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Outline

Human beings have always tried to find the best possible path to move from one
location to another. Often, the best path means the shortest one. Even if the
transport system never stopped changing, the problem of finding a shortest path
is still valid and widely discussed. Nowadays, we are looking at a rapid diffusion
of autonomous vehicles, such as drones, robots, forklifts, and cars. In this context,
the problem of finding, in a reasonable amount of time several paths or tours, is
becoming extremely important in various fields. The Shortest Path Problem (SPP)
and the Vehicle Routing Problem (VRP) are defined to formalize these scenarios.
The SPP aims to find a minimum length path that connects a source node s and a
destination node d. The SPP is known to be solvable in polynomial time using vari-
ous algorithms [62]. Nevertheless, several variants of the problem, which have many
practical applications in the real world, are NP-Hard [69]. Furthermore, another
interesting application field concerns the definition of a tour of minimum length
that allows, for example, a carrier to serve all its clients and then go back to its
deposit. For this reason, problems such as the Vehicle Routing Problem (VRP)[70],
Travelling Salesman Problem (TSP)[65] [74], Arc Routing Problem (ARP)[56], and
so on, have growing interest in the community of researchers. All these problems,
and many of their variants, are known to be NP-hard [69]. In this thesis, we pro-
pose an overview of path and tour problems in the context of autonomous vehicles.
In particular, concerning the definition of paths of minimum length, we present a
new variant of the Shortest Path Problem, namely the Concurrent Shortest Path
Problem which considers the possibility of having a set of autonomous vehicles that
tries to find a path of minimum length while avoiding collisions. Then we present
an exact reduction technique for the k-Colour Shortest Path Problem that considers
the possibility of having a multi-modal transport system. For both of them, we pro-
pose exact and heuristic algorithms. Furthermore, while focusing on the definition
of tours for drones, we present a new variant of the TSP, that is the Close-Enough
Generalized Routing Problem, that combines the properties of the Close-Enough
Travelling Salesman Problem (CETSP) and the Close-Enough Arc Routing Prob-
lem (CEARP).

In the first part of this thesis, we present a variant of the SPP, namely the Concur-
rent Shortest Path Problem, to define multiple paths of minimum length connecting
several pairs of source-destination nodes while avoiding collisions between paths.
This variant of the SPP can be applied to various practical scenarios. One consists
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of handling the traffic of a smart city ([87], [54]), where everything is interconnected
and handled by a central system. In a possible futuristic scenario, where 100%

of vehicles are ‘smart’ (autonomous), some possible purposes of the central system
could be the minimization of the time required by each vehicle to reach its destina-
tion, the reduction of traffic, the minimization of the fuel consumption, etc. Similar
applications that are already been applied in the industry consist of defining paths
of minimum length for robots and forklifts in a warehouse ([52], [90]) or the tour
definition for a fleet of drones ([85], [39]). In this thesis, we propose a variant of
the SPP called Concurrent Shortest Path Problem (CSPP) to define paths for a
fleet of vehicles to avoid collision while minimizing the maximum completion time.
After a formal definition of the problem, we propose three Mixed-Integer Linear
Programming (MILP) formulations. The first two are based on a flow formulation.
The first one discretizes the time dimension to avoid collisions, and the second one
uses a novel transformation of the graph to reduce the complexity of the problem.
Finally, the last one is inspired by the Bin Packing Problem (BPP). Furthermore,
given the high complexity of the formulations, we propose two heuristic approaches
to obtain feasible solutions in a reasonable amount of time.

Other variants of the SPP that fit various real-world applications are defined on
edge-coloured graphs. In particular, in the second part of this thesis, we focus our
attention on a specific variant of the SPP defined on an edge-labeled graph, called the
k-Colour Shortest Path Problem (k-CSPP). Labeled problems are widely discussed
in the literature. They find applications mostly in telecommunications networks,
such as packet routing, and in multi-modal transport systems also for autonomous
vehicles. The k-CSPP consists of finding a shortest path in a weighted edge-coloured
graph, where the maximum number of different colours that can be used is fixed to
be k. The first formal definition of the k-Colour Shortest Path Problem is presented
in the paper of Ferone et al. [37]. They propose a mathematical model based on a
flow formulation and a Branch and Bound Algorithm (B&B) to solve the problem.
In their second work [35], Ferone et al. propose a novel Dynamic Programming
algorithm (DP) that uses a path-labeling approach with an A∗-like technique as
an exploration strategy. The authors also define a new set of instances with fewer
colours to analyze the behavior of their approaches, varying the number of colours.
As a contribution to the k-Colour Shortest Path Problem, we propose a heuristic
approach (CCDA) able to identify optimal or near-optimal solutions regardless of
the size of the instances; we propose an effective graph reduction strategy, able to
remove from the graph more than 90% of nodes and edges; and an exact approach
that combines the two approaches described before and guarantees optimal solutions
in reasonable running times. We perform several tests to address the effectiveness
of the proposed approaches and to analyze the characteristics of the benchmark
instances.

The second main topic handled in this thesis concerns the definition of tours. A
tour is a path that starts and ends in a depot node and connects it with all the
targets of the graph. Nowadays, problems that solve and extend this scenario are

5



extremely important in various contexts. Given the rapid growth of technologies,
such as wireless connection systems, problems like the TSP, and the ARP are evolv-
ing to adapt to new scenarios. In fact, the Close-Enough Arc Routing Problem
(CEARP) [31], and the Close-Enough Travelling Salesman Problem (CETSP) [27]
are proposed to handle these new possibilities. In these generalizations, to cover
a target is not necessary to achieve its exact position. Each target has a range of
action, that is considered visited if traversed by the vehicle. In both these general-
izations, the aim consists of finding a shortest tour that starts and ends at the depot
node and intersects each neighborhood once. These problems have several practi-
cal applications in the context of Unmanned Aerial Vehicles for military and civil
missions like supply delivery (food, munition, etc.), geographic region monitoring
and military surveillance [12]. Moreover, even the robot monitoring wireless sensor
networks can be modeled using this problem [93] [78]. As a contribution to these
problems, in this thesis, we propose the Close-Enough Generalized Routing Problem
(CEGRP). It combines the properties of the CETSP and the CEARP, defining a new
generalization where a tour can pass through constrained and unconstrained areas.
This means that a tour cannot be defined using only algorithms for the CETSP, as
well as for the algorithms for the CEARP. Considering the CETSP is closely related
to drones, this new variant refers to a drone flying freely in space. Unfortunately,
this scenario is not always true. If we consider locations such as schools, hospitals,
military or residential areas, flying over these areas is usually prohibited for several
reasons such as safety, public order, privacy, etc. In the Close-Enough Generalized
Routing Problem, we introduce the concept of a flight zone. We differentiate two
zones: one where the drone can fly freely, called the Free Flight Zone (FFZ), and the
other where the possibility of flight is limited to specific corridors (e.g. roads) or pro-
hibited, called the Constrained Flight Zone (CFZ). Given a graph G = (N,E, T, Z),
where N is the set of nodes, E is the set of edges (e.g. roads), T is the set of targets
to serve, and Z is the set of CFZ, we need to find a tour that starts and ends at
the depot, and minimizes the total sum of edge lengths. We formally define the
problem and examine it. We also propose a heuristic approach, namely, Convert
and Conquer (C&C) that performs a set of conversion steps to solve the CEGRP
by reducing it into the Generalized Travelling Salesman Problem (GTSP). Future
developments include defining approaches that can also handle intermediate situa-
tions, with variable mixes of CFZ and FFZ, and examining its behavior concerning
its boundary cases.

This dissertation reports in detail on all described until now. Following this
outline, we review the literature and state of the art in Chapter 1. We discuss
variants of the Shortest Path Problem, namely CSPP and k-CSPP in Chapters 2
and 3. Then we consider the second main scenario concerning the definition of
tours, defining the CEGRP and its characteristics in Chapter 4. In conclusion, we
summarize the whole work in Chapter 5, discussing some conclusions and a few
future developments.

6



Chapter 1

Literature Review

In this chapter, we present a brief discussion on the state of the art about the defini-
tion of paths and tours on graphs. Particularly, we focus first on the Shortest Path
Problem (SPP), its variants, and some of the main solving algorithms, with partic-
ular attention to the coloured variants of the SPP. Then, we focus on the definition
of a tour of minimum length for problems defined as Close-Enough Problems.

The Shortest Path Problem: Since its first definition in 1956 [40] the SPPis
still one of the most important and discussed topics in operational research. Also,
the number of publications about it remains high over the years ([62], [41]) due to
the capacity of this problem to model many real-world applications, as evidenced by
its innumerable variants. Given a graph G, a shortest path from a source node s to
a destination node d is a path that connects the two nodes minimizing a specified
length function. The SPP is known to be solved in polynomial time using various
algorithms (e. g. the Dijkstra’s Algorithm [30]), as reported by [62]. However, many
of its variants are known to be NP-hard [86].

One of these applications consists, for example, of handling the traffic of a smart
city as described by Variaya et al. [87] and Katrakazas et al. [54]. The authors
present a scenario where 100% of vehicles are ‘smart’ (autonomous), and everything
is interconnected and handled by a central system. In this context becomes ex-
tremely important to define a management system able to organize the traffic by
defining the paths and the tours for each vehicle. Some possible purposes of the
central system could be the minimization of the time required by each vehicle to
reach its destination, the reduction of traffic, and the optimization of fuel consump-
tion. Further applications related to autonomous vehicles consist of defining paths
of minimum length for robots and forklifts in a warehouse ([52], [90]) or the tour
definition for a fleet of drones ([85], [39]).

From a general point of view, most of the research about autonomous vehicles
concerns the Vehicle Routing Problem (VRP) ([42], [57]), even though this problem
does not focus on the possibility that two vehicles could collide between them. To
close this gap, Lui et al. [60] and Bichiou et al. [7] propose an optimization model
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to optimize the movement of autonomous vehicles through intersections. Hassan et
al. [49] proposes a fully distributed algorithm where vehicles close to an intersection
cooperate to define a schedule that allows all of them to safely pass the intersec-
tion. Katrakazas et al. [54] propose a survey about real-time motion planning for
autonomous vehicles, where different methods are compared. These methods could
be: finding a path, searching for the safest maneuver, and determining the most
feasible trajectory. All of these techniques aim to provide a safe and collision-free
path for each vehicle while considering the length of the path and the traffic. Other
authors focus on the definition of path or tour for vehicles such as robots. For exam-
ple, Schouwenaars et al. [75] propose a new approach to fuel-optimal path planning
of multiple vehicles that uses a combination of linear and integer programming (LP
and ILP). This approach considers a receding time horizon where the paths are
composed of a sequence of locally optimal segments. Therefore, the authors show
that receding horizon strategies can lead the system to unsafe conditions.

In the scenario of defining independent paths for multiple vehicles, the current
state of the art is represented by the Disjoint Shortest Path Problem (DSPP) pro-
posed by Eliam et al. [32] in 1998. The DSPP is commonly used in communication
networks to guarantee the reliability of transmissions ([43], [44]). It is defined on
a graph G = (N,A) with N the set of nodes, A the set of arcs, and a set of pairs
of different nodes SD = {(s, d) : s, d ∈ N, s ̸= d}. The problem aims to find |SD|
different disjoint shortest paths between each pair (s, d). The DSPP can be defined
on directed or undirected graphs. The paths can be vertex or edge-disjoint. The
problem is NP-complete, as shown by Eliam et al. [32] and Karp et al. [53].

Eliam et al. [32] propose a polynomial algorithm for the Two Disjoint Shortest
Path Problem (2DSPP) in undirected graphs. Robertson et al. [72] present a poly-
nomially bounded algorithm to verify if there are |SD| vertex-disjoint paths in a
graph G. The same authors, in [73], describe a method to solve the DSPP that,
for fixed |SD| ≥ 0, has a computational cost of O(|V |3). Sidhu et al. [79] discuss
defining multiple disjoint paths between pairs of nodes in a network to increase the
effective bandwidth, reduce congestion, and reduce the probability of dropped pack-
ets. The authors propose a distributed distance-vector algorithm to find multiple
disjoint paths to a destination. Torrieri et al. [84] propose three efficient algo-
rithms to identify a set of disjoint paths. The first can obtain an optimal set of
disjoint paths, while the other two can construct larger sets of non-optimum paths.
Kobayashi et al. [55] consider two different objective functions for the problem, the
former wants to minimize the total path length (Min-Sum); the latter wants to min-
imize the length of the longest path (Min-Max), considering two and three pairs of
distinct paths. Bjorklund et al. [9] define a polynomial-time Monte-Carlo algorithm
to find disjoint paths of the smallest total length.

