hard to determine the best power grid topology over a long time horizon
for di�erent scenarios. Thus, a subproblem of the dynamic design problem—though
less expensive—is the static design problem, which considers the placement of new
electrical devices and represents a short-term solution.

For the latter, devices such as circuit breakers (known as switches) or FACTS (Flexi-
ble AC Transmission Systems) are able to manipulate the power �ow by opening a
circuit (switching a line o�) or routing a certain fraction of power by changing the sus-
ceptance at a transmission line, respectively. Switches and FACTS do not intrinsically
cause security and reliability problems [Li+13]. However, they are able to reduce the
generation costs, while still satisfying the N − 1 criterion (i. e., power grid elements
remain in operation while one element is removed or has a failure) and extending the
operability [BPG01b, Lei+15a, Li+13]. While transmission system operators (TSOs)
already use switching in certain cases of emergency to decouple parts of the grid,
avoid abnormal voltage conditions or improve voltage pro�les [FOF08], it is not used
to extend the operability of the grid or reduce costs and losses, since TSOs wish to
interfere as little as possible with the power grid 2. However, these interventions are
mainly done by rules of thumb, experience or ad-hoc reactions. Our approach tries to
structure and improve these interventions.

1This chapter is partly published in [Gra+18].
2From a conversation with the TSO TransnetBW.
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Note that the reliability of the power grid is very important and one would intu-
itively assume that only TNEP can maintain the power grid’s reliability and e�ciency.
However, both switches and FACTS provide possible control methods for over- and
under-voltage situations, line overloads [Gra+06], loss and cost reductions [SG90],
improving system security [SG88], and combinations of all [HOO11a]. In addition,
in Chapter 6 we show that placing ideal FACTS such that the remaining graph is a
cactus or tree gives us a cost-equivalent power �ow to the minimum cost �ow repre-
senting a global optimum. Furthermore, the results in Chapter 6 show that placing
ideal FACTS in the power grid often increases the operability while lowering the costs.
Similar observations were made for switching [HOO11b]. Note that ideal FACTS are
more powerful than a combination of FACTS and switches as they can control the
power �ow without limitations.

In contrast to FACTS and TNEP, transmission switching is a cost-e�ective way
to implement controllability [Xia+16] while using the existing power grid. Most
e�ciency gains arise while switching branches during peak periods [BB12] though
e�ciency is not part of the objective. Focusing on increasing the operability during
peak periods leads towards the Maximum Flow Problem (MFP) and in terms of power
grids towards the Maximum Power Flow Problem (MPFP). Note that the gap between
the maximum power �ow (MPF) and maximum �ow (MF) can be large as Kirchho�’s
Voltage Law (KVL) restricts the �ow on cycles. Adding switches decreases the gap and
leads to the Maximum Transmission Switching Flow Problem (MTSFP). MTSFP
tries to use switches to maximize the possible network capacity. Networks with
more available capacity are more reliable [HOO10]. Note that AC-feasibility (i. e.,
deciding whether there is a generator dispatch such that the demand can be satis�ed)
is already NP-hard on trees [LGH16]. Thus, we use a linearization of the AC power
�ow, denoted by DC power �ow (see Section 3.3.2), where the feasibility is easy to
decide. However, MTSFP using DC is already NP-hard (see Section 5.2).

5.1 A Mathematical Model for the
Placement of Discrete Control Units

The general feasibility models were introduced in Chapter 3 and a deeper discussion of
the DC feasibility problem was given in Chapter 4. The problem we introduce in this
section is a Combinatorial Optimization Problem. Note that an optimal solution for
switching problems is a subset of the edges E, where the set E of edges represents the
set of transmission lines, transformers, phase shifters, and other line-based electrical
equipment in a power grid. Every undirected graph can be represented by a directed
graph by replacing an undirected edge by two directed edges in either direction. The
latter is called a bidirected graph. Let G = (V , E) be a bidirected graph with a set
of vertices V (also called buses) representing generator vertices VG ⊆ V , consumer
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Figure 5.1: A network N with three vertices and edges, capacities cap(u,v) (gray), one
generator VG = {s}, one consumer VD = {t}, susceptance b ≡ 1 for all (u,v) ∈ E, and
voltage angles θv (blue) for electrically feasible �ows. The successive di�erences are marked
(orange). (a) The MFP(N) is the problem that tries to congest all edges and has a value
of OPTMFP = 5x . (b) The MPFP(N) with OPTMPFP = 3x is restricted by the path with the
lowest capacity. (c) Removing an edge with the lowest capacity (dashed line) helps to approach
the MF. However, the value of OPTMTSFP is 4x .

vertices VD ⊆ V , and intermediate vertices V \ (VG ∪VD ) such that VG ∩VD = ∅. For
simplicity, we use ←→E to denote the underlying undirected edge set, and for e ∈ E we
denote by ←→e ∈ ←→E the underlying undirected edge, i. e.,

←−−−→
(u,v) =

←−−−→
(v,u). The power grid

is modeled as a networkN = (G,VG ,VD, cap,b,pd ) with a capacity function cap : E →
R≥0 representing the thermal line limit of an edge, the susceptance b : E → R≥0, and
the demands’ lower bounds pd : VD → R≥0.

A �ow is a function f : E → R that satis�es the skew-symmetry property f (u,v) =
−f (v,u) for all (u,v) ∈ E. Moreover, it has to satisfy the following �ow conservation
property (Equations 5.1–5.3). For a vertex u ∈ V the net �ow is denoted by fnet(u) B∑
{u ,v }∈

←→
E f (u,v). Similar to Kirchho�’s Current Law (KCL, see Equation 5.1) the

conservation of �ow describes the �ow at each vertex including the consumption or
out�ow to other network layers, which is bounded by pd ≥ 0 and often denoted as
demand (Equation 5.2), and the generation limits (Equation 5.3).

fnet(u) = 0 ∀u ∈ V \ (VG ∪VD ), (5.1)
−∞ ≤ fnet(u) ≤ −pd (u) ∀u ∈ VD, (5.2)

0 ≤ fnet(u) ≤ ∞ ∀u ∈ VG . (5.3)

A �ow f is feasible if it obeys the thermal limits given by the capacity constraints
(Equation 5.4).

| f (u,v)| ≤ cap(u,v) ∀(u,v) ∈ E. (5.4)

The �ow value F (N, f ) of a �ow f on N is de�ned by
∑
u ∈VG fnet(u). A feasible

�ow f on N maximizing F (N, f ) is called a maximum �ow (MF) and the problem of
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Figure 5.2: The Braess’s Paradox highly depends on the network’s parameter. A general
observation on that was already given by Pas and Principio [PP97]. This example network
consists of three vertices, three edges, one generator, one load, susceptances b ≡ 1, and
di�erent capacity cap(e) settings (gray) for all e ∈ E. (a) The capacities are chosen in such
a way that switching is bene�cial in that particular network N . The MPFP has a value
of OPTMPFP(N) = 3/2, whereas the MTSFP has a value of OPTMTSFP(N) = 2. (b) The capacities
of the edges (s, x) and (x, t) are set to 1. This small recon�guration makes switching not
bene�cial anymore, since the MPFP has a value of OPTMPFP = 3/2 = OPTMTSFP and any
switching has a value of 1.

�nding such a �ow is denoted by MFP(N). Its value is denoted by OPTMFP(N) B

maxf F (N, f ) (see Figure 5.1a).
However, a feasible �ow neglects some physical constraints of a power �ow denoted

as Kirchho�’s Voltage Law (KVL, Equation 5.5).

b(u,v) · (θv (u) − θv (v) − θvshi�(u,v)) = f (u,v) ∀(u,v) ∈ E, (5.5)
θv (u) ≤ θv (u) ≤ θv (u) ∀u ∈ V , (5.6)

where the voltage angle is a function θv : V → R describing the potential at each
vertex. In general, absolute voltage angles are used, i. e., the angle of one vertex—often
the slack—is set to zero and the others are determined from it [see Bol98, p. 40]. A
deeper discussion of the latter is available in Section 4.1. The voltage angle θv (u) of
a vertex u ∈ V is often limited to |θv (u)| ≤ 0.6 radians (see Equation 5.6) to improve
the running time [BBB12, FOF08], but this may result in non-optimal solutions or
no solution at all. Note that the voltage angle di�erences are already covered by the
capacity constraint (Equation 5.4) and thus, the constraint is not mentioned here.
In addition, in most IEEE examples and related works θvshi� ≡ 0 representing the
transformer (phase shifter) �nal angle. The latter means that we assume to have
neither FACTS nor phase shift transformers on the lines. Thus, we neglect them in the
following.

We call a feasible �ow complying with Equations 5.5 and 5.6 a feasible electrical

�ow. A feasible electrical �ow f on N that maximizes F (N, f ) is called a maximum
power �ow (MPF). The corresponding problem is called the Maximum Power Flow
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Problem (MPFP) and is denoted by MPFP(N). The value of MPFP(N) is denoted
by OPTMPFP(N) and is de�ned by maxf F (N, f ) (see Figure 5.1b).

For a subset S ⊆ ←→E we consider the graphG−S and the corresponding networkN−S
where the functions cap and b are restricted to E \S . We call S the set of switched edges
(i. e., the switch is in OFF-state for these edges). Typically not all possible switchings
are feasible. Feasibility in this context means that there is an electrically feasible �ow
in N − S . The problem of maximizing the �ow value in N while allowing edges to be
switched is called Maximum Transmission Switching Flow Problem (MTSFP) and
its value is denoted by OPTMTSFP(N) B maxS ⊆←→E OPTMPFP(N − S) (see Figure 5.1c).
Such a �ow obeys Equations 5.1–5.3 and 5.8–5.10. Note that switching is not always
bene�cial as shown in Figure 5.2b.

Maximum Transmission Switching Flow Problem MTSFP(N)

Instance: A network N .
Objective: Find a set S ⊆ ←→E of switched edges such that OPTMPFP(N − S) is

maximum among all choices of switched edges S .
To model switching an edge we introduce a function z : E → {0, 1}, which is 0 if an

edge is switched and 1 otherwise. To enforce the switching, the �ow must be zero on
the switched edges. We therefore replace Equation 5.4 with Equation 5.8. This change
is not yet su�cient, since the KVL (Equation 5.5) shall only apply to the non-switched
edges. Hence, we modify this equation to Equation 5.7.

b(u,v)·z(u,v) · (θv (u) − θv (v)) = f (u,v) ∀(u,v) ∈ E, (5.7)
| f (u,v)| ≤ z(u,v) · cap(u,v) ∀(u,v) ∈ E. (5.8)

Equation 5.7 can be linearized by either adding two big-M constraints (Equations 5.9
and 5.10) or one indicator constraints (Equation 5.11), where M is a suitably large
constant.

b(u,v) · (θv (u) − θv (v)) + (1 − z(u,v))M ≥ f (u,v) ∀(u,v) ∈ E, (5.9)
b(u,v) · (θv (u) − θv (v)) − (1 − z(u,v))M ≤ f (u,v) ∀(u,v) ∈ E, (5.10)

z(u,v) = 1⇒ b(u,v) · (θv (v) − θv (u)) = f (u,v) ∀(u,v) ∈ E. (5.11)

The parameter M must be reasonably large to not impose any implicit voltage an-
gle di�erence limit at the edge (u,v) ∈ E. In general, one can choose M for each
edge (u,v) ∈ E by M(u,v) equal to max

{∑
e ∈π (u ,v) b(e)

−1cap(e)
}
, where the maxi-

mum ranges over all simple paths π (u,v) from u to v . It then su�ces to set M =
max(u ,v)∈E M(u,v) [BPG01a]. However, it is NP-hard to calculate the longest path
[KMR97]. It is simpler to set M(u,v) = b(u,v)·

∑
e ∈E cap(e)/b(e). If we restrict the

voltage angle θv to 0.6 radians in Equation 5.6, which is common [BBB12, Hed+10],
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we can use M(u,v) = 1.2 · |b(u,v)|. Note that this decreases the solution space
and possibly removes feasible and optimal solutions. Thus, this restriction can im-
prove the running time, but might lead to other results and is thus debatable, from
a physical point of view. In general, we have lower and upper bounds for genera-
tors pд,pд : VG → R≥0 ∪ {∞}, and demands pd ,pd : VD → R≥0 ∪ {∞} for u ∈ VD
such that Equations 5.2 and 5.3 become Equations 5.12 and 5.13, respectively, and
the network is de�ned by N = (G,VG ,VD, cap,b,pд,pд,pd ,pd ). A network with these
additional bounds is called bounded.

−pd (u) ≤ fnet(u) ≤ −pd (u) ∀u ∈ VD (5.12)

pд(u) ≤ fnet(u) ≤ pд(u) ∀u ∈ VG (5.13)

A MTSF obeying the latter constraints is a bounded MTSF. Note that �xing the de-
mands pd (u) = pd (u) = pd (u) and generations pд(u) = pд(u) = pд(u) leads to a Direct
Current Feasibility Problem (DC FEAS) also known as Power Flow (PF) that is the
search for a feasible electrical �ow by given demands and generations. We discussed
the latter problem in more detail in Chapter 4.

Suppose every generator u ∈ VG has its own generation cost function γu : R→ R≥0
representing the cost for generating the power fnet(u). The problem of minimizing the
generation costs of all generators u ∈ VG while maintaining a feasible electrical �ow
in a bounded network with pd (u) = pd (u) = pd (u) (i. e., Equations 5.1, 5.4–5.6, 5.12
and 5.13) is called Optimal Power Flow Problem OPFP(N). The value of OPFP(N) is
denoted by OPTOPFP(N) = min

∑
u ∈VG γu (fnet(u)). The problem of �nding a �ow with

value OPTOPFP(N) by allowing edges to be switched (i. e., Equations 5.1, 5.6, 5.8–5.9,
5.12 and 5.13) is called Optimal Transmission Switching Problem OTSP(N) with
value OPTOTSP(N) = minS ⊆←→E OPTOPFP(N−S) with S being the set of switched edges.

Optimal Transmission Switching Problem OTSP(N)

Instance: A network N .
Objective: Find a set S ⊆ E and an electrically feasible �ow f in N − S such that

the sum of the generation costs
∑
u ∈VG γu (fnet(u)) is minimized.

Note that neither the MTSFP nor the OTSP minimize the number of switches. This
would result in a min-max-problem that is harder to solve than the presented basic
variants (see Section 5.2 on Page 111). From Lehmann et al. [LGH15, Lemma 4] it
further follows that the MTSFP and the Maximum FACTS Flow Problem (MFFP) are
polynomial-time solvable on trees. Thus, for trees we get the following relationship.

OPTMPFP(N) = OPTMTSFP(N) = OPTMFFP(N) = OPTMFP(N).
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If it is clear, which network is being referred to, we may omit the explicit refer-
ence N and write P and OPTP instead of P(N) and OPTP(N), where P is a par-
ticular problem (e. g., MTSFP). The common constraints of MTSFP and OTSP are
the base constraints for the Restoration Order Problem (ROP) [CH15, HCB11]
and TNEP [HHK13].
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Table 5.1: Overview of known results on the complexity of the MTSFP and OTSP. The complexity increases from top to bottom as shown
in the hardness column. Note that the major aspects that in�uence the complexity of the problem are the graph structure of G , the number
of generators VG , the number of consumers VD , the susceptance b, and the capacity cap. If there are multiple results or if the results di�er
for MTSFP and OTSP, we colored the relating entries in green.

Network Properties Complexity Algorithms
Problem Graph Structure Example |VG | |VD | b cap Hardness Reference Name b cap

1 MTSFP
and OTSP

tree graphs ∞ ∞ – – polynomial-time
solvable

Lemma 4.9,
Theorem 6.5,

Section 3.2 p. 30
MF ∞ ∞

2 MTSFP
and OTSP

penrose-minor-
free

graphs
1 1 – – polynomial-time

solvable
Sections 5.4

and 5.5 DTP ∞ ∞

MTSFP series-parallel ∞ ∞ [Koc+16]3 and OTSP graphs 1 1
∞ 1 NP-hard Section 5.2 – – –

4 MTSFP
and OTSP

cacti with
maximum degree

of 3
∞ ∞ 1 ∞ NP-hard [LGH14]

MaxST
(see Sec-
tion 5.6)

– –

5 MTSFP
and OTSP

2-level trees 1 ∞ ∞ ∞ NP-hard [LGH14] – – –

6 MTSFP
and OTSP

planar graph
with max degree

of 3
1 1 ∞ 1 strongly NP-hard [LGH14] – – –

MTSFP 2 2 [LGH14]7
OTSP

arbitrary graphs 1 ∞
∞ ∞ non-APX [LGH14] – – –
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5.2 Complexity Considerations of using Discrete Control
Units

In Section 5.1, we showed that switching introduces a quadratic constraint (see Equa-
tion 5.7). Note that models with quadratic constraints and linear objectives are in
general NP-hard [Sah74, page 278]. The proof uses a reduction from the Subset
Sum Problem (SSP; see Garey and Johnson [GJ79, p.245, MP2] and Ausiello et al.
[Aus+99, p.447, MP5] for more information). However, the quadratic constraint can be
replace by a big-M constraint (see Equations 5.9 and 5.10) or an indicator constraint
(see Equation 5.11). Thus, we lose the bilinearity and the constraint becomes linear.

Problem Definitions. In Section 5.1, we already de�ned the optimization prob-
lems MTSFP and OTSP. However, in this section we give a �ner granularity of the
problem de�nitions concerning switching to increase the understanding of the dif-
ferent problems that can be tackled. The �rst problem considers switching with
a �xed number of preinstalled switches—meaning S ⊆

←→
E is already given—and is

called MTSFP(N, S) and its value is de�ned by OPTMTSFP(N, S) B max{z(e)∈{0,1} |e ∈S }
OPTMPFP(N −

⋃
{e | e ∈ S ∧ z(e) = 0}). The problem is de�ned in the following.

MTSF Problem with Fixed Switches MTSFP(N, S)

Instance: A network N and a set S ⊆ ←→E .
Objective: Find a switching z(e) ∈ {0, 1} for all e ∈ S such that OPTMPFP(N−{e |

e ∈ S ∧ z(e) = 0}) is maximum among all choices of z.
The next problem de�nition will be the �rst placement problem that relaxes the

de�nition in the sense that only the number of switches is �xed by k ∈ N with |S | = k ,
but the placement of the switches—meaning the set S ⊆ ←→E —is unknown. Thus, we
are interested in a maximum possible �ow for a network N and a �xed number
of switches |S | = k . The problem is called MTSFP(N,k) and its value is de�ned
by OPTMTSFP(N,k) B maxS ⊆←→E OPTMPFP(N − S) with |S | = k .

MTSF Problem with k-Switches MTSFP(N,k)

Instance: A network N and a parameter k ∈ N.
Objective: Find a set S ⊆ ←→E of switches with |S | = k such that OPTMPFP(N − S)

is maximum among all choices of S .
Assume that we have no limitation on the number of switches—meaning the number

of switches can be |S | = |←→E | = k . Thus, the problem to �nd a maximum power
�ow in network N by allowing as many switches as possible (i. e., some k ∈ N) is
called MTSFP(N) with value OPTMTSFP(N) B maxk OPTMTSFP(N,k).
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Maximum Transmission Switching Flow Problem MTSFP(N)

Instance: A network N .
Objective: Find a set S ⊆ ←→E of switched edges such that OPTMPFP(N − S) is

maximum among all choices of switched edges S .

The latter problem allows as many switches as necessary to obtain a best possible
power �ow. However, when there is only one generator and one demand the maximum
number of switches |S | is restricted by |V | − 1 that represents a tree. Removing more
edges would lead—independent on the generation limits—to an infeasible solution,
since some demands are cut-o� from any generator. If we have multiple generators
and demands the maximum number would be restricted by a forest |V | − k , where k
represents the number of connected components. Note that the number of connected
components can be still k = 1.

In general an desirable investigation is the minimum number of switches—meaning
the smallest k—such that we get the same value as OPTMTSFP(N). This problem is
called OPTMNSP(N) B minOPTMTSFP(N,k )=OPTMTSFP(N) k with the value OPTMTSFP(N).

Minimum Number of Switches Problem under MTSF MNSP(N,k)

Instance: A network N and k ∈ N.
Question: Is it possible to remove a set of edges S ⊆ E such that k = |S | is

minimum among all choices of OPTMTSFP(N)?

Note that similar de�nitions can be made for the OTSP. An overview of the switching
related problems is given in Appendix A.3.

Decision Problems. MTSFP is an optimization problem that involves searching
for the best solution from some large set of solutions. Any optimization problem can
be transformed into a decision problem by asking whether the optimum value is at
least or at most k for some k ∈ R. We denote the corresponding decision problem
for MTSFP(N) by k-MTSFP.

k-Maximum Transmission Switching Flow Problem k-MTSFP(N,k)

Instance: A network N and k ∈ Q≥0.
Question: Is it possible to remove a set of edges S such that there is an electrically

feasible �ow f in N − S with �ow value F (N − S, f ) ≥ k?

Note that decision problems are often used to show that a particular problem is NP-
hard. We will use this problem in Section 5.2.2 to show that MTSFP(N) is NP-hard.
An overview of the switching decision problems can be found in Appendix A.3.
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5.2.1 Literature Overview

We will see in De�nition 5.14 (see also Section 5.4.4 and Figure 5.11) that for single-
source single-sink penrose-minor-free graphs (see Table 6.1–1) the MTSFP(N) is poly-
nomial-time solvable. We will look at this structure in Section 5.4.1. However, Kocuk
et al. [Koc+16] showed that for arbitrary susceptance b and capacity cap this problem
is already NP-hard3. In Section 5.2.2, we will provide a di�erent reduction that is also
a generalization of the proof of Kocuk et al. [Koc+16]. Contrary to series-parallel
graphs, cactus graphs have the special property that the cycles in a cactus do not share
an edge. Thus, the dependencies on the voltage angles of a vertex decrease. Though,
for single-source single-sink this problem is polynomial-time solvable, it becomes
already NP-hard for an arbitrary number of generators and consumers (see Table 6.1–
3). Lehmann et al. [LGH14, pp.8�., Section 5] motivated another non-standard graph
structure from the disaster management. The idea is that after a blackout a TSO will
try to recover the power grid by establishing a tree-like structure. The graph structure
is denoted by N-level tree (see Table 6.1–4), which has a generator at the root and
consumers at the leaves. For each level there is a total order of the vertices that also
de�nes the intra-level neighbors of a vertex. The tree allows intra-level connections
to direct neighbors. Note that these intra-level connections cause cycles that share
edges with other cycles. Thus, this structure is more complex than a cactus. The
next graph structure that is more complex are planar graphs (see Table 6.1–5) for
which Lehmann et al. [LGH14, p.13, Section 7] show that the problem is strongly
NP-hard for planar graphs with maximum degree of 3, one generator, one consumer,
and having unit capacities. Naturally this problems stays NP-hard for arbitrary graphs,
but it is not possible for any ϵ > 0 to �nd an approximation algorithm within a factor
of 2O((logn)1−ϵ ) [LGH14, pp.10�.] [KMR97, pp.95�.].

5.2.2 NP-hardness of Source-Sink-MTSF on Series-Parallel-Graphs

First we prove that MTSFP is in NP by providing a polynomial time algorithm that
is denoted by valid(N, S). The polynomial algorithm speci�es whether the set of
switched edges S is a valid solution for an instance N . It is not hard to determine
that an instance N and a solution S are properly de�ned (Section 5.1). Checking
whether a switching S provides an electrically feasible �ow that is at least k can be
done by Linear Programming (LP) in polynomial time (see Section 5.1).

To show that k-MTSFP is also NP-hard we reduce the Subset Sum Problem to k-
MTSFP.

3We found out about that proof after the publication of the later proof in [Gra+18] thanks to Thomas
William Brown.
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Figure 5.3: A network N constructed from an instance of SSP having one source s ∈ VG (i. e.,
|VG | ≡ 1) and one sink t ∈ VD (i. e., |VD | ≡ 1). All edges (u,v) ∈ E have a capacity of cap ≡ 1
and the susceptances b are shown next to the edges.

Subset Sum Problem SSP(W ,k)

Instance: A �nite set of numbers W = {w1,w2, . . . ,wn} with wi ∈ N and
a k ∈ N.

Question: Is there a set of elements x1, . . . , xn ∈ {0, 1} such that
∑n

j=1w jx j = k?

Lemma 5.1. k-MTSFP is NP-complete even if there is only one source and one sink in

the network and all edge capacities are 1.

Proof. We show the NP-hardness by reducing SSP to this restricted MTSFP-variant in
polynomial time. Since SSP is weakly NP-complete [GJ79], MTSFP is NP-hard, too.
Given an SSP-instance (W ,k) we construct an instance of MTSFP that allows a �ow
of 2 if and only if there is a solution of the SSP-instance. We may assume without
loss of generality that no element ofW is larger than k as these elements are never
part of any solution. In the constructed network N there is one source {s} C VG
(i. e., |VG | ≡ 1) and one sink {t} C VD (i. e., |VD | ≡ 1; see Figure 5.3). All edges e ∈ E
have capacity cap ≡ 1. There is one edge from s to t with susceptance 1/(1+(n+1)k ),
where n = |W |. For each element wi ∈ W we build a triangle with vertices vi , ui ,
andvi+1. We set b(vi ,ui ) B b(ui ,vi+1) B 2/(k+wi ) and b(vi ,vi+1) B 1/k − 1/(k+wi ). Note
that the triangles for wi and wi+1 have the vertex vi+1 in common. We set vn+1 = t
and add the edge (s,v1) with susceptance b(s,v1) = 1. Note that the edge (s,v1) is
necessary when we do not switch any triangle, since this would exceed the �ow of
one in the upper part.

To achieve a �ow of 2 in the network both edges incident to s must be saturated.
In particular, the �ow through the chain of triangles is 1 and ∆θv (s, t) = 1 + (n + 1)k .
Consider the triangle Ti for the element wi ∈W . In this triangle vi acts as a source
andvi+1 as a sink. There are two paths fromvi tovi+1 inTi : The direct path consisting
only of the edge (vi ,vi+1) and the path viaui . In any solution toN at most one of these
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Figure 5.4: Possible ways to switch the triangles Ti in a network N with corresponding
angle di�erences and �ows. (a) If no edges are switched the angle di�erence is k . (b) If the
edge (vi ,vi+1) is switched, the angle di�erence is k+wi . (c) If an edge incident toui is switched,
the angle di�erence is larger than 2k .

paths may be switched as otherwise the total �ow inN is at most 1. If no edge inTi is
switched (Figure 5.4a), we obtain ∆θv (vi ,vi+1) ≡ k for one unit �owing through Ti . If
the edge (vi ,vi+1) is switched (Figure 5.4b), we have ∆θv (vi ,vi+1) = k +wi . If an edge
incident to ui is switched (Figure 5.4c), the �ow on (vi ,vi+1) must be equal to 1 and
we get

∆θv (vi ,vi+1) =
1

1
k −

1
k+wi

=
k(k +wi )

wi
=

k2

wi
+ k > 2k .

Note that in any case ∆θv (vi ,vi+1) ≥ k . If in any triangle Ti an edge incident to ui is
switched, we have

∆θv (s, t) = ∆θv (s,v1) +
n∑
i=1

∆θv (vi ,vi+1)

> 1 + (n − 1)k + 2k = 1 + (n + 1)k,

which contradicts ∆θv (s, t) = 1 + (n + 1)k . Hence, only the edges (vi ,vi+1) for i =
1, . . . ,n may be switched.

If there is a set S of edges in N such that removing them from the network yields a
maximum �ow f in N − S with throughput F (N, f ) ≡ 2, we can construct a solution
to the corresponding SSP-instance as follows. Let xi = 1 if (vi ,vi+1) ∈ S and xi = 0
otherwise. By the argumentation above we have ∆θv (vi ,vi+1) = k + wi if xi = 1
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and ∆θv (vi ,vi+1) = k otherwise. Hence, we have

1 + (n + 1)k = ∆θv (s, t)

= ∆θv (s,v1) +
n∑
i=1

∆θv (vi ,vi+1)

= 1 +
n∑
i=1
(k + xiwi )

= 1 + nk +
n∑
i=1

xiwi .

and therefore
∑n

i=1 xiwi = k as required by the SSP-instance.
If the SSP-instance has a solution, i. e.,

∑n
i=1 xiwi = k for a suitable assignment of

the xi , we de�ne S B {(vi ,vi+1) | xi = 1}. We claim that after switching these edges
the remaining network N − S admits a power �ow with value 2. Setting θv (s) = 0
and θv (vi ) = 1 +

∑i−1
j=1(k + xiwi ) induces a feasible electrical �ow of 1 on the triangle

chain by the arguments above. We further note that

∆θv (s, t) = ∆θv (s,v1) +
n∑
i=1

∆θv (vi ,vi+1)

= 1 +
n∑
i=1
(k + xiwi )

= 1 + nk +
n∑
i=1

xiwi

= 1 + (n + 1)k .

Hence, we have f (s, t) ≡ 1 and the total �ow in N − S is 2.
The size of the constructed network is linear in |W | and all parameters are polyno-

mial in k . Hence, the reduction from SSP to MTSFP runs in polynomial time. Since SSP
is NP-complete [GJ79], this reduction implies that MTSFP is NP-hard even if we restrict
ourselves to networks with unit capacities and only one source and one sink. �

5.3 Network Modeling

The model presented in Section 5.1 places no restriction on the network. Our algorithms
and proofs are often simpler if the underlying network has a speci�c form.

Without loss of generality we may assume that in the network N B (G, VG ,VD ,
cap, b, pd ) all generators and consumers are degree-1 vertices. We achieve this by
adding an edge with in�nite capacity and a susceptance of 1 between each generator
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Figure 5.5: A bounded network can be transformed to an unbounded network by adding sub-
structures to its generator and consumer vertices. (a) A generator s ∈ VG in a bounded MTSFP
can be transformed to a generator in an unbounded MTSFP by modifying the network N
at the source. Thereby, a generator with non-zero lower bound generation can be replaced
by a construction of a cycle with generator s and consumer ts forcing a generation of pд on
edge (u, s), and a generator s allowing a generation in total of up to pд at vertex s . (b) For con-
sumers t to model the upper bound it su�ces to add an edge (t, t) and a minimum demand
of pd to t . To model the lower bound, a triangle that con�gures the voltage angles in such a
fashion that there is a feasible power �ow only if at least the lower demand is satis�ed.

or consumer v ∈ (VG ∪VD ) and a new vertex uv . The new vertex uv then acts as a
generator or consumer and v becomes an intermediate vertex. We use this assumption
especially in Section 5.4, where we restrict our network to certain graph classes.