Other variants consider both multiple or single source-destination pairs. The
one proposed by Weiner et al. [89] consists of finding the largest number of pairs
that can be connected by paths, using each edge within the network at most once.
Furthermore, Festa et al. [38] present the Shortest Path Tour Problem in which a
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shortest path from a given source node to a given destination node must be found
such that it crosses a sequence of nodes that are given in a fixed order. One more
variant of the DSPP addressing this kind of scenario is the Capacitated Shortest
Multi-paths Problem proposed by Bentz et al. in [4]. This problem, given an
undirected graph and a set of vertex pairs, consists of finding a path for each pair
that respects the capacity constraints. It means that the number of paths that pass
through each edge must be at most the capacity of this edge.

Finally, one last problem that must be considered is the multi-agent pathfinding
(MAPF) problem [81] [76]. It is a generalization of the single-agent pathfinding that
consists of a graph and a number of agents. For each agent, a start state and a goal
state are given. The problem aims to find paths for all agents from their start states
to their goal states, under the constraint that agents cannot collide during their
movements. Time is assumed to be discretized, and in every time step, each agent
is situated in one of the graph vertices and can perform a single action within two
possibilities: wait and move. A wait action means that the agent stays in its current
vertex for another time step. A move action means that the agent moves from its
current vertex to an adjacent vertex. Several types of conflicts between agents are
defined in [81]; for example vertex conflicts, edge conflicts following constraints, and
so on.

Coloured Problems: In this thesis, we consider also the possibility of using differ-
ent kinds of vehicles. This concept is defined in literature as multi-modal transport
system [19]. Some variants of the SPP that consider this characteristic are defined
on an edge-coloured or edge-labeled graph. In the remainder of this thesis, the terms
‘colours’ and ‘labels’ will be used interchangeably.

These graphs, characterised by an enumerable characteristic associated with the
edges that are usually called colour or label, allow one to create generalised ver-
sions of many problems defined on graphs. The Minimum Labelling Spanning Tree
(MLST) Problem [67], [11] is a generalisation of the classic Minimum Spanning Tree
Problem that, thanks to the use of labels, has been exploited to model problems
concerning telecommunications networks. Cerulli et al. [23] propose various exten-
sions of the problem and investigated several approaches, comparing their results
and characteristics. Furthermore, Cerrone et al. [21] introduce and analyse the
Strong Generalised Minimum Label Spanning Tree Problem, presenting an Integer
Linear Programming (ILP) formulation and three heuristic approaches. Silva et al.
[28] provide a tighter bound on the time complexity of the MLST and propose a
new Mixed-Integer Programming based (MIP) meta-heuristic, namely multi-start
local branching. Strictly related to the MLST Problem is the k-Labelled Spanning
Forest Problem. Cerulli et al. [22] define this problem and propose an exact ap-
proach to solve it, and Consoli et al. [25] present a comparison between the main
meta-heuristic approaches. The Rainbow Spanning Forest Problem (RSFP) con-
sists of finding a spanning forest of graph G such that the number of components
(trees) is minimum, and each connected component contains only edges with differ-
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ent colours. Carrabs et al. [15], [16] propose this problem, studied its complexity,
and then design two approaches for it, one exact and one greedy.

Labeled graphs have been used not only for tree and forest problems but also
for path identification problems. In the Orderly Coloured Longest Path Problem
(OCLPP), the aim is to find the longest possible path such that a set of constraints on
the sequence of the colours is respected. Carrabs et al. [17] performed several tests
of all existing formulations, summarising their characteristics, in order to determine
which of the formulations obtains better results and under what conditions. Yuan
et al. [94] developed an ILP formulation and a heuristic algorithm to minimise
the number of colours for a path; indirectly, the authors succeeded in minimising
the number of overlapping colours to prevent a single failure from causing multiple
failures.

For a node-coloured graph, the All Colours Shortest Path Problem (ACSP), stud-
ied by Bilge et al. [8], consists of finding a minimum-cost shortest path that uses
all the different colours in an undirected weighted graph, where each node is as-
signed a colour. Carrabs et al. [18] propose a variant of the problem where the
source is unknown, and for this variant, they define a mathematical formulation and
propose a Variable Neighborhood Search meta-heuristic. Finally, a problem fam-
ily close to the coloured problem family consists of resource-constrained problems.
The Resource Constrained Shortest Path Problem (RCSPP) [36], [80] is based on
the definition of an L-dimensional vector of resources R in addition to the graph
G. In particular, each edge is linked to a resource attribute that needs to be ad-
dressed during path planning. A deep analysis of the RCSPP, its applications, and
possible approaches is performed by Irnich et al. [51], Avella et al. [1], Beasley
et al. [2] and Di Puglia Pugliese et al. [71]. To solve the RCSPP, Marinakis et
al. [63] propose an effective hybrid algorithm that combines the Particle Swarm
Optimization meta-heuristic and a Variable Neighborhood Search approach. Tilk
et al. [83], exploiting the asymmetry in the number of forward and backward label
extensions for the Shortest Path Problem with Resource Constraints, propose an
effective dynamic halfway-point algorithm. Zhu et al. [95] present an implementa-
tion of a three-stage approach for the dynamic version of the RCSPP that has to
be solved as a sub-problem in the Branch and Price algorithm, while Horváth et al.
[50] investigate a Linear Programming (LP) based Branch and Bound method and
introduce new cutting planes and separation procedures for the problem. Finally,
Di Puglia Pugliese et al. [29] analyse the problem in uncertain data conditions and
propose a robust formulation to obtain optimal solutions.

In this thesis, we focus on an NP-Hard variant of the SPP that finds applica-
tion in the context of multi-modal transport system, namely k-Colour Shortest Path
Problem (k-CSPP). It consists of finding a shortest path in a weighted edge-coloured
graph, where the maximum number of different colours that can be used is fixed to
be k. The k-CSPP is defined by Ferone et al. in [37]. They propose a mathematical
model based on a flow formulation and a Branch and Bound Algorithm based on
the idea that by relaxing the colour constraints, the problem can be solved using a
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shortest path algorithm. After the computation of a relaxed solution, if the number
of colours used in the solution is higher than k, the solution is inadmissible; other-
wise, the new solution can be evaluated in terms of the path length. It becomes the
new incumbent solution if it is better than the previous best solution; otherwise, it is
discarded. The problem of finding a path between a source node and a destination
node with a fixed maximum number of colours, namely k-CSPP, is proven to be
NP-hard by Broersma et al. [10], who reduce it from the 3-SAT (3-Satisfiability)
problem. In particular, the authors highlight that any instances of the problem of
finding a path with at most k colours can be related to an instance of k-CSPP, where
each edge has a null cost. Ferone et al. in [35], propose a dynamic programming
(DP) algorithm that uses a path-labeling approach with an A∗-like technique as
an exploration strategy. The authors also define a new set of instances with fewer
colours to analyse the behaviour of their approaches, varying the number of colours.
Testing their approaches on two test sets highlight that the DP algorithm outper-
formed previous approaches in terms of the number of optimum solutions and the
computational time. An interesting discussion highlighting the differences between
the RCSPP and the k-CSPP can be found in [37].

Close-Enough Problems: The second main topic of this thesis concerns the
definition of tours on graphs. A tour is a path that starts from and ends at a depot
node and connects it with all the targets of the graph. If the targets to cover are
nodes, the problem of defining a tour connecting all of these nodes is known as
Travelling Salesman Problem (TSP) [70], [65], [74]. Otherwise, if the tour is defined
to connect a set of arcs, the problem is known as Arc Routing Problem (ARP)
[56]. All these problems, and many of their variants, are known to be NP-hard [69].
Given the fast growth of technologies, such as wireless connection systems [78], these
problems are evolving to adapt to new scenarios. The CEARP [31], and the CETSP
[27] are proposed to handle these new scenarios. In these generalizations, a target is
equipped with a proximity sensor (e. g. an R-FID tag), so to cover a target is not
necessary to achieve the exact position of a target; instead, a path must be close
enough to the target t to cover it. Each target has a neighborhood of radius r and if
the distance between an edge e and the center of the target t is lower than or equal
to the radius, it is possible to affirm that the edge e covers the target t.

The CETSP is a variant of the TSP that consists of finding the shortest tour
that starts and ends at the depot node and intersects each neighborhood once.
The CETSP has several practical applications in the context of Unmanned Aerial
Vehicles for military and civil missions like supply delivering (food, munition, etc.),
geographic region monitoring and military surveillance [12]. Moreover, even the
robot monitoring wireless sensor networks can be modelled using this problem [93]
[78]. Behdani et al. [3], propose a mixed integer programming formulation based
on a discretization schema for the problem. Their approach allows the definition of
both upper and lower bounds for the problem. Gulczynski et al. [45] propose an
interesting discussion about several heuristics proposed in the literature to face the
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CETSP. Yang et al. [92] present an effective double-loop hybrid algorithm based
on particle swarm optimization and genetic algorithm. Furthermore, Carrabs et
al. present in their work, a heuristic approach to compute the lower and the upper
bound for the problem [14] [12]. They also present an effective discretization schema
for the target neighborhoods [13]. Finally, Wang et al. [88] present a Steiner Zone
Variable Neighborhood Search heuristic (SZVNS) able, in a small amount of time,
to obtain good solutions even on big instances.

The CEARP is a generalization of the Arc Routing Problem (ARP). In this
problem, unlike the CETSP, a set of candidate arcs is provided. A subset of them, of
minimum cost, has to be selected as a solution tour that intersects the neighborhood
of all targets. An arc covers a target if the target is either on the arc or within a
predetermined distance (radius) from the arc. The CEARP was presented by Drexl
et al. [31]. The authors demonstrate that the CEARP is NP-Hard, and propose a
Branch and Cut algorithm to optimally solve the problem.

Há et al. [47] introduce a mixed-integer programming formulation for the prob-
lem; the same authors present also a new ILP formulation in [48]. Furthermore,
Cerrone et al. [20] propose a flow formulation for the problem and propose an ef-
fective technique to reduce the size of the input graph. Their experiments address
the effectiveness of the reduction techniques. An extremely detailed overview of the
ARP, its variants, and its future possibilities is proposed by Corberan et al. [26].
Bianchessi et al. [6] propose the Min-Max Close-Enough ARP; in this problem, a
fleet of vehicles, while serving a set of customers, has to balance the length of dif-
ferent tours. The authors propose a Branch and Cut, a Branch and Price, and a
heuristic algorithm. Furthermore, the same authors also propose an extension of the
CEARP, namely the Profitable Close-Enough Arc Routing Problem (PCEARP) [5].
It associates a profit to each customer that is obtained when the target is served.

Finally, the GTSP is an extension of the TSP, defined by Laporte et al. [59],
where, given a set of targets and a partition of them into groups, we want to find
a minimum length tour that includes exactly one target from each group. This
problem finds applications in numerous fields, including air-plane routing [46], mail
delivery, material flow system design, vehicle routing [58], and warehouse order
picking [68]. Carrabs et al. [12] define one possible formulation for the GTSP. Several
authors propose applications of meta-heuristic approaches, such as the Ant Colony
Optimization of Yang et al. [91] or the Particle swarm optimization algorithm of
Shi et al. [77].
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Chapter 2

The Concurrent Shortest Path
Problem

2.1 Introduction

A smart city is an urban area where, thanks to innovative technologies, it is possible
to optimize and improve infrastructures and services. Cities are evolving and becom-
ing smarter. Both public and private urban mobility are changing. In particular,
the advent of autonomous driving vehicles opens up new possibilities for optimizing
and rationalizing urban traffic. This chapter focuses on the scenario of a smart city
([87], [54]), in which all the vehicles are autonomously driven, interconnected, and
handled by a central system. In this scenario, we consider that a set of vehicles, in
the same street network, and at the same time interval, want to reach their destina-
tion. Other applications consist of defining paths of minimum length for robots and
forklifts in a warehouse ([52], [90]) or the route definition for multiple drones ([85],
[39]).

The simplest way to model this scenario is the SPP. The case with a single vehicle
can be solved in polynomial time using well-known algorithms for the SPP ([30]).
Therefore, in this new problem, we address the scenario in which we have more
vehicles that try to reach their destinations concurrently. Actually, this problem is
formalised by the Disjoint Shortest Path Problem (DSPP) ([32], [79], [84]). The
DSPP is commonly used in communication networks to guarantee the reliability of
transmissions ([43], [44]). It is defined on a graph G = (N,A) with N the set of
nodes, A the set of arcs, and a set of pairs of different nodes SD = {(s, d) : s, d ∈
N, s ̸= d}. The problem aims to find |SD| different disjoint shortest paths between
each pair (s, d). The DSPP can be defined on directed or undirected graphs. The
paths can be vertex or edge-disjoint. The problem is NP-complete, as shown in [32]
and [53].

The vertex disjoint variant of the DSPP has two main limitations. First, a node
is usable in only one path; this is not realistic because a node of a street graph must
be used by multiple vehicles. We address this problem by modifying the graph G

13



by considering the time dimension. Second, traffic handling is not considered at
all in the DSPP. We address this problem by considering the capacity of the arcs.
Capacity means how many vehicles can travel the street simultaneously by keeping
the minimum safety distance between them. The Capacitated Shortest Multi-paths
Problem ([4]) is a variant of the DSPP. Given an undirected graph and a set of vertex
pairs, it consists of finding a path for each pair that respects capacity constraints
on arcs. It means that the number of paths that pass through each arc must be at
most its capacity. Our approach differs from the Capacitated Shortest Multi-paths
Problem ([4]) because we consider the capacity of each arc also from a temporal
point of view.

To effectively model this scenario, we introduce the Concurrent Shortest Path
Problem (CSPP), a generalization of the DSPP that consists of defining multi-
ple paths of minimum length connecting all source-destination pairs while avoiding
collisions between paths. Other possible objectives for the problem could be the
minimisation of the time required by each vehicle to reach its destination, the traffic
reduction, or the fuel consumption minimisation. We propose three mathematical
formulations for the problem. The first is based on a bin packing formulation, the
second is based on a flow formulation that considers the time dimension, and the
third is again a flow formulation with the introduction of a graph transformation to
remove the time dimension and the introduction of new constraints to handle the
conflicts between arcs. Furthermore, to solve large-size instances, we propose two
heuristic approaches. Computational results over a benchmark of randomly gener-
ated instances show that the proposed heuristics can produce good solutions in a
reasonable amount of time.

Finally, one last observation is required to clarify the differences between the
CSPP and the Multi-Agent Path-finding (MAPF) Problem [81] [76]. This problem
aims to find paths for all agents from their start states to their goal states, under
the constraint that agents cannot collide during their movements. Therefore, this
problem differs from the CSPP because the MAPF considers two possible actions
for each agent, wait and move. Instead, in the CSPP, the wait action is not allowed,
and once started, a vehicle must keep moving until it reaches its destination node.
Furthermore, a vehicle in a given time instant, for the CSPP can be in movement
in a given arc, while in the MAPF it will surely be in a vertex of the graph. Surely,
the two problems are close in terms of characteristics, so we can assume that some
transformation in the structure of the instances and the algorithms can allow us to
compare the state-of-the-art approaches proposed for the two problems. This is an
interesting possibility for future research.

The rest of this chapter is organized as follows. Section 2.2 presents a formal def-
inition of the problem. Section 2.3 proposes three mixed integer linear programming
models (MILP models). Section 2.3 also describes an effective graph transformation
used to remove the time dimension in the problem definition. Section 2.4 contains
the description of two heuristic approaches to handle large-sized instances. Section
2.5 provides an analysis of the experiments performed to assess the quality of the
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proposed algorithms. Finally, Section 2.6 presents some conclusions and possibilities
for future research.

2.2 Problem Definition

The CSPP considers a set of vehicles that, starting from a source node, want to reach
their destination node. The problem aims to minimize the maximum completion
time (Min-Max).

We now describe the mathematical formulation for the CSPP. The formulation
is based on a directed graph G = (N,A), where N = {1, 2, ..., n} is the set of nodes,
and A = {(i, j) : i, j ∈ N, i ̸= j,∃!(i, j)∀i, j ∈ N} is the set of arcs between nodes.
We note that the graph is not complete and so A ⊆ NxN .

For each arc (i, j) we are given:

• the cost cij ∈ Z+, interpreted as the travel time of the arc;

• the capacity of the arc gij ≥ 0, interpreted as the maximum number of vehicles
that can be on the specific arc at the same time.

Figure 2.1 shows an example of the CSPP. Since vehicles cannot pass each other,
the queue on an arc is considered a FIFO queue: the first vehicle entering an arc is
also the first vehicle leaving it.

Figure 2.1: This figure shows an example of the capacity queue. On arc (1, 2) the
capacity is equal to 4, for this reason at most 4 vehicles can be on that arc at the
same time.

Let T = {0, α, 2α, ..., Tmax} be the set of time instants, indexed by t (Tmax should
be as small as possible to reduce the complexity of the problem). We impose that
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the smallest time instant considered to discretize the time horizon is α. More infor-
mation about the α can be found in Section 2.2.1.

We define the set SD ⊆ N × N as the set of distinct source-destination pairs,
also referred to as vehicles. For each source-destination pair (s, d), we are given a
release time tsd ≥ 0, which is defined as the minimum starting time for the vehicle
(s, d).

The objective of the problem consists of routing all SD-pairs so that the time
instant at which all pairs have reached their destination is minimized, two distinct
vehicles do not cross the same node at the same time (collisions), and the vehicles
do not exceed the capacity of the arcs.

2.2.1 α value

One parameter that should be analysed is the length of the minimum time instant
defined as α. The usage of time in the problem definition gives us the possibility to
know the exact position of each vehicle at any time. In practice, this is not possible
due to technological limitations, so we define a constant value α that is used to
discretize the time horizon and take into account various aspects of real settings
(i.e. the safety distance between vehicles).

The safety distance is the minimum distance that must be between two consec-
utive vehicles in motion, and it allows vehicles to stop without provoking collisions.
The safety distance is commonly considered equal to the reaction space (given by the
space needed by the driver to get the perception of danger minus the start braking
space) plus the braking space (which is given by the start braking space minus the
space required to the vehicle to stop).

According to [24] and [61], the ideal safety distance between vehicles with a speed
of 25km/h is almost 13m. In our work, considering the proposed scenario with 100%

of vehicles completely autonomous, and considering that these kind of vehicles have
proximity sensors and high-quality cameras to observe the environment around them
and predict collisions, we can assume that the reaction space could be considered
almost equal to the ideal reaction time for a human, and so 0.5s ([24]). This causes
a reduction of the safety distance; the obtained one, considered in our work is 6m.
Now, given that, with a speed of 20km/h considered as reference, a vehicle covers
almost 5.5m in one second, and given that, the minimum time instant should be
considered big enough to guarantee the safety distance between two vehicles, in our
work we define α = 1, in the way to guarantee 6m between each pair of moving
vehicles.

2.3 Mathematical Formulations

In this section, we present the three formulations for the CSPP. In Section 2.3.1,
we describe a Bin-Packing Formulation (BPF), which makes use of separation con-
straints proposed for Bin-Packing Problems. Section 2.3.3 presents a Time Flow
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Formulation (TFF) based on the classic flow formulation for routing problems. In
Section 2.3.4, we present the graph transformation procedure, which removes the
time dimension from the temporal graph by introducing a set of conflicts. The re-
lated formulation is a flow formulation with a new set of constraints to handle the
conflicts between arcs.

2.3.1 Bin-Packing Formulation (BPF)

We propose in this section a first formulation inspired by Bin-Packing formulations.
The Bin-Packing Problem ([64]), consists of defining, among a finite set of bins of
limited capacity, where a set of items must be packed. The problem aims to minimise
the number of used bins while assigning all items to the containers. This problem
has several applications, such as filling up containers, loading trucks with weight
capacity constraints, creating file backups, and so on.

In the BPF we consider also the constant value namely α ≥ 0, which represents
the minimum time distance between vehicles crossing the same arcs. It is related to
the safety distance that vehicles must have, between them, while driving. Further
information about the α value can be found in Section 2.2.1.

The BPF formulation uses the following sets of binary and real variables:

ysdij =

{
1, if arc (i, j) is used by vehicle (s, d)

0, otherwise

xsdi =

{
1, if node i is crossed by vehicle (s, d)

0, otherwise

Bsd
ij ≥ 0, beginning time of vehicle (s, d) on arc (i, j)

Esd
ij ≥ 0, ending time of vehicle (s, d) on arc (i, j)

vsd,s
′d′

i =


1, if vehicles (s, d) and (s′, d′) both cross node i

and (s, d) comes before (s′, d′)

0, otherwise

A mathematical model for the CSPP, based on a multi-commodity flow formula-
tion and on bin-packing constraints following ideas taken from [34], is the following:
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min Cmax (2.1)

s.t. Cmax ≥ Esd
id ∀(s, d) ∈ SD, ∀i ∈ N : (i, d) ∈ A (2.2)∑

j∈N

ysdsj = 1 ∀(s, d) ∈ SD (2.3)∑
j∈N

ysdjd = 1 ∀(s, d) ∈ SD (2.4)∑
i∈N

ysdik =
∑
j∈N

ysdkj ∀(s, d) ∈ SD, ∀k ∈ N : k ̸= s, d (2.5)

xsds = 1 ∀(s, d) ∈ SD (2.6)

xsdd = 1 ∀(s, d) ∈ SD (2.7)

xsdk =
∑
j∈N

ysdkj ∀(s, d) ∈ SD, ∀k ∈ N : k ̸= d (2.8)

xsdk =
∑
j∈N

ysdjk ∀(s, d) ∈ SD, ∀k ∈ N : k ̸= s (2.9)

vsd,s
′d′

i + vs
′d′,sd

i ≥ xsdi + xs
′d′

i − 1 ∀(s, d), (s′, d′) ∈ SD : (s, d) ̸= (s′, d′),∀i ∈ N (2.10)

vsd,s
′d′

i + vs
′d′,sd

i ≤ 1 ∀(s, d), (s′, d′) ∈ SD : (s, d) ̸= (s′, d′),∀i ∈ N (2.11)

vsd,s
′d′

i ≤ xsdi ∀(s, d), (s′, d′) ∈ SD : (s, d) ̸= (s′, d′),∀i ∈ N (2.12)

vsd,s
′d′

i ≤ xs
′d′

i ∀(s, d), (s′, d′) ∈ SD : (s, d) ̸= (s′, d′),∀i ∈ N (2.13)

Bsd
ij ≤Mysdij ∀(s, d) ∈ SD, ∀(i, j) ∈ A (2.14)

Esd
ij ≤Mysdij ∀(s, d) ∈ SD, ∀(i, j) ∈ A (2.15)
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tsd ≤
∑

i∈N :(s,i)∈A

Bsd
si ∀(s, d) ∈ SD (2.16)

Bsd
ij + cij ≤ Esd

ij +M(1− ysdij ) ∀(s, d) ∈ SD, ∀(i, j) ∈ A (2.17)

Bsd
jk ≤ Esd

ij +M(2− ysdjk − ysdij ) ∀(s, d) ∈ SD, ∀i, j, k ∈ N : (i, j) ∈ A, (j, k) ∈ A (2.18)

Bsd
jk ≥ Esd

ij −M(2− ysdjk − ysdij ) ∀(s, d) ∈ SD, ∀i, j, k ∈ N : (i, j) ∈ A, (j, k) ∈ A (2.19)∑
k∈N :(j,k)∈A

Bsd
jk + α ≤

∑
i∈N :(j,i)∈A

Bs′d′

ji +M(1− vsd,s
′d′

j ) ∀(s, d), (s′, d′) ∈ SD : (s, d) ̸= (s′, d′),

∀j ∈ N : j ̸= d, j ̸= d′ (2.20)∑
k∈N :(k,j)∈A

Esd
kj + α ≤

∑
i∈N :(i,j)∈A

Es′d′

ij +M(1− vsd,s
′d′

j ) ∀(s, d), (s′, d′) ∈ SD : (s, d) ̸= (s′, d′),

∀j ∈ N : j ̸= s, j ̸= s′ (2.21)∑
j∈N :(j,i)∈A

Esd
ji + α ≤

∑
k∈N :(i,k)∈A

Bs′d′

ik +M(1− vsd,s
′d′

i ) ∀(s, d), (s′, d′) ∈ SD : (s, d) ̸= (s′, d′),

∀i ∈ N : i ̸= s, i ̸= d′ (2.22)∑
k∈N :(i,k)∈A

Bsd
ik + α ≤

∑
j∈N,(j,i)∈A

Es′d′

ji +M(1− vsd,s
′d′

i ) ∀(s, d), (s′, d′) ∈ SD : (s, d) ̸= (s′, d′),

∀i ∈ N : i ̸= d, i ̸= si (2.23)

vsd,s
′d′

i + vsd,s
′d′

j + vs
′d′,sd

i + vs
′d′,sd

j ≥ 2(ysdij + ys
′d′

ij − 1), ∀(s, d), (s′, d′) ∈ SD : (s, d) ̸= (s′, d′),∀(i, j) ∈ A (2.24)

vsd,s
′d′

i + vs
′d′,sd

j − 1 ≤M(2− ysdij − ys
′d′

ij ), ∀(s, d), (s′, d′) ∈ SD, ∀(i, j) ∈ A (2.25)

vsd,s
′d′

j + vs
′d′,sd

i − 1 ≤M(2− ysdij − ys
′d′

ij ), ∀(s, d), (s′, d′) ∈ SD, ∀(i, j) ∈ A (2.26)
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The objective function (2.1) consists of minimizing the maximum end time be-
tween all the vehicles. This value is represented by the real variable Cmax, which, on
constraints (2.2) is set to be greater than or equal to all variables Esd

id . Constraints
(2.3) and (2.4) ensure that exactly one arc has to go out from the source node s,
and that exactly one arc has to enter the destination node d for each vehicle in
SD. Constraints (2.5) guarantee the flow conservation. Constraints (2.6) and (2.7)
assure that the source and the destination nodes are used for each (s, d) ∈ SD. Con-
straints (2.8) and (2.9) guarantee that if node i ∈ N is used by a vehicle (s, d) ∈ SD,
then there must be, respectively, an exiting and an entering arc. Note that these
constraints are not defined for the destination node d and the source node s. Specif-
ically, the combination of constraints (2.3), (2.4), (2.5), (2.6), (2.7), (2.8) and (2.9)
guarantee that the source and the destination nodes for each vehicle are used. Fur-
thermore, if they are used there must be an arc exiting the source node and entering
the destination node. They assure that, for each node, except for source and des-
tination nodes, the number of entering and exiting arcs is equal. We note that we
need to use both node and arc variables because both of them are required to handle
the beginning and the ending time of each arc and to avoid collisions.