We can shrink the networkN by contracting degree-2 vertices. For this we introduce
the susceptance norm of a path π (u,v), which is de�ned as

‖π (u,v)‖b B
∑

e ∈π (u ,v)

b(e)−1, (5.14)

and gives us a distance metric on power grids. The susceptance norm is a norm, since
it ful�lls the axioms given by Banach [Ban22].

1. ‖ #»x ‖ ≡ 0 if and only if #»x ≡
#»0 (neutral element),

2. ‖s · #»x ‖ ≡ |s | · ‖ #»x ‖ (absolute homogeneity),

3. ‖ #»x + #»y ‖ ≤ ‖ #»x ‖ + ‖ #»y ‖ (triangular inequality).

Applying the following lemma we can simplifyN by contracting paths to single edges.

Lemma 5.2. A simple path π in N whose internal vertices have degree 2 in N and are

neither generators nor consumers is equivalent to a single edge e with capacity cap(e) B
min(u ,v)∈π cap(u,v) and susceptance b(e) B 1/‖π ‖b .
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Figure 5.6: Transforming an OTSP-instance to an MTSFP-instance is possible by adding
triangles at consumer vertices. The edge e = (sv , tv ) and the other two edges have suscep-
tances b(e) = γv (1) and 1, respectively. (a) The maximum �ow in a triangle is obtained by
injecting no power to the network N from v . (b) Per injected unit of �ow from v to N , there
is a decrease in �ow value by γv (1) (red) in a triangle.

Note that if we assume that all generator and consumer vertices have degree 1, they
are never internal vertices of any simple path. Note that Lemma 5.2 is equivalent to
the transformation Reduction Rule 4.21 presented in Section 4.2.

Lehmann et al. [LGH14, LGH15] showed that the bounded MTSFP is NP-hard on
cacti (i. e., a graph consisting of edge disjoint cycles). We can transform a bounded MTSFP
with network N = ( G, VG , VD , cap, b, pд , pд , pd , pd ) to an unbounded MTSFP. We
model the upper bounds by adding edges (u,v) with appropriate capacities at ver-
tices u ∈ (VG ∪VD ). To model a non-zero lower generation bound pд at a generator,
we replace it by the construction shown in Figure 5.5a, which is based on a struc-
ture used by Lehmann et al. [LGH14]. The cycle with generator s and consumer ts
with pd (ts ) = pд + 2 forces a �ow of pд on the edge (u, s) and the generator s is able to
add the remaining generation capacity. Note that the cycle can be omitted if pд ≡ 0.
For consumers we just add an edge (t, t) with a capacity of pd to model the upper
bound. In addition, the minimum demand is modeled by a triangle for which the
voltage angle con�guration enforces a minimum demand of pd (Figure 5.5b).

Lemma 5.3. Every bounded MTSFP can be transformed into an unbounded MTSFP on

a network with size linear in |V | and |E |.

Lehmann et al. [LGH14, Lemma 2] show that every MTSFP-instance can be trans-
formed to an equivalent OTSP-instance while maintaining the network structure. The
idea is basically that we pay for each unit a consumer is not used to its maximum
capacity pd meaning pd (u) − fnet(u) , 0 and we pay |pd (u) − fnet(u)| units. This
transformation is done by de�ning a generator cost function γ : VG ∪ VG ′ → R≥0
with u ∈ VG

′ if u ∈ VD and γu (1) ≡ 1 with u ∈ VG
′ and γu (1) ≡ 0 for all u ∈ VG . In

addition, the consumptions are �xed meaning pd (u) = pd (u) = pd (u) for all u ∈ VD .
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Thus, while maximizing the power �ow a generator u ∈ VG ′ produces pd (u) − fnet(u)
units of �ow.

We present the reverse transformation for OTSP with linear cost functions. Let N =
(G ,VG ,VD , cap, b, pд , pд , pd , pd ) be a bounded network, where each consumerv ∈ VD
has a �xed demand pd (v) = pd (v) = pd (v). At each generator v ∈ VG with cost γv (1)
per generated unit of power we add a triangle consisting of v , another generator sv
and a consumer tv as shown in Figure 5.6. The edge (sv , tv ) has susceptance γv (1)
and the other two edges have susceptance 1. We denote the resulting network by N ′.
If v injects no power into the original network (Figure 5.6a), all its generated power
�ows along (v, tv ) to tv . The �ow in this triangle is then maximized by sending 1
unit from sv via v to tv and (xv + 2) · γv (1) units directly on (sv , tv ). Per unit of �ow
injected by v into the original network, the angle di�erence ∆θv (v, tv ) decreases by 1
(Figure 5.6b). Therefore, ∆θv (sv , tv ) also decreases by 1 and the �ow f (sv , tv ) by γv (1).
Hence, a feasible �ow in N with cost k can be transformed to a feasible �ow in N ′
with �ow value M − k , where M =

∑
v ∈VG

(
(pд(v) + 2) · γv (1) + pд(v) + 1

)
. This leads

to the following lemma.

Lemma5.4. For everyOTSP-instance N = (G ,VG ,VD , cap,b,pд ,pд ,pd ,pd ) with �xed
demands pd (v) = pd (v) = pd (v) and linear cost functions γv for each consumer v ∈ VD
there is an MTSFP-instanceN ′ and a constantM ∈ R≥0 such that for every k ∈ R≥0 we
have OPTOTSP(N) ≤ k if and only if OPTMTSFP(N

′) ≥ M − k . Moreover, the size of N ′

is linear in the size of N .

The previous lemma and the result of Lehmann et al. [LGH14, Lemma 2] provide a
possibility to interchangeably apply algorithms found for MTSFP to OTSP (and vice
versa) by a simple graph transformation.

5.4 MTSF on Source-Sink-Networks

Fisher et al. [FOF08] found in their experiments that Wheatstone Bridges [Eke01]
(bridges or short-cut edges in a cycle with four edges) can be associated with Braess’s

Paradox [BNW05, Nag10, Pal+12], in which adding a line to a network (even with zero
cost) can increase the cost of using that network (see Section 2.3). These structures are
often removed by switches in their results. In the following, we denote Wheatstone
Bridges by cycle chords [Gra99, Wes00, p. 225], since a bridge in a graph is an edge
whose removal disconnects the graph, which is not what we mean here. The structure—
meaning cycle and chord together—is denoted by diamond graph. An observation
of Fisher et al. [FOF08] is the following.

Observation 5.5. The OTSP and thus the MTSFP try to remove an edge set S in such a

way that the remaining graph is often chordless.
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We will show in this section that Observation 5.5 does not apply in general. How-
ever, Fisher et al. [FOF08] empirically show on their test case that this is often the
case. Leibfried et al. [Lei+15a] prove that placing ideal FACTS in such a way that
the remaining grid is a tree results in a MPF, which is equivalent to the MF. This
observation indicates that the power �ow is equivalent to the graph theoretical �ow on
trees as only determined by the conservation of �ow (KCL, Equation 5.1) [see LGH15,
Lemma 4]. However, power grids are meshed (i. e., they contain cycles) for reliability
reasons. Each mesh in a power grid has to obey the KVL (Equation 5.5), meaning the
sum of all voltage angle di�erences is zero. These additional constraints are not only
the di�erence to a graph-theoretical �ow, but make most of the problems hard to solve
even in the DC model. In addition, they lead to Braess’s Paradox and make switching
bene�cial (see Section 2.3).

The idea is to reach a graph-theoretical �ow by exploiting the network structureN .
The upper and lower bound for MTSF are given by OPTMFP and OPTMPFP, respectively.

Lemma 5.6. OPTMPFP ≤ OPTMTSFP ≤ OPTMFP.

Transmission switching problems formulated as MILP models have highly coupled
constraints (see Section 5.1). Cycles add KVL constraints (Equation 5.5) to the problem,
which are highly coupled with each other as the sum over the voltage angle di�erences
in each cycle has to be zero (Figure 5.1). Thus, we get the following observation.

Observation 5.7. The relation OPTMPFP < OPTMFP can only be caused by cycles.

In this section we study MTSFP on networks that have only one generator vertex s
and one consumer vertex t . We call such networks s-t-networks. Let Π(u,v) denote
the set of all paths between two vertices u and v . We denote the smallest capacity of
any edge on a path π ∈ Π(u,v) by

cap(π ) B min
(u ,v)∈π

cap(u,v). (5.15)

From Equations 5.4 and 5.5 we get the following function to calculate the maximum
voltage angle di�erence on any u-v-path π (u,v) ∈ Π(u,v).

∆θv (π (u,v)) B ‖π (u,v)‖b · cap(π (u,v)). (5.16)

Forπ 1(u,v), π 2(u,v) ∈ Π(u,v)we de�neπ 1(u,v) ≤ π 2(u,v) if and only if∆θv (π 1(u,v))
≤ ∆θv (π 2(u,v)).

5.4.1 The Dominating Theta Path (DTP)

The intuition that electricity follows the path of the least resistance leads us towards
shortest paths. However, in power grids the shortest path is not always the restricting
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Figure 5.7: A network N with four vertices and �ve edges, one generator VG = {s}, one
consumer VD = {t}, capacities cap(u,v) (gray), susceptance b(u,v) = 1 for all (u,v) ∈ E, and
voltage angles θv (u) (blue in the vertices) for all vertices u ∈ V . Note for the label calculation
that the underlying graph G is undirected. The algorithm computing the DTP saves a set
of labels L for each vertex starting at vertex s with label (0,∞). The red edges represent
the DTP from s to t . (a) The cross 7 means that the label (3, x) is dominated by the label (2, x) at
vertex t . In addition, it is not su�cient to compare only the voltage angle di�erences ∆θv , since
we would drop the DTP path [s, (s,v),v] at vertex v , which would lead to incorrect results.
Switching edge (s,v) (green dashed edge) results in a solution of the MTSFP. (b) The DTP
is not always unique. In addition, for general graphs the switched edge of the MTSFP is not
always on the DTP.

path. An s-t-network is often restricted (dominated) by the path with the smallest
voltage angle di�erence. However, it does not seem feasible to give a general bound
for that. The smallest voltage angle di�erence between a vertex u and a vertex v is
denoted by ∆θv (u,v) B min∆θv (π (u,v))with π (u,v) ∈ Π(u,v). We call the path that
minimizes ∆θv (π (u,v)) Dominating Theta Path (DTP) and denote it by πDTP(u,v).
Its value is denoted by OPTDTP(u,v). We are mainly interested in s-t-paths, since the
power �ows from generators s to consumers t .

Note that, unlike shortest paths, a DTP from s to t via another vertex v and a DTP
from s to v may have no common edges. For example in the top part of Figure 5.7a
a DTP to v goes via u, but not the DTP to t . To compute a DTP we therefore minimize
over two objectives ‖·‖b and cap(·). For this we perform a multi-objective search,
where we search for Pareto-optimal solutions, i. e., we look for paths that are not
dominated by other paths with regards to the objective functions (in our case the
susceptance norm ‖·‖b and minimum capacity cap(·)). Note that in general multi-

121



Chapter 5 Switching – A Temporary Removal of Links and Cables

Algorithm 3: Dominating Theta Path (DTP) Algorithm
Data: A network N = (G,VG ,VD , cap,b).
Result: π (s, t), ∆θv (s, t), and D(v) with v ∈ V .

1 D(u) B L(u) B ∅ ∀u ∈ V ; . Initialization
2 Q B ∅;
3 L(s) B {(0,∞)}; . Special label for source s
4 Q .insert

(
(0,∞), s, key((0,∞))

)
;

5 while Q , ∅ do . Visit all vertices
6 (`,u, key) B Q .delMin();
7 D(u) B D(u) ∪ {`};
8 for ∀{u,v} ∈

←→
E do . Check adjacent vertices

9 cap(π (s,u,v)) B min (`1, cap(u,v));

10 `new(v) B
(
`[0] + 1

b(u ,v) , cap(π (s,u,v))
)
;

11 if isReachable(V \ {v}, `, s) then

12 if `new(v) ∈ L(v) then
13 parent(`new(v)) B parent(`new(v)) ∪ {`};
14 else if not L(v) dominates `new(v) then
15 L(v).deleteDominatedLabels(`new(v));
16 Q .deleteDominatedLabels(`new(v),v);
17 L(v).insert(`new(v));
18 Q .insert(`new(v),v, key(`new(v)));
19 parent(`new(v)) B {`};
20 end
21 end
22 end
23 end

24 return
©«
π (s, t) B getPaths(s, t), . Build paths from parent
∆θv (s, t) B min`∈D(t ){`[0] · `[1]},
D(·)

ª®¬;

objective search is already NP-hard for two objective functions [GJ79] (see Figure 5.8).

De�nition 5.8 (Label Domination Criteria). Each s-u-path π in N de�nes a label ` =

(‖π ‖b , cap(π )) at u. A label (‖π1‖b , cap(π1)) dominates another label (‖π2‖b , cap(π2))
if ‖π1‖b ≤ ‖π2‖b and cap(π1) ≤ cap(π2).

The Pareto set D(u) of labels at a vertex u ∈ V is then de�ned as the set of nondom-
inated labels of all s-u-paths (Line 7). These Pareto sets can be computed by a natural
extension of Dijkstra’s algorithm (see Algorithm 3) known as the multi-criteria shortest-

path algorithm [Mar84]. At each vertex u ∈ V a set of nondominated labels L(u) is
stored. Note that in general, each label may correspond to multiple s-u-paths. As it is

122



MTSF on Source-Sink-Networks Section 5.4

−/1 −/1 −/1

−/1 −/1 −/1
1

1 1

1 1

1

(0,∞)

(3, 1)
(3, 1)

(3, 1)
(3, 1)

(3, 1)
(3, 1)
(3, 1)
(3, 1)

(2, 1)

(2, 1)

(2, 1)

(2, 1)
(1, 1)

(1, 1)

s t. . .

..
.

Figure 5.8: An example, where the DTP produces exponential many labels. The edges are
given with the susceptances b and capacities cap. The sets of labels are marked at the vertices.
The number of labels increases from the source s for each vertex in the chain exponentially by
either choosing the upper or lower edge.

necessary to represent all these paths, we store for each label a set of parent-pointers.
The latter point to labels that correspond to paths shortened by one vertex. The
merging of labels ensures the polynomial size of label sets.

The labels in the priority queue Q are compared by ‖·‖b . At the beginning of each
iteration a label with the minimum susceptance norm is extracted from Q . This label
belongs to a vertex u. Then, new labels for all neighbors of u are computed (Line 10).
First, it is checked whether there is a path π (s,u) that corresponds to ` and does not
contain the neighbor v (Line 11, Section 5.4.3). Extending this path to v then still gives
a simple path. If the computed label already exists in L(v), the parent-pointers are
updated. Otherwise, if it is not dominated, it is added to L(v) and Q (Lines 17 and 18).
Before that, all labels dominated by the new labels are removed. Here, only labels
at the same vertex are considered, i. e., in Line 16 only the dominated labels at v are
removed.

Lemma 5.9. Algorithm 3 computes a correct Dominating Theta Path (DTP).

Note that the proof for the next lemma is based on the proof for the multi-criteria

shortest-path algorithm by Martins [Mar84].

Proof. At any step of Algorithm 3 there is a set of labels L(u) associated with each
vertex u ∈ V . We �rst show that at any step no label in L(u) is dominated by any other
label in the same set. After the initialization there is only one label. Hence, it is not
dominated.

Suppose that there are no dominated labels in any label set before an iteration.
We show that this property still holds after the iteration. First, a label (‖π (s,u)‖b ,
cap(π (s,u))) with the minimum susceptance norm among all labels in Q is dequeued
(Line 6). This label corresponds to a path π (s,u) from s to u. Then, the labels for
neighbors of u are computed (Line 10 based on Equation 5.16). Since these labels are
only added if they are not dominated and labels dominated by them are removed

123



Chapter 5 Switching – A Temporary Removal of Links and Cables

(a) (b)

u2
2
2 2

2

2 2

1s

u1

u3

u4

u5

1, 2

0, ∞ 1, 2
4, 1

1, 2
4, 1

3, 1
2, 2

3, 1 2, 2

4, 1
1, 2

2, 24, 1E2 2
s

u1 u5
1u4

0, ∞

3, 1

Figure 5.9: A networkN and the corresponding directed graph on the labels computed during
the execution of the DTP-algorithm. All edges (u,v) ∈ E have susceptance b ≡ 1. Two labels
have the same color if and only if they belong to the same vertex inN . (a) To test whether the
label (4, 1) at u3 shall be inserted into the graph, we search for a rainbow path from the label
at s to the new label (4, 1). The slightly colored labels produce no DTP from that particular
vertex. (b) The rainbow path avoids cycles and ensures that the paths remain simple.

from L(v), the label sets still do not contain dominated labels. Moreover, the new labels
also correspond to simple paths as it is tested whether v already lies on π (s,u). Note
that previously extracted labels from Q are not removed since their susceptance norm
is less than the one of `new(v). In particular, all labels extracted from Q will be present
in the �nal label sets.

Secondly, we prove that in the end we have D(v) ⊆ L(v) for all v ∈ V . Assume that
this was not the case. Then, there is a label ` ∈ D(v) that is not included in L(v) for
some v ∈ V . We pick such a label with the minimum susceptance norm. This label
corresponds to a path π (s,v). Denote the vertex beforev byu. Since the subpath π (s,u)
from s to u has ‖π (s,u)‖b < ‖π (s,v)‖b , the label for this subpath is present in L(u).
But in the iteration in which this label was processed, all neighbors of u were explored.
In particular, the label ` forv was computed and added to L(v). Moreover, it was never
removed from L(v) later, since it is not dominated. This contradicts the existence of `.
Since D(u) ⊆ L(u) and L(u) contains no dominated labels, we conclude D(u) = L(u).
The DTP is then computed by minimizing over L(t). �

A counterexample for monotone voltage angle paths is given in Figure 5.10 con�rm-
ing Lemma 5.10.

Lemma 5.10. The Dominating Theta Path (DTP) is not necessarily on a monotone

voltage angle path.

5.4.2 DTP without Merging the Labels

The Algorithm 3 for the DTP can be implemented using the merging of equivalent
labels or without merging. Neglecting the merging of labels would mean that we
remove Line 11 that avoids cycles and Line 12 that merges the labels. Thus, the
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Figure 5.10: The graphs represent two problematic cases. (a) An example that shows that it
does not su�ce that the labels consist of (‖·‖b , cap(·)), but has to include the set of visited
verticesV ′. (b) Shows an example that the DTP is not necessarily on a monotone voltage angle
path. Let 0 < ϵ � 2/3 then the green path represents the DTP from s to t .

reachability check is neglected, but we have to add cycle checks that are also done
by the reachability test (see Section 5.4.3). The implementation stores a set of visited
vertices V ′ for every label. Using a simple union operation on these set, we are able to
check for cycles. In worst-case we have to save O(|V |) elements per vertex in that set.
Thus, a label consists in that case of (‖·‖b , cap(·),V ′). Note that this method can lead
to exponential many labels as exempli�ed in Figure 5.8. However, the reachability test
leads to an exponential running time (see Section 5.4.3 and Equation 5.18).

5.4.3 Reachability Test

Algorithm 3 repeatedly tests whether the new labels correspond to simple paths in
the network (Line 11 of Algorithm 3). For this it is checked whether the label at
vertex s is reachable fromu via parent-pointers from the label ` when all labels atv are
ignored. The labels and the pointers together form a directed acyclic graph, where the
labels have the same color if and only if they belong to the same vertex in network N
(see Figure 5.9). We call a path whose vertices all have di�erent colors a rainbow path.

Rainbow s-t-Path s-t-RP(G, c, s, t)

Instance: A directed acyclic graph G = (V , E), a coloring c : V → N, and
s, t ∈ V .

Question: Is there an s-t-path π in G such that all vertices of π have di�erent
colors?

An algorithm to test whether there is a Rainbow s-t-Path (s-t-RP) in undirected
graphs was presented by Uchizawa et al. [Uch+13, Theorem 11]. It runs inO(k2k |E | |V |)
time, where k is the number of colors, |E | the number of edges, and |V | the number
of vertices in G. We give a di�erent algorithm for directed graphs, which can be
implemented to run in O(k2k |E |) time. The main work is done by Algorithm 4. It
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Algorithm 4: computeColors
Data: A directed label network G = (G = (V , E), c, s), where c : V → N is the coloring

and s ∈ V is the �xed source of the network, v ∈ V , and a set T ⊆ N of
forbidden colors.

Result: The intersection of the colors of all rainbow s-v-paths, or N if there are no
such paths.

1 if c(v) ∈ T then return N ; . Not a rainbow path?
2 if s = v then return {c(s)} ; . Base case
3 CT (v) B N;
4 for (u,v) ∈ E do . All incoming edges into v
5 C ′ B computeColors (G,u,T ∪ {c(v)}); . Incoming cut
6 CT (v) B CT (v) ∩C

′;
7 end
8 CT (v) B CT (v) ∪ {c(v)};
9 return CT (v);

additionally gets a set T of forbidden colors as input and ignores all vertices of these
colors. To decide whether there is a rainbow path from a vertex s to a vertex t , we
initially set T to ∅. We compute for each vertex v a set of colors CT (v). A color c is in
the setCT (v) if and only if any rainbow s-v-path π (s,v) contains a vertex with color c
with the additional constraint that no vertex of π (s,v) is colored with a color in T
(in Algorithm 4 Lines 5 and 6). For each vertex v and all its incoming edges (u,v) we
recursively compute all necessary colors for the rainbow paths to u such that c(v) is
forbidden. The set CT (v) is then equal to the intersection of these color sets together
with c(v). Throughout the algorithm we use N to indicate that there is no rainbow
path with the given restrictions.

During the execution Algorithm 4 may be called several times with the same param-
eters. To speed up the computation one may store the results instead of recomputing
them every time. Further, we �nd a relation between CT (v) and CT ′(v) for a vertex v
and two sets of forbidden colorsT andT ′. If every color of a vertex beforev in the topo-
logical order is either both in T and T ′ or neither in T nor T ′, we have CT (v) = CT ′(v).
In particular, if no vertex before v is colored by any color inT , we haveCT (v) = C∅(v).
This property can also be used to reduce the number of recursive calls.

Alternatively, the set of colors CT (v) at a vertex v can be computed by traversing
all paths from s to v , checking if no two vertices are colored the same and �nally
taking the common colors of all rainbow paths. This may be faster if there are only
few s-v-paths or if many of the paths can be eliminated quickly because they are not
rainbow paths.
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5.4.4 Analyses of the DTP

Examples of this algorithm are shown in the upper part of Figure 5.7a and b. Note
that there are at most |E | di�erent values of cap(·) since there are at most |E | di�erent
labels saved per vertex assuming that we merge and have a penrose-minor free graph
with direction. This bound is tight. Consider for example two vertices with |E | parallel
lines, where line i has capacity i and susceptance 1/i .

Lemma 5.11. For each u ∈ V we have |L(u)| ≤ |E |.

Note that for arbitrary graphs the labels are of the form (‖·‖b , cap(·),V ′), which
results in exponential many labels. The non-negativity of the susceptance norm and
capacity implies that processed labels D(·) will not be removed. This is denoted as
label setting. In contrast, negativity would imply that there may exist a path such
that processed labels have to be updated by labels of vertices on the negative path.
In addition, all adjacent labels of the updated labels have to be corrected and so
forth. Algorithms working like this are called label correcting and do not perform as
e�ciently as label setting algorithms. The running time of Algorithm 3 depends on the
subroutine isReachable for which no polynomial bound is known. Note that these
tests are easy for labels that correspond to exactly one path, i. e., labels that were not
merged. On realistic power grid instances the algorithm performs well since merging
is rare. If we use a Fibonacci-heap Q to store labels, the operation insert is in O(1),
delMin is amortized in O(log|V |) [FT84], deleteDominatedLabels is in O(|E |),
and isReachable (see Section 5.4.3) runs in O(2 |V | |V | · |E |) time. The initialization
is in O(|V |) time (Lines 1–4). There are O(|V | · |E |) delMin operation, since every
vertex can have up to |E | labels. There arise O(|E |2) operations of all other methods,
since we do these operation for all incident edges

∑
u ∈V deg(u) = 2|E | [Eul41] (Line 8)

and each vertex can have at most |E | labels. Thus, the algorithm runs in time

T BO
(
|V | · |E | ·TdelMin + |E |

2·

(Tinsert +TisReachable +TdeleteDominatedLabels)
)

(5.17)

=O
(
|V | · |E | · log|V | + 2 |V | |V | · |E |3

)
. (5.18)

The following lemma results directly from the previous discussion.

Lemma 5.12. Algorithm 3 runs in O
(
2 |V | |V | · |E |3

)
time.

On general graphs we cannot assume that the switched edges are either tight edges
(i. e., bottleneck edges that are congested) or on the DTP (in Figure 5.7b edge (u,v) is
not on the DTP). In the following, we restrict our graph classes of the networkN to s-
t-networks (i. e., there is only one s ∈ VG and one t ∈ VD ) and try to solve the MTSFP
on them. We identify structures, where it is easy to switch. The following lemma
shows at which point it is bene�cial to switch on simple cycles.
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Figure 5.11: All cases show penrose-minors, whereu andv are either generators or consumers,
but not both the same. They are a combination of a kite graph (i. e., diamond graph with
an additional edge on one of the tip vertices) and a dart graph (i. e., diamond graph with an
additional edge on one of the girdle vertices).

Lemma 5.13. Let N be a simple cycle with one generator s and one consumer t , and
letπ (s, t) ∈ Π(s, t)\πDTP(s, t). The Braess’s Paradox exists if and only if OPTMPFP(π (s, t))
> OPTMPFP(N).

Proof. It su�ces to show that removing edge emin(πDTP(s, t)) B argmine ∈πDTP(s ,t ) cap(e)
results in OPTMPFP(N − {emin}) > OPTMPFP(N) and thus, it holds OPTMTSFP(N) >

OPTMPFP(N). The �ow on the path π (s, t) is de�ned by the ratio ∆θv (π (s ,t ))/‖π (s ,t ) ‖b
(Equations 5.5 and 5.14). The smallest voltage angle di�erence ∆θv (s, t) restricts the
�ow on the other path π (s, t). Thus, the term ∆θv (s ,t )/‖π (s ,t ) ‖b is the maximum possible
�ow on path π (s, t). The value OPTMPFP(π (s, t)) > OPTMPFP(N) holds if and only if

∆θv (π (s, t))

‖π (s, t)‖b
> ∆θv (s, t) ·

‖π (s, t)‖b + ‖πDTP(s, t)‖b
‖π (s, t)‖b · ‖πDTP(s, t)‖b

.

Thus, switching an edge emin on πDTP(s, t) increases the total �ow on the cycle and
makes switching bene�cial. �

We now generalize this result to a more complex graph class. Following the construc-
tion in Section 5.3, we assume that all generator and consumer vertices have degree 1.
A diamond graph is a simple graph on four vertices and �ve edges consisting of two
triangle facets identi�ed along an edge. Moreover, we denote its degree-3 vertices as
girdle vertices and its degree-2 vertices as its tip vertices. Furthermore, we call the
combination of a kite and a dart graph representing both diamond graphs with an
additional edge on one of the tip and the girdle vertices, respectively, a penrose graph
(Figure 5.11). These additional edges basically represent either a generator edge or a
consumer edge, but not both the same. We emphasize this by the following de�nition.

De�nition 5.14 (Penrose Graph). A penrose graph is a kite graph with an additional

edge incident to one of the girdle vertices, or similarly, a dart graph with an additional

edge on one of the tip vertices.
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Algorithm 5: MTSF Algorithm for Penrose-Minor-Free N
Data: A network N = (G,VG ,VD , cap,b).
Result: DTP(s, t), parent : V → V , and ` : V→ R≥0 ×R≥0.

1 S B ∅;
2 B B blockCutTree(N) ; . Biconnected components
3 (π,∆θvmin, parent, L(·)) B DTP(N); . see Algorithm 3
4 for β ∈ B do
5 S ′ B ∅;
6 while L(t) , ∅ do
7 S ′ B S ′ ∪ emin(π (s, t));
8 if OPTMPFP(β − S

′) ≥ OPTMPFP(β − S) then
9 S B S ∪ S ′; . Save switched lines in S

10 end
11 (πDTP,∆θ

v
min, parent, `) B DTP(β − S ′); . Update

12 end
13 end
14 return (OPTMPFP(N − S), S);

A minor of a network N is obtained from N by contracting and deleting edges,
as well as deleting isolated vertices (i. e., vertices without incident edges). A penrose-

minor-free graph is a graph without a penrose graph as a minor.
In the following, we consider penrose-minor-free graphs with one generator s and

one consumer t . Note that each block, i. e., a maximal biconnected subgraph, of such
graphs consist of one or more parallel paths. The start and end vertices of the paths
act as generator and consumer for the block. Note that the blocks can be considered
separately. Let β be a block and u and w the start and end vertices of its paths. The
�ow value F of an MPF from u to w is F = ∆θv (u,w) ·

∑
π ∈Π(u ,w )

1
‖π ‖b
. To increase

the �ow value, either of the factors has to be increased. Switching cannot increase the
sum, but only the angle di�erence on the DTP. Thus, the following result holds.

Lemma 5.15. Switching on penrose-minor-free graphs is only bene�cial on DTPs.

From Lemma 5.15 we know that we only need to consider edges on a DTP for switch-
ing. In Algorithm 5 for each block β we remove the edge with the smallest capacity
on πDTP(s, t) in β and update the DTP(s, t). If we get a better value for F , we save it.
We repeat this procedure until there is no path from s to t . The correctness of Al-
gorithm 5 follows directly from the correctness of the DTP-Algorithm (Algorithm 3)
and Lemma 5.15.