Constraints (2.10) ensure that at most one of vsd,s
′d′

i and vs
′d′,sd

i can take value
1, and constraints (2.11) ensure that at most one of (s, d) or (s′, d′) goes before the
other on node i ∈ N . Constraints (2.12) and (2.13) guarantee that, given a node
i ∈ N and a pair of vehicles (s, d), (s′, d′), variables vsd,s

′d′

i are 0 when one of the
two variables xsdi or xs

′d′

i are 0. The combination of constraints (2.10), (2.11), (2.12)
and (2.13) is used to set the order in which two vehicles can cross a common node.
(s, d) goes before (s′, d′) or vice-versa.

Then, constraints (2.14) and (2.15) set Bsd
ij and Esd

ij to 0 if (s, d) does not use
the arc (i, j). The value of M is described in Section 2.5.1. Constraints (2.16) set
the minimum starting time, namely the release time, for each vehicle. Constraints
(2.17) assure that if a vehicle (s, d) uses an arc (i, j), the difference between the end
and the beginning time on that arc is at least equal to the time length of that arc
(cij). Constraints (2.18) and (2.19) guarantee that all vehicles cannot wait on nodes
during their movement. Given a node j ∈ N , the ending time of the arc (i, j) ∈ A

entering j node must be equal to the starting time of the arc (j, k) ∈ A exiting that
node.

Constraints from (2.14) to (2.19) are used to assure the consistency between the
beginning and the ending time of every single vehicle. Consistency means that: in
each arc, if it is used, the ending time must be higher than the beginning time, the
time required to cover an arc must be at least equal to its cost, and a vehicle cannot
wait on nodes.

Constraints (2.20) impose that if one vehicle begins moving from a node j at
time t, then any other vehicle should start at least α time instant after the first
one. Constraints (2.21) impose that if one vehicle arrives on a node j at time t, then
another vehicle should arrive on the same node at least α units of time after the first
one. Constraints (2.22) assure that if a vehicle ends its movement on a node i at time

20



t, then another vehicle should start moving from that node, at least α units of time
after. Constraints (2.23) assure that if a vehicle starts its movement from a node
i at time t, then another vehicle should end moving in that node, at least α units
of time after. Furthermore, these two constraints are not valid, respectively for the
destination and the source node of each vehicle. We note that (2.22) do not consider
ending time in the source node of (s, d) and starting time from the destination node
of (s′, d′); on the other side, (2.23), do not consider starting time in destination
node of (s, d) and ending time in source node of (s′, d′). Constraints from (2.20)
to (2.23) are used to assure the consistency between the beginning and the ending
time between all pairs of vehicles. Consistency in terms of different vehicles having
different starting and ending times on nodes, the ending time of a vehicle on a node
must be different from the starting time of another vehicle and vice-versa.

Finally, constraints from (2.24) to (2.26) are used to avoid the overcoming between
vehicles. This is assured imposing that if two vehicles (s, d) ∈ SD and (s′, d′) ∈ SD

both cross arc (i, j) ∈ A, then the order in which the vehicles cross node i must be
the same order in which the vehicles cross node j. If both variables ysdij and ys

′d′

ij are

equal to one, then, at least two variables between vsd,s
′d′

i , vsd,s
′d′

j , vs
′d′,sd

i , and vs
′d′,sd

j

must be equal to one. The case vsd,s
′d′

i = vs
′d′,sd

i = 1 is prohibited by constraints
(2.10). The cases vsd,s

′d′

i = vs
′d′,sd

j = 1 or vsd,s
′d′

j = vs
′d′,sd

i = 1 are prohibited by
constraints (2.25) and (2.26); we note that these two cases are allowed only when
both vehicles (s, d) or (s′, d′) do not use arc (i, j). Thus, the only two cases allowed
are the one in which (s, d) enters and exits the arc (i, j) before (s′, d′) or vice-versa
and so no overcomes are allowed.

We note that the validity of the capacity constraints of a generic arc (i, j) ∈ A

is assured by imposing the minimum distance, represented by the α value, between
vehicles in constraints 2.20, 2.21, 2.22, and 2.23.

2.3.2 Temporal Graph Definition

In this section, we formalize the concept of the temporal graph as an extension of
the previous graph G = (N,A) where we consider nodes and arcs associated with
time instants, namely temporal nodes and temporal arcs. More precisely, a temporal
graph is a pair GT = (NT , AT ), where NT = {it = (i, t) : i ∈ N, t ∈ T} is the set of
temporal nodes and AT = {(it, jh) : it, jh ∈ NT , h ≥ t + cij} is the set of temporal
arcs that connect pairs of temporal nodes. Each temporal node is represented by
a node of the original graph i ∈ N and a time instant t ∈ T . Besides, note that
(it, jh) ∈ AT if and only if it is possible to reach node j ∈ N at time h starting from
node i ∈ N at time t.

In Figure 2.2, we can see an example of the original graph G and the correspon-
dent temporal graph GT .
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(a) Original Graph G (b) Temporal Graph GT

Figure 2.2: This Figure shows the transformation of Graph (a) in a Temporal Graph
(b); as can be seen, there are four layers, each one associated with a time instant
(e. g. from t0 to t3); it is possible to see that each layer contains all the nodes
of G, while there are no arcs between the temporal nodes of the same layer. Very
important to highlight is that all the temporal arcs are directed and the direction is
from layer ti to layer tj with i < j.

2.3.3 Time-Flow formulation (TFF)

The second formulation proposed makes use of the following decision variables, de-
fined on SD × AT :

xi,t,j,h,sd =

{
1, if vehicle (s, d) ∈ SD uses temporal arc (it, jh)

0, otherwise

Besides, we also use a positive variable Cmax to denote the point in time at which
the last SD-pair reaches its destination.

From these variables, model TFF consists of:

min Cmax (2.27)

s.t. Cmax ≥ (hxi,t,j,h,sd),∀it, jh ∈ NT , (s, d) ∈ SD (2.28)∑
(st,ih)∈AT :t≥tsd

xs,t,i,h,sd = 1, ∀(s, d) ∈ SD (2.29)
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∑
(it,dh)∈AT :t≥tsd

xi,t,d,h,sd = 1,∀(s, d) ∈ SD (2.30)

∑
jh:(it,jh)∈AT

xi,t,j,h,sd =
∑

kh:(kh,it)∈AT

xk,h,i,t,sd, (2.31)

∀it ∈ NT : i ̸= s, i ̸= d, (s, d) ∈ SD∑
(s′d′)∈SD

∑
kh:(kh,st)∈AT

xk,h,s,t,s′d′ ≤M(1−
∑

jh:(st,jh)∈AT

xs,t,j,h,sd), (2.32)

∀(s, d) ∈ SD∑
(s′d′)∈SD

∑
jh:(dt,jh)∈AT

xd,t,j,h,s′d′ ≤M(1−
∑

jh:(jh,dt)∈AT

xj,h,d,t,sd), (2.33)

∀(s, d) ∈ SD∑
(s′,d′)∈SD

∑
tt<t

∑
hh>h

xi,tt,j,hh,s′d′ ≤M(1−
∑

(s,d)∈SD

xi,t,j,h,sd), (2.34)

∀(it, jh) ∈ AT∑
(s,d)∈SD

∑
h,k∈T,k≤t<h

xi,k,j,h,sd ≤ gij , ∀(i, j) ∈ A, t ∈ T (2.35)

The objective function (2.27) of the problem consists of minimizing the value
of the variable Cmax, the maximum end time among all the used arc variables, as
defined by constraints (2.28). Constraints (2.29) and (2.30) impose that exactly one
arc has to go out from the source and has to enter the destination for each SD-
pair, regardless of the starting and the ending time, for each vehicle. The release
time of each vehicle is assured by constraints (2.29) and (2.30) because the starting
time of each arc exiting the source node and entering the destination node must
be greater than the release time of each vehicle. Constraints (2.31) are the flow
conservation constraints, which assure that the number of entering and exiting arcs
for each vehicle is the same. We note that constraints (2.31) do not include the
source and the destination nodes of each vehicle.

Furthermore, we need to assure that the source node for vehicle (s, d) ∈ SD

is not used by other vehicles at the same time as (s, d) ∈ SD. The same is for
the destination node for vehicle (s, d) ∈ SD. This is because constraints (2.31) do
not include the source and the destination nodes of each vehicle. To handle this
scenario, constraints (2.32) impose that when a vehicle (s, d) ∈ SD exits from its
source node s at time t no other vehicles can enter the same node at the same time,
therefore other vehicles (s′, d′) ∈ SD can use the source node s of (s, d) in different
time instant t′ ̸= t. As well for destination nodes, constraints (2.33) impose that
when a vehicle (s, d) ∈ SD enters its destination node d at time t no other vehicles
can exit the same node at the same time, therefore other vehicles (s′, d′) ∈ SD can
use the destination node d of (s, d) in different time instant t′ ̸= t.

Constraints (2.34) are used to avoid overcomes between vehicles. This means
that if vehicle (s, d) ∈ SD uses temporal arc (it, jh) ∈ AT , then any other vehicle
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cannot use temporal arcs (itt, jhh) ∈ AT : tt < t, hh > h. Finally, constraints (2.35)
assure that the total number of vehicles that can be in a queue in the same time
instant t ∈ T on the same arc (i, j) ∈ A cannot exceed the capacity gij of the arc.

2.3.4 Graph Transformation with alternative Flow Formula-
tion (AFF)

In this section, we present an alternative formulation based on a transformation of
the graph applied on the temporal graph described in Section 2.3.2.

The new formulation proposed in this section performs a further transformation
step on the temporal graph to reduce it into a planar graph to remove the time
dimension. The transformation process is the following. Given a temporal graph
GT = (NT , AT ), we create a new graph G′ = (N ′, A′) such that, for each temporal
node it ∈ NT a new node n ∈ N ′ is created. For each temporal arc (it, jh) ∈ AT , a
new arc (n,m) ∈ A′ is created. The cost of the arc (n,m) ∈ A′ is cnm = h− t. We
note that cnm ≥ cij .

To handle the various incompatibility caused by the usage of temporal arcs at
the same time by different vehicles, we define a set H of Compatibility Sets. It is a
set of sets of arcs (n,m) ∈ A′ that cannot be used in the same solution by different
vehicles. These sets are created to avoid overcoming between vehicles and exceeding
the arc’s capacity.

Given H a set of subsets of arcs, namely Compatibility Set, where each H ∈ H
is a subset of A′ with |H| ≥ 2, we define a function

fH : H → Z+ (2.36)

that ∀H ∈ H assigns an integer value fH(H) ≤ |H|. This number represents the
maximum number of elements of H that can be in an admissible solution.