Theorem 5.16. Algorithm 5 computes a correct MTSF on penrose-minor-free graphs

with one generator and one consumer.

Switching is NP-hard in series-parallel graphs, which generalize penrose-minor
graphs, and leads to the next lemma that was proven in Section 5.2.2.
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Lemma 5.17. MTSFP is NP-hard even if there is only one source and one sink in the

network and all edge capacities are 1.

A general observation in power grids is that shortest paths are somehow connected
to switching a line, since the betweenness centrality is negatively correlated to switch-
ing lines [HB08]. Though switched edges on general graphs are not always on DTPs,
Algorithm 3 gives us a new criterion focusing on switching by using DTPs instead
of the shortest paths. We de�ne the DTP centrality based on the number of DTPs
through an edge.

De�nition 5.18. Let N be a power grid. The DTP betweenness centrality cDTPB : E →
R≥0 is de�ned by

cDTPB(e) B
1
mB

∑
s ∈V

∑
t ∈V \{s }

σDTP(s, t, e)

σDTP(s, t)
, (5.19)

where σDTP(s, t, e) is the number of DTPs between s and t that use e , σDTP(s, t) is the total
number of DTPs from s to t andmB = |V |(|V | − 1) is a normalizing constant.

For directed and undirected graphs, the normalization factor is the same, since the
algorithm operates on the directed label graph. However, we normalize the number
of DTPs already by the number of DTPs between s and t . Note that in power grids we do
not necessarily check all pairs of vertices, but the paths between all generators s ∈ VG
and consumers t ∈ VD . Thus, we de�ne the following centrality that di�ers in the
base—meaning generators and consumers instead of all vertices—and normalization
constant.

De�nition 5.19. Let N be a power grid. The switching centrality cS : E → R≥0 is
de�ned by

cS(e) B
1
mB

∑
s ∈VG

∑
t ∈VD

σDTP(s, t, e)

σDTP(s, t)
, (5.20)

where σDTP(s, t, e) is the number of DTP-paths between s and t that use edge e , σDTP(s, t)
is the total number of DTP-paths from s to t and mB = |VG | · |VD | is a normalizing

constant.

5.5 Computing one DTP in Polynomial Time

The previous algorithm computes all DTPs between two vertices u and v , but has an
exponential running time or uses exponential space dependent on the implementa-
tion. In this section, we present a polynomial time algorithm to calculate the DTP.
However, instead of calculating all DTPs between two vertices u and v this algorithm
computes only one DTP. Thus, it cannot be used for the centrality measurement.
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Figure 5.12: The necessary graph transformations to calculate a DTP in polynomial time.
(a) The transformation from an undirected graph to a directed graph that is bidirected by
transforming edge {u,v} to two directed edges (u,v), (v,u). To have a vertex disjoint path,
each vertex u is split into two vertices uin,uout with one additional edge (uin,uout). (b) The
transformed network N ′′ with capacities cap ≡ 1 and edges costs γ (uout,vin) = 1/b(uout,vin) for
an external edge and γ (uin,uout) = 0 for a vertex internal edge. (c) The resulting minimum-cost
�ow f for an edge emin = (u,v).

Recall from Section 5.4.1 that a label (‖π (s,u)‖b , cap(π (s,u))) consists of the suscep-
tance norm—representing the electrical distance—and the minimum capacity along
a path π (s,u). Thus, �xing the edge with the smallest capacity and calculating a
shortest path from that particular edge to the source and sink vertex using the sus-
ceptance norm ‖·‖b is equivalent to the bicriterial shortest path. Assume that one
knows an edge emin on the DTP from s to t with the minimum capacity. We then
need to �nd a shortest s-t-path π via emin, where all edges of π have capacity at
least cap(emin). Let N ′ be the network obtained from N when all edges with capacity
smaller than cap(emin) are removed. Searching for a shortest s-t-path via emin is then
equivalent to searching two disjoint paths π1 and π2 from s and t to the endpoints
of emin in N ′ such that ‖π1‖b + ‖π2‖b is minimum.

These paths can be found by running a minimum-cost �ow algorithm in a suitable
graph, which is obtained in the following way. First, we denote the endpoints of emin
by u and v , and remove emin. We replace each undirected edge by directed edges in
both directions (bidirected graph). Finally, each vertex w is split into two vertices win
andwout, which are joined by the directed edge (win,wout). We call these edges internal.
The incoming and outgoing edges of w are then placed at win and wout, respectively.
All edges of the resulting graph get a capacity of 1. The cost of the internal edges is
set to 0. All other edges correspond to an edge e in the input network, and we set
their costs to 1/b(e). The vertices sout and tout produce one unit of �ow each, while uin
and vin consume one unit each. We call the resulting network N ′′.

Let f be a minimum-cost �ow from u to v with �ow value 2. We can decompose f
into two unit �ows from sin and tin, which correspond to disjoint paths π1 and π2
from s and t to the endpoints u and v (i. e., endpoints of the removed edge emin).
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Algorithm 6: Factor 2-Approximation Algorithm for Cacti
Data: A network N = (G,VG ,VD , cap,b).
Result: OPTMPFP(N − S), and switched edges S .

1 S = ∅;
2 C = dfs (N );
3 for c ∈ C do
4 S = S ∪ {argmin∀e ∈c (cap(e))};
5 end
6 return (OPTMFP(N − S), S);

Lemma 5.20. The shortest s-t-path π via emin inN cap(emin) has susceptance norm ‖π ‖b =
cost(f ) + ‖emin‖b . If the edge on π with the minimum capacity is known, π can be

computed in polynomial time.

Proof. Constructing N ′′ as described above and computing the minimum-cost �ow f
is possible in polynomial time. The �ow f can be decomposed into two unit �ows, e. g.,
by running a depth-�rst search. The edge capacities of 1 ensure that these two �ows
follow two edge-disjoint paths. Since each vertex ofN ′′ has only one incoming or one
outgoing edge, these paths are vertex-disjoint as well. Further, they correspond to two
paths π1 and π2 inN ′, where π1 connects s with an endpoint of emin and π2 connects t
with the other endpoint of emin. Together with emin we hence obtain an s-t-path Π
via emin with ‖π ‖b = cost(f ) + ‖emin‖b . The last property follows immediately from
the de�nition of the costs in N ′′. As f has minimum cost, the constructed path π
has minimum susceptance norm among all s-t-paths via ‖π ‖b = cost(f ) + ‖emin‖b
in N ′. �

Since we assumed that emin was an edge with minimum capacity on a DTP between s
and t , the path π is a DTP. However, emin is unknown. We therefore repeat this
procedure for each edge in the network and pick the path with the smallest angle
di�erence. Lemma 5.20 then guarantees that this results in a DTP.

5.6 Approximation Algorithm on Cacti

Lehmann et al. [LGH14] showed that the bounded MTSFP on cacti is NP-hard by using
a reduction from subset sum. Subset sum is weakly NP-hard and a fully polynomial-
time approximation scheme (FPTAS) exists [Kel+03]. In this section, we present an
approximation algorithm for MTSFP on cacti with approximation factor 2. Recall
from Section 5.3 that it is always possible to transform a bounded MTSFP into an
unbounded MTSFP (Lemma 5.3).

In the following, we assume that our underlying graph G of N is a cactus. Unlike
in Section 5.4 we allow multiple generators and consumers. The basic idea for our
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algorithm (Algorithm 6) is to remove from each cycle the edge with the smallest
capacity. Since we presume that N is a cactus, cycles are independent concerning
the voltage angle di�erence, since they do not share an edge. Cycle detection can be
done via a depth-�rst search (DFS) in O(|V |) time, where |V | is the number of vertices.
Finding the edge with minimum capacity in each cycle is done during the DFS. Note
that the remaining structure is a tree that is equivalent to a Maximum Spanning Tree
(MaxST). The running time of MaxST is in general O(|E | α(|E |, |V |)) [Cha00], where α
is the inverse of the Ackermann function (i. e., α grows very slowly). Note that MaxST
on cacti runs also in O(|V |) time. The maximum �ow on trees can be realized in O(|V |)
time by using the pseudo�ow algorithm [Hoc08]. Thus, the algorithm runs in O(|V |)
time.

Lemma5.21. LetN = (G,VG ,VD, cap,b) be a power grid and let S be the set argmin∀e ∈c
cap(e) of switched edges for all cycles c ∈ C . Then there exist a feasible electrical �ow f ′

on N − S such that F (f ′) = 1/2 OPTMF(N).

Proof. Let f ? be a MF with value OPTMFP on N . By reducing the �ow on each edge
by one half (see Equation 5.21), we get a �ow f on N with a value of 1/2 OPTMF.
Applying Algorithm 6 returns a set of switched edges S =

⋃
c ∈C argmin∀e ∈c cap(e).

We decompose each cycle c ∈ C into an edge emin having the smallest capacity on the
cycle c (Equation 5.22) and into the remaining part denoted as path π . Since the �ow
on emin is 1/2f ?(emin) it can be rerouted on the remaining part π of c (Equation 5.23).
We denote the rerouted �ow by f ′. For any e ∈ π we have

| f (e)| = |1/2 f ?(e)| ≤ 1/2 cap(e), (5.21)
| f (emin)| ≤ 1/2 cap(emin) ≤ 1/2 cap(e), (5.22)
| f ′(e)| = | f (emin) + f (e)| ≤ cap(e). (5.23)

�

Recall that OPTMFP is an upper bound for OPTMTSFP and that MFP and MTSFP are
equal on trees. Thus, from Lemma 5.21 follows Theorem 5.22.

Theorem5.22. Algorithm 6 is a factor 2-approximation algorithm for theMFP andMTSFP
problem on cacti.

Note that an approximation ratio of 1/2 does not provide a good guarantee in the
worst case. However, compared to other heuristics it gives guarantees and can be used
as an initial step for heuristics.
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Figure 5.13: Simulation evaluation using the data from Table 5.2 for (c) and aggregat-
ing the results from Figures C.1–C.3 into (d) including (a) and (b). (a) and (b) show the
nesta_case189_edin and 2746wop_mp, respectively, with the gray dashed line being the
centrality of the edges (x-axis) and the green line the MPF (y-axis). (c) The 2-approximation
on cacti using MaxST is tested on arbitrary graphs. The global optimum OPTMaxST is reached
at 1 and the proven factor for cacti is at 1/2. The green left (with range) and right point show
the mean and median, respectively. (d) The aggregated data are normalized with regards to
the edges and MPF using |E | and the MPF of each of the network. The edges are ranked from
highest to lowest cDTPB. The quantiles show that 32 % of the test cases give worse results than
the green line while switching an edge with low centrality.

5.7 Simulations

We simulated4 our DTP betweenness centrality and 2-approximation algorithms for
penrose-minor-free graphs and cacti, respectively, on arbitrary graphs. By arbitrary
graph we mean the NESTA benchmark sets [CGS14], which are based on the IEEE
benchmark sets [Alb+79, AS74, Bil70, Cro15, Dem+77, GJ03, Gri+99, Jos+16, LB10,
Les+11, Mat13, Uni14, WWS13, ZMT11] and incorporate realistic data such as thermal
line limits. Note that we run our simulations on arbitrary power grids, since there
are not a lot of benchmark sets presenting cacti namely nesta_case3_lmbd, 4_gs,

4https://i11www.iti.kit.edu/projects/mtsf/index
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and 9_wscc or s-t-networks available. Recall from Section 5.1 that we have a disjoint
set of generators and consumers. This theoretical assumption cannot be found in any
benchmark set and realistic power grid. Thus, we have to modify the data in such a
way that we still provide a realistic benchmark set and comply with the assumptions
to avoid in�nite generator production at buses having both generators and consumers
(see Equations 5.2 and 5.3). In addition, we only allow to consume a real power
demand pd at a real power generator (see bus data’s column three in the IEEE Common
Data Format [Pie+73]). All other consumers have an in�nite maximum demand
(Equation 5.12). The results for the problems in Section 5.1 are shown in Table 5.2.

For the 2-approximation, we use MaxST (Section 5.6) on di�erent benchmark data
sets and compare the results with the MILP from Section 5.1. The algorithm MaxST
gives very good results even though operating on arbitrary graphs (see Table 5.2).
Nearly all—meaning 93 %—of the results are better than the approximation factor
and 82 % are at most 7 % from the optimum value OPTMTSFP (see Figure 5.13c). Note
that 36 % of the results even reach the optimal value (cases equal to OPTMTSFP have
gray markers in Table 5.2). Thus, the expected quality on arbitrary graphs is much
better than the proven approximation ratio of 2 on cacti (Section 5.6). There are two
cases worse than the approximation factor, because there is no feasible power �ow
for the resulting networks N − SMaxST. There are three cases in which the number of
switched lines in the 2-approximation is greater than OPTMTSFP.

The DTP is exact for s-t-penrose-minor-free graphs. There is no benchmark case
providing this structure. However, since the DTP represents a distance measure, which
marks interesting paths for switching, we introduced the DTP-betweenness centrality
in De�nition 5.18. To estimate the relation of the power �ow and the di�erent edges
having di�erent centrality values cDTPB for the di�erent benchmark cases with di�erent
assorted characteristics, we calculated the MPF for the network after removing a single
edge e with centrality cDTPB(e) from the network and decreasingly order the normal-
ized edges by the centrality. Note that we normalized the MPF and edge index by the
network’s OPTMPFP value and |E |, respectively. The normalization is necessary to ag-
gregate all cases from Figures C.1–C.3 into one plot. The 32 % and 35 % quantiles in Fig-
ure 5.13d show cut points where the MPF decreases while switching an edge. These
quantiles show that 32 % of the test cases at low centrality result in worse results than
the plotted line. This e�ect happens mainly with edges having a small cDTPB (i. e., the
normalized edge index is close to 1). For the 35 % quantile there are only de�ections at
edges with low centrality. Note, that the line at zero represents nesta_case57_ieee,
nesta_case2383wp_mp, and nesta_case3012wp_mp, where switching of an edge
leads to a network with no feasible MPF. Note that de�ection at edges with low cen-
trality motivates the algorithm also for ROP, since edges with low centrality are more
essential for the power grid to get into a stable operation and should be considered
�rst.
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Table 5.2: The PF, MPF, MTSF and OTS models from Section 5.1 are evaluated on the NESTA benchmark sets [CGS14]. The parameters |V |,
|E |, and |SP | represent the number of vertices, edges and switched edges for a problem P, respectively, and the optimal solutions are given
in OPTP . Since OTSP minimizes the cost, the �ow value FOTSP is shown, too. The maximum possible generation is given in the last column
(marked red if it is larger than the OPTMFP). The yellow rows mark the interesting cases where OPTMPFP is smaller than the OPTMTSFP.

NESTA Case |V | |E | |SMTSFP | |SOTSP | |SMaxST | OPTOTSP in $ FOTSP OPTPF OPTMPFP OPTMTSFP OPTMaxST OPTMFP max Gen

3_lmbd 3 3 1 1 1 5 638.97 315 315.00 353.53 4 000.00 4 000.00 4 000.00 4 000.00
4_gs 4 4 0 1 1 109.99 500 500.00 969.00 969.00 719.00 969.00 1 639.00
5_pjm 5 6 0 1 3 14 991.30 1000 1 000.00 1 448.39 1 448.39 1 356.00 1 530.00 1 530.00
6_c 6 7 4 1 4 22.77 107.5 107.50 370.00 370.00 248.00 370.00 1 002.00
6_ww 6 11 6 6 6 3 046.41 210 210.00 332.80 360.00 360.00 470.00 530.00
9_wscc 9 9 6 0 2 5 216.03 315 315.00 770.00 770.00 770.00 770.00 820.00

14_ieee 14 20 15 7 10 231.41 259 259.00 425.00 425.00 425.00 425.00 425.00
24_ieee_rts 24 38 28 10 18 61 001.20 2850 2 850.00 3 405.00 3 405.00 3 405.00 3 405.00 3 405.00
29_edin 29 99 55 54 79 29 669.40 56325.9 56 325.90 81 597.50 81 603.40 76 158.80 82 384.80 82 384.80
30_as 30 41 32 10 15 767.60 283.4 283.40 435.00 435.00 435.00 435.00 435.00
30_fsr 30 41 30 14 15 565.21 189.2 189.20 335.00 335.00 322.20 335.00 335.00
30_ieee 30 41 34 12 19 152.67 283.4 283.40 390.00 390.00 252.00 390.00 884.00
39_epri 39 46 35 7 17 95 578.30 6254.23 6 254.23 7 227.00 7 227.00 7 227.00 7 227.00 7 367.00
57_ieee 57 80 75 25 40 1 125.14 1250.8 1 250.80 1 377.00 1 377.00 1 377.00 1 377.00 1 377.00
73_ieee_rts 73 120 87 34 56 183 004.00 8550 8 550.00 10 215.00 10 215.00 10 215.00 10 215.00 10 215.00
89_pegase 89 210 145 70 142 5 733.37 5733.37 5 733.37 9 921.23 9 921.23 9 718.23 9 921.23 9 921.23

118_ieee 118 186 150 — 92 — — 4 242.00 7 119.00 7 119.00 6 830.00 7 134.00 7 134.00
162_ieee_dtc 162 284 269 77 154 3 904.81 7239.06 7 239.06 8 296.00 8 296.00 7 931.00 8 296.00 9 685.00
189_edin 189 206 71 62 62 783.95 1367.83 1 367.83 2 987.00 2 987.00 2 987.00 2 987.00 3 012.00
300_ieee 300 411 290 — 185 — — 23 527.20 31 568.00 31 568.00 30 504.00 31 735.00 32 492.00

2736sp_mp 2736 3269 2518 545 1307 991 228.00 18074.5 18 074.50 20 246.70 20 246.70 20 010.70 20 246.70 20 246.70
2737sop_mp 2737 3269 2536 630 1305 621 780.00 11267.2 11 267.20 14 677.90 14 677.90 14 537.20 14 677.90 14 677.90
2746wop_mp 2746 3307 2547 649 1349 861 568.00 18960 18 960.00 23 759.50 23 759.50 — 23 759.50 23 759.50
2746wp_mp 2746 3279 2487 594 1318 1 261 620.00 24873 24 873.00 27 618.70 27 618.70 — 27 618.70 27 618.70
3120sp_mp 3120 3693 2793 — 1513 — — 21 181.50 25 406.00 25 406.00 24 856.50 25 406.00 25 406.00
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5.8 Conclusion

This paper is the �rst to provide algorithms with provable guarantees for MTSFP on
certain graph structures and shrinks the gap between theory and practice. In addition,
it provides an extensive theoretical analysis of the MTSFP, builds connections to related
problems and shows how to simplify the network including the transformations from
a bounded to an unbounded MTSFP, and the equivalence of OTSP and MTSFP. We
introduce an exact algorithm for networks with one generator and one consumer
for certain network structures and show when it becomes NP-hard on s-t-networks.
On that base, we de�ne a new centrality measure based on Dominating Theta
Paths (DTPs) representing the s-t-path with the smallest voltage angle di�erence. For
multiple generators and sinks in the network, we give a 2-approximation for cacti.
At the end, the complementing evaluation rounds o� the theoretical results. The
simulations show very good results on the NESTA benchmark set with arbitrary graph
structures, i. e., the results are in nearly all cases either optimal or very close to the
optimum.

However, there are many open problems. It is unknown if the reachability test can
be done in polynomial time and, if not, if there is still a polynomial time algorithm
for DTP (see discussion in Section 5.4.3). Another open question is if there is a PTAS
on cacti. The current idea is a rounding based algorithm. There are many other open
problems such as the complexity and the existence of algorithms while �xing a set of
edges as non-switchable (motivated by TNEP), as well as minimizing or constraining
the number of switches. In addition, we used a linearization of the AC-model denoted
by DC-model. Though, we could not easily transfer our results directly to AC-power
grids, the general idea can be applied as a heuristic since it is based on the fact that the
power �ow uses the path with the smallest resistance, which makes sense also with
the AC-model. However, the evaluation of that will be part of our future research.
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6 Continuous Control Units1

Ideal FACTS Placement – A Susceptance Scaling Approach

Future power grids will o�er enhanced controllability due to the increased availability
of power �ow control units such as FACTS and switches. Contrary to switches that
o�er a discrete decision, FACTS allow to manipulate the power �ow continuously by
changing a line parameter in a certain range. As the installation of control units in the
power grid is an expensive investment, we are interested in using few controllers to
achieve high controllability. In particular, two questions arise: How many �ow control
units are necessary to obtain globally optimal power �ows? And if fewer �ow control
units are available, what can we achieve with them?

Using steady state IEEE benchmark data sets, we explore experimentally that a small
number of controllers placed at certain grid buses (i. e., vertices) or lines (i. e., edges)
already su�ces to achieve globally optimal power �ows. With globally optimal power
�ows, we mean power �ows that have the same value as the minimum cost �ows
using a graph-theoretical �ow. We present a graph-theoretical explanation for this
behavior. To answer the second question we perform a set of experiments that explore
the existence and costs of feasible power �ow solutions at increased loads with respect
to the number of �ow control units in the grid. We observe that adding a small number
of �ow control units reduces the �ow costs and extends the existence of feasible
solutions at increased load. The central task of any electrical power infrastructure is
the reliable and cost-e�cient supply of electrical energy to industry and population on
a national or even continental scale. Future power grids and their usage are subject to
fundamental changes due to the shift towards renewable distributed energy production
and the installation of new power �ow control units, which o�er increased control, but
make the grid operation more demanding. Not only do these changes lead to a much
larger number of independent power producers (IPP), which are highly distributed in
the network, but they also cause very di�erent patterns of energy �ow. For example,
regions with o�-shore wind farms may sometimes produce enough energy to supply
remote consumers, but at other times they are consumers themselves. In particular, this
may require long-distance energy transmission and frequent �ow direction changes.
Most of the existing power grids, however, were not designed for such transmission
patterns. The current strategy to cope with these changes is to either extend the grid
with additional transmission lines, or to install advanced control units to facilitate
better utilization of the existing infrastructure.

1This chapter is partly published in [Lei+15a, Lei+15b, Mch+15].
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(S1) Extending the grid with additional transmission lines.

(S2) Installing control units such as Flexible AC Transmission Systems (FACTS) [Hin93]
to enhance the grid utilization.

In this chapter, we consider the latter option and study the advantageous e�ects of
making selected vertices or edges of a power grid controllable, both in terms of the
minimum number of controllable units needed for achieving maximum �ow control
and in terms of the operation costs and the existence of feasible power �ows at critical
line capacities. We discuss the placement of control units on vertices and edges, which
we call �ow control vertex (FCV) and �ow control edge (FCE), respectively.

In abstract terms, we assume that a �ow-control unit that is a FCV is able to �exibly
distribute the entire power �ow at the placed vertex among its incident edges, as
long as Kirchho�’s current law—that is equivalent to the �ow-conservation property

meaning the in-�ow to the vertex equals its out-�ow—is satis�ed. In terms of FCE,
we assume that a �ow-control unit can only �exibly control the power �ow on one
edge by changing the voltage angle di�erence for that particular edge (see Figure 6.1b
and c). These �ow control units can be realized using power electronics devices known
as Flexible AC Transmission Systems (FACTS), which are a class of power systems that
have the capabilities to control various electrical parameters [GH99, Hin93]. More
speci�cally for FCV, since we are interested in controlling the real power �ow on the
edges incident to a particular vertex that has a FCV, we can realize our �ow control
units by installing on each (but one) incident edge a uni�ed power �ow controller

(UPFC), which is a FACTS that is able to control the voltage magnitude and angle and
consequently has control of the real and reactive power �ow on the particular edge by
changing the voltage angle di�erence [GH99, Nor+97]. In terms of FCEs, this would be
a UPFC on that particular edge. Recall that in Chapter 4, we introduced the geometrical
interpretation of a feasible electrical �ow. A FACTS is able to change the voltage angle
di�erence, which can be modeled by a continuously changeable susceptance b. In the
geometrical setting this basically means that we are able to change the aspect ratio
of a rectangle by resizing it in one dimension (e. g., in our examples it represents the
height; see Figure 6.1).

One of the most important tasks in operating a power grid is to control the energy
production of each power generator such that supply and demand are balanced and the
resulting power �ow does not exceed the thermal line limits of the power lines. Among
all solutions we are interested in one that minimizes the total energy production and
transmission cost. This is called Economic Dispatch Problem (EDP). The Optimal
Power Flow Problem (OPFP) solves EDP in power grids without FACTS [Car62]. The
methods to solve OPFP have subsequently been re�ned and generalized, see the recent
surveys by Frank et al. [FSR12a, FSR12b]. However, the standard OPFP does not
incorporate �ow control units and cannot exploit the extended �ow control possibilities
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Figure 6.1: We use the example graph of Felsner [Fel13, p.18] that was already used in Chapter 4
to show the geometric analogies for the FACTS placement. A FACTS placement basically
represents a susceptance scaling. (a) Shows a feasible �ow that is not a feasible electrical
�ow, since the voltage angles θv (u) at each vertex u ∈ V are not unique. This is illustrated
at vertices u3,u4, t ∈ V , where for example vertex u3 has two voltage angle labels θv 1(u3) = 2
and θv 2(u3) = 3. (b) The corresponding �ows are shown in the primal graph G and the dual
graph G? (see Chapter 4 for more information). The �ows on the two graphs do not map
on the associated edges. A mapping of the primal �ow would result in KCL con�icts in
the dual graph G?. Applying the shown susceptance scaling results in a feasible electrical
�ow. (c) This is the geometric interpretation (see Section 4.3.3 for more information) of the
susceptance scaling, where each edge corresponds to a rectangle. A susceptance scaling is
a scaling of a rectangle’s aspect ratio by resizing it in one dimension (here we de�ne it as a
height scaling). The scaling reduces the height of the bottom right square of size 2 × 2 to a
rectangle of size 1 × 2 and the center right square of size 1 × 1 to a rectangle of size 2 × 1. The
mentioned susceptance scaling removes the con�icts that are highlighted by the red areas.

to obtain globally optimal solutions. Recall from Section 3.3.1 that electrical elements
such as FACTS can be modeled by the admittance matrix and incorporated into the
standard �ow analysis. However, it usually models �xed parameters for the electrical
elements. In addition, the standard objective does not incorporate these components
or �ow control in general.

Hence, we propose in Section 6.2.2 a new hybrid DC-based model for power �ows
in power grids that combines traditional grid elements (i. e., vertices and edges) with
some �ow-control units (meaning FCVs and FCEs). In order to answer our questions on
the e�ects of installing �ow control units, we solve the EDP in our hybrid model using
a linear programming (LP) formulation. Our LP combines a standard graph-theoretical
network �ow model, which already satis�es Kirchho�’s current law at all vertices,
with additional constraints for Kirchho�’s voltage law in those parts of the grid that
are not equipped with �ow control units. Thus we are able to obtain feasible electrical
�ows that minimize, similarly to OPFP, the overall �ow costs in terms of generation
and transmission costs.

Using the well-known IEEE power systems test cases, we performed simulation
experiments related to two key questions, which take into account that the FACTS
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Figure 6.2: The IEEE 14 bus benchmark case is a graphG with 14 vertices and 20 edges [Uni14].
The vertices (respectively edges) in the vertex hitting setVF c (respectively edge hitting set EF c )
are marked red •. Edges that are a�ected by a vertex hitting set have a light gray color and the
remaining graph that we call native power grid has a dark gray color. (a) The 1-pumpkin hitting
set (i. e., vertex cover) has |VF c=1 | = 8 vertices and the remaining graph G is empty. (b) The
2-pumpkin hitting set (i. e., feedback vertex set) has |VF c=2 | = 3 vertices and the remaining
graph is a forest. (c) The 3-pumpkin hitting set (i. e., diamond hitting set) has only |VF c=3 | = 2
vertices and the remaining graph is a cactus graph. (d)–(f) Represent the same results as (a)–(c),
but on edges and the set is denoted by EF

c . We get the following sizes for the hitting set
sizes |EF c=1 | = 7, |EF c=2 | = 7, and |EF c=3 | = 3.

needed for realizing our �ow control units in reality constitute a signi�cant and
expensive investment and hence their number should be as small as possible.

(Q1) How many �ow control units are required and where do they have to be placed
in order to obtain a lower bound for the operating costs?

(Q2) If the number of available �ow control units is given, do we still see a positive
e�ect on the operating costs and on the operability of the grid during peak
periods of the grid?

In Section 6.5 we address the �rst question. In our simulations we determine the
minimum number of �ow control vertices necessary to achieve the same solution
quality as in a power grid in which each vertex is controllable and which clearly admits
an upper bound on what can be achieved with the network topology. Interestingly, it
turns out that a relatively small number of �ow control units are su�cient for this. In
fact, we can prove a theorem stating a structural graph-theoretic property, which, if
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met by the placement of �ow control units, implies the optimality of the power �ow
and serves as a theoretical explanation of the observed behavior. Section 6.6 deals
with the second question of operating a power grid close to its capacity limits, which
becomes increasingly relevant as the consumption of electrical energy grows faster
than the grid capacities. Our experiments indicate that installing few �ow control units
in a power grid is su�cient not only to achieve lower costs compared to a solution
of OPFP, but also allows to operate the grid at capacities for which no feasible solution
of OPFP exists any more.

6.1 Preliminaries

In this section we recall some basic notions from graph theory. Although, for technical
reasons, the graphs we use for modeling power grids are directed, when considering
the topology of the network, we always consider the underlying undirected graph.
Thus, in the following let G = (V ,←→E ) be an undirected graph (see Section 3.1).

The graphG is connected if it contains a path between any two vertices. A connected

component of G is a maximal connected subgraph of G (maximal with respect to
inclusion). A cactus is a graph where every edge is contained in at most one cycle. A
tree is a connected graph that does not contain a cycle. A forest consists of multiple
connected components, where each connected component constitutes a tree.

v

Ni

u1

Nj

w1
wiui

Figure 6.3: A cutvertex v decom-
poses the networkN into at least
two networks N i and N j .

A cut vertex (also known as articulation point)
is a vertex of a graph whose removal increases the
number of connected components (see Figure 6.3).
Note from Figure 6.3 that any path from vertex ui
to vertex wi passes through the cut vertex v . A
biconnected component is a maximal subgraph that
does not have a cut vertex. Biconnected compo-
nents are also called nonseparable graphs. Such
nonseparable graphs with at least three edges have

the following properties: The nullity n > 0 (see Section 4.1), deg(v) ≥ 2 for all ver-
tices v ∈ V , and each edge lies on a cycle. The decomposition of a graph into its
nonseparable graphs is unique [SR61, p.38]. Note that a biconnected component of a
forest is either trivial in the sense that it consists of a single vertex, or it consists of a
single edge. Similarly, a biconnected component of a cactus is trivial, a single edge, or
a cycle.

In the following we introduce two special hitting sets that are the Vertex Cover
Problem (VCP) and the Feedback Vertex Set Problem (FVSP), which we will gen-
eralize in the next paragraph.

143



Chapter 6 Ideal FACTS Placement – A Susceptance Scaling Approach

Vertex Cover Problem VCP(G,k)

Instance: A graph G = (V ,
←→
E ), and parameter k ∈ N.

Question: Is there a vertex cover VC(G) of size at mostk such that one endpoint of
each edge {u,w} ∈ ←→E belongs to a subset ofVF c=1 ⊆ V with |VF c=1 | ≤
k?

Feedback Vertex Set Problem FVSP(G,k)

Instance: A graph G = (V ,
←→
E ), and parameter k ∈ N.

Question: Is there a feedback vertex set FVS(G) of size at most k such that at
least one vertex of each cycle c ∈ C belongs to a subset of VF c=2 ⊆ V
with |VF c=2 | ≤ k?

A vertex hitting set of G = (V , E) with respect to a class of graphs G is a set of
vertices VF ⊆ V such that G −VF ∈ G. We will only be interested in hitting sets with
respect to forests and cacti. The former is also called feedback vertex set. Naturally, one
is interested in �nding a set VF that is as small as possible. A generalization of vertex

c = 3

c = 2

c = 1

c = i ..
...

.

c = 4

Figure 6.4: Forbidden c-pumpkin
minors for di�erent values of c
with c ∈ N>0.

cover and feedback vertex set is called c-pumpkin
hitting set. A minor H of a graph G is a graph
that can be obtained from G by deletion of vertices
and edges or by contraction of edges. A graph
that has no c-pumpkin minor for c = 1 is an
empty graph (i. e., vertex cover; see Figure 6.2a),
for c = 2 is a forest (i. e., feedback vertex set; see Fig-
ure 6.2b), and for c = 3 is a cactus (i. e., diamond
hitting set; see Figure 6.2c). We call a subset of ver-
tices VF c c-pumpkin hitting set if there is a vertex
subset VF c ⊆ V (G) such that G − VF c consists of
no c-pumpkin minor (see Figure 6.4 for di�erent c-
minors). In addition, we try to minimize the size
of the c-pumpkin hitting set. The general problem
de�nition is given below.

c-Pumkin Hitting Set Problem p-c-Hit(G, c,k) [Jor+11a, Jor+11b]

Instance: A graph G, parameter c ∈ N>0, and k ∈ N.
Question: Is there a c-pumpkin hitting set VF c ⊆ V of size |VF c | ≤ k such

that G −VF c consists of no c-pumpkin minor?
Note that the problem of �nding a c-pumpkin hitting set is already NP-hard for

all c ≥ 1 [Jor+11a, Jor+11b]. Analogous to vertex hitting set, we de�ne the edge hitting

set EF ⊆ E such thatG−EF ∈ G and a c-pumpkin hitting set is denoted by EF
c ⊆ E(G).
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An Exact Model for (Special) Hi�ing Sets. In general a set system (also known
as hypergraph or range space) is a tuple (V , S), where V is the set of elements such as
vertices and S is the set of subsets ofV that is not necessarily a power set meaningP(V ).
The latter would imply an exponential size of S with |S | = 2 |V | . A hitting set VF ⊆ V is
a set that has at least one element in each subset of S meaningVF ∩Si , ∅ for all Si ∈ S
with i ∈ N (see Equation 6.1b) and thus, a hitting set highly depends on the de�nition
of the set S . One possibility to de�ne the set of subsets is S =

⋃
ei ∈E {Si ∩ V | Si =

ei , ei = {u,v}}, which represent the set of subsets for vertex cover. The hitting set
problem is de�ned by Equation 6.1.

minimize
∑
v ∈V

z(v), (6.1a)

subject to ∑
v ∈Si

z(v) ≥ 1 ∀Si ∈ S, (6.1b)

where z : V → {0, 1} is a decision variable that is z(v) = 1 if v is in the hitting
set v ∈ VF and 0 otherwise. The latter represents basically the integrality constraint
that explains why this is an ILP. The solution to the above de�ned ILP dependent on S
is a hitting set VF c=1 that is a 1-pumpkin hitting set (i. e., vertex cover) [Cyg+15, p.60].

Now, we are interested in hitting sets such that the remaining graph has no c-
pumpkin minor. Thus, we have to generalize the de�nition of S with subsets Si ∈ S
such that Si is a connected component (also known as block) that is not c-pumpkin
minor free. We are looking for all such connected components. This is quite similar to
the Traveling Salesman Problem (TSP) approach that is generating subtour elimination
constraints meaning if the tour does not have the correct length then the tour represents
a subtour that is excluded from the solution set. However, we add a restriction to the
structure of Si that is a connected component that has at least one c-pumpkin minor.
Thus, in each solver callback we add new sets Si with Si ⊆ V \

⋃
v ∈V {v | z(v) = 1}.

For c-pumpkins with c = 2 or c = 3 we use block-cut trees to identify the set of
maximum biconnected components and check by the ratio of the number of vertices
to the number of edges whether each new connected component β is large enough.
This means that for c = 2, we have |V (β)| − 1 < |E(β)| that excludes trees and
for c = 3 we have |V (β)| < |E(β)| that excludes simple cycles. This can be extend to
any c ∈ N (see Figure 6.4). The substructure exclusion leads to exponentially many
constraints. Thus, a common way to solve this ILP is by using techniques such as
column generation.
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6.2 A Hybrid Mathematical Model for the
Placement of Continuous Control Units

In this section we introduce three graph-theoretic �ow models for optimal power
�ows. We propose a hybrid model that combines the �ow model and the electrical
�ow model in order to handle power grids with �ow control units. Our models are
based on the DC power grid model [Ham07, SJA09, ZMT11], which is commonly used
as an approximation of AC grids [OCS04, Pur+05]. An overview of the simpli�cations
is given in Section 3.3.2. We model a power grid N as a graph G = (V , E), where V
is the set of vertices and E ⊆

(V
2
)

is the set of edges. The underlying power grid
is an undirected graph. We model the undirected graph using a directed graph by
replacing the undirected edges {u,v} by two directed edges (u,v), (v,u) ∈ E that are
directed to either vertices of the original edge. However, in some cases we neglect
for the notational convenience the orientation and use the undirected edge that is
denoted by ←→e ∈ ←→E , where ←→e is the undirected edge of e . The vertices represent the
buses, some of which may be special generator and consumer vertices, and the edges
represent the branches, which may be transmission lines between the incident vertices
or transformers. There is a subset VG ⊆ V of the vertices that represent generator
vertices. We de�ne the functions pд,pд : VG → R≥0 that represent the minimum and
maximum supply for each generator, respectively. In this chapter, we assume that the
lower generation bound is zero meaning pд ≡ 0. Further, there is a subsetVD ⊆ V \VG
of consumer vertices. We de�ne the functions pd ,pd : VD → R ∪ {∞} that represents
the minimum and maximum real power demand, respectively. We assume that the
demands are �xed meaning pd (u) = pd (u) = pd (u) for each consumer u ∈ VD . Without
loss of generality, we assume that VG ∩VD = ∅.

6.2.1 The Objective Function

Each generatoru ∈ VG is equipped with a convex cost functionγu : R→ R≥0 withγu >
0 that is assumed to be piecewise linear (see Equation 6.2).

γu (x) = max{aix + ci | (ai , ci ) ∈ Fu }, (6.2)

where Fu is the set of all piecewise linear functions of γu and ai ≤ ai+1 for i ∈ N.
Each edge e ∈ E has a thermal line limit that is modeled by a capacity func-

tion cap : E → R restricting the real power. Further, each edge causes a certain
loss of power depending on the physical edge parameters and the actual power �ow
on that edge. These losses are again approximated as a convex, piecewise linear
function `e : R→ R≥0 for each edge e ∈ E (see Equation 6.3).

`e (x) = max{aix + ci | (ai , ci ) ∈ Fe }, (6.3)
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where Fe is the set of all piecewise linear functions of `e and ai ≤ ai+1 for i ∈ N.
A �ow f in a power gridN is a function f : V ×V → R that complies with the skew

symmetry property f (u,v) = −f (v,u) for all u,v ∈ V . For every vertex u in V (G),
we de�ne its net out-�ow fnet(u) B

∑
{u ,v }∈

←→
E f (u,v). For a �ow f , we further de�ne

two types of cost functions. The total generator cost is a function cд : R→ R≥0 that is
de�ned in Equation 6.4 and the total line loss is a function c` : R→ R≥0 that is de�ned
in Equation 6.5.

cд(f ) =
∑
u ∈VG

γu (fnet(u)), (6.4)

c`(f ) =
∑
(u ,v)∈E

`(u ,v)(| f (u,v)|) . (6.5)

To obtain the overall cost for a �ow f , we weight these two terms with λ ∈ [0, 1]
such that the objective function represents a multi-criteria objective (see Equation 6.6)
weighted with λ.

cλ(f ) = λ · cд(f ) + (1 − λ) · c`(f ). (6.6)

Our goal is to minimize this objective function cλ in di�erent models.

6.2.2 Power Flow Models

The most basic model is the �ow model, where f has to satisfy the constraints given
in the Equations 6.7–6.10. We call a �ow satisfying these constraints feasible. Equa-
tion 6.10 models the thermal line limits or real power capacities of all edges and is
called capacity constraint. Equation 6.7 models the zero net out-�ow for intermediate
vertices, i. e., vertices that are neither generators nor consumers. Equation 6.8 mod-
els that all consumer demands are satis�ed and is called demand constraint. Finally,
Equation 6.9 models that all generators respect their production limits and is called
generator constraint. The Equations 6.7–6.9 are called �ow conservation constraints.

fnet(v) = 0 v ∈ V \ (VG ∪VD ), (6.7)
fnet(v) = −pd (v) v ∈ VD, (6.8)

0 ≤ fnet(v) ≤ pд(v) v ∈ VG , (6.9)
| f (u,v)| ≤ cap(u,v) ∀(u,v) ∈ E. (6.10)

The �ow model (i. e., Equations 6.7–6.10) neglects some physical properties of electrical
�ows, in particular Kirchho�’s voltage law. Thus, the computed power �ows can
only be applied to power grids where every vertex is a control vertex. In contrast,
the electrical �ow model, e. g., according to Zimmerman et al. [ZMT11], models the
power �ow using the same set of constraints as the �ow model, but additionally
requires the existence of a suitable voltage angle assignment θv : V → R such that
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for each edge {u,v} ∈ ←→E the power �ow speci�c constraint holds (see Equation 6.11).
The power �ow constraint basically represents Kirchho�’s Voltage Law (KVL) that is
combined with Ohm’s law. More details can be found in Chapter 4.

f (u,v) = b(u,v)(θv (v) − θv (u)), (6.11)

where the susceptance b(u,v) is a function b : E → R. This is equivalent to restrict-
ing the model to feasible �ows that also satisfy the KVL, or, in other words, no
�ow control units are used. This yields a model that matches the situation in the
traditional power grid existing today. We call a feasible �ow f a feasible electrical

�ow if there exists a voltage angle assignment θv satisfying Equation 6.11. We are
now able to give a complete de�nition of the power grid by the tuple N = (G =
(V , E),VG ,VD, cap,b,γu ∈VG , `e ∈E,pд,pд,pd ).

Recall from the introduction that �ow control vertices (FCVs) and �ow control
edges (FCEs) can be technically realized by UPFCs, which are FACTS. Ideal FACTS as
introduced by Gri�n et al. [GAG96] are often used to simplify the modeling of FACTS
by using a linear model and assuming a complete and independent control of the real
and reactive power. Our �ow control units are ideal FACTS that control the power
�ow to all incident edges in terms of FCVs and the power �ow on that particular edge
in terms of FCEs. The �ow model—in contrast to the electrical model—assumes �ow
control units at each vertex or each edge, whereas the electrical model assumes no
immediate control of the power �ow. Instead, the grid is balanced by changing the
generator outputs only. In the following, we propose a hybrid model that combines
the �ow model and the electrical �ow model in order to handle power grids with �ow
control vertices (resp. edges) at a subset of selected vertices (resp. edges).

6.2.3 Flow Control Units on Vertices

In this section, we focus on continuous �ow control units that are placed on vertices.
As mentioned above, we call them �ow control vertices (in short FCVs). Let VF ⊆ V
be a subset of vertices of G . We denote by GVF the power network obtained from G by
considering all vertices inVF as �ow control vertices. We call any subgraphG ′ = G[V ′]
induced by a subset V ′ ⊆ V \ VF of the vertices without controllers a native power

grid of G. A �ow f on G is a feasible electrical �ow for a native power grid G ′ ⊆ G
if there exists a voltage angle assignment θv : V → R such that every edge in G ′

satis�es Equation 6.11. In this case we call θv a feasible (voltage) angle assignment

for G ′.
A feasible �ow f is a feasible electrical �ow for GVF if and only if f is a feasible

electrical �ow for the maximal native power grid G −VF = G[V \VF ]. Intuitively, this
models the fact that a power �ow in GVF must be a feasible �ow and that it satis�es
the Kirchho�’s voltage law in the maximum native power grid.
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Obviously, if VF ⊆ VF
′ and f is a feasible electrical �ow for GVF , then f is also a

feasible electrical �ow for GVF ′ . Hence the minimum value of the cost cλ does not
increase when adding more �ow control buses.

We note that each of the models can easily be expressed as a Linear Program-
ming (LP), and thus in all three models an optimal solution can be computed e�-
ciently [BJS04]; see Equation 6.12. However, the �ow model can be reduced to a
special minimum cost network �ow problem, for which e�cient exact optimization
algorithms exist [Gol97]. We describe this reduction in the Section 6.2.5.

We present the problem formulation as an Integer Linear Programming (ILP) formu-
lation (see Equation 6.12). Though Equation 6.12 has only linear constraints—which
would imply that we have an ILP—the objective function has two piecewise linear
cost functions, where the decision of which piece we select is done by an integer
variable. Thus, the whole program is an ILP. In the ILP, we minimize the generation
costs cд and losses c` shown in Equation 6.12a under �ow and electrical constraints.
The main �ow constraints comprise the conservation of �ow (Equation 6.12b), de-
mand and generator constraints (Equations 6.12d and 6.12e), and capacity constraints
(Equation 6.12f). Whereas the electrical constraints describe the electrical feasibility
for the native power grid shown in Equation 6.12c. Recall that each consumer u ∈ VD
has a �xed power demand pd (u) ∈ R and VF ⊆ V is the set of �ow control vertices.

minimize
f

cλ(f ) = λ · cд(f ) + (1 − λ) · c`(f ) (6.12a)

subject to
fnet(v) = 0 ∀v ∈ V \ (VG ∪VD ) (6.12b)

f (u,v) =b(u,v)(θv (u) − θv (v))

{
∀{u,v} ∈ E s.t. u,v < VF for FCVs
∀{u,v} ∈ E \ EF for FCEs

(6.12c)
fnet(v) = − pd (v) v ∈ VD (6.12d)

0 ≤ fnet(v) ≤ pд(v) v ∈ VG (6.12e)
| f (u,v)| ≤ cap(u,v) ∀(u,v) ∈ E. (6.12f)

However, note that the ILP represents the hybrid model, which solves the feasibility
problem only. A proper problem de�nition and an overview of related problems will
be given in Section 6.3. In addition, di�erent possibilities to place control units are
given in Section 6.5. The latter will make extensive use of the above formulation.

6.2.4 Flow Control Units on Edges

We de�ne analogously to the set of �ow control vertices (FCVs) the set of �ow control

edges (FCEs) that is denoted by EF ⊆ E. FCEs are edges with ideal FACTS controlling
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�ow on them. We denote by GEF the subgraph of G that contains all edges of EF and
their incident vertices.

In the standard �ow model the �ow on all edges can be manipulated, i. e., it is like
having a FACTS on every edge in a power grid. In case of FCEs this means EF = E.
The standard �ow model asks to �nd a �ow, i. e., it neglects Equation 6.11. In the
DC �ow model [ZMT11] the �ow on edges cannot be controlled, which translates
to EF = ∅ in case of FCEs. The DC �ow model requires to �nd a feasible electrical �ow,
i. e., Equation 6.11 satis�ed for all edges e ∈ E \ EF . The hybrid model is formalized
in Equation 6.12 as an LP, the �ow model and the DC �ow model are combined and it
is required to �nd a �ow on GVF such that Equation 6.11 holds only for edges that are
not in EF .

Since an ideal FACTS [GAG96] is technically realized on transmission lines, it is
more realistic to consider FCEs instead of FCVs. However, we can easily translate the
described models designed for FCVs to models on FCEs by simply replacing VF by EF
and GVF by GEF and vice versa (see Equation 6.12c).

Recall that the EDP is the problem of generating the required amount of power while
obtaining minimum operation cost and meeting the constraints in Equations 6.7–6.9.
The objective function cλ(f ) describing the operation cost is a weighted function
of generator costs cд(f ) and transmission line losses c`(f ), where λ ∈ [0, 1] is the
weight factor (see Equations 6.6 and 6.12a). The overall optimization problem is given
in Equation 6.12 as an LP.

6.2.5 Reduction to MinCostFlow

Let N = (G = (V , E), s, t, cap,a) be a s-t �ow network consisting of a directed (multi-)
graph G, two dedicated source and sink vertices s, t ∈ V , edge capacities cap : E →
R≥0, and edge costs a : E → R≥0. A �ow f in N is a function f : E → R≥0 and
it is called feasible if it satis�es the capacity constraint in Equation 6.10 and a �ow
conservation constraint similar to Equation 6.7 that is given in Equation 6.13.∑

(u ,v)∈E

f (u,v) −
∑
(v ,u)∈E

f (v,u) = 0 ∀v ∈ V \ {s, t}. (6.13)

The�ow value F (N) of a �ow f is the total �ow from s to t , i. e., F (N) =
∑
(u ,t )∈E f (u, t) =∑

(s ,u)∈E f (s,u). A feasible �ow f with maximum value is called a maximum �ow inN
and denoted by MF(N). For a given �ow value x the min-cost s-t �ow problem is to
�nd a feasible �ow f of value F (N) = x such that the cost cN(f ) =

∑
e ∈E a(e) · f (e) is

minimized.
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Figure 6.5: A small example graph with three vertices, three edges, one source s , and one
sink t . We label each vertex u ∈ V that is represented by a cycle with a voltage angle θv (u).
On the edges, we write the �ow f and the edge’s capacity cap in the form f /cap. Note that
the susceptance on the black edges is �xed to b ≡ 1 and when placing FACTS (red edges)
the susceptance is in the range b(e) ∈ [0.75; 1.25] for all e ∈ EF . (a) The top graph shows
an MPF(N)with a value of OPTMPFP(N) = 3x . The bottom graph shows a MF(N)with a value
of OPTMFP(N) = 5x . (b) Di�erent placement of FACTS and their best susceptance scaling for
this situation result in di�erent values for the resulting �ow. However, the best placement is
shown in the bottom right yielding a MFF(N) with a value of OPTMFFP(N) = 13/3 · x .

Min-cost s-t Flow Problem

Instance: A network N , parameter x ∈ R, and k ∈ R≥0.
Question: Is there a feasible �ow f of value F (N) = x such that cN(f ) ≤ k?

In Section 3.2, we discussed some approaches to tackle the problem. In order to
transform the graph G = (V , E) of a power grid into an s-t �ow network N , we �rst
add a new source vertex s and a new sink vertex t to V . Each generator u ∈ VG is
connected by a directed edge (s,u)with capacity cap(s,u) = pд(u) to the source s . Each
consumer u ∈ VD is connected by a directed edge (u, t) with capacity cap(u, t) = pd (u)
to the sink t . Further, we replace each original undirected edge {u,v} ∈ E by two
directed edges (u,v) and (v,u), whose capacities cap(u,v) = cap(v,u) are given by
their common thermal limit cap({u,v}). Recall from the introduction of Section 6.2
that this represents a bidirected graph.

Next, we de�ne the edge costs. It is well known that a convex, piecewise linear edge
cost function h can easily be modeled in a �ow network by replacing the respective
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edge (u,v) with as many copies as the linear pieces of the cost function. The edge
capacities are de�ned by the di�erences between consecutive breakpoints of h and
sum up to cap(u,v); the individual costs correspond to the costs as de�ned by the
linear pieces between the breakpoints. Thus for ease of presentation we refrain from
explicitly modeling convex piecewise linear cost functions in N . We rather assume
that the �ow cost zλ is given for each edge (u,v) ∈ E with u , s and v , t by the
weighted loss function zλ((u,v), f ) B (1 − λ) · `{u ,v }(f (u,v)), where λ is the weight
parameter of Equation 6.6. The edges (s,u) from the source s to a generator u ∈ VG
have cost zλ((s,u), f ) B λ · γu (f (s,u)) and the edges incident to the sink t have cost 0.
Then the objective function to be minimized is zλ(f ) B

∑
e ∈E zλ(e, f ). Finally, we

set the target �ow value x to the total demand
∑
u ∈VD pd (u) of all consumers. By

construction, every feasible minimum-cost �ow in N is a feasible minimum-cost �ow
in the underlying power grid G and vice versa.

6.3 Complexity

In the above section we gave no restriction on the control unit’s ability. The latter
means that a FACTS is able to adjust the �ow arbitrarily. However, a realistic FACTS
is only able to adjust the voltage angle di�erence within a limited range. Since the
proposed hybrid model does not incorporate a limitation of the power �ow scaling, we
could instead use the DC-model and allow to adjust the susceptances b(u,v) arbitrarily,
where either u or v is in VF for FCVs or (u,v) ∈ EF for FCEs. The limitation for
adjusting the voltage angle di�erence can be modeled by a real interval Ie ∈ I(R≥0)
that depends on the edge e , where I(R≥0) is the set of all real intervals and I(R≥0)
is a semiring (i. e., a ring without additive inverse) of sets. Thus, the interval Ie is
a subset of R that is de�ned by the two elements x and y with x,y ∈ Ie and z ∈ R

such that x ≤ z ≤ y, which implies that z ∈ Ie . The di�erence now is that either
edges incident to a vertex VF for FCVs or all edges in e ∈ EF for FCEs have a variable
susceptance b : E → I(R≥0), (u,v) 7→ I(R≥0) with u or v in VF , or b : EF → I(R≥0),
respectively. An example that shows di�erent scalings for a triangle graph is given
in Figure 6.5. Figure 6.5 shows di�erent susceptance scaling of the same graph that
lead to di�erent power �ows by either allowing more �ow, but �xing the voltage
angles, changing the voltage angles and �xing the �ows, or both.

This modeling would change the linear program Equation 6.12 to a quadratic pro-
gram, since Equation 6.12c is a quadratic constraint with variables f , θv , and b. More
precisely, it represents a bilinear constraint. In Equation 6.14 we use a bilinear form,
where µbilin : V × V → R with (u,v) 7→ b(u,v) · (θv (v) − θv (u)). The latter bilinear
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form is skew-symmetric.

f (u,v) = b(u,v)(θv (v) − θv (u)) (6.14a)
f (u,v) = b(u,v) · θv (v) − b(u,v) · θv (u) (6.14b)
f (u,v) = µbilin(b(u,v), θ

v (v) − θv (u)) (6.14c)

Thus, we have one quadratic constraint (i. e., the KVL combined with Ohm’s law).
However, the other constraints and—in terms of maximizing the throughput—also the
objective stays linear. In the �rst problem, we assume a given placement of the FACTS
and are just interested in the susceptance scaling, which is NP-hard under the condition
that there are quadratic constraints and the objective is linear [Sahni,1974]. The proof
uses a reduction from the Partition Problem. For more precise information about
the complexity of quadratic programming refer to Garey and Johnson [GJ79, p.245,
MP2] and Ausiello et al. [Aus+99, p.447, MP5].

Maximum FACTS Flow Problem with EF MFFP(N, EF )

Instance: A network N , and a set EF ⊆ E.
Objective: Find a susceptance setting b ∈ Ie for all e ∈ EF such that OPTMPFP(N)

is maximum among all choices of b.

Problem Definitions. We can now give di�erent level of granularity for the prob-
lem de�nition of the Maximum FACTS Flow Problem (MFFP). Recall from Chapter 4
the Maximum Power Flow Problem MPFP(N) and its value OPTMPFP(N). For sim-
plicity and for consistency reasons, we only consider FCEs. However, all formulations
can be translated to FCVs, too. The �rst placement problem MFFP(N,k) consid-
ers the problem with a �xed number of FACTS—meaning |EF | = k—and is de�ned
by OPTMFFP(N,k) B maxEF ⊆E ,b ∈Ib OPTMPFP(N) with |EF | = k . The optimization
problem is de�ned as follows.

Maximum FACTS Flow Problem with k-FACTS MFFP(N,k)

Instance: A network N , and parameter k ∈ N.
Objective: Find a set EF ⊆ E of FACTS with |EF | = k and a susceptance settingb ∈

Ie for all e ∈ EF such that OPTMPFP(N) is maximum among all choices
of EF and b.

Note that if |EF | = |E | = k and the susceptance is de�ned in b(e) ∈ [0,∞] for all e ∈
EF the value of OPTMFFP(N,k) = OPTMFP(N). Assume, we have no limitation on the
number of FACTS we can place. The problem to get the maximum possible �ow for a
network N by allowing as many FACTS as possible (i. e., some k) is called MFFP(N)
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and its value is denoted by OPTMFFP(N) B maxk OPTMFFP(N,k). The problem is
de�ned as follows.

Maximum FACTS Flow Problem MFFP(N)

Instance: A network N .
Objective: Find a set EF ⊆ E of FACTS with |EF | = k , 0 ≤ k ≤ |E |, and a

susceptance setting b ∈ Ie for all e ∈ EF such that OPTMPFP(N) is
maximum among all choices of EF , b, and k .

In the simulations, where we allow a susceptance range of b(e) ∈ [0,∞], we will
see that a small number of control units su�ces to get OPTMFP(N). However, depen-
dent on the susceptance interval Ie and the network’s underlying graph structure,
the OPTMFFP(N) does not necessarily have the same value as the OPTMFP(N) mean-
ing OPTMFFP(N) ≤ OPTMFP(N).

In the simulations, we will be interested in the problem of �nding the minimum num-
ber of control units, which we call MNFP(N). Its value is denoted by OPTMNFP(N) B

minOPTMFFP(N,k )=OPTMFFP(N) k .

Minimum Number of FACTS Problem MNFP(N)

Instance: A network N , and a parameter k ∈ N.
Objective: Find a set EF ⊆ E of FACTS and a susceptance setting b ∈ Ie with e ∈

EF such that k = |EF | is minimum among all choices of OPTMFFP(N).
From Lemma 5.6, we know the bounds of MTSFP. A similar relationship holds for

the MFFP, which we describe in Lemma 6.1.

Lemma 6.1. OPTMPFP(N) ≤ OPTMFFP(N) ≤ OPTMFP(N).

In addition, we can give the following relationship between the aforementioned
problems that is given by the problem de�nition itself.

Lemma 6.2. MPFP(N) ⊆ MFFP(N,k) ⊆ MFFP(N) ⊆ MNFP(N).

Note that the KVL constraint is a bilinear constraint that can be reformulated as
shown in Equations 6.14a–6.14c

Overview. For trees (see Table 6.1–1) any of the aforementioned problems is poly-
nomial time solvable, since we reach OPTMFP(N) without any control units. We will
discuss this in more detail in Section 6.5.2. While increasing the structural complexity
of a graph by allowing cycles, Lehmann et al. [LGH15, pp.10�., Theorem 4] show
that the problem is already NP-hard for cacti with maximum degree of 3 by reduction
from Subset Sum Problem (SSP; see Section 5.2.2). In Table 6.1–3, we give a short
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overview. For the most general graph structure—meaning an arbitrary graph—the
problem is strongly NP-hard. The latter was shown by Lehmann et al. [LGH15, pp.
7, Theorem 1] by reduction from exact cover by 3-set problem (i. e., given a set U and
a set of subsets M ⊆ P(U ) with |M | = 3 the decision problem is whether there is
a set M ′ ⊆ M such that

⋃
{X | X ∈ M ′} = U ) and an overview on that is given

in Table 6.1–5. Note that Lehmann et al. [LGH15] implemented this by a choice
network and focused on the problem MFFP(N, EF ), where the position of the FACTS
is prede�ned.
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Table 6.1: Overview of known results on the complexity of the MFF and OFF problem. The complexity increases from top to bottom as
shown in the hardness column. Note that the main points that in�uence the complexity of the problem are the graph structure of G, the
number of generators VG , the number of consumers VD , the susceptance b, and the capacity cap.

Problem Network Properties Complexity Algorithms

Graph Structure Example |VG | |VD | b cap Hardness Reference Name b cap

1 MFFP
and OFFP

tree graphs ∞ ∞ – – polynomial-time
solvable

Lemma 4.9,
Theorem 6.5,

Section 3.2 p. 30
MF ∞ ∞

2 MFFP
and OFFP

series-parallel
graphs ∞ ∞ ∞ ∞ – – – – –

3 MFFP
and OFFP

cacti with
maximum degree

of 3
∞ ∞ ∞ ∞ NP-hard [LGH15, pp.10,

Theorem 4] – – –

4 MFFP
and OFFP

planar graph
with max degree

of 3
∞ ∞ ∞ ∞ – – – – –

5 MFFP
and OFFP

arbitrary graphs ∞ ∞ ∞ ∞ strongly NP-hard [LGH15, pp.7,
Theorem 1] – – –
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Figure 6.6: The graph from Figure 6.1 [Fel13, p.18, Figure 18], where we split the KVL con�ict
step (a) that is a KCL con�ict in the dual graph G? from the susceptance scaling step (b).
If not described otherwise, we have unit susceptances b with b ≡ 1. In (a) the KVL con�ict
is visible in all three representations. Whether it is the left graph that shows the con�ict
by non-unique voltage angle θv assignments, or in the middle representation with the KCL
con�icts in the dual graph G?, or the rectangle con�icts in the geometric representation on
the right side. However, the susceptance scalings shown in (b) and indicated with the arrows ↑
for the geometric interpretation in the right most �gure in (a) �x these con�icts in all three
representations.