In particular, ∀(i, j) ∈ A, tt ∈ T a set H ∈ H is defined. H contains all
the arcs (n,m) ∈ A′ that, in the graph transformation process, are created from
the arc (it, jh) ∈ AT where t ≤ tt ≤ h. Finally, the value of fH(H) is set
equal to the capacity of the arc gij of (i, j) ∈ A. For example, consider as arc
(i, j) ∈ A the one between NC and NB in Figure 2.2a and consider tt = 1.
Then, the corresponding H will contain the following temporal arcs of Figure 2.2b:
{(NC0, NB1), (NC0, NB2), (NC0, NB3), (NC1, NB2), (NC1, NB3)}. If for this example,
we impose the capacity equal to its cost, namely 1, then fH(H) = 1; so at most
one arc, (n,m) ∈ H can be in a possible solution for the CSPP. We note that the
arc (NC2, NB3) does not belong to the set H because it starts after the time instant
tt = 1.

Considering now, a vehicle (s1, d1) ∈ SD using the temporal arc (it, jh) ∈ AT

and a vehicle (s2, d2) ∈ SD following the temporal arc (itt, jhh) ∈ AT , where tt > t

and hh < h. In this situation, vehicle (s2, d2) overcomes vehicle (s1, d1). However,
the street queue is a FIFO queue. Therefore, this maneuver must be denied. To
avoid overcomes between vehicles, we use the Compatibility Set H. In particular,
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we create a set H containing each pair of arcs (n,m), (q, w) ∈ A′ that are created
from the temporal arc (it, jh), (itt, jhh) ∈ AT such that tt > t and hh < h. The fH
value is fH(H) = 1 in a way to avoid both the arcs that allow an overcome to be
used in a feasible solution. We note that in the example proposed in Figure 2.2,
considering as arc (i, j) ∈ A the one between C and B, a new set H is created. It
will be: H = {(NC1, NB2), (NC0, NB3)}, and the value of fH(H) = 1.

Finally, vehicles have an ideal starting time tsd that could be postponed; this
means that we can have multiple source nodes and, consequently, multiple desti-
nation nodes for each vehicle. They are all the temporal nodes st, dh ∈ NT cor-
responding to the nodes s, d ∈ N , with t ≥ tsd for the sources and h ≥ tsd + α

for the destinations. We note that the time for the destination nodes is considered
h ≥ tsd + α because the path from the source to the destination has a minimum
cost of α in the case of a single arc of minimum cost. Section 2.2.1 contains more
information about the α value.

To map this possibility in the graph G′ we create a super-source node ŝ, a super-
destination node d̂, and a set of arcs that connect the super-source and the super-
destination, respectively to the possible source nodes and destination nodes related
to the temporal nodes st with t ≥ tsd and dh with h ≥ tsd+α. The costs of the arcs
from the super source to the various possible source nodes are defined to consider the
delay of the vehicle to its starting time. For example, the cost of the arc between ŝ

and st where t = tsd will be 0, the cost of the arc between ŝ and sh where h = tsd+α

will be α. Instead, the costs of the arcs entering the super destination are considered
equal to 0. This super-source will be the source, and the super-destination will be
the destination of the (s, d) pairs on graph G′. Particularly, the vehicle set SD is
transformed in ŜD, which contains ŝ, instead of the source node s and d̂ instead of
the destination node d. Consequently the pair of super-source-super-destination is
(ŝ, d̂) ∈ ŜD. We note that with this transformation no time information is provided.

Furthermore, a set H and a set H ′, that contain, respectively, all the new arcs
leaving the super-source ŝ and all the new arcs incoming in the super-destination d̂,
are created, and the value of the (2.36) is fH(H) = fH(H ′) = 1. Figure 2.3 shows
an example of this process.
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Figure 2.3: Multi-Source and Multi-Destination example

To better understand the process described in this section, we provide, in Ap-
pendix CSPP a complete example of the transformation process.

Once completed the conversion of the graph, we present a new formulation for
the CSPP based on the converted graph. Given a graph G′ = (N ′, A′), where N ′

is the set of nodes, and A′ is the set of arcs. Given a set of pairs of nodes ŜD

representing the pairs of the source-destination node to connect. Given H a set of
a subset of arcs, namely Compatibility Set, and the function (2.36) that ∀H ∈ H

assigns an integer value fH(H) ≤ |H|.
Let

piki1 = {(i1, ...., ik) : (ij , ij+1) ∈ A′, 1 ≤ j ≤ k − 1} (2.37)

be a generic path, that connects i1 and ik; and let P be the set of all different paths
between each pair of nodes. We refer to a path connecting an (ŝ, d̂) pair with pd̂ŝ .

Let
c : P → Z+ (2.38)

be a cost function, that assigns, to each path, the value given by the sum of the
costs of the arcs

c(piki1) =
∑

ij ,ij+1∈piki1

cijij+1 (2.39)

Finally, we define a function f that, for each pair piki1 ∈ P and H ∈ H, assigns
the value f(piki1, H) = |H

⋂
{(n,m) ∈ A′ : (n,m) = (ij , ij+1) ∈ piki1}|. Practically, f

returns the number of arcs in A′ used in path piki1 that belong to set H.
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Formally, we can define the CSPP as the problem to find a set of paths S ⊆ P

such that:
min
S⊆P

max
p∈S

c(p) (2.40)

is minimum, and:

∃! p = (ŝ, ..., d̂) ∈ S ∀(ŝ, d̂) ∈ ŜD (2.41)

p1
⋂

p2 = ∅ ∀p1, p2 ∈ S (2.42)∑
p∈S

f(p,H) ≤ fH(H) ∀H ∈ H (2.43)

The binary variables used in this formulation are:

xsdi,j =

{
1, if the arc (i, j) ∈ A′ is used in the path (ŝ, d̂)

0, otherwise

The mathematical model for the CSPP, based on a multi-commodity flow formu-
lation is the following:

min Cmax (2.44)

s.t. Cmax ≥
∑

(i,j)∈A′

cijx
sd
i,j , ∀(ŝ, d̂) ∈ ŜD (2.45)

∑
(ŝ,j)∈A′

xsdŝ,j = 1, ∀(ŝ, d̂) ∈ ŜD (2.46)

∑
(i,d̂)∈A′

xsd
i,d̂

= 1, ∀(ŝ, d̂) ∈ ŜD (2.47)

∑
(ŝ,d̂)∈ŜD

∑
(i,j)∈A′

xsdi,j ≤ 1, ∀j ∈ N ′ (2.48)

∑
(ŝ,d̂)∈ŜD

∑
(i,j)∈A′

xsdi,j ≤ 1, ∀i ∈ N ′ (2.49)

∑
(i,j)∈A′

xsdi,j −
∑

(k,i)∈A′

xsdk,i = 0, ∀(ŝ, d̂) ∈ ŜD, ∀i ∈ N ′ : i ̸= ŝ, i ̸= d̂ (2.50)

∑
(ŝ,d̂)∈ŜD

∑
(i,j)∈H

xsdi,j ≤ fH(H), ∀H ∈ H (2.51)

The objective function (2.44) consists of minimizing the longest path. It cor-
responds to minimizing the maximum completion time between all vehicles. Con-
straints (2.45) set the value of the max value greater than or equal to the longest
path between all vehicles. Constraints (2.46) and (2.47) assure that exactly one
arc has to go out from the source and has to enter the destination node for each
element of ŜD. Constraints (2.48) assure that, between all vehicles, at most one arc
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enters each node; while constraints (2.49) guarantee that at most one arc leaves each
node considering all vehicles (these two families of constraints hold for the source
and destination nodes too). Constraints (2.50) assure that for each node i used by
vehicle (ŝ, d̂) ∈ ŜD where i ̸= ŝ, i ̸= d̂, the number of entering and exiting arcs, used
by the same vehicle, are the same. Finally, constraints (2.51) assure that given a
subset of arcs H, at most fH(H) ∈ Z+ arcs can be used in a solution S.

2.4 Heuristic Approaches

The mathematical formulations proposed before can provide feasible solutions, in a
reasonable amount of time, in large instances only in a few cases.

For this reason, we present two algorithms: the Delayed Shortest Path Algorithm
(DSPA), and the Multi-Vehicle Shortest Path Algorithm (MVSPA). The DSPA as-
sumes that the best possible choice for each vehicle is to follow its shortest path
without considering time and collisions. Then, to avoid collisions between vehicles,
the algorithm performs a collision avoidance step by modifying the arrival time of
vehicles in the nodes where a collision happens. The MVSPA is a fast algorithm that
builds a solution computing the shortest paths one by one starting from a specific
computation order of pairs (s, d) ∈ SD. The MVSPA can be improved, in terms
of solution quality by selecting an initial computation order of good quality. This
algorithm also performs a failure avoidance step to avoid infeasible solutions.

2.4.1 Delayed Shortest Path Algorithm

The Delayed Shortest Path Algorithm (DSPA) is a constructive-based heuristic,
which builds a possible solution assuming that the best possible choice for each
vehicle (s, d) to achieve its destination is a shortest path sp(s, d). This assumption is
made a priori, regardless of the time instant and the possible collisions. Furthermore,
when a path is computed it is added to the solution performing a collision-avoidance
step. This step consists of verifying if the current path collides with any other path
in the solution. A collision means that two paths, namely p(s, d) and p′(s′, d′), cross
the node it. If a collision happens, the DSPA delays of α units of time the instant
in which the new path p′ crosses the node it. This results in changing the temporal
node from it to it+α in path p′(s′, d′). If this resolves the collision, the path is added
to the solution, otherwise, this step is repeated by checking the collision with the
following paths.
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Algorithm 1 Delayed Shortest Path Algorithm

1: Input: GT , SD

2: S ← ∅
3: for all (s, d) ∈ SD do
4: p = Dijkstra((s, d))
5: qP ← S

6: while qP is not empty do
7: p′ = extractPath(qP )
8: if p collides with p′ then
9: identify the collision node it

10: change it with it+α in path p

11: change nodes jh following it with h+ α until the end of the path p

12: end if
13: if p overcomes p′ then
14: identify the arc (it, jh) ∈ p of overcoming
15: change t or h in path p to avoid overcoming
16: end if
17: if p has been updated then
18: qP ← S

19: end if
20: end while
21: if p violates arc capacity then
22: increase the starting and all the following times of vehicle p by α

23: go to Step 5
24: end if
25: add p in S

26: end for

In pseudo-code 1 is described the DSPA. The approach takes as input the tem-
poral graph GT and the set SD (Line (1)). It computes for each (s, d) ∈ SD (Line
(3)) a shortest path from node s to d (Line (4)). Then, from Line (5) up to Line
(24), the collision avoidance step is performed. In particular, qP represents the set
of other paths to compare with p to identify possible collisions. It is initialized using
all the paths in the solution (Line (5)). The new path p is compared with all the
paths already in the solution (Line (7)) by sequentially extracting the paths p′ from
the queue qP . In Line (8) is verified if p and p′ collide in a temporal node it. If that
happenes, the time in which p crosses node i is identified (Line (9)), and increased
by α (Line (10)). For all the nodes jh following it in the path p the time is increased
by α to maintain the minimum cost of the other arcs equal.

Then, the algorithm verifies if the path p overcomes any other path p′ already
computed in Line (13). A path p overcomes a path p′ if given an arc (i, j) ∈ A such
that p uses the temporal arc (it, jh) and p′ uses the temporal arc (itt, jhh) is verified
that t > tt and h < hh or t < tt and h > hh. It means that both the vehicles use
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the same arc, but p enters the arc after p′ but exits before or vice-versa. When an
overcoming occurs, the algorithm identifies the arc (it, jh) in Line (14). The times
in which p crosses the arc (it, jh) are changed to avoid the overcoming in Line (15).
This is performed by modifying the value of t or h.

We note that the increasing applied to time indexes of path p influences the rest
of the path until it ends. This means that if p crosses as first node it, and t is
increased by α, all the time of the following nodes will be increased by α. This is
performed to maintain consistency with the arc costs. If any update is applied to
path p (Line (17)), the set of the paths to check is reset in Line (18). This is to
ensure that avoiding a collision with a path p′ will not cause a collision with path
p′′. If no collisions are found between all paths, the algorithm verifies if the new
path p causes a violation of the capacity of the arc in Line (21). If yes, the starting
time of the path p is increased by α in Line (22), and the process of checking if a
collision occurs is repeated (Line (23)). Finally, if all the checks are satisfied the
path p is added to the solution in Line (25).

Finally, we note that in the first iteration, the algorithm does not enter the while
loop because the qP set is empty. After the first iteration, in Line (25), the computed
path p is added in S. From the second iteration, the algorithm enters the while loop
to check if a collision appends.