6.4 Planar Problem Reinterpretation

Recall from Section 5.3 that we de�ned a single source and single sink planar power
�ow in terms of simultaneous �ows in the primal graph G and dual graph G?. The
de�nition of simultaneous �ows is given in Section 4.3.2. We adjust the problem
formulation for FACTS in the following, while allowing a susceptance range of [0,∞]
for all edges e ∈ E.

s-t-DC Feasibility Problem with FACTS s-t-DC-FEAS-FACTS(G,G?, µdual)

Instance: A plane s-t-graph G and its dual G?, subsets E1 ⊆ E(G) and E2 ⊆
E(G?), and a bijection µdual : E1 → E2.

Objective: Find KCL-feasible �ows f G and f G? in G and G? with F (G) , 0
and F (G?) , 0 such that for every edge e ∈ E we have f G (e) =
f G?(µdual(e)).
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Table 6.2: IEEE benchmark set with |V |, |E |, |VG |, and pd representing number of buses,
number of transmission lines, number of generators and total power demand, respectively.

case |V | |E | |VG | pd

case6 6 11 3 210.00
case9 9 9 3 315.00
case14 14 20 5 259.00
case30 30 41 6 189.20
case39 39 46 10 6254.23
case57 57 78 7 1250.80
case118 118 179 54 4242.00

Instead of demanding that the bijection of the �ows holds for all edges, we relax
this property to edges in E \ EF . In Figure 6.6, we apply a feasible �ow f on the primal
graph G and show that an adjustment of the susceptances transforms f into a feasible
power �ow. However, the assumption to [0,∞] is quite strong. Thus, restricting the
height scaling would lead to the same formulation as in Chapter 4.

6.5 Placing Flow Control Buses

In this section we seek to answer the question of how many �ow control buses
are necessary to obtain a globally optimal solution. Recall that the �ow model is
a relaxation of the physical model and uses fewer constraints. Therefore, optimal
solutions in the �ow model are at least as good as in the physical model.

Given a power grid G = (V , E), we say that making the vertices in VF �ow control
vertices achieves full control if the objective value of an optimal energy �ow for the
gridGVF is the same as the objective value of an optimal solution in the �ow model (or
equivalently in the hybrid network GV , where every vertex is a �ow control vertex).
Our experiments indicate that in the IEEE instances a small fraction of the vertices is
often su�cient to achieve full control as was already indicated in Figure 6.1. Afterwards
we give a graph-theoretical explanation of this behavior.

6.5.1 Experiments

For our evaluation we use the IEEE benchmark data sets [Uni14, ZM11] shown in Ta-
ble 6.2. There each case is named according to the number of buses |V |. The number
of generators and the number of edges are denoted by |VG | and |E |, respectively.

To obtain piecewise linear functions for generator costs γu for all u ∈ VG and line
losses `e for all e ∈ E, we simply sample the cost functions using a speci�ed number
of sampling points. Note further that our approach requires convex cost functions,
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Figure 6.7: Trade-o� of generator costs cд and losses c` normalized to the maximum generator
cost (λ = 0) and the maximum loss (λ = 1) as λ varies from 0 to 1.

but this is �ne in practice [WW96]; in particular the functions are convex for the IEEE
benchmark instances.

We performed our experiments on an AMD Opteron 6172 processor running open-
SUSE 12.2. Our implementation is written in Python 2.7.3 and uses PYPOWER [Lin11],
a Python port of MATPOWER [ZMT09, ZMT11], for computing solutions for the OPFP.
For computing solutions and minimizing the number of control buses in our hybrid
model we use the (integer) linear programming solver Gurobi 6.0.0 [GUR13].

First, we observe that the value of λ, which controls the weighting of costs and losses
in the objective value, has a signi�cant e�ect on the objective values of generator costs
and line losses. Figure 6.7a shows the trade-o� for the IEEE instance case30 (the plots
for the other instances can be found in Appendix D). The OPF solution, which ignores
losses, is typically at the far end of the spectrum with high losses and is comparable
to our solution with λ = 1. As can be seen in Figure 6.7b, where the costs and losses
are normalized to the maximum cost and the maximum loss per instance, the same
trade-o� behavior is present in all instances. It thus makes sense to allow the operator
of a power grid to choose the value of λ in order to model the true operation costs.

On the other hand, it may then be the case that the number of �ow control vertices
to achieve full control of the network varies depending on the choice of λ. Figure 6.8
shows for di�erent values of λ the relative number of control vertices necessary to
achieve full control in each of the instances. In most cases less than 15% of all vertices
need to be controllers to achieve full control. For the cases with 6 vertices and 14
vertices this percentage is slightly bigger, which is mainly an artifact stemming from
the small total size. As can be seen, the required number of units is relatively stable
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Figure 6.8: Relative number of controllers for achieving full control in the IEEE instances as λ
varies from 0 to 1.

but drops to zero for λ = 1, i. e., when only the generator costs are considered. This is
due to the fact that all IEEE instances have basically unlimited line capacities and thus
do not restrict the possible �ows.

In order to make a useful prediction on the number of vertices required for full
control that applies to all choices of λ, in the following we take for each instance the
maximum of the smallest possible number of vertices to achieve full control over all
values of λ and refer to this as the number of vertices for achieving full control of the
instance. This conservative choice ensures that the numbers we compute are certainly
an upper bound for achieving full control, independent of the actual choice of λ.

6.5.2 Structure of Optimal Solutions

As we have seen in our experimental evaluation, often a small number of �ow control
vertices is su�cient to ensure that solutions in the hybrid model are the same as in
the �ow model. In the following we provide a theoretical explanation of this property
and link it to structural properties of power grids. Farivar and Low [FL13] give similar
structural results on spanning trees, but using a di�erent model.

A �rst observation is that �ow control vertices in�uence all incident edges. Thus,
if every edge is incident to a �ow control vertex, i. e., the set VF c is a vertex cover

of G (i. e., c = 1), no edge in the network is a�ected by the constraint Equation 6.11).
Then the �ow model and the hybrid model are equivalent and full control is achieved.
However, it is generally not true that power grids admit small vertex covers; as shown
in Figure 6.9, all instances require more than 40% of their vertices for a vertex cover.
In the following, we show a much stronger result, namely that it su�ces for becoming
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independent of Equation 6.11 that the native power grid G −VF
c is an acyclic network

(i. e., c = 2). Moreover, if λ = 1, (line losses are neglected) and edge capacities are
ignored, it even su�ces that G −VF c is a so-called cactus graph, in which every edge
is part of at most one cycle (i. e., c = 3).

Lemma 6.3. Let H = (V , E) be a native power grid and let v be a vertex whose removal

disconnects H into connected components with vertex sets C1, . . . ,Ck . Then a �ow f is a

feasible electrical �ow forH if and only if it is a feasible electrical �ow forHi = H [Ci∪{v}]
for i = 1, . . . ,k .

Proof. Clearly, if θv (u) is a feasible voltage angle assignment for all u ∈ V (H ), then
its restriction to Ci ∪ {v} is a feasible angle assignment for Hi . Conversely, assume
that θv i is a feasible angle assignment for Hi . De�ne θv i ′ = θv i − θv i (v). Since for
every edge in Hi the voltage angles of the endpoints are changed by the same value,
θv ′ is a feasible voltage angle assignment for Hi . Further, θv i ′(v) = 0 for every Hi ,
which means that the function θv : V → R, where θv (u) 7→ θv i

′(u) for u ∈ Ci is
well-de�ned. Note that the restriction of θv to any of the Hi coincides with θv i ′. Since
every edge of H belongs to exactly one of the Hi , it follows that θv is a feasible voltage
angle assignment for H . �

Iteratively applying Lemma 6.3 yields the following.

Corollary 6.4. A �ow in a native power grid is electrically feasible if and only if it is

electrically feasible for each biconnected component of the power grid.
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We observe that ifG−VF c is a forest (i. e., c = 2), then each biconnected componentH
consists of a single edge {u,v}. Then θv (u) = f (u ,v)/b(u ,v) and θv (v) = 0 are feasible
voltage angles for any �ow f in G − VF

c=2. Thus, we conclude with the following
theorem.

Theorem 6.5. Let H be a native power grid that is a forest. Then every �ow f is a

feasible electrical �ow on H .

Thus, whenVF is a feedback vertex set ofG , i. e.,G−VF c=2 is a forest, then every �ow
on G is a feasible electrical �ow for G −VF c=2, and thus any feasible �ow for GVF c=2 is
electrically feasible for GVF c=2 . It follows that the �ow model and the hybrid model
are equivalent in this case. In particular, whenever VF is a feedback vertex set, instead
of solving the LP for the hybrid model, we can rather assume the �ow model and
compute an optimal solution using a, potentially more e�cient, �ow algorithm. It
follows from Theorem 6.5 that this solution is optimal also in the hybrid model.

Figure 6.9 shows for each of our instances the relative number of vertices necessary
to obtain a vertex cover (i. e., c = 1), a feedback vertex set (i. e., c = 2) with respect to
forests, and the number of vertices necessary to obtain full control. In all instances a
vertex cover is two to three times larger than a feedback vertex set (for forests) and
the vertex set necessary for full control. Comparing the relative number of controllers
for full control with the size of a feedback vertex sets shows that the number to get
an optimal placement is in many cases smaller than the size of a feedback vertex set.
Thus, in the optimal solutions, the native power grid does not always represent a
forest, but can also include cycles. A closer inspection showed that this is in particular
the case for instances that are operated far from their capacity limits.

We now consider what happens when cycles exist in a native power grid. To this
end, we start with the simplest case of a power grid that consists of a single cycle C .
We say that two �ows f and f ′ on a network G = (V , E) are equivalent if for each
vertex v ∈ V we have fnet(v) = fnet

′(v).

Lemma 6.6. Let C be a native power grid that is a cycle. For every �ow f there exists a

unique equivalent �ow f ′ that is a feasible electrical �ow for C .

Proof. Letv1, . . . ,vn be the vertices ofC as they occur along the cycle, i. e., f (vi ,vj ) = 0
unless vi and vj are neighbors on the cycle. Assume we wish to change the amount
of �ow from v1 to v2 by a �xed amount ∆ and obtain an equivalent �ow. The net
out-�ow conservation at the vertices then uniquely determines the change of �ow
along the remaining edges. Hence, every �ow f ′ equivalent to f is obtained from f by
choosing some amount ∆ and setting f ′(vi ,vi+1) = f (vi ,vi+1) + ∆ and f ′(vi+1,vi ) =
f (vi+1,vi ) − ∆, where vn+1 = v1.

Now the existence of a suitable o�set ∆ and the associated feasible voltage angles
can be expressed as a linear system of equations. Namely, for edge (vi ,vi+1) with i =
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1, . . . ,n and vn+1 = v1, we have the following equation.

b(vi ,vi+1) · θ
v (vi ) − b(vi ,vi+1) · θ

v (vi+1) − ∆ = f (vi ,vi+1) .

It is readily seen that the n equations are linearly independent, and hence a solution
exists. Moreover, dividing each of the equations by b(vi ,vi+1) and summing them up

©«
b(v1,v2) −b(v1,v2) 0 . . . −1

0 b(v2,v3) −b(v2,v3) . . . −1

0 . . .
. . .

...

−b(vn,v1) . . . b(vn,v1) −1

ª®®®®¬
©«

θv (u1)
θv (u2)
...

θv (un)
∆

ª®®®®®®¬
=

©«
f (v1,v2)
f (v2,v3)
...

f (vn,v1)

ª®®®®¬
yields −

∑n
i=1 1/b(vi ,vi+1)∆ =

∑n
i=1 f (vi ,vi+1)/b(vi ,vi+1), which shows that the value ∆ is

uniquely determined. �

Note however, that the equivalent �ow f ′ whose existence is guaranteed by Lemma
6.6 does not necessarily satisfy the capacity constraints (see Equation 6.10). Also the
evaluation of f ′ in terms of line losses may change. If neither of these is a limiting
factor, e.g., if λ = 1 and line capacities are su�ciently large, we can show a stronger
version of Theorem 6.5. Recall that a cactus is a graph where every edge belongs to at
most one cycle.

Theorem 6.7. Let GVF c be a power grid with �ow control vertices at the vertices in VF
c

such that the maximum native power gridG −VF
c
is a cactus (i. e., c = 3) and every edge

ofG −VF
c=3

that lies on a cycle has in�nite capacity. For any feasible �ow f there exists

an equivalent feasible �ow f ′ that is a feasible electrical �ow for GVF c=3 .

Proof. We �rst construct an equivalent �ow f ′ as follows. For each biconnected
component C of G − VF c=3 that is a cycle, we consider the restriction f C of f to C .
By Lemma 6.6, there exists a unique �ow f ′C equivalent to f C that is electrically
feasible for C . We now de�ne �ow

f ′(u,v) =

{
f ′C (u,v) if u,v are on a cycle C,
f (u,v) otherwise.

Note that changing the �ow f along the edges of a cycle C to the values determined
by f ′C preserves the net out-�ow at every vertex, and hence f ′ is a �ow equivalent
to f . We claim that f ′ is a feasible electrical �ow. To see this, observe that each block
of G − VF c=3 is either a single edge or a cycle C . In the former case, f ′ is trivially
feasible on the block. In the latter, we have that f ′ coincides on C with f ′C , which is a
feasible electrical �ow. By Corollary 6.4 f ′ is a feasible electrical �ow. �
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Let e1, . . . , ek be the edges of a cycle in GVF c=3 and f i be a �ow on an edge ei in
cycleC . We abbreviate the susceptance b(ei ) on an edge in a cycle by bi . The maximum
susceptance is denoted by bmax with bmax = max1≤i≤k (bi ) for all i = 1, . . . ,k . The min-
imum susceptance bmin is de�ned analogously. In practice, the requirement for in�nite
capacity in Theorem 6.7 is unnecessary. In fact, we can bound the su�ciently large
capacities of Theorem 6.7 by rearranging the equation of the proof of Lemma 6.6 such
that the change of �ow is bounded by the ratio of maximum to minimum susceptance
times the average �ow in the cycle C that is

∆ = −

∑k
i=1

f i
b i∑k

i=1
1
b i

≤
bmax
bmin

·

(∑k
i=1 f i

)
k

. (6.15)

We refer back to Figure 6.9, which in addition to the previously mentioned parameters
also shows the size of a minimum diamond hitting set (i. e., c = 3, where the native
power grid represents a cactus). In all cases the number of vertices for full control is
between the sizes of c-pumpkin hitting sets with c equal to 2 (i. e., forests) and 3 (i. e.,
cacti). For the cases 14, 57 and 118, the minimum number of controllers for achieving
full control indeed results in a native power grid that forms a cactus (i. e., c = 3),
although they do not necessarily achieve the smallest hitting number due to some
in�uence of line capacities.

6.6 Grid Operation Under Increasing Loads

In the previous section we have seen that typically selecting a small fraction of the
vertices as �ow control vertices su�ces to achieve full control in the network. In this
section we study what happens when even fewer �ow control vertices are available
and whether few �ow control vertices allow a better utilization of the existing infra-
structure in the presence of increasing loads.

To measure the controllability in the presence of very few �ow control vertices, we
simulate a load increase by a factor ρ in the power grid by decreasing all line capacities
by the factor 1/ρ. This has the e�ect that the overall demand remains constant and
thus any change of costs is due to �ow redirections. It is then expected that, once the
load increases, the network without �ow control vertices will require signi�cantly
higher operating costs, since the main criterion for determining the generator outputs
becomes the overall feasibility of the �ow rather than the cost-e�cient generation of
the energy. At some point, the load increases to a level where, by means of changing
only the generator outputs, a feasible energy �ow cannot be found. We compare the
operation costs to solutions in power grids with a small number of �ow control vertices.
Speci�cally, our plots show two things. First, the operation costs for various small
numbers of �ow control vertices and, second, the operation costs and the number of
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Figure 6.10: Operation costs of case57 for OPF and the hybrid model with 1 and 2 control
vertices with respect to the load factor ρ.

�ow control vertices necessary for achieving full control in the network with respect
to the load increase factor ρ.

Of course these operation costs again vary depending on the value of λ. Since most
related work ignores line losses, we consider only the case λ = 1, i. e., only generation
costs are taken into account. Varying λ changes the objective value, but it does not
in�uence the existence of solutions with a certain number of �ow control vertices.
Recall from the plot in Figure 6.8 that, if the load increase ρ is small, full control
can be achieved without �ow control vertices for λ = 1. In the IEEE instances all
lines have very large capacities, often much larger than even the total demand in the
network, e. g., the thermal line limit cap of each edge is 9 900MW, whereas the total
demand is pd = 259MW in the case14 and pd = 1 250.8MW in the case57. To better
highlight the interesting parts, similar to the work by Melo Lima et al. [Mel+03], we
�rst scale all line capacities such that the smallest capacity is equal to the total demand
of the consumers as given in Table 6.2. This changes neither the existence nor the
cost of solutions. We increase the load until the �ow model becomes infeasible; at
this point a feasible solution cannot be achieved by adding �ow control vertices and
adding additional lines to the network becomes unavoidable.

Figure 6.10 shows the results of our experiment for the power grid case57. To
improve readability, all costs have been rescaled by the total demand in the network,
and thus give the cost per MWh. The black curve shows the operation cost with
su�cient control vertices for full control. The dotted staircase curve shows the number
of �ow control vertices that are necessary to achieve full control. Moreover, for each
number of �ow control vertices from 1 up to the number required at the point when
further load increase makes the instance infeasible, we show the optimal operation
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Figure 6.11: (a) IEEE benchmark case14 including the minimum numbers of controllers for
λ = 0.5, where the bold normal lines represent G − EF and the bold dashed lines represent
FCEs EF . (b) Comparing of the minimum feedback set sizes for forests and cacti with the
necessary number of FCEs for full control. Cases 9 and 39 need zero FCEs, which is equivalent
to Figure 6.9.

costs with this number of �ow control vertices. Finally, the bold gray curve shows
the operation cost with OPF, i. e., without any control vertices. The plots for the
other IEEE instances can be found in Appendix D.

As expected, increasing loads result in increasing operation costs. Interestingly, very
few control vertices su�ce for increasing the maximal feasible operation point. This
is emphasized by the curve for two control vertices in Figure 6.10, which continues
to a load increase of factor 23.09, whereas OPF works only for up to an increase of
roughly 17.27 and exhibits a signi�cant increase in operation costs at higher loads. In
contrast, when using �ow control vertices, the costs start to increase much later and
more moderately. Interestingly, the solution with one control vertex remains roughly
equivalent to the solution with two control vertices until shortly before the end of its
feasibility range. This example shows that control vertices indeed increase the feasible
operation point and also decrease the corresponding operation costs even if there are
only very few controllers available.

6.7 Evaluation of Placing Flow Control Edges

In this section, we transfer our previous theoretical results from Section 6.5.2 to FCEs.
Thereby, we answer Question 1: How many FCEs are necessary to achieve the lower
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bound for the operation cost, which happens in case each line is a FCE. We call this
operation cost a full control cost.

In Figure 6.11a the graph of the IEEE case14 with the di�erent subgrids is shown
for the placement of FCEs, that induces the operation cost equal to the full control cost.
We observe that the subgrid G − EF

c (graph G where the edges of EF are removed)
forms a cactus (i. e., c = 3; graph where each edge lies in at most one cycle). In other
examples, we observed that G − EF c can be even simpler, forming a forest (i. e., c = 2;
a graph without any cycle). If G − EF c is a cactus (resp. forest) and EF

c is the smallest
such set, set EF c is called minimum diamond (resp. forest) hitting set.

In our experiments, summarized in Figure 6.11b, we compared the number of FCEs
necessary for achieving the full control cost to the size of minimum forest and diamond
hitting sets. In case6-case30 the number of edges for the full control cost is between
the minimum size of a forest hitting set and that of a diamond hitting set. In addition,
case6, case9 and case30 achieve full control cost with FCE size equal to the size of
a diamond hitting set. For case39, full control is achieved with fewer FCEs than the
diamond hitting set size. Unfortunately computing the optimal number of FCEs for
the larger IEEE test cases is prohibitively expensive with our current integer linear
programming formulation.

The following two theorems provide theoretical evidence for our empirical obser-
vations. They explain why the number of FCEs to achieve full control cost and the
size of minimum diamond/forest hitting set are related. This relation and the fact that
power grids are not dense networks, i. e., their forest hitting set is not large, suggests
that the relatively small number of FCEs are enough to achieve the full control cost.
Farivar and Low [FL13] give similar structural results on spanning trees, but using a
di�erent model.

Theorem 6.8. Let G − EF
c
be a forest (i. e., c = 2). Then every �ow f is a feasible

electrical �ow on GEF c=2 .

Theorem 6.9. LetGEF c be a power grid with FCEs at the edges in EF
c
such thatG −EF

c

is a cactus (i. e., c = 3) and every edge of G − EF c=3 that lies on a cycle has in�nite line

limits (or suitably bounded, see Equation 6.15). For any �ow f there exists a �ow f ′ with
identical cost that is electrically feasible for GEF .

The proofs for these theorems can be directly derived from Section 6.5.2 by replacing
the set of �ow control vertices VF c with the set of �ow control edges EF c .

6.8 E�ect of FCEs in Comparision to FCVs

In this section we evaluate Question 2. For this reason, we increase the load by a
factor ρ until the model becomes infeasible. For the hybrid model this happens when
adding more FCEs does not extend the operability.
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Figure 6.12: Overview of operation costs for case6 to case57 for OPFP (0 FCEs) and the
hybrid model with respect to load increase factor ρ, where k is the upper bound for FCEs. The
numbers on the curves represent the number of FCEs for that speci�c curve. Cases 9 and 39
need zero FCEs, equivalent to the results for FCVs.
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Table 6.3: Comparison of the previous model using FCVs and the current model using FCEs.
To compute the number of FACTS in case of FCVs, we compute the total number of edges
incident to the vertices holding FCVs.

Dependency of Con- case6 case9 case14 case30 case39
trol Units Number

FCEs
Feedback Edge Set 6 1 7 12 8
Diamond Hitting Set 4 0 3 5 3
Full Control 4 0 6 5 0

FCVs

Feedback Edge Set 2 1 3 5 4
FACTS 9 2 11 21 15
Diamond Hitting Set 1 0 2 2 2
FACTS 5 0 8 10 5
Full Control 2 1 2 5 4
FACTS 9 3 8 23 15

Figure 6.12 show the experimental results for the IEEE power grids case6 to case57.
The behavior is the same as for FCVs meaning that the operation cost and the range
of operability increase when increasing the load factor ρ. Interestingly, the num-
ber of FCEs does not increase substantially. For the case14 there is a maximum of
three FCEs necessary instead of two FCVs and for the case57 the number of maxi-
mum FCEs remains the same as for FCVs. Similar behavior can be observed for the
remaining cases. Recall that FCVs control �ow on all incident edges, which can be
realized by placing FACTS on all of these edges. Thus, in case of FCVs the number of
necessary FACTS actually depends on the degree of the vertices holding the FCVs and
results in large number of FACTS as indicated in Table 6.3.

6.9 Conclusion

Assuming the existence of special vertices that control the �ow on all their incident
transmission lines, we have presented a hybrid model for including some �ow control
vertices. In this model, we have shown that relatively few control vertices su�ce for
achieving full control. Further, we scaled the load of the network and showed that
even fewer �ow control vertices improve the loadability and have a lower cost increase
compared to OPF.

A more realistic assumption is the placement of �ow control units on edges, which
we call FCEs. Here, we were able to transfer the results of FCVs and make some similar
observations.
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Our work shows the bene�ts of augmenting power grids with �ow control devices.
Using our theoretical model, we were able to explain our empirical observations on
controller placement with graph-theoretical means. While this also explains previous
observations of Gerbex et al. [GCG01], the main drawback is that the model is based
on several strong, simplifying assumptions such as neglecting line losses.
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7Transmission Network Expansion Planning1

The Wind Farm Cabling Problem – A Greenfield Approach

Sustainability is an important aspect of the goal of improving and preserving the
existence of human society. Accordingly, renewable energy sources play an important
role. The renewable energy act EEG 2017 aims for 40% to 45% of electricity to be
produced from renewable energy producers to gross electricity consumption until 2025
and 55% to 60% until 2035 [Jus16]. Thus, it is expected that the current trend of adding
renewable energy producers, will continue [ALH01, IWR16, Jus14].

Wind farms transform wind energy into electrical energy and present an important
and one of the most promising renewable energy producers (Chapter 1) for today’s
and future power grid. In contrast to traditional power plants, which produce the
power in a centralized way (see Figure 1.1 on Page 2), wind farms aggregate the
power of multiple wind turbines, each injecting power at around 33 kV (medium
voltage level), e. g., the Hornsea Project One o�shore wind farm is planned to have
up to 240 turbines [Ltd16f]. As the number of wind turbines increases, algorithms
for planning a wind farm cabling have to handle this amount of wind turbines. If we
consider for instance a wind turbine of 3.6 MW then the number of wind turbines
increases worldwide from 2014 to 2015 by 38% (see Table 7.1). The biggest planned
o�shore wind farm so far with approximately 300 turbines is the Hornsea Project
Three [Ltd16g]. In total, the European grid has 3 344 connected turbines on 82 o�shore
wind farms [asb16]. The onshore wind farms Terra-Gen with 617 turbines and Gansu
with more than 3 500 turbines represent two of the largest onshore wind farm projects
in North America and China, respectively. Table 7.1 shows that the annual potential
of o�shore power production compared to the current annual electricity consumption
worldwide is about 80% larger [ALH01]. Thus, satisfying a reasonable portion of the
annual consumption of electricity with wind energy seems to be possible and reducing
the cabling costs is important to reduce the trade-o� between usage and expenses for
wind farms [LHF08]. Since it is expected that the trend of adding renewable energy
sources, such as wind turbines, will continue and accelerate [ALH01, IWR16, Jus14],
the number of wind turbines and wind farms will increase. This gives an indicator for
realistic instance sizes.

In this chapter, we focus on network planning for wind farms due to a high potential
of cost savings [Fra+05] and a rapidly increasing number of planned projects [IWR16,
Ltd16c]. The design process of a wind farm includes a variety of decisions that in�uence
the construction and operation costs [Lun06]. Typical layout and design factors are
presented in [Cam+09] such as the turbine locations, terrain, landowner requirements,

1This chapter is partly published in [Leh+17, Weg17].
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Table 7.1: The roughly installed o�shore wind power (status February 2016)[Gmb16, IWR16]
increases signi�cantly from 2014 to 2015. The number of turbines |VG | is based on the total
power and assumes that all wind turbines have a power rating of 3.6MW, which matches to-
day’s dominating Siemens SWT-3.6 turbines. In the last three columns the annual consumption
of electricity (El. Cons.) and total energy consumption (Tot. E.) is compared to the potential
o�shore wind energy (Max. Pot.), respectively [Ene16, GM93].

2015 2014 2015 —
El. Cons. Tot. E. Max. Pot.

in MW |VG | in MW |VG | in TWh/a in TWh/a in TWh/a

World 12 100 3 362 8 800 2 444 20 568 160 240 36 990
Europe 11 000 3 056 8 050 2 237 3 291 20 930 8 480

UK 5 100 1 417 4 500 1 250 312 2 080 986
Germany 3 300 917 1 050 292 521 3 550 237
Denmark 1 300 362 1 300 362 — — 550

North
America 0 — 0 — 4 342 28 450 9 860

South
America 0 — 0 — 1 279 9 850 5 660

Asia 1 100 306 710 198 8 608 65 420 7 210
Australia 0 — 0 — 220 1 470 4 110

and wind pro�les, to name a few. A large fraction of the investment is needed for
the cables, cable laying and substations [Fra+05]. Thus, reducing the cabling costs
reduces the trade-o� between usage and expenses of wind farms [LHF08]. We focus
on network planning for wind farms due to a high potential of cost savings [Fra+05]
and an increasing number of planned projects [IWR16, Ltd16c].

Wind farms are organized in a hierarchical fashion; compare Figures 2.2 and 7.1.
Turbines in a wind farm are usually grouped into circuits representing connected
components attached to a collector point, which represents a substation. Circuits are
combined at a substation to a local wind turbine grid known as collector system. Each
collector system is connected to a collector point and from there using a transmission
system, possibly via multiple substations [Ltd16a], to a unique substation representing
the grid access point of the wind farm. The grid access point is connected to the
grid itself via the point of common connection (PCC). The wind farm network usually
forms a tree network (i. e., it is acyclic) [Ltd16b], sometimes a cactus network (i. e.,
each edge is contained in at most one cycle) [Ltd16e] or less commonly a meshed
network [Ltd16d]. During the construction of on- or o�shore wind farms the cabling of
turbines and substations represents one important design question, while the location
of the wind turbines is already �xed. Within this design question, typical cabling
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Circuit

Collector System

Full Wind Farm

Grid Point

Transport Cable (34 kV)
Transmission Cable (155 kV)
Collection Point / Substation
Wind Turbine (4-5 MW)

(380 kV)
PCC

Figure 7.1: The wind farm topology typically consists of wind turbines ⊗ and substations .
The latter are connected with consecutive substations using the transmission system . The
last substation represents the grid point —building the access to the (usually) high-voltage AC
power grid—building the interface to the PCC . Wind turbines forming a connected com-
ponent are called circuit. Multiple circuits connected to a substation constitute a collector
system. Cables interconnecting turbines and connecting turbines with substations are called
transport cables . Both shown collector systems are the Alpha Ventus (left) and Borkum
Ri�grund I (right) with 12 (60MW) and 78 turbines (312MW), respectively.

problem layers are the cabling of turbines within a circuit with one or multiple cable
types known as Circuit Problem (CP), the cabling of multiple independent circuits
with one substation to a collector system, known as Substation Problem (SP), and
the cabling during the consideration of multiple—not necessarily �xed—substations
known as Full Farm Problem (FFP). A simple example that describes di�erent cabling
for SP with their costs is given in Figure 7.2. It also shows that a redundant cabling
design has a signi�cant impact on the overall costs and that—when allowing multiple
cable types—the minimum spanning tree does not necessarily present an optimal
solution to the wind farm cabling problem (see Figure 2.2).

We study the problem of computing a cabling in a wind farm with minimum costs
allowing di�erent cable types and provide a model formulation using three di�erent
levels of granularity, where the highest level represents the whole wind farm. This is a
green�eld approach for Transmission Network Expansion Planning (TNEP). The
algorithmic issues for wind farm planning with multiple cable types are in general NP-
hard (see Section 2). To solve this NP-hard problem, we propose to use simulated
annealing (SA), a well-known heuristic approach [OL96, pp.532�., Section 5]. We
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1 Wind Turbine 100e/m

Capacity CableCosts per Unit
(e.g., m for Meter)

CircuitCircuit

Circuit

Collection Point (e. g., Substation)
Wind Turbine

Transport Cable

Figure 7.2: The circuit of a wind farm in this small example has �ve wind turbines ⊗, one
substation , and four possible cable types and one additional option to lay no cable type
at all. Each cable type has a maximum capacity of power it is able to carry, which is shown
in the table on the upper right corner. Since we assume that each turbine produces the same
amount of power, we de�ne the capacity in terms of connected turbines to a particular cable.
(a) The circuit with its 15 possible cabling connections that represent a complete graph. Every
possible connection has a certain length that is shown at each connection. (b) A Minimum
Spanning Tree (MST) of this circuit has costs of about 800e. (c) A circuit that is cabled using
a simple cycle has costs of about 3 000e. (d) One best possible cabling costs about 662e and
constitutes a star-shaped cabling.

introduce a �rst formal hierarchical structure de�nition of the wind farm problem.
To evaluate our algorithm, we demonstrate on a large variety of benchmark sets
the performance of our simulated annealing algorithm. In the following section we
formalize the problem structure.

7.1 A Mathematical Model for the
Wind Farm Cabling Problem

The cable layout problem for a wind farm considers multiple—not necessarily �xed—
substations and di�erent cable types. A cable layout of a wind farm determines which
entities are connected by cables, and for each of them a cable type. A valid cable
layout for a wind farm interconnects turbines and turbines with substations in such
a way that, in the end, all turbines are connected through a path to a substation.
Further, a valid cable layout has to support a power �ow from the turbines to the
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collector point in such a way that (i) the thermal limits of the cables are respected, and
(ii) the substation capacities are satis�ed. Our goal is to �nd a valid cable layout that
minimizes the construction costs, which depend on the lengths and the chosen cable
types.

Cable Specific Definitions. Before we model the wind farm cabling problem, we
need some preliminaries. Let K denote a set of cable types and let cap,γ : K →
R≥0 ∪ {∞} denote two functions that assign to each cable type κ ∈ K a maximum
capacity cap(κ) and a cost γ (κ) per unit of length. For κ1,κ2 ∈ K we de�ne κ1 < κ2 if
and only if cap(κ1) < cap(κ2) andγ (κ1) < γ (κ2). Without loss of generality, we assume
that < is a strict total ordering on K (it never makes sense to use a more expensive
cable with same or lower capacity). We further assume that there exist two special
cable types κ0,κ∞ ∈ K with cap(κ0) = γ (κ0) = 0 and cap(κ∞) = γ (κ∞) = ∞, where
the former allows to easily model connections that are not used and the latter is used
to make every instance feasible, though possibly with in�nite costs.

Topology and Flows. A bidirected graph is a graph G = (V , E) with vertex set V
and edge set E that contains each edge in both directions. We use ←→E to denote the
underlying undirected edge set, and for e ∈ E we denote by ←→e ∈ ←→E the underlying
undirected edge, i.e.,

←−−−→
(u,v) =

←−−−→
(v,u) = {u,v}. A �ow on a bidirected graph G =

(V , E) is a function f : E → R satisfying the skew-symmetry property f (u,v) =
−f (v,u) for all (u,v) ∈ E. We denote the net out-�ow of each vertex u inV as fnet(u) =∑
(u ,v)∈E f (u,v).

Wind Farm Cabling Model. We are now ready to present our model of the general
wind farm cabling problem called Full Farm Problem (FFP). An instance of this
problem is given by a weighted, bidirected graph G = (V , E, len), where the vertex
setV = VD ∪VG is the union of the setVD of substations and the setVG of turbines, the
set E of edges models the possible connections in the wind farm, and len : ←→E → R≥0
de�nes the lengths of the connections. Further, we are given a set K of cable types
and for each turbine u ∈ VG the amount pд(u) ∈ R≥0 of power it supplies with �xed
minimum, maximum, and current power generation with pд(u) = pд(u) = pд(u),
respectively. In addition, there is for eachw ∈ VD its minimum, maximum, and current
capacity pd (w),pd (w),pd (w) ∈ R≥0. We assume that the minimum substation capacity
is zero meaning pd ≡ 0.

A solution to such an instance is a pair (κ, f )where κ : ←→E → K is a cable assignment
and f is a �ow onG satisfying the conservation of �ow and the edge capacity constraints.
The conservation of �ow (Equations 7.1–7.3) describes the �ow at each vertex including
the production of wind turbines (Equation 7.2) and capacity restrictions at substations
(Equation 7.3). The capacity restrictions of substations should be in general described
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by
∑
(u ,v)∈E max

(
0, f (u,v)

)
≤ pd (v) for all v ∈ VD . However, we assume that there is

no positive �ow leaving any substation (Equation 7.3). The edge capacity constraints
(Equation 7.4) require that the �ow on each edge respects the thermal limits of the
chosen cable type.∑

u ∈V

fnet(u) = 0, (7.1)

fnet(u) = − pд(u) u ∈ VG , (7.2)
fnet(u) ≤ pd (u) u ∈ VD, (7.3)
| f (e)| ≤ cap(κ(←→e )) e ∈ E. (7.4)

We call a pair (κ, f ) satisfying these properties valid. The total cost c(κ, f ) is given
in Equation 7.5.

c(κ, f ) =
∑
←→e ∈

←→
E

(
γ (κ(←→e )) · len(←→e )

)
. (7.5)

Our goal is to �nd a valid pair (κ?, f ?) of minimum total cost for FFP with inputN =
(G,K, cap,γ ,pд,pd ). We denote the optimum cost of such a solution by OPTFFP(N) B

min c(κ, f ).

Full Farm Problem FFP(N)

Instance: A network corresponding to the whole wind farm N =

(G,K, cap,γ ,pд,pd ).
Objective: Find a valid pair (κ, f ) that minimizes the total cost c(κ, f ) while

complying with Equations 7.1–7.4.
We note that our model only requires f to be a combinatorial �ow, i. e., it satis�es

Kirchho�’s current law (KCL), and not necessarily an electrical �ow (power �ow)
satisfying also Kirchho�’s voltage law (KVL). However, this is not a restriction in
our setting. First of all, our heuristics mainly produce tree networks, and it is known
that in this setting every combinatorial �ow is also a power �ow (see Theorem 6.5
on Page 162). While our mixed-integer linear program can also produce network
topologies that are not trees, this happens only rarely.

Transformation to a Minimum Cost Flow Problem. In the following we trans-
form this problem into a minimum cost �ow problem on the input graph G, but with
non-convex staircase cost functions (see Figure 7.3b). For this, we �rst observe that,
given a �ow f on G satisfying Equations 7.1–7.3, it is easy to construct a cable as-
signment κ of minimum cost such that (κ, f ) is valid. Namely, for each edge ←→e ∈ ←→E ,
we de�ne κf (←→e ) = min{κ ∈ K | | f (e)| ≤ cap(κ)}, i. e., κf (←→e ) is the cable type with
the smallest capacity (and by our assumption on K also with the smallest cost) whose
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Cable type Capacity cap Cost per unit γ
1 5 20
2 8 25
3 12 27
4 15 41

(a)

20
25
27

41

5 8 12 15

cost in e/m

cap in W≈

≈

(b)

Figure 7.3: The cable types for our experiments are based on Berzan et al. [Ber+]. The cost
for a cable on an edge is the product of the cost per lengthγ (e. g., in Euro e/m) and the euclidean
distance (e. g., in meter m). Note that each cable has a certain capacity cap (e. g., using real
power in Watt W). (a) The cable types in tabular form. (b) The diagram’s x-axis represents the
cable capacity (e. g., in terms of real power in W) and its y-axis represents the costs γ (e. g.,
in e/m). The cable types in a diagram illustrate the non-convex staircase cost function. If the
line ends with a dark �lled cycle the value is included and otherwise it is not.

capacity is large enough so that Equation 7.4 is satis�ed for f . Note that the cost
associated with edge ←→e = {u,v} then is γ (κf (←→e )) · len(←→e ). Thus, by using for each
edge e ∈ E the cost function γ e : R→ R≥0 as

γ e (x) = min{γ (κ) | κ ∈ K, |x | ≤ cap(κ)} · len(e), (7.6)

the problem becomes equivalent to a minimum-cost �ow problem N = (G,γ e ,pд,pd )
on the bidirected graph G = (V , E) where the cost of x units of �ow along an edge
is γ e (x). An optimal solution is a �ow f ? minimizing

∑
e ∈E γ e (f

?(e)). As above, we
denote the optimal cost by OPTFFP(N).

Minimum Cost Flow Problem MCFPFFP(N)

Instance: A �ow network N = (G,γ e ,pд,pd ).
Objective: Find a feasible �ow f such that the sum of the cost over all

edges
∑

e ∈E γ e (f (e)) is minimized.
We note that, generally, γ e forms a stair-case function, and thus this problem is NP-

hard [YK12] and that this transformation generalizes to the case where an individual
set of cable types K←→e is speci�ed for each edge ←→e ∈ ←→E . In our simulations we use
the same set of cable types for all edges. Further, factors such as wind strength and
turbulences a�ect all turbines with the same maximum power rating in the wind
farm equally [Ltd16c]. Thus, a nominal power can be used to dimension the cabling
and pд(u) = 1 can be set for all u ∈ VG .

The optimization of the transmission system’s export cables is not considered for
the FFP, since it is separately improvable. However, if the substations are �exible,
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Table 7.2: The generated benchmark sets for our simulations. The sets N 1 . . .N 4 are the
sets with a restricted edge set E resembling realistic wind farms in the sense of allowed
cabling. The benchmark set N 5 represents a complete graph vertex-equivalent to N 3. The
parameters β,VG ,VD , ξ , δ ,k , and ϵ represent the shape aspect ratio, set of turbines, set of
substations, substation capacity tightness, substation capacity variance, k-nearest neighbor,
and value for the inclusion of shortcut edges E ′, respectively.

Benchmark Set β |VG | |VD | |VG |/|VD | ξ
δ k ϵ |N i |

run
T 0min max min max min max min max min max

[
min
Ni

]
N1 small/single 0.7 1 10 80 1 1 – – – – – 6 1.1 500 2 0.01
N2 small 0.7 1 10 80 2 7 10 20 0.83 1 0 6 1.1 500 2 0.01
N3 medium 0.5 1 80 200 4 10 10 20 0.83 1 0 6 1.1 1 000 30 0.01
N4 large 0.4 1 200 1 000 10 40 10 50 0.83 1 0 6 1.1 1 000 30 0.01
N5 medium/com-
plete 0.5 1 80 200 4 10 10 20 0.83 1 0 (|V | − 1) – 1 000 30 0.01

export cables have to be considered. We call that problem �exible FFP (fFFP) and its
optimum value is denoted by OPTfFFP(N(k)). Hierarchical-wise we consider two spe-
cial cases: the Substation Problem (SP) and the Circuit Problem (CP) regarding the
cabling layout of a single collector system with OPTSP(N) and circuit with OPTCP(N),
respectively. Note that the problem is the same, but the network changes. For the
wind farm cabling problem hierarchy holds that

OPTFFP(N) ≤
∑
j ∈VD

OPTSP(N(j)) ≤
∑
j ∈VD

∑
i ∈N

OPTCP(N(j, i)).

Note that the CP is already NP-hard [YK12]. In order to provide a good solution, we
need a heuristic which is described in the following section.

7.2 Simulated Annealing-based Approach

The layout problem for multiple cable types is NP-hard [YK12]. Thus, this optimization
problem becomes impracticable using combinatorial methods as the problem size
grows. However, meta-heuristics such as simulated annealing (SA) [Čer85, KGV83] are
promising probabilistic approaches—especially for large search spaces—even though
they do not necessarily �nd an optimum, but often a very good solution. SA is often
used for optimization problems where the search space is discrete such as the cabling
problem. The Metropolis algorithm [Met+53] and the cooling schedule represent two
characteristic methods of the SA algorithm. The SA approach calculates a �nite set of
solutions S (since the number of iteration is �nite). A solution at time t ∈ N is denoted
by st ∈ S , where each solution is a tuple st = (N

t , f t ) with a �ow network N at
time t , where the underlying graphG changes dependent on t denoted byGt = (V , Et )
with Et ⊆ E. By using Equation 7.6, we have a real-valued cost function for our SA
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approach, which is de�ned in Equation 7.7.

c(st ) =
∑
e ∈Et

γ e (f (e)). (7.7)

We call a solution feasible if the �ow f is feasible and the graph Gt is connected. The
global optimum for problem P (see Section 7.1) minimizing the total cost c(s?) is a
feasible solution s? = (N?, f ?) with s? ∈ S and cost OPT(s?). For each edge ←→e ∈ ←→E ,
we denote the neighborhood NG (

←→e ) as the set of adjacent edges that are connected to
either endpoints u,v of ←→e = {u,v} with NG (

←→e ) (
←→
E − {←→e } (an edge ←→e1 ∈ NG (

←→e2 ) if
and only if ←→e2 ∈ NG (

←→e1 )). We write N (←→e ) instead of NG (
←→e ) if the underlying graphG

is unambiguous. In a similar fashion, we de�ne the neighborhood of solutions, where
we denote that solution s1 ∈ S is neighbor of solution s2 ∈ S by s1 ∈ S(s2). The cooling

schedule is a non-increasing monotone function T : N → (0,∞), where T (t) is the
temperature at time t . The cooling of an object at time t ∈ N (Equation 7.8) is also
in�uenced by the thermal conductivity and capacity represented by the factor τ .

T (t + 1) = (1 − τ ) ·T (t) (7.8)

It in�uences the probabilityWs1s2 ∈ R≥0 of accepting a worse solution s2 from s1. All
possible probabilities are assumed to be

∑
s2∈S (s1)Ws1s2 = 1. We introduce a dynamic

cooling schedule in the following. In Equation 7.9, we de�ne the activity µt .

µt+1 = αsmoothWNorm + (1 − αsmooth)µt , (7.9)

where the initial activity µt=0 = 1, the impact of the current probability �uctuations
and the normalized probability are denoted by αsmooth and

WNorm[st+1 | st+1 ∈ S(st )] ≈ exp(−∆c/T (t )c(s t )),

respectively, where ∆c = c(st+1) − c(st ) represents the cost di�erence between the
present and the next cost value (often considered as energy). Thus, we adjust the
cooling schedule in Equation 7.8 to a dynamic cooling scheduleT (t +1) = (1−µτ ) ·T (t).

An SA algorithm always starts with an initial solution st=0 ∈ S . The set of instances
is denoted byI. Further, we denote as an instance I ∈ I a sequence of solutions starting
with an arbitrary but �xed solution st=0, where I = (st , s,T ), with s representing the
best feasible solution found so far. Note that the standard SA approach holds only
one instance. The encoding is a representation of a solution candidate st ∈ S . Our
representation R = (θ,H ) is a tuple representing a potential �eld θ : V → N, u 7→ x
with x ∈ {1, . . . , |V |} representing a strict order on the set of turbines using the
distance function len({u, j}), and edge cuts H ( E with G = G − H representing the
edges that are not considered as possible cable routes (see Figure 7.4a). The potential
�eld avoids to lay cables to vertices having a smaller potential.
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Figure 7.4: Given an example graph G = (V , E) with vertex set V = {1, . . . , 10}, with a
substation j ∈ VD represented by squares , set of turbines VG represented by cycles ⊗ and
set of edges E represented by gray lines. (a) The encoded graph G is shown in the initial
representation, where the cut set H is represented by the green dashed lines and the potential
�eld θ is represented by the indices in the vertices. (b) The intermediate path representation
used by the evaluation, where for each turbine u ∈ VG the path to the substation w ∈ VD
is shown with π (u,w) =

(
v0 = u,v1, . . . ,v` = w

)
, where {vi ,vi+1} ∈

←→
E for i = 0, 1, . . . , `.

(c) The cables are labeled with the maximum cable �ow, which depends on the number of
attached turbines. (d) The di�erent cable types are represented by di�erent diameters and
colors presenting di�erent cable types for the transport cables . Note that this is an adoption
from Lehmann [Leh16].

The set of turbines closest to substation j is denoted by VG
j . The turbines u ∈ VG j

are ordered by distance len({u, j}) for each j ∈ VD separately and their rank represents
the initial potential θ (u) and H is empty. To evaluate the result, the total cost c(s) of
a solution candidate s is calculated. However, the representation R does not provide
a solution in the from s = (N, f ). Therefore, we decode R to a path representation
(see Figure 7.4b), in which we de�ne for each turbine u ∈ VG j a simple path π (u, j) =(
v0 = u,v1, . . . ,v` = j

)
, where {vi ,vi+1} ∈

←→
E for i = 0, 1, . . . , `. The result is used

to calculate the �ow by f (vi ,vi+1) = −
∑
vi ∈π (u , j) pд(u) for all u ∈ VG and j ∈ VD

(see Figure 7.4c). If the �ow f is valid, a solution s = (N, f ) exists (see Figure 7.4d).
For the wind farm planning we introduce new methods to the diversi�cation—

increasing the SA search space exploration—and intensi�cation—improving a solution—
phase to improve the solution quality. In the diversi�cation, the standard SA algo-
rithm iteratively mutates and evaluates one solution at a time. To increase the diver-
sity of the search space exploration, we allow multiple independent instances Ik =
(skt , s

k ,T k , τ k , µk ) of SA computations with Ik ∈ I each starting with a di�erent ran-
dom seed k . An activity threshold µ stops a sequence of solutions once it stagnates
and falls below that activity. Further, we introduce a counter tracking the number of
iterations and resetting the instance to the best feasible solution s k or apply branching

at s k . Further, we restrict |I | to stabilize the computation time per instance and
call instances mature for removal, when they reach a minimum number of muta-
tions. Due to the fact that di�erent solutions with similar good energy levels provide
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good partial solutions, we use crossings to generate new solutions based on the best
parts of two solutions. From the biological evolution, crossing provides a technique
known from evolutionary computing. We use only solutions s1, s2 ∈ S that have a
high compatibility, i. e., small minimum cuts F (s1, s2) among all solutions in S . To
compute such a minimum cut, we use a complete graph Gs1,s2 = (VD,

(
|VD |
2

)
) with

edge capacities cap : E → N, (u,v) 7→ |VGu (s1) ∩VG
v (s2)|, with u,v ∈ VD , andVGx (si )

being the set of all turbines connected to substation x ∈ VD of solution si ∈ S . The
assignment of the potential function θ of two solutions becomes fuzzy within the cut
region of the two partitions. Thus, we assign θ (v) = d(θ s1 (v)+θ s2 (v))/2e, sort the vector
of potentials, and use the indices of the vector as new potentials. For an edge e : (u,v)
with u,v ∈ VG

x (s1) ∩VG
x (s2) and x ∈ VD , i. e. both vertices are assigned to the same

substation in both solutions, we have e ∈ H if e ∈ H s1 ∪Hs2 . With the symmetric case,
we get two new representation.

The intensi�cation method mutates a representation R by modifying either the
potential �eld θ or the set of cuts H . We use swapping techniques to change the
potential �eld. Either we swap the potential of two distinct verticesu,v ∈ VG randomly
or we change the potential �eld with regard to a potential change of a vertex u. The
cut-based modi�cation is another method using random edges. Whether we add or
remove an edge to the set of cuts H depends on the cardinality of H set to O(

√
|V |).

7.3 Benchmark Generation

For our thorough evaluation, we have to generate wind farms of di�erent sizes as
there are no published benchmark sets or generators for wind farms so far. In addition,
current wind farms provide only a limited size and complexity.

We introduce numerical parameters which characterize a typical wind farm. We
de�ne the shape of a wind farm to be an ellipse described by the aspect ratio β ∈ (0, 1].
The size of the shape is set such that its area is equal to |VG |. Placing the turbines within
this shape is done using poisson disc sampling [Bri07], a random point placement
strategy in which all points are tightly placed within a minimum distance to each other
(in our case 1). If the new randomly generated point violates the minimum pairwise
distance, the whole farm is scaled up by an ϵ > 0. The substations are placed in the
same way with a minimum pairwise distance of

√
|VG |/|VD |.

The substation capacities are characterized by the substation capacity tightness ξ
(see Equation 7.10), which roughly states how �exible turbines can be shifted to
di�erent substations without violating the substation capacity pd . If the substation
capacity is tight meaning ξ = 1 then there is no �exibility at all and our assumption is
that it is hard to �nd any feasible solution.∑

u ∈VD

fnet(u) =

∑
v ∈VG pд(v)

ξ
(7.10)

181



Chapter 7 The Wind Farm Cabling Problem – A Greenfield Approach

The substation capacity variance δ restricts the net �ow at each substation and thus,
de�nes pd and pd (see Equation 7.11).

fnet(u) ∈

[
(1 − δ ) |VG |

ξ |VD |
, δ
|VG |

ξ |VD |

]
∀u ∈ VD (7.11)

We call the substation capacity tight if ξ = 1 as the supply meets the substation
capacity. However, the individual substation capacities are chosen randomly in this
interval while making sure that their sum is equal to ∑

v∈VG pд (v)/ξ . SinceG is a complete
graph our generator has the ability to connect all pairs of vertices (except for export
cable in the transmission system). However, we apply a preprocessing in which we
assume that direct connections over long distances (dependent on the cable types K )
are uncommon, which is a valid assumption for real world instances. Given a set
of vertices we add for each vertex u ∈ V edges to the k-nearest neighbors (k-NN)
based on the euclidean distance. In addition, we add shortcut edges between any
vertex pair having no edge in ←→E but are fairly near to each other, which is described
by Equation 7.12.

←→
E ′ B {{u,w} <

←→
E : len(u,v) + len(v,w) > ϵ · len(u,w)}, (7.12)

where {u,v}, {v,w} ∈ ←→E . We denoted the set of edges by ←→E = ←→E ∪←→E ′.
Even thought the generator is able to handle distinct sets of cable types for each

edge, we generate graphs using the same set of cables for all edges, which is standard
in practice. Throughout our experiments, we use the cables from Berzan et al. [Ber+]
obtaining their data from domain experts (see Figure 7.3).

7.4 Simulations

In this section we run simulations of our SA approach and compare instances with
similar turbine to substation ratio. In an analysis we compare the performance
in�uence of the benchmark data on our SA heuristic and Mixed-integer Linear
Program (MILP) based on Section 7.1 subject to di�erent criteria such as instance
size |V |, number of substations |VD | and the substation capacity tightness measuring
the ratio of maximum supply and demand. Our code is written in C++14, based on
OGDF 2015.05 [Chi+13], Gurobi 6.5 [Gur16], Qt 5.5; compiled with the GCC 4.8.3 with
-O3 -march=native. The experiment runs on a 64-bit with four 12-core CPU of
AMD 6172, clocked at 2.1GHz, with 256GB RAM running OpenSUSE 13.2.

In order to ensure comparability, all simulations are evaluated in single-thread
mode. The upper bound of the MILP after 1 hour serves as our reference solution. For
our experiments, we use the benchmark sets N ` with ` = {1, . . . , 5} (see Table 7.2)
generated by benchmark generator for wind farms; see Section 7.3. In general we
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Figure 7.5: Comparison of our SA algorithm with the MILP. (a) The value of τ has to be chosen
in relation to the network size. (b) A tighter substation capacity decreases the performance of
our SA approach, where for ξ < 0.83 it is better. (c) Di�erent cooling schedules have di�erent
in�uence on the quality. (d) Multi-instance SA performs better for networks ≤ 450.

use the benchmark sets N 1 to N 4, since they work on a restricted set of edges. Note
that this is already a heuristic restriction of the solution space and thus improves
the running time for both the MILP and the SA algorithm. For the small benchmark
sets N 1 and N 2 with shorter running times the parameter τ = 10−5 represents a good
value for the cooling schedule. Whereas for the longer running times τ = 10−6 results
in better solutions as the temperature is reduced more slowly. By default, the SA
algorithm uses a single SA instance, a dynamic cooling schedule and no crossings.

For the MILP we observe di�erent gaps after one hour running time dependent on
the wind farm size. For small networks N 1 and N 2, the average gap was about 22 %,
for networks N 3 it was 30 − 31 %, and for N 4 it reaches 32 %. Benchmark instances
with up to 13 turbines are solvable to optimality in less than an hour.

Note that the parameter τ in�uences the cooling schedule and is relevant to achieve
good results (see Figure 7.5a). However, our SA algorithm performs for N 1 with one
substation better than the MILP for 48.2 % of all benchmarks with a better average
relative cost of 0.44 %. In all other cases it performs 1.77 % worse than the MILP. Note
that our SA algorithm takes only 2min for small networks (see Table 7.2). However,
for multiple substations our algorithm outperforms the MILP in about half of all
benchmarks with a better average relative cost of 0.29 %. For the other cases it
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performs 0.41 % worse. The network size in�uences the time each iteration of the SA
algorithm takes, i. e. an increasing network size results in a decreasing number of
iterations for the same amount of time. For the medium and large benchmark sets N 3
with up to 200 and N 4 with up to 500 turbines, both evaluated with value τ = 10−6,
our SA outperforms the MILP in 7.9 % of the cases due to a too short intensi�cation
time. Thus, we increase τ to at least 10−5 (see Figure 7.5a).

The complexity of the problem can be increased by the substation capacity tight-
ness ξ (see Figure 7.5b). For ξ = 0.83 the capacities can be up to 20 % more than the
turbine supply and for ξ = 1 there is no variability in the number of turbines per
collector system. For medium benchmark networks and parameter value τ = 8 · 10−5
the simulations show that the instances are more di�cult to solve for ξ = 1, whereas
more �exibility (ξ = 0.83) improves the results. Our algorithm �nds better solution
for instances with ξ < 0.85 than the MILP, where for ξ > 0.95 the MILP is better
on average. For the dynamic cooling schedule a larger value for τ is better, since
the factor µ drastically decreases the resulting temperature di�erence. By comparing
the dynamic with the standard static cooling schedule, we use 2k · 10−5 and 2k · 10−7
with k ∈ {0, 1, . . . , 7}, respectively. In addition, we use for each group |VG | the value τ
minimizing the average relative performance of our algorithm. The results are shown
in Figure 7.5c. However, the di�erence between the standard and dynamic cooling
schedule is never larger than 0.1 %. In Figure 7.5c the dynamic cooling schedule is
more applicable for networks with up to 200 turbines, while the standard cooling
schedule is slightly better for larger networks. The dynamic cooling schedule has a
slight advantage when not optimizing τ .

For all previous simulations, our SA algorithm runs one instance. Multiple instances
(see Figure 7.5d) increase the diversi�cation, but the total running time is distributed
among all SA instances in I resulting in a shorter intensi�cation phase. The results of
the experiments are aggregated using τ = 8 · 10−5 for small and τ = 16 · 10−5 for large
instances. For small networks multiple SA instances are better, but for larger instances
few SA instances should be used. The reason is that the diversi�cation phase explores
more of the search space with multiple SA instances, but the intensi�cation phase for
large networks is too short to �nd or improve good solutions.

7.5 Conclusion

In this chapter, we introduced the wind farm cabling problem and provided model
formulations for the four hierarchical layers. Since the cabling problem is already NP-
hard for the smallest problem layer, we introduced a novel simulated annealing (SA)
to cope with the wind farms cabling problem. In this context, we introduce di�erent
criteria and strategies to adapt the standard SA algorithm to the cabling problem.
In an extensive experimental study, we compared our SA algorithm, induced by
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di�erent criteria and strategies, with the Mixed-integer Linear Program (MILP)
by using various benchmark data sets, which we generated to enable comparability
and to overcome the shortcomings of the current literature. The latter used a small
set of small-sized networks, which can lead to falsi�cations of the results, since the
con�guration of the algorithm is improved with regards to one speci�c data set. We
are the �rst that work on a great variety of benchmark data sets. In our simulations
we studied the in�uence of di�erent wind farm properties on our algorithm and MILP.
Our SA algorithm demonstrates excellent performance on a variety of benchmark
sets and outperforms the MILP in benchmark instances with up to 450 turbines in a
smaller fraction of time. It is worth noting that we will do some future endeavors in
improving our tuning parameters and adapting the SA algorithm by improving and
adding strategies and tuning parameters.
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8 Conclusion

In this thesis, we identi�ed a bunch of problems in energy networks. We analyzed the
problems and networks such that we were able to design algorithms that give certain
guarantees or bounds. In addition, we evaluated the algorithms on the IEEE benchmark
data set or on self-generated instances. In this chapter, we brie�y recapitulate the
main results of this thesis in Section 8.1. There are still many ideas and open questions,
which we were not able to tackle during that time. Thus, we give an outlook of what
can be done in the future by outlining a few of the remaining ideas and open problems
in Section 8.2.