2.4.2 Multi Vehicle Shortest Path Algorithm

The Multi-Vehicle Shortest Path Algorithm (MVSPA) is a constructive-based heuris-
tic that builds a possible solution by computing a shortest path for each pair
(s, d) ∈ SD in a way to avoid collisions. We remark that a collision occurs when
two paths p and p′ share a common temporal node it. It is a simple and fast heuris-
tic that, given the computation queue qSD, with elements ordered according to a
specific criterion, it starts computing a shortest path of each pair one by one, using
Dijkstra’s algorithm on graph GT . The computation queue qSD consists of an or-
dered list of SD pairs used to select the order in which to compute the paths. More
specifically, in each iteration, the approach extracts a pair (s, d) from the queue qSD
and computes a shortest path that connects the source node s and the destination
node d. After the computation of a path p all the Temporal Nodes and the Temporal
Arcs used in p are penalised. All the arcs that, if selected for another path, will
violate the constraints (2.35) are penalised as well. After that, to avoid collisions, it
is checked if the computed path p contains Temporal Nodes or Temporal Arcs used
in another path p′. If one or more collisions are identified, the path p′ is removed
from the solution, and the pair (s′, d′), namely the source and the destination of p′,
is added at the end of the computation queue qSD. This process is repeated until
a feasible solution is found or a maximum number of iterations is reached.
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Algorithm 2 Multi Vehicle Shortest Path Algorithm

1: Input: GT

2: S ← ∅
3: penList← ∅
4: generate qSD

5: while qSD is not empty or MaxIteration achieved do
6: (s, d) = extract(SD)
7: p = Dijkstra((s, d), penList)
8: add p in S

9: update penList for arcs and node of p
10: for all arc (it, jh) ∈ AT do
11: if add (it, jh) to S violate constraint (2.35) then
12: penalise (it, jh) ∈ AT in penList

13: end if
14: end for
15: for all p′ ∈ S do
16: if p′ collide with p then
17: update penList for removing arcs and node of p′

18: remove p′ from S

19: push((s′, d′), qSD)
20: end if
21: end for
22: end while

Algorithm 2 contains the pseudo-code of our constructive approach. The algo-
rithm takes as input the graph GT (Line (1)). It creates an empty solution S in
Line (2), and the set of penalties is initialised in Line (3). The qSD computation
queue is generated by sorting the SD set (Line (4)). For all pairs (s, d) (Line (5)) a
shortest path p is computed on the graph GT using Dijkstra’s algorithm (Line (7))
while taking into account the penalty set. The path p is added to the solution S in
Line (8) and, for all the Temporal Arcs and the Temporal Nodes of p a penalty is
added to penList in Line (9). For all the Temporal Arcs (it, jh) ∈ AT , that if added
to the solution, violate the constraints (2.35) is added a penalty (Lines (10-14)) for
arc (it, jh) in penList. The arcs in the penList are penalised by increasing their cost
by Tmax. Further information about the Tmax value is provided in Section 2.5.1.

Finally, from Line (15) to (21), the algorithm identifies and removes the collisions
between the paths, if any. In particular, for each path p′ in solution S (Line (15)) if
path p′ collides with path p (Line (16)) then the list of penalties is updated in Line
(17), the path p′ is removed from the solution in Line (18) and, the pair (s′, d′) is
added in qSD in Line (19).

Let us now consider one possible execution of the MVSPA on an instance in
which all the shortest paths of all pairs (s, d) ∈ SD, computed on G, are disjoint
between them. In this case, the optimal solution contains all these paths. Thus,
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we can affirm that a lower bound for the problem consists of the shortest path with
maximum end time between all pairs (s, d). This is obvious since the case proposed
here can be considered as a relaxation of the CSPP where the collision and the
capacity constraints are removed. This result is stated in Proposition 1.

Proposition 1. Given a directed graph G = (N,A), and a set of pairs of nodes of
N denoted as SD ⊂ N ×N , where the tsd = 0 ∀(s, d) ∈ SD, we can affirm that:

c(sp(s, d)) ≤ c(p(s, d)), ∀(s, d) ∈ SD (2.52)

where p is a generic path connecting s and d. Thus, the longest shortest paths
between all pairs (s, d) ∈ SD, namely the LB = max(c(sp(s, d))), is a lower bound
for the CSPP.

Proof. Let sp(s, d) be a shortest path and let p(s, d) be a generic path for pair
(s, d) ∈ SD. Let c(p(s, d)) be the cost of the path connecting the pair (s, d). To
prove this implication, we propose a proof based on a reductio ad absurdum.

Let S∗ be the optimal solution for the CSPP where max(c(p(s, d))) < LB for
all (s, d) ∈ SD, p ∈ S∗. This state means that for all path p ∈ S∗ is true that
c(p(s, d)) < LB ∀(s, d) ∈ SD; thus there exists a path p(s, d) for pair (s, d) ∈ SD

that is shorter than a shortest path sp(s, d) between the same pair, which is absurd
with respect to (2.52).

The idea behind the lower bound is that, if the shortest paths in G, of all elements
(s, d), are disjoint, and tsd = 0 for all (s, d) ∈ SD, then the optimal solution cost will
be the maximum end time between all the shortest paths. We note that tsd = 0 for
all (s, d) ∈ SD means that all vehicles start at the same time and so the maximum
end time between all paths is not affected by the delayed starting time.

In this ideal scenario of all disjoint shortest paths, the MVSPA can produce the
optimal solution independently of the order in which the pairs (s, d) ∈ SD are
computed. Unfortunately, in the general case, the computational order of the (s, d)

pairs does affect the solutions of the MVSPA.

Proposition 2. Changing the computation order of pairs (s, d) can affect the value
of the solution returned by the MVSPA.

Proof. Consider the example shown in Figure 2.4. Using the computation order
((s1, d1), (s2, d2), (s3, d3)) for MVSPA, the solution value is 5 (pair (s1, d1) end at
time 3, pair (s2, d2) end at time 5, and pair (s3, d3) end at time 5). Using instead,
the order ((s2, d2), (s1, d1), (s3, d3)), the MVSPA yields a solution of value 4 (pair
(s2, d2) ends at time 2, pair (s1, d1) ends at time 4, and pair (s3, d3) end at time 2).
So, by changing the order in which the pairs (s, d) are computed it is possible to
improve the value of the solution.

32



Figure 2.4: Example showing that changing the computation order of pair (s, d) can
improve the solution quality.

Furthermore, we note that the solution produced with computation order ((s2,
d2), (s1, d1), (s3, d3)) is also the optimum solution S∗.

however, even considering the previous proposition, we cannot state that even
trying all the possible permutations of (s, d) as input for the MVSPA, there is one
that induces the optimal solution S∗. More formally, we can affirm that:

Proposition 3. The MVSPA does not guarantee the optimality of the solution in-
dependently of the computation order of pairs (s, d) ∈ SD.

Proof. In Figure 2.5, it is depicted an example showing that it does not exist a
sequence of (s, d) that induces the optimal solution S∗.

In Figure 2.5, we have two pairs source-destination: (s1, d1) and (s2, d2) to con-
nect. The shortest paths computed independently are, respectively, sp(s1, d1) =

{s1, 1, 2, d1} and sp(s2, d2) = {s2, 1, 2, d2}; the maximum end time of these two
paths is equal to 3, and can be considered as a lower bound of the problem. We
note that the two paths are in conflict. The MVSPA, regardless of the computation
order, produces a solution of value 6 because the first pair uses the path seen be-
fore, with end time 3, and the second one instead, uses a path with end time 6 (i.e.
p(s1, d1) = {s1, 1, 2, d1} and p(s2, d2) = {s2, d2}). If, instead, we select as paths,
respectively, p(s1, d1) = {s1, 1, d1} and p(s2, d2) = {s2, 2, d2} that are not shortest
paths for the two pairs, we obtain a maximum end time of 4, that is lower than 6

and is also the optimum.
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Figure 2.5: Example showing that changing the computation order of pair (s, d)

does not guarantee the optimality of the solution through the MVSPA.

Furthermore, if we remove from the graph the direct arcs (s1, d1) and (s2, d2)

of cost 6, the MVSPA computes an inadmissible solution (If (s1, d1) is computed
first the algorithm selects as path for (s1, d1) the path p1 = {s1, 1, 2, d1} and is not
possible to compute a path for (s2, d2)), while the solution S∗ seen before is still the
optimal one.

Therefore, the effectiveness of the MVSPA can be improved by selecting a specific
computation order for the pairs in SD. The idea is to maximize the number of
pairs added in the solution at the beginning of the computation without collisions.
To order qSD the directed input graph GT is used to create an undirected graph
GIS = (V IS , EIS). The graph GIS is used to generate an Independent Set (IS)
([82]) useful to compute a starting order for the set SD. For each pair (s, d) ∈ SD

a vertex vsd is created in V IS . Then, for each couple of vertices vs1d1 , vs2d2 ∈ V IS

an arc is created in EIS if and only if the two shortest paths sp(s1, d1), sp(s2, d2) in
G share a node. On graph GIS the Maximum Independent Set (MIS) is computed.
This set contains a subset of vertices in V IS such that no two of these vertices are
connected by an arc in EIS . In the original graph G, the MIS is associated with
the set of pairs (s, d) that have independent paths. To order the SD set, all the
elements (s, d) ∈ SD such that vsd ∈ MIS precede the elements (s, d) ∈ SD such
that vsd /∈MIS.
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Figure 2.6: Example showing the conversion performed on a graph where the shortest
paths of three vehicles have the shown collisions.

In particular, three pairs (s, d) are converted into three nodes (s1d1, s2d2, s3d3).
Given that, for example, the shortest path between (s1, d1) is in conflict with both
the shortest path of (s2, d2) and the shortest path of (s3, d3), in the new graph
two arcs (s1d1, s2d2) and (s1d1, s3d3) are created. Finally, given that the shortest
path between (s2, d2) is not in conflict with the shortest path of (s3, d3), in the
new graph no arcs are created between (s2d2, s3d3). The Max IS computed on this
graph is [s2d2, s3d3], so the computation order used by the variant of the MVSPA
is: first the elements of the MIS, and then the remaining pairs selected randomly
(i.e. [(s2d2, s3d3) ∈MIS, (s1d1) /∈MIS]).

This variant of the approach substitutes Line (4) with the following commands:
‘create a new graph GIS ’, ‘compute the MIS of GIS ’, ‘add in qSD the pair (s, d)

belonging to the MIS’, and ‘add in qSD the pair (s, d) not belonging to the MIS
randomly sorted’.

2.5 Computational Results

To test the performances of our algorithms we have generated a set of benchmark
instances for the CSPP. Instances are characterized by:

• a square grid graph of size i× i. We test n ∈ {3, 4, ..., 10}. One node is placed
in each position of the grid sequentially, from the top left node to the bottom
right;

• a density value, meaning the average number of arcs incident on a node. We
test the following values: {2, 2.5, 3, 3.5, 4}. Consider the following example to
create arcs with a density value of 3.0. For each node i ∈ N , we randomly
create an average of 3.0 arcs between i and the closest nodes. It means that if
i is a node in the middle of the grid, we consider its close nodes the following:
the one on the top, the one at the bottom, the one on the left, the one on the
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right, and also the nodes on the top-right, the top-left, the bottom-right, and
the bottom-left. If i is the top left corner of the grid, we consider its close nodes
only those at the bottom, on the right, and on the bottom right. Between the
close nodes, we randomly select 3.0 nodes and create an arc between i and them
such that the average number of arcs for each node of the graph is 3.0. In the
instance creation process with a density value of 2.5, we randomly select if on
a specific node are created 2 or 3 arcs such that the overall number of incident
arcs in each node is 2.5. We note that an arc between i and a node on the
diagonal position (e.g. top-left node) is created with a probability of 0.1. With
the other nodes, the probability is 0.9. The length of the new arc is equal to
the Euclidean distance between the two nodes plus a random value that can be
at most 20% of the euclidean distance;

• the number of vehicles in the problem. We test the following values: {
√
|N |,

1
2 |N |, |N |,

3
2 |N |, 2|N |}. We note that these values are rounded to the next

integer value. We create each vehicle (s, d) ∈ SD as follows: one node s ∈ N

is randomly chosen between all nodes n ∈ N to be the source of the vehicle
(s, d). Three different nodes d1, d2, d3 ∈ N : d1 ̸= d2 ̸= d3 ̸= s are selected as
candidate destinations. Through Dijkstra’s algorithm, we compute a shortest
path between s and the three candidate destination. We select as the destina-
tion node for vehicle (s, d) the one with the longest shortest path. The starting
time tsd of vehicle (s, d) is selected equal to 0. If the source node of (s, d) is
already used as the source node with starting time t, the value tsd is increased
by α until tsd > t and so the node s is free.

Note that there are 8 × 5 × 5 = 200 different instance configurations. For each
configuration, 10 instances with different random seeds are generated. The random
seeds affect the selection of nodes to create an arc, the length of the arcs, and the
selection of the source and destination nodes for vehicle creation. The random values
follow the uniform distribution. In total 2000 instances are generated and tested.

Each instance is created as follows: first, a number of nodes equal to the grid
size are created in a position related to the grid. For each node ni, a number of
arcs, equal to the density value, are created between ni and its neighbor in the
grid. For each arc, the euclidean distance between the nodes is computed. This
value is divided by six to define the time length of the arc; this step is performed
to guarantee consistency with the minimum time interval, as explained in Section
2.2.1. Finally, the capacity of the arc is set equal to its time length plus 1. This is
because in an arc there could be at most one vehicle in each time instant required
to cross the arc plus one vehicle that is entering the arc. After the graph has been
created, for each instance the defined number of vehicles is created avoiding that
two vehicles can share both source and destination nodes. For each vehicle is also
defined a release time.

A summary of the characteristics of these instances is shown in Table 2.1. It
shows: the grid group of instances (‘Group’) showing also the size of the grid of
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the graph G, the number of nodes (‘|N |’), the possible number of arcs (‘|A|’), the
possible number of source-destination pairs (‘|SD|’), and the number of conflicts
of the instance (‘Conflicts’). This value represents the number of conflicts between
shortest paths; in other words, once computed a shortest path for each different
vehicle, it counts the number of common nodes between different shortest paths.
The larger the number of common nodes, the larger the probability of collision
between vehicles, and so the larger the complexity of the instance.

Group |N| |A| |SD| Conflicts
G3 9 19 – 32 3, 4, 9, 13, 18 19.34
G4 16 34 – 64 4, 8, 16, 24, 32 49.02
G5 25 53 – 100 5, 12, 25, 37, 50 97.66
G6 36 76 – 144 6, 18, 36, 54, 72 167.56
G7 49 104 – 196 7, 24, 49, 73, 98 271.96
G8 64 136 – 256 8, 32, 64, 96, 128 411.12
G9 81 173 – 324 9, 40, 81, 121, 162 572.39
G10 100 212 – 400 10, 50, 100, 150, 200 780.30

Table 2.1: Summary of the instances information.

All the proposed approaches are tested on each instance, obtaining good results
in terms of fitness value and computational time. The tests are performed on an
Arch Linux OS, with an Intel Core i9-11950H 2.60GHz CPU and 32 GB of RAM.
The approaches are implemented in Java 15 and the mathematical formulations are
implemented using CPLEX 22.10. The time limit imposed for all the algorithms is
600 seconds.

2.5.1 Tmax value

A second important value that must be defined is the maximum time value con-
sidered, namely Tmax. This value must be big enough to ensure that all vehicles
can reach their destination and, at the same time should be as small as possible,
in a way to reduce the size of the problem. After some preliminary experiments,
we define Tmax equal to the value returned by the heuristic approach proposed in
Section 2.4.2. The Tmax value is used also as M in all the formulations proposed.

2.5.2 Computational experiments

The following tables show the results of all the approaches proposed in Sections 2.3
and 2.4 divided into two sets: small instances and medium instances. The small
set contains instances based on a grid graph of size from 3x3 to 6x6. The medium
set contains instances based on a grid graph of size from 7x7 to 10x10. For the
small instances, we show the results of all the mathematical formulations and the
heuristic approaches. However, for medium instances, only the results obtained from
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the execution of the heuristic approaches are shown. This is because starting from
grid size 7x7 the formulations cannot provide enough admissible solutions within the
time limit. For small instances a comparison between the exact and the heuristic
approaches is performed, showing the Relative Percentage Deviation (RPD) from
the best solution found. For medium instances, the comparison is between the
heuristic approaches and the lower bound proposed in Section 2.4.2 showing also
the gap from the lower bound.

For the MVSPA we report the average results considering as initial computation
queue the independent set as described in Section 2.4.2. In particular, to compute
the independent set between paths, we use an ILP formulation implemented on
CPLEX. Furthermore, to assess the effectiveness of the approach we also report
the results of the MVSPA that uses a random starting computation queue. The
algorithm that uses the ILP formulation to compute the independent set is shown in
columns ‘MVSPA ILP-IS’. Instead, the execution of the MVSPA that uses a random
sequence as starting queue is shown in column ‘MVSPA Rand’. Furthermore, in the
three formulations, we give the model an initial solution provided by the DSPA.
All results are the average values between the ten instances generated using the ten
random seeds. The results of the three formulations are shown in column ‘TFF’ for
the Time Flow Formulation, ‘BPF’ for the Bin Packing Formulation, and ‘AFF’ for
the Alternative Flow Formulation based on the graph transformation.

Table 2.2 reports the average results of the three formulations and the two heuris-
tic approaches on small instances. The first two columns contain the instance group
and the lower bound value. Then, the objective function and the RPD to the best
solution found are shown. In the smallest set, namely G3, the three formulations
are the approaches that obtain the best results with a RPD almost equal to 0%.
Also in set G4, the formulations outperform the heuristic approaches in terms of the
quality of the solutions. Therefore, in set G4 the best approach is the Time-Flow
Formulation. In sets G5 and G6 the only formulation able to obtain feasible solu-
tions is the AFF. It is the approach that obtains the best results for set G5 with a
RPD of 0.38%. On set G6, it lacks performances even if it is the only formulation
able to obtain results in this instance set. We note that the first two formulations
are comparable in terms of the quality of the solution. Furthermore, the AFF can
obtain results also on bigger instances outperforming the other two formulations.
The heuristic approaches obtain good solutions with a RPD between 2.0% and
3.3% for set G3 and G4. This highlights its ability to find near-optimal solutions.
When the size of the instance increase, the three heuristics are in line in terms of
solution quality but the best one for small instances is the MVSPA that uses the
ILP formulation for the independent set to compute the initial computation order.
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Group LB
TFF BPF AFF MVSPA ILP-IS MVSPA Rand DSPA

ff RPD ff RPD ff RPD ff RPD ff RPD ff RPD
G3 16.63 16.98 0.00% 16.98 0.05% 16.98 0.00% 17.42 2.22% 17.39 2.27% 17.58 3.48%
G4 27.20 27.49 1.24% 27.88 2.69% 27.65 1.68% 28.07 3.29% 28.06 3.31% 28.49 4.96%
G5 37.10 - - - - 37.36 0.38% 37.99 2.15% 37.98 1.96% 38.19 2.74%
G6 44.87 - - - - 46.74 3.92% 46.17 0.50% 46.12 0.54% 46.42 1.15%

Table 2.2: Comparison of the performances of the three formulations, and the heuris-
tic approaches in small instances, namely G3 − G6. The maximum time limit for
the formulations is 600 seconds. The TFF and the BPF cannot obtain admissible
solutions within the time limit on instances G5 and G6.

Table 2.3 contains the number of best solutions found by the three formulations
and the heuristic approaches in all instances. As can be seen, in set G3, the ap-
proaches that perform better are the TFF and the AFF that obtain in all cases
optimum solutions. The BPF, on set G3, except for a few cases can find the opti-
mum solution. We note that the value shown in table 2.2 are average values subject
to truncation error. For this reason, even if all the formulations provide the same ff
values, the number of optimum of the BPF is lower. On set G4 the best approach is
still the TFF while the BPF loses effectiveness and in several cases reaches the time
limit. Therefore the AFF can obtain a higher number of optimums also in sets G5

and G6. Within the heuristic approaches, the algorithm that performs better is the
MVSPA, while the one with the worst results is the DPSA. We note that the results
of the MVSPA with an Independent set or random start are comparable; in small
instances, the one with a random start performs better, while in the biggest cases
the MVSPA with the exact computation of the independent set obtains, in average,
more best solutions.

Group TFF BPF AFF MVSPA ILP-IS MVSPA Rand DSPA
G3 25.00 22.50 25.00 19.00 18.80 16.60
G4 24.70 14.80 24.50 15.80 17.60 15.00
G5 - - 22.00 16.60 17.80 15.40
G6 - - 15.40 18.00 16.90 15.50
G7 - - - 18.60 19.00 15.20
G8 - - - 16.60 17.50 15.60
G9 - - - 18.00 16.90 16.70
G10 - - - 17.80 16.90 13.50

Table 2.3: Comparison of the number of best solutions found by the three formula-
tions, and the heuristic approaches.

For instances of medium size, the results are shown in Table 2.4. This table
contains the set name in column ‘Group’, and the lower bound value in column
‘LB’. The lower bound used here as reference is equal to the longest shortest path
computed for all vehicle (s, d) ∈ SD. Then, for each algorithm are shown the
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objective function, the gap to the lower bound, and the RPD to the best solution
found. For these instances, all the approaches obtain results comparable in terms of
the gap to the lower bound and RPD. Therefore, on average, the best results are
provided by the MVSPA, particularly the one with a random start. All the proposed
approaches obtain results that are in line, so further tests must be performed to
address the effectiveness of each algorithm. Anyway, after the validation of the
approaches performed on small instances, we can affirm that all three heuristics are
able of finding good solutions in a reasonable amount of time.

Group LB
MVSPA ILP-IS MVSPA Rand DSPA
ff gap RPD ff gap RPD ff gap RPD

G7 57.69 59.18 2.59% 0.31% 59.20 2.62% 0.42% 59.80 3.65% 1.55%
G8 67.74 69.22 2.19% 0.49% 69.12 2.04% 0.32% 70.65 4.29% 2.35%
G9 75.74 77.63 2.49% 0.29% 77.72 2.61% 0.00% 78.78 4.01% 0.68%
G10 85.94 88.52 3.01% 0.47% 88.48 2.95% 0.23% 91.38 6.33% 3.38%

Table 2.4: Comparison of the performances of the heuristic approaches in medium
instances.

Finally, Table 2.5 shows the computation time for all algorithms in all instances.
The time is expressed in seconds. As expected, the heuristic approaches outperform
the three formulations in all cases. The formulation with the best computation time
is the AFF, meaning that the graph transformation process drastically impacts the
formulation of the problem. On the other hand, all the heuristic approaches are
comparable in terms of time required even when the size of the instances increases,
but the DSPA is the approach with the lowest computation time, it ends in less than
0.04 seconds in all cases.

Group TFF BP AFF MVSPA ILP-IS MVSPA Rand DSPA
G3 1.04 87.41 16.98 0.01 0.00 0.00
G4 35.22 274.68 27.65 0.03 0.03 0.00
G5 - - 37.36 0.13 0.13 0.00
G6 - - 46.74 0.39 0.41 0.00
G7 - - - 1.10 1.16 0.00
G8 - - - 2.55 2.61 0.01
G9 - - - 5.01 4.98 0.01
G10 - - - 9.38 10.23 0.03

Table 2.5: Comparison of the computation time required by the three formulations,
and the heuristic approaches in all instances. The time is expressed in seconds.
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2.6 Conclusion

The Shortest Path Problem remains, over years, one of the most famous and dis-
cussed problems in literature ([62]). It consists of finding a path from a source to
a destination such that the path length is minimized. The SPP can model many
real-world applications, as evidenced by its variants.

In this chapter, we present the Concurrent Shortest Path Problem (CSPP), a
variant of the Shortest Path Problem in which we want to define multiple paths
of minimum length connecting all source-destination pairs while avoiding collisions
between paths. This variant is thought to model various scenarios that go from the
traffic handling of a smart city ([87], [54]), to the definition of paths of minimum
length for robots and forklifts in a warehouse ([52], [90]). Generally, all applications
where several vehicles have to reach their destinations without colliding between
them can be modeled with the CSPP.

In this thesis, we propose three mathematical formulations for the problem: one
is based on a bin packing formulation, and the others are based on the flow formu-
lation. The former considers the time as a dimension for the problem, while the
latter removes the time by applying a graph transformation process. Furthermore,
to handle large-size instances, we propose two heuristic approaches, namely DSPA,
and MVSPA. We defined a set of benchmark instances randomly generated. Com-
putational results show that the proposed heuristics can produce good solutions in
a reasonable amount of time. Furthermore, results show that the three formulations
can be applied only in small instances.