8.1 Summary

One of the most fundamental problems that is part of nearly all problems that in-
corporate the power grid is the feasibility problem for electrical �ows. We gave a
�rst comprehensive analysis of electrical �ows. We showed the duality of the two
Kirchho�’s laws known as Kirchho�’s Current Law and Kirchho�’s Voltage Law that
separates the relationship between current and voltage by using two graphs. We also
show di�erent possible representations that increase the understanding of electrical
�ows leading to di�erent properties in electrical networks. We think that one of the
most interesting properties is the balancing property that basically shows that all paths
from one vertex to another vertex have the same length. We developed �rst algorithms
for the feasibility problem on s-t-planar biconnected graphs that can be seen as a s-t
electrical �ow decomposition. Using the superposition principle, we can compute
all s-t electrical �ows and combine them into one electrical �ow. The algorithmic
idea that uses the duality has the potential to be used in dynamic scenarios, since a
topology change does not need a full new recomputation of the �ow, but can start
from an already existing solution.

The second content chapter is about Maximum Transmission Switching Flow
(MTSF) that can be seen as a discrete manipulation of the electrical network topology.
We are the �rst that develop algorithms with provable guarantees on certain graph
structures and shrink the gap between theory and practice. With the theoretical
analysis of this problem, we are able to build connections to related problems. We
showed network simpli�cations including transformations from the bounded to the
unbounded MTSF and the equivalence between Optimal Transmission Switching
(OTS) and MTSF. We introduced exact algorithms for networks with one generator and
one demand for certain graph structures. We also show when the problem becomes
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already NP-hard on s-t networks. Though the algorithms are only designed for special
graph structures, we evaluate them on general power grids. For the s-t algorithm,
which we called Dominating Theta Path (DTP), we de�ned a new centrality. The
results of the centrality seem to give a hint on which edges are critical, since there are
edges where the electrical network degenerates and we realized that these edges are
the ones with a low centrality.

The third chapter is about the continuous manipulation of the electrical network
topology. We motivate this by placing FACTS either at vertices or at edges. For that
problem, we present a hybrid model for including �ow control vertices or edges. We
were able to show that it su�ces to place a relatively small number of �ow control units
to reach the same solution as the graph-theoretical �ow solution that is equivalent
to placing these units everywhere. In addition to that, we even saw that fewer �ow
control buses improve the loadability and even have lower cost increase compared
to Optimal Power Flow (OPF). We were able to explain our empirical observations
on controller placement with graph-theoretical means.

We focused in the last part of this work on transmission network expansion planning
on the green �eld. This particular problem represents a layout problem and was
motivated by the wind farm cabling problem. We assumed that the turbines have
�xed positions and that there are multiple cables types. We want to �nd a cabling of
the wind farm such that the overall cabling costs are minimized. This is in general
an NP-hard problem. We give a �rst proper model and decompose the wind farm
cabling problem into multiple subproblems, each remaining NP-hard for multiple cable
types. We developed a meta-heuristic known as simulated annealing algorithm, which
we compare to the MILP by using various benchmark sets that we generated to enable
comparability and to overcome the shortcoming of the current literature. We could
see good results in the simulations for medium to large wind farms.

8.2 Outlook

For the electrical �ow feasibility problem there remain several further investigations
and proofs to explain the properties of such an electrical �ow in depth. Furthermore,
it would be interesting to evaluate whether the assumptions we make—meaning
biconnectivity and planarity—are reasonable assumptions for the problem. We think
that planarity should be a reasonable assumption following the statement of Cain et al.
[COC12, p.13] and even the biconnectivity assumption for an s-t subgraph should be
reasonable, since the electrical �ow takes a path with the least resistance. However, it
might lead to some error, which will be interesting to evaluate in simulations.

For Maximum Transmission Switching Flow (MTSF), which is a discrete ma-
nipulation of the power grid topology, it is unknown to us whether the reachability
test can be done in polynomial time and if not, whether there is a polynomial time
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algorithm that �nds all Dominating Theta Paths (DTPs) from one source s to one
sink t . Another open question to us is whether there is a Polynomial Time Approx-
imation Scheme (PTAS) on cacti. It would be also interesting to see whether the
complexity changes and whether there are algorithms when we de�ne a set of edges as
non-switchable (motivated by TNEP). Other interesting problems are the minimization
and the constraining of the number of switches.

For the manipulation of the power grid topology using control units a complexity
analysis would give the problem more structure and would increase the understanding
of the problem. It would be even interesting if we can adopt the methods and algorithm
from MTSF such that they work for the susceptance scaling, too. It is also unknown
to us if the bilinearity will help us to some extent.

For both problems it would be interesting if the recent �ndings in the electrical �ow
feasibility also help in developing better algorithms for the discrete and continuous
manipulation in power grids. In addition, a comparison to more realistic network
models such as AC model is another main evaluation.

For the wind farm cabling there are many open questions concerning complexity
and algorithms that give certain guarantees. In addition, so far we completely omit
electrical �ows in the wind farm cabling, since we more or less assume that the resulting
networks are tree-like and thus, a graph-theoretical �ow is a reasonable assumption.
It would be worth investigating whether the results are electrically feasible and to
incorporate electrical �ows in general.
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Acronyms and Abbreviations

AC Alternating Current 10, 11, 33
CMST Capacitated Minimum Spanning Tree 11
DC Direct Current 8, 10, 33–35,

37
DCOPF Direct Current Optimal Power Flow 8
DCOTS Direct Current Optimal Transmission

Switching
8

EDP Economic Dispatch Problem 3, 8
FACTS Flexible AC Transmission Systems 1, 8–11, 37
FEAS Feasibility Problem 2, 33, 34, 37
FVSP Feedback Vertex Set Problem 38
KCL Kirchho�’s Current Law 2, 9, 34, 37
KVL Kirchho�’s Voltage Law 2
MCFP Minimum Cost Flow Problem 2, 35, 39
MCND Multicommodity Capacitated Network De-

sign
12

MFF Maximum FACTS Flow 37
MFP Maximum Flow Problem 2, 5, 34
MILP Mixed-integer Linear Program 12
MNSP Minimum Number of Switches Problem 36
MPF maximum power �ow 35–37
MPFP Maximum Power Flow Problem 35, 36
MST Minimum Spanning Tree 11, 12
MTSF Maximum Transmission Switching Flow 35, 36
MTSFP Maximum Transmission Switching Flow Prob-

lem
35, 36

OPF Optimal Power Flow 11
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OPFP Optimal Power Flow Problem 2, 3
OTS Optimal Transmission Switching 9
OTSP Optimal Transmission Switching Problem 8, 35
SFP Simultaneous Flow Problem 34
VNLP Voltage Normalized Lossless Real Power Flow 34
SPP Shortest Path Problem 5
SSP Subset Sum Problem 38
s-t-RP Rainbow s-t-Path 38
TNEP Transmission Network Expansion Planning 7, 8
VCP Vertex Cover Problem 38

fFFP The �exible full farm problem represents the ca-
bling of multiple collector systems with substation
locations. In this problem layer the location of the
substation is not �x and has to be computed, too.
Note that the assignment of turbines is neither
�xed to a circuit nor to a substation. The Substa-
tion Problem and Circuit Problem are subprob-
lems. See Figure 7.1 for more information.

FFP The Full Farm Problem represents the cabling
of multiple collector systems with �x substation
locations. Note that the assignment of turbines
is neither �xed to a circuit nor to a substation.
The Substation Problem and Circuit Problem
are subproblems. See Figure 7.1 for more informa-
tion.

11, 39

SP The Substation Problem is a cabling of multiple
independent circuits with one preassigned substa-
tion. This represents the cable layout of a single
collector system of a substation in the wind farm.
Note that the turbines are not assigned to a circuit.
Thus, the Circuit Problem can be seen as a sub-
problem if the turbine to substation assignment is
computed. See Figure 7.1 for more information.

11
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CP Circuit Problem (CP) is the smallest problem
layer in the wind farm layout problem hierarchy.
In this problem layer only the cable layout of a
circuit—a connected component connected to a
substation—is considered, where turbines are ei-
ther connected to other turbines or to a preas-
signed substation. See Figure 7.1 for more infor-
mation.

11, 12

GA Genetic Algorithm 12, 13
Gurobi
Op-
ti-
mizer Gurobi is a solver that can solve optimization prob-

lems formulated as an Linear Programming (LP)
or an MILP (MILP).

3

ILP Integer Linear Programming 8

QT Quality Threshold is a clustering algorithm. 12

RTS reliability test system 9

SA Simulated Annealing 12
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Model

ω The velocity of the angle (here voltage angle θv
and current angle θ i ) rotation is de�ned by the
angular frequency ω B dθ/dt . Thus, it describes
how the phase changes of a sinusoid function. In
a time-invariant setting, we have a constant ro-
tation velocity meaning ω B dθ/dt = 2 · π s. In
the Argand diagram (see Figure 3.2) the rotation
speed of the voltage vector v and current vector i
(counter-clock-wise) is meant.

41, 42, 45

s The complex power function s : V → C is the sum
of the real and reactive power. For time varying
models, the function is called instantaneous elec-
tric power, which is a function s : V ×R→ C rep-
resenting the instantaneous power at vertex u ∈ V
for timestamp t ∈ R. It is usually denoted by p, but
the additional parameter separates the constant
term s(u) clearly from the time varying term s(u, t).

41–43, 46

s The apparent power maximum s is a total thermal
line limitation in terms of power.

46

i The current is a function i : V → R that represents
the electrons that move through an element per
second an thus, is measured in AmpereA. The time
varying function (in a dynamic network setting) of
current is de�ned by i : V ×R→ R that represents
the instantaneous current i(u, t) at vertex u ∈ V
for timestamp t ∈ R.

41–44, 46–48

θ i The current angle is a function θ i : V → R at a
vertex u ∈ V that represents an initial potential at
a vertex u. The current angle θ i is the initial angle
between the current vector and the x-axis in the
Argand diagram (see Figure 3.2).

41, 42, 47

i The current power maximum i is a total thermal
line limitation in terms of current i .

48
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IRMS The root-mean-squared (RMS) value of a cur-
rent magnitude |i(u)| at vertex u ∈ V is de�ned
by |i(u) |/√2. It represents the e�ective value of a si-
nusoid current waveform. Note that the RMS value
is only used for time varying sinusoid functions
and not for DC or AC models, where we assume
time invariance and thus, the functions become
constant over time.

41

C The set C is called the set of cycles for a graph G. 38
c A cycle is a path π (s, t) ∈ Π(s, t), where the �rst

and the last vertex are identical meaning s = t . A
cycle is called simple if no vertex is visited twice
with the exception of s and t .

38

∆-Y The delta-wye transformation transforms a trian-
gle to a star by adding one vertex into the center
and adding edges from the center to the already
existing vertices.

3–5

EF The set of facts buses. 36, 37
VF The set of facts buses. A vertex hitting set of G =

(V , E) with respect to a class of graphs G is a set
of verticesVF ⊆ V such thatG −VF ∈ G. We call a
subset of verticesVF c c-pumpkin hitting set if there
is a vertex subset VF c ⊆ V (G) such that G − VF c
consists of no c-pumpkin minor.

38

f The �ow f is a function f : E → R satisfying the
skew-symmetry property.

33–37, 39

F The �ow value F (N, f ) of a network N and some
�ow f is de�ned by F (N, f ) B

∑
u ∈VG fnet(u).

34–37

fnet The net �ow fnet(u) at a vertex u ∈ V is de-
�ned by the sum of all incident edges fnet(u) B∑
{u ,v }∈

←→
E f (u,v).

35

G The topological structure of a power grid is a
graph G = (V , E), where the set V is the set of
vertices and the set E is the set of edges.

6, 33–35, 37–
39

cubic
graph A cubic graph (also known as trivalent graph) is a

3-regular graph, where all vertices have a degree
of three.

6
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G? A dual graph G? of a planar graph G with a �xed
planar embedding E is a graph that has for each
face of G a vertex and whenever two faces are
incident to each other in graph G these two ver-
tices representing the faces are connected by an
edge in the dual graph G?. There is a one-to-one
correspondence between the edges of the primal
graph G and the edges of the dual graph G?.

34, 37

E The set E of edges (in the power grid denoted as
branches) represents curves that interconnect to
points such as transmission lines or cables.

6, 12, 33–39

←→
E The set ←→E of undirected edges that is represented

by unordered pairs of vertices {u,w} ∈ ←→E (G).
35, 36, 38

Y -∆
graph The Y -∆ graph is a topological structure of the

power grid that can be reduced to a vertex by the
following reduction rules: degree 1 and self-loop
deletion, series and parallel contraction, and Y -∆
transformations.

5, 6

tri-
sub-
graph Is a minimal non-trivial 3-attached subgraph. 6
V The setV of vertices (in the power grid denoted as

buses) represent points such as transmission line
junctions.

4–6, 33, 38, 48

N A network N represents a power grid
with electrical parameters such as N =

(G,VG ,VD, cap,b,pд,pд,pd ,pd ) for the DC-
network. See Chapter 3 for other example
networks.

33–37, 39

cap The capacity is in general a function cap : ←→E →
R≥0 representing the (thermal line) limits of an
edge. For the wind farm cabling problem the capa-
city is a function cap : K → R≥0 ∪ {∞}.

33–35, 39

VD The set VD of consumer vertices is a subset of the
set V of vertices. It represents the set of sinks.

33–35
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y The admittance is a function y : ←→E → C (Equa-
tion 3.9), where y(u,v) (Equation 3.9) is de�ned
by the conductance д(u,v) (Equation 3.11) and the
susceptanceb(u,v) (Equation 3.12) that de�ne how
easy the current is able to �ow through an element
such as a transmission line {u,v} ∈ ←→E .

43, 46

д The conductanceд is a functionд : ←→E → R de�ned
by д(u,w) B r (u ,w )/(r (u ,w )2+x (u ,w )2) for all {u,w} ∈
←→
E . Note that for DC models it is simply the re-
ciprocal of the resistance r . Roughly speaking it
represents how easy an electron is able to pass a
material.

33, 43–48

x The reactance is a function x : ←→E → R≥0 ∪ {∞}
representing the imaginary part of the impedance.
Note that for DC models it is simply the reciprocal
of the b. Roughly speaking it represents how easy
an electron is able to pass a material.

33

r The resistance is a function r : ←→E → R≥0 ∪ {∞}
representing the real part of the impedance. Note
that for DC models it is simply the reciprocal of
the д. Roughly speaking it represents how easy an
electron is able to pass a material.

33

b The susceptance is a function b : ←→E → R≥0 de-
�ned by b(u,w) B −x (u ,w )/(r (u ,w )2+x (u ,w )2) for
all {u,w} ∈ ←→E . Note that for DC models it is
simply the reciprocal of the reactance x . Roughly
speaking it represents how easy an electron is able
to pass a material.

33–37, 43–48

VG The set VG of generator vertices is a subset of the
set V of vertices. It represents the set of sources.

33–35

qd The demands’ reactive power upper bound at ver-
tex u ∈ VD .

33

qd The demands’ reactive power lower bound at ver-
tex u ∈ VD .

33

qд The generators’ reactive power upper bound at
vertex u ∈ VG .

33

qд The generators’ reactive power lower bound at
vertex u ∈ VG .

33

q The reactive power maximum q is the imaginary
part of the thermal line limitation.

46–48

q The reactive power minimum q is the imaginary
part of the thermal line limitation.

47, 48
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pd The demands’ real power upper bound at ver-
tex u ∈ VD .

33–35

pd The demands’ lower real power bound at ver-
tex u ∈ VD .

33–35

pд The generators’ real power output at vertex u ∈
VG .

33, 39

pд The generators’ real power upper bound at ver-
tex u ∈ VG .

33–35

pд The generators’ real power lower bound at ver-
tex u ∈ VG .

33–35

Π(u,w) The set of all paths between two vertices u and w
with u,w ∈ V is denoted by Π(u,w).

π (u,w)A path starting at u and ending atw with u,w ∈ V
is denoted by π (u,w).

6

q The reactive power q is also called phantom power
and represents the imaginary part of the complex
power s .

41–43, 45–48

p The real power p is also called active power and
represents the real part of the complex power s .

41, 42, 45–48

pd The demands’ real power at vertex u ∈ VD . 33, 39
p The real power maximum p is the real part of the

thermal line limitation in terms of power.
46–48

p The real power minimum p is the real part of the
thermal line limitation in terms of power.

47, 48

S Set of switched edges S with S ⊆
←→
E . Note that for

a static analysis with one timestamp the switch
is in OFF-state for these edges. Roughly speaking
the transmission line is temporary removed from
the topology.

35, 36

z(u,v) The function z : ←→E → {0, 1} is z(u,v) = 0 if an
edge is switched and z(u,v) = 1 otherwise.

36

t A timestamp represents a point in time. 41, 42, 45
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v The voltage is a function v : V → R that repre-
sents the push of current i and is measured in Volt.
Note that we will talk some times of a voltage
drop at an element (u,w) ∈ E. Then voltage is a
functionv : E → R. If we use the vertex based def-
inition, we just neglect the reference point, which
is ground 0.

41–48

θv The voltage angle (also called phase angle or theta
angle) is a function θv : V → R at a vertex u that
represents a potential at a vertex u. The voltage
angle is the angle between the voltage vector and
the x-axis in the Argand diagram (see Figure 3.2).

41, 42, 45, 47

∆θv The voltage angle di�erence’s upper bound ∆θv

restricts the �ow.
33, 45–48

∆θv The voltage angle di�erence’s lower bound ∆θv

restricts the �ow.
33, 45–48

v The voltage magnitude’s |v(u)| upper bound is de-
noted by v .

33, 45–48

v The voltage magnitude’s |v(u)| lower bound is de-
noted by v .

33, 45–48

VRMS The root-mean-squared (RMS) value of a volt-
age magnitude |v(u)| is de�ned by |v(u) |/√2 at ver-
tex u ∈ V . It represents the e�ective value of the
voltage. Note that the RMS value is only used for
time varying sinusoid functions.

41

K The set of cable types is denoted by K . See cable-
type κ for a detailed speci�cation of a cable type
and for an example set of cable types see Figure 7.3.

39

κ A cabletype is denoted by κ. Each cable type has a
thermal limit cap and a cost per unit γ , where the
unit can be meter m. See for example Figure 7.3.

39

c The total cost c is de�ned by the costs of the trans-
port and export cables and is de�ned in Equa-
tion 7.5.

39

γ A cable type is among other things de�ned by its
cost. The cost function is de�ned by γ : K → R≥0
and is non-convex.

39
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Y -∆ The wye-delta transformation transforms a star
with three edges to a triangle by removing the
star’s center and its incident edges, and adding
edges such that the remaining vertices build a com-
plete graph that is a triangle.

3–5

Units

A The unit of electrical current is called Ampere (in short C). It is one of
the seven SI base units and describes how much coulomb of current
�ows through a point per second (C/s).

C The Coulomb corresponds to 6.24 × 1018 electrons and was introduced
since the amount of one electron is simply to small. It is equal to the
unit As and represents a SI derived unit of electric charge.

Hz One Hz corresponds to one s−1. It is used in terms of frequencies.

J The unit of energy and thus, work is measured in Joule. From an
electrical point of view it represents the electrical current density. It
is a SI derived unit measuring the (electrical) energy or work that is
done Nm = VA s =Ws = kg m2/s2.

Ω The unit of electrical impedance z, resistance r , and reactance x is
called Ohm. It is a derived SI unit from V/A = kg m2/A2s3.

Ωm The unit of resistivity ρ is Ωm. It represents the property how well a
material resists electric current. It is reciprocal to the electrical con-
ductivity σ and is a derived SI unit from kgm3/A2s3. Note that another
de�nition is ρ := r A` , whereA is the area (wired gauge) and ` the length
of the material.

π The ratio of a circle’s circumference to its diameter.
2 · π A full period T that corresponds to a full cycle rotation of a vector in

the Argand diagram that corresponds to 2π (see Figure 3.2).

SI The International System of Units (SI) is a metric system that helps to
prevent conversion problems as it specify the seven base units that are
ampere A, candela cd, kelvin K, kilogram kg, metre m, mole mol, and
seconds s.
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S The unit of electrical admittance y, conductance д, and susceptance b
is Siemens S. It is a derived SI unit from 1/Ω = A/V = A2s3/kg m2. It also
shows that Siemens is reciprocal to Ohm.

S/m The unit of conductivity σ is S/m. It represents the property how well a
material (conductor) conducts electric current. It is reciprocal to the
electrical resistivity ρ and is a derived SI unit from A2s3/kg m3.

VA The unit of the complex and apparent power is Volt Ampere VA. For
more information see Watt W.

VAr The unit of the reactive power is Volt Ampere reactive VAr. For more
information see Watt W.

V The unit of voltage v is called Volt representing a potential di�erence
and a electromotive force in electrical circuits. It is a SI derived unit
measuring either the work that is done on one ampere or an alternative
formulation the force that take e�ect on an electrical charge W/A = J/C =

Nm/As.

W The unit of power such as real power p is measured in Watt. It is a SI
derived unit measuring the (electrical) energy conversion per second
(representing a degree of e�ciency) that is done J/s = kg m2/s3. Note that
it is used for the real power. For the complex power and reactive power
the units VA and VAr are used, respectively.

kV One kV corresponds to 1 000 V.
kW One kW corresponds to 1 000 W.
kWh One kWh corresponds to 3.6 MJ. It basically describes that one kW is

in average used over one hour of time. Note that this is a non-SI unit
and mainly used for electricity bills.

mWh One mW corresponds to 10−3 W and thus, a mWh corresponds to 3.6 J.
MW One MW corresponds to 1 000 000 W.
MWh One MW corresponds to 106 W.
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A Problem Definitions

A.1 Flow Feasibility Problems

All feasibility problems check if there is a feasible electrical �ow such that the demand
can be satis�ed. From the combinatorial nature of the problems it makes more sense
to formulate the problems as decision problems.

The next problem de�nition is introduced in Section 3.2 on Page 30.

Flow Feasibility Problem FEAS(N)

Instance: A �ow network N = (G, s, t, cap,pд,pд,pd ,pd ).
Question: Is there a feasible �ow f complying with the constraints in Equa-

tions 3.1–3.4?

The next problem de�nition is introduced in Section 3.3.1 on Page 45.

Alternating Current Feasibility Problem AC FEAS(N)

Instance: An AC network N = (G = (V , E), VG ,VD , cap, r , x , b, д, ∆θv , ∆θv , v ,
v , pд , pд , qд , qд , pd , pd , qd , qd ) .

Question: Is there a feasible electrical �ow complying with one of these model
constraints in Table 3.2?

The next problem de�nition is introduced in Section 3.3.2 on Page 51.

Direct Current Feasibility Problem DC FEAS(N)

Instance: A DC network N = ( G, VG , VD , cap, b, pд , pд , pd , pd ) .
Question: Is there a feasible electrical �ow complying with the Equations 3.33–

3.38?

The next problem de�nition is introduced in Section 4.1 on Page 66.
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Direct Current Feasibility Problem DC-FEAS(N)

Instance: An exact bounded network N = ( G, VG , VD , cap, b, pд , pд , pd , pd ) ,
i. e., pд ≡ pд ≡ pд and pd ≡ pd ≡ pd .

Question: Is there a feasible electrical �ow f (see Equations 4.7, 4.9 and 4.10)?

The next problem de�nition is introduced in Section 3.3.3 on Page 53.

Voltage Normalized Lossless Real Power Flow Feasibility Problem

Instance: A VNLP network N = ( G, VG , VD , cap, b, pд , pд , pd , pd ) .
Question: Is there a feasible electrical �ow complying with Equations 3.43a–

3.43f?

The next problem de�nition is introduced in Section 4.3.2 on Page 87.

Simultaneous Flow Problem 1 SFP(N)

Instance: Two graphs G1 and G2, subsets E1 ⊆ E(G1) and E2 ⊆ E(G2), and a
bijection µSFP : E1 → E2.

Question: Are there nonzero KCL-feasible �ows f G1 and f G2 in G1 and G2 such
that for every edge e ∈ E1 we have f G1(e) = f G2(µSFP(e))?

The next problem de�nition is introduced in Section 4.3.2 on Page 88.

s-t Planar DC FEAS(N )

Instance: A plane s-t-graph G, its dual graph G?, and the corresponding bijec-
tion µdual : E(G) → E(G?).

Question: Are there simultaneous �ows on G and G? such that f G (e) =
f G?

(
µdual(e)

)
· b(e) for all e ∈ E(G)?

A.2 Flow Optimization Problems

The next problem de�nition is introduced in Section 3.2 on Page 30.

1After showing our results to Guido Brückner, he mentioned the SFP generalization to us. We would
like to thank him for that generalization of the biconnected planar s-t-DC FEAS-problem.
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Maximum Flow Problem MFP(N)

Instance: A �ow network N = ( G, s , t , cap, pд , pд , pd , pd ) .
Objective: Is there a feasible �ow f that maximizes the �ow value F (N, f ).

The next problem de�nition is introduced in Section 3.2 on Page 31.

Minimum Cost Flow Problem MCFP(N)

Instance: A �ow networkN = (G, s, t, cap,pд,pд,pd ,pd ) and a cost function γe .
Objective: Find a feasible �ow f such that the sum of the cost over all

edges
∑

e ∈E γe (f (e)) is minimized.

The next problem de�nition is introduced in Section 4.1 on Page 66.

Direct Current Maximum Power Flow Problem DC-MPFP(N)

Instance: A network N = ( G, VG , VD , cap, b, pд , pд , pd , pd ) .
Objective: Find a feasible electrical �ow f (see Equations 4.7, 4.9 and 4.10) such

that the �ow value F (N) is maximum among all choices of f .

A.3 Discrete Placement Problems

The next problem de�nition is introduced in Section 5.1 on Page 107.

Maximum Transmission Switching Flow Problem MTSFP(N)

Instance: A network N .
Objective: Find a set S ⊆ ←→E of switched edges such that OPTMPFP(N − S) is

maximum among all choices of switched edges S .

The next problem de�nition is introduced in Section 5.2 on Page 112.

k-Maximum Transmission Switching Flow Problem k-MTSFP(N,k)

Instance: A network N and k ∈ Q≥0.
Question: Is it possible to remove a set of edges S such that there is an electrically

feasible �ow f in N − S with �ow value F (N − S, f ) ≥ k?
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The next problem de�nition is introduced in Section 5.1 on Page 108.

Optimal Transmission Switching Problem OTSP(N)

Instance: A network N .
Objective: Find a set S ⊆ E and an electrically feasible �ow f in N − S such that

the sum of the generation costs
∑
u ∈VG γu (fnet(u)) is minimized.

The next problem de�nition is introduced in Section 5.2 on Page 111.

MTSF Problem with Fixed Switches MTSFP(N, S)

Instance: A network N and a set S ⊆ ←→E .
Objective: Find a switching z(e) ∈ {0, 1} for all e ∈ S such that OPTMPFP(N−{e |

e ∈ S ∧ z(e) = 0}) is maximum among all choices of z.

The next problem de�nition is introduced in Section 5.2 on Page 111.

MTSF Problem with k-Switches MTSFP(N,k)

Instance: A network N and a parameter k ∈ N.
Objective: Find a set S ⊆ ←→E of switches with |S | = k such that OPTMPFP(N − S)

is maximum among all choices of S .

The next problem de�nition is introduced in Section 5.2 on Page 112.

Minimum Number of Switches Problem under MTSF MNSP(N,k)

Instance: A network N and k ∈ N.
Question: Is it possible to remove a set of edges S ⊆ E such that k = |S | is

minimum among all choices of OPTMTSFP(N)?

A.4 Continuous Placement Problems

The next problem de�nition is introduced in Section 6.2.5 on Page 151.

Min-cost s-t Flow Problem

Instance: A network N , parameter x ∈ R, and k ∈ R≥0.
Question: Is there a feasible �ow f of value F (N) = x such that cN(f ) ≤ k?
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The next problem de�nition is introduced in Section 6.3 on Page 153.

Maximum FACTS Flow Problem with EF MFFP(N, EF )

Instance: A network N , and a set EF ⊆ E.
Objective: Find a susceptance setting b ∈ Ie for all e ∈ EF such that OPTMPFP(N)

is maximum among all choices of b.

The next problem de�nition is introduced in Section 6.3 on Page 153.

Maximum FACTS Flow Problem with k-FACTS MFFP(N,k)

Instance: A network N , and parameter k ∈ N.
Objective: Find a set EF ⊆ E of FACTS with |EF | = k and a susceptance settingb ∈

Ie for all e ∈ EF such that OPTMPFP(N) is maximum among all choices
of EF and b.

The next problem de�nition is introduced in Section 6.3 on Page 154.

Maximum FACTS Flow Problem MFFP(N)

Instance: A network N .
Objective: Find a set EF ⊆ E of FACTS with |EF | = k , 0 ≤ k ≤ |E |, and a

susceptance setting b ∈ Ie for all e ∈ EF such that OPTMPFP(N) is
maximum among all choices of EF , b, and k .

The next problem de�nition is introduced in Section 6.3 on Page 154.

Minimum Number of FACTS Problem MNFP(N)

Instance: A network N , and a parameter k ∈ N.
Objective: Find a set EF ⊆ E of FACTS and a susceptance setting b ∈ Ie with e ∈

EF such that k = |EF | is minimum among all choices of OPTMFFP(N).

The next problem de�nition is introduced in Section 6.4 on Page 157.
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s-t-DC Feasibility Problem with FACTS s-t-DC-FEAS-FACTS(G,G?, µdual)

Instance: A plane s-t-graph G and its dual G?, subsets E1 ⊆ E(G) and E2 ⊆
E(G?), and a bijection µdual : E1 → E2.

Objective: Find KCL-feasible �ows f G and f G? in G and G? with F (G) , 0
and F (G?) , 0 such that for every edge e ∈ E we have f G (e) =
f G?(µdual(e)).

A.5 Others

The next problem de�nition is introduced in Section 5.2.2 on Page 114.

Subset Sum Problem SSP(W ,k)

Instance: A �nite set of numbers W = {w1,w2, . . . ,wn} with wi ∈ N and
a k ∈ N.

Question: Is there a set of elements x1, . . . , xn ∈ {0, 1} such that
∑n

j=1w jx j = k?

The next problem de�nition is introduced in Section 5.4.3 on Page 125.

Rainbow s-t-Path s-t-RP(G, c, s, t)

Instance: A directed acyclic graph G = (V , E), a coloring c : V → N, and
s, t ∈ V .

Question: Is there an s-t-path π in G such that all vertices of π have di�erent
colors?

The next problem de�nition is introduced in Section 6.1 on Page 144.

c-Pumkin Hitting Set Problem p-c-Hit(G, c,k) [Jor+11a, Jor+11b]

Instance: A graph G, parameter c ∈ N>0, and k ∈ N.
Question: Is there a c-pumpkin hitting set VF c ⊆ V of size |VF c | ≤ k such

that G −VF c consists of no c-pumpkin minor?

The next problem de�nition is introduced in Section 6.1 on Page 144.
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Vertex Cover Problem VCP(G,k)

Instance: A graph G = (V ,
←→
E ), and parameter k ∈ N.

Question: Is there a vertex cover VC(G) of size at mostk such that one endpoint of
each edge {u,w} ∈ ←→E belongs to a subset ofVF c=1 ⊆ V with |VF c=1 | ≤
k?

The next problem de�nition is introduced in Section 6.1 on Page 144.

Feedback Vertex Set Problem FVSP(G,k)

Instance: A graph G = (V ,
←→
E ), and parameter k ∈ N.

Question: Is there a feedback vertex set FVS(G) of size at most k such that at
least one vertex of each cycle c ∈ C belongs to a subset of VF c=2 ⊆ V
with |VF c=2 | ≤ k?

The next problem de�nition is introduced in Section 7.1 on Page 176.

Full Farm Problem FFP(N)

Instance: A network corresponding to the whole wind farm N =

(G,K, cap,γ ,pд,pd ).
Objective: Find a valid pair (κ, f ) that minimizes the total cost c(κ, f ) while

complying with Equations 7.1–7.4.

The next problem de�nition is introduced in Section 7.1 on Page 177.

Minimum Cost Flow Problem MCFPFFP(N)

Instance: A �ow network N = (G,γ e ,pд,pd ).
Objective: Find a feasible �ow f such that the sum of the cost over all

edges
∑

e ∈E γ e (f (e)) is minimized.
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B Fundamentals

B.1 Instantaneous Curves

IRMS(u) = |i(u)| ·
1
√
2

(B.1a)

VRMS(u) = |v(u)| ·
1
√
2

(B.1b)

i(u, t) = |i(u)| · sin(ωt − θ i (u)) (B.1c)
v(u, t) = |v(u)| · sin(ωt − θv (u)) (B.1d)
p(u) = IRMS(u) ·VRMS(u) · cos(θv (u) − θ i (u))

=
1
2 |v(u)| |i(u)| · cos(θ

v (u) − θ i (u))
(B.1e)

q(u) = IRMS(u)VRMS(u) · sin(θv (u) − θ i (u))

=
1
2 |v(u)| |i(u)| · sin(θ

v (u) − θ i (u))
(B.1f)

q(u, t) = −q(u) · sin(2 · (ωt − (θv (u) − θ i (u)))) (B.1g)
p(u, t) = p(u) · (1 + cos(2 · (ωt − (θv (u) − θ i (u))))) (B.1h)
s(u, t) = v(u, t) · i(u, t) (B.1i)
s(u, t) = p(u, t) + q(u, t) (B.1j)
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B.2 Complex Power Injection

The complete derivation of the trigonometric relationship from Equation 3.7 on Page 35
is given in Equation B.2. We emphasize the decoupled parts of the real power p and
reactive power q.

s(u, t) = v(u, t) · i(u, t)? (B.2a)
=

(
Re(v(u, t)) + jIm(v(u, t))

)
·
(
Re(i(u, t)) − j · Im(i(u, t))

)
(B.2b)

= Re(v(u, t)) · Re(i(u, t)) + Im(v(u, t)) · Im(i(u, t))︸                                                         ︷︷                                                         ︸
Cp(u)

− j ·
(
Re(v(u, t)) · Im(i(u, t)) − Im(v(u, t)) · Re(i(u, t))

)︸                                                             ︷︷                                                             ︸
Cq(u)

(B.2c)

= |v(u)| |i(u)| cos
(
θv (u) + ωt

)
cos

(
θ i (u) + ωt

)
+ |v(u)| |i(u)| sin

(
θv (u) + ωt

)
sin

(
θ i (u) + ωt

)
− j · |v(u)| |i(u)| cos

(
θv (u) + ωt

)
sin

(
θ i (u) + ωt

)
+ j · |v(u)| |i(u)| sin

(
θv (u) + ωt

)
cos

(
θ i (u) + ωt

) (B.2d)

= |v(u)| |i(u)|
(
cos

(
θv (u) + ωt − θ i (u) − ωt

)
+ j · sin

(
θv (u) + ωt − θ i (u) − ωt

) )
(B.2e)

= |v(u)| |i(u)| cos
(
θv (u) − θ i (u)

)︸                                 ︷︷                                 ︸
=p(u)

+ j · |v(u)| |i(u)| sin
(
θv (u) − θ i (u)

)︸                                 ︷︷                                 ︸
=q(u)

(B.2f)
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B.3 Complex Power Flow

The complete derivation of the complex power �ow on an edge from Equation 3.18 on
Page 43 is given in Equation B.3.

s(u,w) = v(u) · i(u,w)? (B.3a)
= v(u) · y(u,w)? ·

(
v(w)? −v(u)?

)
(B.3b)

=
(
Re(v(u)) + j · Im(v(u))

) (
д(u,w) − j · b(u,w)

)
·
(
Re(v(w)) − j · Im(v(w)) − Re(v(u)) + j · Im(v(u))

)
=

(
Re(v(u))д(u,w) + Im(v(u))b(u,w) − j

(
Re(v(u))b(u,w) − Im(v(u))д(u,w)

) )
·
(
Re(v(w)) − j · Im(v(w)) − Re(v(u)) + j · Im(v(u))

)
= д(u,w)Re(v(u)) Re(v(w)) − j · д(u,w)Re(v(u)) Im(v(w))

− д(u,w)Re(v(u))2 + j · д(u,w)Re(v(u)) Im(v(u))
− j · b(u,w)Re(v(u)) Re(v(w)) − b(u,w)Re(v(u)) Im(v(w))

+ j · b(u,w)Re(v(u))2 + b(u,w)Re(v(u)) Im(v(u))
+ j · д(u,w)Re(v(w)) Im(v(u)) + д(u,w)Im(v(u)) Im(v(w))

− j · д(u,w)Re(v(u)) Im(v(u)) − д(u,w)Im(v(u))2

+ b(u,w)Re(v(w)) Im(v(u)) − j · b(u,w)Im(v(u)) Im(v(w))

− b(u,w)Re(v(u)) Im(v(u)) + jb(u,w)Im(v(u))2

= д(u,w)
(
Re(v(u)) Re(v(w)) + Im(v(u)) Im(v(w)) − Re(v(u))2 − Im(v(u))2

)
+b(u,w)

(
Re(v(w)) Im(v(u)) − Re(v(u)) Im(v(w))

) }
C p(u,w)

+j ·
(
д(u,w)

(
Re(v(w)) Im(v(u)) − Re(v(u)) Im(v(w))

)
+b(u,w)

(
Re(v(u))2 + Im(v(u))2 − Re(v(u)) Re(v(w)) − Im(v(u)) Im(v(w))

) ) C q(u,w)

(B.3c)
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B.4 Complex Current Flow

The complete derivation of the complex current �ow on an edge from Equation 3.23
on Page 44 is given in Equation B.4.

i(u,w) =
(
д(u,w) + j · b(u,w)

) (
v(w) −v(u)

)
=

(
д(u,w) + j · b(u,w)

) (
Re(v(w)) + j · Im(v(w)) − Re(v(u)) − j · Im(v(u))

)
= д(u,w) · Re(v(w))+ j·д(u,w) · Im(v(w)) −

д(u,w) · Re(v(u) )− j·д(u,w) · Im(v(u) ) +
j· b(u,w) · Re(v(w))+ j2·b(u,w) · Im(v(w)) −
j· b(u,w) · Re(v(u) )− j2·b(u,w) · Im(v(u) )
= д(u,w)

(
Re(v(w)) − Re(v(u))

)
+ b(u,w)

(
Im(v(u)) − Im(v(w))

)︸                                                                              ︷︷                                                                              ︸
CRe(i(u ,w ))

+

j ·
(

д(u,w)
(
Im(v(w)) − Im(v(u))

)
+ b(u,w)

(
Re(v(w)) − Re(v(u))

)︸                                                                              ︷︷                                                                              ︸
CIm(i(u ,w ))

)
(B.4)
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B.5 Formulations

B.5.1 Polar PQV Formulation
The real and reactive parts of the complex power �ow equation from Equation B.3c
are transformed separately to the polar form. The real power PQV formulation is
used in Equation 3.19a on Page 44. The reactive power PQV formulation is used
in Equation 3.20a on Page 44.

p(u,w) = д(u,w)
(
Re(v(u)) Re(v(w)) + Im(v(u)) Im(v(w)) − Re(v(u))2 − Im(v(u))2

)
+ b(u,w)

(
Re(v(w)) Im(v(u)) − Re(v(u)) Im(v(w))

)
= д(u,w)

(
|v(u)| |v(w)| cos

(
θv (u) + ωt

)
cos

(
θv (w) + ωt

)
+ |v(u)| |v(w)| sin

(
θv (u) + ωt

)
sin

(
θv (w) + ωt

)
− |v(u)|2

(
cos2 (θv (u) + ωt) + sin2 (θv (u) + ωt)

)︸                                              ︷︷                                              ︸
=1

)
+ b(u,w)

(
|v(u)| |v(w)| cos

(
v(w) + ωt

)
sin

(
v(u) + ωt

)
− |v(u)| |v(w)| cos

(
v(u) + ωt

)
sin

(
v(w) + ωt

) )
= д(u,w)

(
|v(u)| |v(w)| cos

(
θv (u) − θv (w)

)
− |v(u)|2

)
+ b(u,w)|v(u)| |v(w)| sin

(
θv (u) − θv (w)

) (B.5a)

q(u,w) = д(u,w)
(
Re(v(w)) Im(v(u)) − Re(v(u)) Im(v(w))

)
+ b(u,w)

(
Re(v(u))2 + Im(v(u))2 − Re(v(u)) Re(v(w)) − Im(v(u)) Im(v(w))

)
= д(u,w)

(
|v(u)| |v(w)| cos

(
θv (w) + ωt

)
sin

(
θv (u) + ωt

)
− |v(u)| |v(w)| cos

(
θv (u) + ωt

)
sin

(
θv (w) + ωt

) )
+ b(u,w)

(
|v(u)|2

(
cos2 (θv (u) + ωt) + sin2 (θv (u) + ωt)

)︸                                              ︷︷                                              ︸
=1

− |v(u)| |v(w)| cos
(
θv (u) + ωt

)
cos

(
θv (w) + ωt

)
− |v(u)| |v(w)| sin

(
θv (u) + ωt

)
sin

(
θv (w) + ωt

) )
= д(u,w)|v(u)| |v(w)| sin

(
θv (u) − θv (w)

)
− b(u,w)

(
|v(u)| |v(w)| cos

(
θv (u) − θv (w)

)
− |v(u)|2

) (B.5b)

|v(u)| ≤ |v(u)| ≤ |v(u)|, (B.5c)

∆θv (u,w) ≤ θv (u) − θv (w) ≤ ∆θv (u,w). (B.5d)
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B.5.2 Rectangular PQV Formulation
The real part in Equation B.6b and the reactive part in Equation B.6c are come
from Equation B.3c.

p(u,w) + j · q(u,w)
v(u) · i(u,w)?

v(u) · (v(w)? · y(u,w)?)

 = s(u,w) (B.6a)

д(u,w)
©«

Re(v(u)) Re(v(w))

+Im(v(u)) Im(v(w))

−Re(v(u))2 − Im(v(u))2

ª®®¬ − b(u,w)
(
Re(v(u)) Im(v(w))

−Re(v(w)) Im(v(u))

)
= p(u,w) (B.6b)

−д(u,w)

(
Re(v(u)) Im(v(w))

−Re(v(w)) Im(v(u))

)
− b(u,w)

©«
Re(v(u)) Re(v(w))

+Im(v(u)) Im(v(w))

−Re(v(u))2 − Im(v(u))2

ª®®¬ = q(u,w) (B.6c)

|p(u,w)| ≤ p(u,w) (B.6d)
|q(u,w)| ≤ q(u,w) (B.6e)
|s(u,w)| ≤ s(u,w) (B.6f)

Re(v(u))2 + Im(v(u))2 ≤ v(u)2 (B.6g)
v(u)2 ≤ Re(v(u))2 + Im(v(u))2 (B.6h)

∆θv (u,w) ≤ arctan
(
Re(v(u))

Im(v(u))

)
− arctan

(
Re(v(w))

Im(v(w))

)
≤ ∆θv (u,w), (B.6i)
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B.5.3 Polar IV Formulation
The Equation B.7 comes from Equations 3.22 and 3.23.

i(u) = д(u, 0)|v(u)| cos
(
θv (u)

)
+

∑
{u ,w }∈

←→
E

д(u,w)
(
|v(w)| cos

(
θv (w)

)
− |v(u)| cos

(
θv (u)

) )
− b(u, 0)|v(u)| sin

(
θv (u)

)
−

∑
{u ,w }∈

←→
E

b(u,w)
(
|v(w)| sin

(
θv (w)

)
− |v(u)| sin

(
θv (u)

) )
+ j

(
д(u, 0)|v(u)| sin

(
θv (u)

)
+

∑
{u ,w }∈

←→
E

д(u,w)
(
|v(w)| sin

(
θv (w)

)
− |v(u)| sin

(
θv (u)

) )
+ b(u, 0)|v(u)| cos

(
θv (u)

)
+

∑
{u ,w }∈

←→
E

b(u,w)
(
|v(w)| cos

(
θv (w)

)
− |v(u)| cos

(
θv (u)

) ) )
,

(B.7a)

|v(u)| |i(u)| cos
(
θv (u) − θ i (u)

)︸                                 ︷︷                                 ︸
Cp(u)

≤ p(u),

(B.7b)
p(u) ≤ |v(u)| |i(u)| cos

(
θv (u) − θ i (u)

)
,︸                                  ︷︷                                  ︸

Cp(u)

(B.7c)

|v(u)| |i(u)| sin
(
θv (u) − θ i (u)

)︸                                 ︷︷                                 ︸
Cq(u)

≤ q(u),

(B.7d)
q(u) ≤ |v(u)| |i(u)| sin

(
θv (u) − θ i (u)

)
,︸                                 ︷︷                                 ︸

Cq(u)

(B.7e)

|v(u)| ≤ |v(u)| ≤ |v(u)|,
(B.7f)

∆θv (u,w) ≤ θv (u) − θv (w) ≤ ∆θv (u,w).
(B.7g)
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B.5.4 Rectangular IV Formulation

i(u) = д(u, 0)Re(v(u)) +
∑

{u ,w }∈
←→
E

д(u,w)
(
Re(v(w)) − Re(v(u))

)
− b(u, 0)Im(v(u)) −

∑
{u ,w }∈

←→
E

b(u,w)
(
Im(v(w)) − Im(v(u))

)
+ j ·

(
д(u, 0)Im(v(u)) +

∑
{u ,w }∈

←→
E

д(u,w)
(
Im(v(w)) − Im(v(u))

)
+ b(u, 0)Re(v(u)) +

∑
{u ,w }∈

←→
E

b(u,w)
(
Re(v(w)) − Re(v(u))
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(B.8a)

Re(v(u)) · Re(i(u)) + Im(v(u)) · Im(i(u))︸                                               ︷︷                                               ︸
Cp(u)

≤ p(u) (B.8b)

p(u) ≤ Re(v(u)) · Re(i(u)) + Im(v(u)) · Im(i(u))︸                                               ︷︷                                               ︸
=p(u)

(B.8c)

Im(v(u)) · Re(i(u)) − Re(v(u)) · Im(i(u))︸                                               ︷︷                                               ︸
Cq(u)

≤ q(u) (B.8d)

q(u) ≤ Im(v(u)) · Re(i(u)) − Re(v(u)) · Im(i(u))︸                                               ︷︷                                               ︸
=q(u)

(B.8e)

Re(v(u))2 + Im(v(u))2 ≤ v(u)2 (B.8f)
v(u)2 ≤ Re(v(u))2 + Im(v(u))2 (B.8g)

|i(u,w)| ≤ i(u,w) (B.8h)

∆θv (u,w) ≤ arctan
(
Re(v(u))

Im(v(u))

)
− arctan

(
Re(v(w))

Im(v(w))

)
≤ ∆θv (u,w), (B.8i)
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B.5.5 DC Assumption 3

q(u) = −|v(u)|2

(
b(u,u) +

∑
w ∈V \{u }

b(u,w)

)
+

∑
w ∈V \{u }

|v(u)| |v(w)|
(
b(u,w)

)
(B.9a)

= −|v(u)|2b(u,u) −

( ∑
w ∈V \{u }

|v(u)|2b(u,w) − |v(u)| |v(w)|b(u,w)

)
(B.9b)

= −|v(u)|2b(u,u) −

( ∑
w ∈V \{u }

|v(u)|b(u,w) (|v(u)| − |v(w)|)

)
(B.9c)

(A3)
= −b(u,u) −

( ∑
w ∈V \{u }

b(u,w) (|v(u)| − |v(w)|)

)
(B.9d)
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C Discrete Changes to the Power Grid

This section is an extension of the Chapter 5 in which we consider discrete changes to
the power grid topology with the focus on transmission switching. In Section 5.7, we
evaluate two di�erent algorithms and present for the DTP betweenness centralities
two networks in Figure 5.13a&b. In this section, we extend this to other power grid
sizes and structures such that we have a broader evaluation. Figure 5.13d illustrates
the compressed representation.

In this section, we test the in�uence of switching edges one by one with di�er-
ent Dominating Theta Path (DTP) betweenness centralities and their in�uence on
the maximum power �ow (MPF). For each test case, we compute the DTP between-
ness centrality for each edge and the MPF when only this edge is switched. The
results of these simulations are shown in Figures C.1–C.3. We sort the edges from
highest to lowest centrality. The centrality of the edges is shown as a dashed curve.
The solid curve represents the value of the MPF if the edge is switched. We can see
that for many edges switching them does not in�uence the value of the MPF. The
edges where switching them decreases the value are often those with medium to low
centrality values (see in particular nesta_case14_ieee, nesta_case30_ieee and
nesta_case300_ieee). Switching edges with high centrality (relative to the other
edges in the network) still keeps a large �ow value. For a combination of all the results
refer to Figure 5.13d.
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Figure C.1: Results of the simulations for the DTP betweenness centrality on
nesta_case3_lmbd to nesta_case24_ieee_rts.
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Figure C.2: Results of the simulations for the DTP betweenness centrality on cases
nesta_case30_as to nesta_case118_ieee.
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Figure C.3: Results of the simulations for the DTP betweenness centrality on
cases nesta_case162_ieee to nesta_case3012wp_mp.
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DContinuous Changes in the Power Grid

This section is an extension of the Chapter 6 in which we consider continuous changes
to the power grid topology with the focus on the placement of Flexible AC Transmission
Systems (FACTS). In Figure D.1, we investigate the trade-o� between costs and losses
of the multi-objective function (Equation 6.6) that we optimize in our hybrid model
(Equation 6.12). In all our simulations, we see a Pareto front that shows for di�erent λ ∈
[0, 1] an optimal solution in Figure D.1.

If we concentrate on the placement problem, we can evaluate for di�erent numbers
of control vertices VF the operation costs for di�erent load increase factors. This is
shown for di�erent power grids in Figure D.2.
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Figure D.1: Trade-o� of generator costs and costs of the losses depending as λ varies from 0
to 1. The square cross marks the solution computed by OPF.
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Figure D.2: Operation costs of case6 to case118 for OPF and the hybrid model with their
control buses with respect to the load factor ρ.
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G Deutsche Zusammenfassung

Energienetze bilden das Rückgrat unserer Gesellschaft, die unter anderem unsere
Nahrungskette und andere wichtige Infrastrukturen, wie die Wasser- und Wärmever-
sorgung, bestimmen. Um die grundlegenden menschlichen Bedürfnisse zu befriedigen,
müssen wir ein nachhaltigeres und umweltfreundlicheres Verhalten im Allgemeinen
und in Energienetzen im Speziellen an den Tag legen. In dieser Arbeit geht es um
Energienetze, wobei wir uns auf Stromnetze spezialisieren und uns darauf fokussieren,
wie wir die vorhandene Infrastruktur besser ausnutzen können. Wir merken an, dass
die Ergebnisse aus dieser Arbeit auch auf andere Energienetze übertragen werden
können [Gro+19] und bestimmte auftretende Phänomene legen es nahe, dass sich
einige Ergebnisse eventuell auch auf Verkehrsnetze übertragen lassen. Diese Arbeit
besteht aus vier inhaltlichen Teilen. Der erste Teil beschäftigt sich mit der Funktions-
weise und Struktur von elektrischen Flüssen. Der zweite und dritte inhaltliche Teil der
Arbeit beschäftigt sich jeweils mit der e�zienten Ausnutzung der vorhandenen Ener-
gienetzinfrastruktur. Dabei verstehen wir hier unter e�zienter Ausnutzung entweder
die Maximierung der Gesamterzeugung und die damit verbundene Erweiterung des
Betriebspunktes oder die Minimierung der Erzeugungskosten verstehen.

Das elektrische Netz besteht aus drei Spannungsebenen, die wir als Hoch-, Mittel-,
und Niederspannungsebene bezeichnen. Das traditionelle elektrische Netz ist auf eine
zentrale Energieversorgung ausgelegt, bei der die Erzeuger sich in der Hochspan-
nungsebene be�nden. Der elektrische Fluss im klassischen Sinne �ießt von der Hoch-
in die Mittel- und Niederspannungsebene. Die industriellen Verbraucher be�nden sich
zumeist auf der Mittelspannungsebene, während sich die Haushalte und kleineren
Industrien in der Niederspannungsebene be�nden. Durch nachhaltige Erzeuger, die
ihre Energie aus erneuerbaren Energien wie beispielsweise Wind gewinnen, �ndet
nun ein Paradigmenwechsel im elektrischen Netz statt. Diese nachhaltigen Erzeuger
be�nden sich zumeist im Nieder- und Mittelspannungsnetz und der elektrische Fluss
könnte nun bidirektional �ießen. Dieser Paradigmenwechsel kann zu Engpäßen und
anderen Problemen führen, da das elektrische Netz für ein solches Szenario nicht
konzipiert ist.

Eine Hauptaufgabe dieser Arbeit war die Identi�zierung von Problemstellungen in
elektrischen Netzen. Die extrahierten Problemstellungen haben wir dann in graphen-
theoretische Modelle übersetzt und Algorithmen entwickelt, die oftmals Gütegarantien
besitzen. Wir haben uns dabei zunächst auf die Modellierung von elektrischen Net-
zen und das Verhalten von Flüssen in diesen Netzen mit Hilfe von Graphentheorie
konzentriert. Zur Modellierung des elektrischen Flusses nutzen wir eine linearisierte
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Modellierung, die mehrere vereinfachende Annahmen tri�t. Diese linearisierte Mo-
dellierung ist für Hochspannungsnetze im Allgemeinen eine gute Annäherung und
macht das Entscheidungsproblem für elektrische Flüsse, das heißt, ob ein gültiger elek-
trischer Fluss für eine bestimmte Kon�guration des Netzes und für einen bestimmten
Verbrauch und eine bestimmte Erzeugung existiert, in Polynomialzeit lösbar.

Leistungs�uss. Fokusiert man sich auf das vereinfachte Zulässigkeitsproblem von
elektrischen Flüssen und den Maximalen Leistungs�üssen, so existieren verschiedene
mathematische Formulierungen, die den Leistungs�uss beschreiben. Auf allgemeinen
Graphen ist es oftmals der Fall, dass graphentheoretischen Flüsse keine zulässigen Leis-
tungs�üsse darstellen. Im Gegensatz zu graphentheoretischen Flüssen balancieren sich
Leistungs�üsse. Wir diskutieren diese Eigenschaft aus graphentheoretischer Sicht. Die
verschiedenen mathematischen Formulierungen geben uns strukturelle Einblicke in
das Leistungs�ussproblem. Sie zeigen uns die Dualität der zwei Kirchho�schen Regeln.
Diese nutzen wir um einen algorithmischen Ansatz zur Berechnung von Leistungs-
�üssen zu formulieren, der zu einem Algorithmus für Leistungs�üsse auf planaren
Graphen führen könnte. Die Einschränkung auf planare zweifachzusammenhängende
Graphen ist vertretbar, da elektrische Netze im Allgemeinen planar sind [COC12, S. 13].
Zudem hilft uns diese Sichtweise, um Analogien zu anderen geometrischen Problemen
herzustellen.
Kontinuierliche Änderungen. Da graphentheoretische Flüsse sich in vielen Fäl-

len anders als elektrische Flüsse verhalten, haben wir versucht, das Stromnetz mittels
Kontrolleinheiten so auszustatten, dass der elektrische Fluss den gleichen Wert hat
wie der graphentheoretische Fluss. Um dieses Ziel zu erreichen, platzieren wir die
Kontrolleinheiten entweder an den Knoten oder an den Kanten. Durch eine Suszeptanz-
Skalierung, die durch die Kontrolleinheiten ermöglicht wird, ist es nun prinzipiell
möglich jeden graphentheoretischen Fluss elektrisch zulässig zu machen. Dabei konn-
ten wir zeigen, dass das gezielte Platzieren von Kontrolleinheiten die Kosten der
Erzeugung von elektrischer Leistung durch Generatoren im elektrischen Netz senken
kann und den Betriebspunkt des Netzes in vielen Fällen auch erweitert. Platziert man
Kontrolleinheiten so, dass der verbleibende Teil (d. h. das Netz ohne die Kontrollein-
heiten) ein Baum oder Kaktus unter geeigneter Begrenzung der Kapazitäten ist, so
ist es möglich, jeden graphentheoretischen Fluss als elektrisch zulässigen Fluss mit
gleichwertigen Kosten zu realisieren. Die Kostensenkung und die Erweiterung des
Betriebspunktes konnten wir experimentell auf IEEE-Benchmark-Daten bestätigen.
Diskrete Änderungen. Die oben beschriebenen Kontrolleinheiten sind eine idea-

lisierte, aktuell nicht realisierbare Steuereinheit, da sie den elektrischen Fluss im
gesamten Leistungsspektrum einstellen können. Damit ist vor allem gemeint, dass
sie den elektrischen Fluss auf einer Leitung von „Die Leitung ist abgeschaltet.“ bis
zur maximalen Kapazität stufenlos einstellen können. Diese Idealisierung ist auch ein
großer Kritikpunkt an der Modellierung. Aus diesem Grund haben wir versucht, unser
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Modell realistischer zu gestalten. Wir haben zwei mögliche Modellierungen identi�-
ziert. In der ersten Modellierung können Leitungen ein- und ausgeschaltet werden.
Dieser Prozess wird als Switching bezeichnet und kann in realen Netzen mittels Circuit
Breakers (dt. Leistungsschaltern) realisiert werden. Die zweite Modellierung kommt
der Kontrolleinheiten-Modellierung sehr nahe und beschäftigt sich mit der Platzie-
rung von Kontrolleinheiten, die die Suszeptanz innerhalb eines gewissen Intervalls
einstellen können. Diese wirkt im ersten Moment wie eine Verallgemeinerung der
Schaltungs�ussmodellierung. Nutzt man jedoch eine realistischere Modellierung der
Kontrolleinheiten, so ist das Einstellen der Suszeptanz durch ein Intervall begrenzt, das
das Ausschalten einer Leitung nicht mit beinhaltet. Sowohl ein optimales (im Sinne der
Minimierung der Gesamterzeugungskosten oder der Maximierung des Durchsatzes)
Platzieren von Switches als auch ein optimales Platzieren von Kontrolleinheiten ist
im Allgemeinen NP-schwer [LGH14]. Diese beiden Probleme ergänzen sich dahinge-
hend, dass man den maximalen graphentheoretischen Fluss, mit den zuvor genannten
Platzierungen annähern kann.

Für Switching konnten wir zeigen, dass das Problem bereits schwer ist, wenn der
Graph serien-parallel ist und das Netzwerk nur einen Erzeuger und einen Verbraucher
besitzt [Gra+18]. Wir haben sowohl für den Maximalen Übertragungsschaltungs-
�uss (engl. Maximum Transmission Switching Flow; kurz MTSF) als auch für den
optimalen Übertragungsschaltungs�uss (engl. Optimal Switching Flow; kurz OSF)
erste algorithmische Ansätze vorgeschlagen und gezeigt, dass sie auf bestimmten
graphentheoretischen Strukturen exakt sind, und dass auf anderen graphentheoreti-
schen Strukturen Gütegarantien möglich sind [Gra+18]. Die Algorithmen haben wir
dann auf allgemeinen Netzen evaluiert. Simulationen führen zu guten Ergebnissen auf
den NESTA-Benchmark-Daten.

Erweiterungsplanung auf der Grünen Wiese. Eine vom Rest der Arbeit eher
losgelöste Fragestellung war die Verkabelung von Windturbinen. Unter Verwendung
einer Metaheuristik haben wir gute Ergebnisse im Vergleich zu einem „Mixed Inte-
ger Linear Program“ (MILP; dt. gemischt-ganzzahliges lineares Programm) erzielt,
das wir nach einer Stunde abgebrochen haben. Die Modellierung der Problemstel-
lung und die Evaluation des Algorithmus haben wir auf der ACM e-Energy 2017
verö�entlicht [Leh+17].

Schlusswort. Abschließend kann man sagen, dass mit dieser Arbeit allgemeine,
tie�iegende Aussagen über elektrische Netze getro�en wurden, unter der Berücksichti-
gung struktureller Eigenschaften unterschiedlicher Netzklassen. Diese Arbeit zeigt wie
das Netz ausgestaltet sein muss, um bestimmte Eigenschaften garantieren zu können
und zeigt verschiedene Lösungsansätze mit oft beweisbaren Gütegarantien auf.
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