This new variant of the SPP opens various possibilities for future research. Par-
ticularly, can be investigated the definition of new heuristic and meta-heuristic ap-
proaches that can handle big scenarios taking into account that these algorithms
should be used in a real-time system. Thus, the computation time plays a crucial
role, more than the solution quality. The definition of instances that change dynam-
ically, can drastically increase the complexity of the problem. Furthermore, could
be interesting to introduce a maximum completion time within which to complete
all tasks. Nevertheless, further studies to address the impact of the α value on time
discretization are interesting as well as the definition of new instances created from
real-world graph networks,
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Chapter 3

The k-Color Shortest Path
Problem

3.1 Introduction

The k-Colour Shortest Path Problem (k-CSPP) is a variant of the classic Shortest
Path Problem. It consists of finding a shortest path on a weighted edge-coloured
graph, where the maximum number of different colours used in a feasible solution
is fixed to be k. The k-CSPP has several real-world applications. Particularly, for
network reliability, it addresses the problem of reducing the connection cost while
improving the reliability of the network. Furthermore, for what concerns multi-
modal transport systems problems, it addresses the problem of finding a path of
minimum length while avoiding the usage of more than k different vehicles. Fer-
one et al.[37] present the first formal definition of the k-CSPP. They propose a
mathematical model based on a flow formulation and a Branch and Bound (B&B)
Algorithm to solve the problem. In their second work [35], Ferone et al. propose
a novel Dynamic Programming (DP) algorithm that uses a path-labelling approach
with an A∗-like technique as an exploration strategy. The authors also define a
new set of instances with fewer colours. Testing their approaches on two test sets
highlight that the DP algorithm outperforms previous approaches in terms of the
number of optimum solutions and the computational time.

In this thesis, we propose a heuristic approach, namely Colour-Constrained Di-
jkstra Algorithm (CCDA), which can identify optimal or near-optimal solutions
regardless of the size of the instances. We propose a graph reduction technique,
namely the Graph Reduction Algorithm (GRA), which removes more than 90% of
the nodes and edges from the input graph. Finally, using a Mixed-Integer Linear
Programming (MILP) model, we present an exact approach, namely Reduced In-
teger Linear Programming Algorithm (RILP), that combines the two approaches
described previously and guarantees optimal solutions in a reasonable running time.
Several tests are performed to verify the effectiveness of the proposed approaches.
The computational results indicate that the produced approaches perform well, in
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terms of both the solution’s quality and computation times.

3.2 Mathematical Model

In the rest of this thesis, we will use P (ns, nd) to refer to a general path from node
ns to node nd and l(P (ns, nd)) to refer to the length of the path P (ns, nd). The
mathematical model, based on a flow formulation, is presented here to clarify the
characteristics of the problem (see the model proposed by Ferone et al. in [37]).
Let G be a graph G = (N,E), with |N | nodes and |E| edges. C : E −→ N and
d : E −→ R+

0 are two functions: the first is an edge-colouring function, where
the colour of the edge e is defined as a positive integer C(e),∀e ∈ E. The second
is a non-negative distance function defined for each edge e ∈ E. We define C =⋃

e∈E{C(e)} as the set containing all the colours of G. For each colour h ∈ C, we
define Eh = {e ∈ E s.t. C(e) = h} as the set containing all the edges with colour
equal to h.

The k-CSPP consists of finding a shortest path P ∗ = (ns, ..., ni, ..., nd) from a
source node ns to a destination node nd, with ns, nd ∈ N , such that the number
of different colours traversed on the path does not exceed k. The flow formulation
proposed by Ferone et al. considers two Boolean decision variables: the first, xij , is
related to each edge of E; this variable will be equal to 1 if edge (i, j) belongs to
P ∗, and it will be equal to 0 otherwise. The second decision variable, yh, is related
to each possible colour such that yh = 1 if at least one edge of colour h is traversed
in P ∗, and yh = 0 otherwise. The parameter bi defined for each i ∈ N is:

bi =

−1, if i = ns
+1, if i = nd
0, otherwise.

Thus, the problem can be formulated as follows:

z = min
∑

(i,j)∈E

d(i, j)xij , (3.1)

subject to∑
(j,i)∈E

xji −
∑

(i,j)∈E

xij = bi ∀i ∈ N, (3.2)

xij ≤ yh ∀h ∈ C, ∀(i, j) ∈ Eh, (3.3)∑
h∈C

yh ≤ k, (3.4)

xij ∈ {0, 1} ∀(i, j) ∈ E, (3.5)
yh ∈ {0, 1} ∀h ∈ C. (3.6)

The objective function (3.1) minimises the total length of the solution path P ∗.
The constraints in (3.2) are the flow conservation constraints. The constraints in
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(3.3) enable the passage of the flow only on edges whose colour is selected. Constraint
(3.4) is used to limit the maximum number of usable colours to k. Finally, constraints
(3.5) and (3.6) are used to define the Boolean domain of the decision variables.

3.3 Colour-Constrained Dijkstra Algorithm

The heuristic approach proposed in this thesis, namely Colour-Constrained Dijkstra
Algorithm (CCDA), is an extension of the well-known Dijkstra Algorithm [30] that,
taking into account the colour function C, tries to define admissible solutions for the
k-Colour Shortest Path Problem. In particular, the approach is designed to compute
admissible solutions by modifying dynamically, during the computation, the costs of
the edges according to their colour. During the computation, the Dijkstra Algorithm
updates a shortest path from a source node ns to all the other nodes of the graph,
considering, in each step, the minimum distance from the source node to the current
node ni, plus the edge cost between ni and the next node nj in the path sequence.
Our approach modifies the cost between ni and nj , adding a penalisation value,
namely penalty, if the colour of the edge (ni, nj) is not used in the previously
computed path P (ns, ni). Starting from a penalisation value equal to 0, the approach
iterates several times, increasing the penalisation value each time. It starts from 0

to check if the canonical shortest path is also a solution for the k-CSPP. This is
because the smaller the penalty value, the closer the final path will be to a shortest
path without penalisation, and so the better the fitness value of the solution will be.
Therefore, the higher the penalty value, the higher the probability of avoiding new
colours and thus, the higher the probability of identifying admissible solutions. The
penalty values used are those included in the list penList. To introduce the values
contained in this list, we must define the following values for each instance:

minEdgeCost = min{d(i, j)|(i, j) ∈ E},
maxEdgeCost = max{d(i, j)|(i, j) ∈ E},

sumEdgeCost =
∑

(i,j)∈E

d(i, j),

meanEdgeCost =
sumEdgeCost

|E|
.

The penalty list used is the following:

penList = (0,
minEdgeCost

4
,
minEdgeCost

2
,minEdgeCost,minEdgeCost ∗ 2,

meanEdgeCost

4
,
meanEdgeCost

2
,meanEdgeCost,maxEdgeCost).

As can be seen in Figure 3.1, the CCDA proposed is very simple, but as described
in Section 3.6, it is very effective. In particular, it takes as input the graph G, the
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source and destination nodes ns and nd, and the penalties list penList in Step (1).
The algorithm starts iterating over the various penalty values in Step (3), trying
each time, in Steps (4) and (5), to compute a shortest path with a different value
of the penalty for the usage of new colours. If the current penalty value allows the
Penalised Dijkstra Algorithm to find an admissible solution (Step (6)), the approach
ends, returning, in Step (8), the identified solution; otherwise, it reiterates with a
new penalty value (Step (7)).

Figure 3.1: Flowchart of the Colour-Constrained Dijkstra Algorithm (CCDA), de-
scribed in Section 3.3, that extends the well-known Dijkstra Algorithm to handle
the edge colours and produces solutions for the k-CSPP.

A key role in this approach is played by the list of used colours. The Penalised
Dijkstra Algorithm, used in Step (4), differs from the well-known standard algorithm
because it takes into account the colours used in the path from the source to all the
other nodes; thus, instead of memorising only the previous node and the minimum
distance from the source, our approach also considers the colours used in the path.
For example, when the algorithm is computing a shortest path for the node nj ,
with ni as the previous node, it checks if the colour of the edge ni, nj was used for
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the path connecting ns and ni: if it was, then the edge is considered with its cost;
otherwise, its cost is increased by the penalty value. The penalty value is given as
input to the Penalised Dijkstra Algorithm described before, and increases for each
iteration of the CCDA. In this way, according to the current penalty, it is possible to
produce a shortest path that uses fewer colours compared to the original algorithm,
with a small increase in the computational complexity of the algorithm.

3.4 Graph Reduction Algorithm

For the k-CSPP, the complexity grows as the input size increases. Unfortunately,
unlike the classic SPP for which the complexity grows polynomially, for the k-CSPP,
the complexity grows exponentially [10]. This means that reducing the size of the
input is crucial for lowering the computation time and creating exact approaches
that are usable in large scenarios. To solve this problem, in this thesis, we propose a
Graph Reduction Algorithm (GRA) that is able to reduce the size of an instance in
order to apply the ILP formulation and obtain optimal solutions for many instances,
even in the case of large sizes.

The GRA consists of removing from the original graph G as many nodes and
edges as possible that cannot be in the optimal solution. In particular, our reduc-
tion algorithm starts by computing an upper bound (UB) for the problem using a
heuristic or meta-heuristic approach; we use the Colour-Constrained Dijkstra Algo-
rithm proposed in Section 3.3. The algorithm removes from the original graph G

all the nodes and edges that, if they are forced to be in the solution, cause a fitness
value higher than the upper bound. Now, given that the k-CSPP is a minimisa-
tion problem, the lower the value of the UB, the higher the number of nodes and
edges removed. More formally, a heuristic solution path P h(ns, nd), with a length of
l(P h(ns, nd)), is computed. Then, ∀ni /∈ P h(ns, nd), if the shortest path length from
the source node ns to ni plus the shortest path length from ni to the destination
node nd is greater than l(P h(ns, nd)), then the node ni and all its incident edges are
removed from the graph G.

A formal proof that this algorithm does not remove from the graph G nodes that
can belong to the optimum solution S∗, or any solution S which cost is better than
the upper bound provided, follows.

Proposition 4. Consider a graph G = (N,E), where ns, nd ∈ N are respectively
defined as the source and destination nodes. Consider a generic path P h(ns, nd) and
a generic node ni ∈ N such that SP (ns, ni) is a shortest path from the source node
ns to ni, and SP (ni, nd) is a shortest path from the node ni to the destination node
nd.

If
l(SP (ns, ni)) + l(SP (ni, nd)) > l(P h(ns, nd)), (3.7)

then

∀ path P ∈ {P (ns, nd) s.t. ni ∈ P (ns, nd)}, l(P ) > l(P h(ns, nd)). (3.8)
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Proof. In order to prove this implication, we propose a proof based on a reductio ad
absurdum. It is possible to assume that if (3.7) is satisfied for the node ni, then there
exists a generic path P 1(ns, nd) such that ni ∈ P 1 and l(P 1) ≤ l(P h(ns, nd)). The
path P 1 can be divided into two paths P 2(ns, ni) and P 3(ni, nd). Thus, we can write
l(P h(ns, nd)) > l(P 1) = l(P 2(ns, ni))+l(P 3(ni, nd)) > l(SP (ns, ni))+l(SP (ni, nd)),
which is absurd with respect to (3.7).

Figure 3.2: Flowchart of the Graph Reduction Algorithm described in Section 3.4.
This algorithm, depending on the quality of the upper bound provided as input, is
able to drastically reduce the size of the instances, speeding up the computation
time for further algorithms applied to the problem.

Figure 3.2 presents the flowchart of the reduction algorithm proposed in this sec-
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tion. The GRA takes as input, in Step (1), the graph G, the source and destination
nodes ns and nd, and an initial solution Sol. It computes the length of the solution
as the upper bound for the problem in Step (2). In Step (3), for each node ni ∈ N

such that ni /∈ Sol, ni ̸= ns and ni ̸= nd, if the length of the shortest path between
ns and ni, namely l(P (ns, ni)), plus the length of the shortest path between ni and
nd, namely l(P (ni, nd)), is greater than l(Sol) (Step (4)), then the node ni is re-
moved from the set of nodes N (Step (5)), and all the edges incident on ni are also
removed from E in Step (6). In Step (7), the algorithm returns the graph without
the nodes and edges that are removed during this process.

Figure 3.3 shows an example of the results produced by the reduction algorithm.
Figure 3.3a shows an initial graph with a heuristic solution highlighted in red, and
Figure 3.3b shows the reduced graph with the optimum solution highlighted in
red. In this figure, the instance Grid_100x100_5940_27000 is represented, here
the graph is reduced by more than 90% with respect to the original size of the
graph, and none of the nodes and edges of the optimal solution are removed in the
reduction process.

(a) Heuristic solution on G (b) Optimum solution on reduced G

Figure 3.3: Comparison between heuristic and optimum solutions on the original
graph and the graph reduced using the approach proposed in Section 3.4. As can
be seen, the reduction process removes more than the 90% of the graph without
affecting the optimal solution.

Sometimes, after the application of GRA, a node ni can be identified in the
reduced graph that, if it is removed, causes a disconnection of the graph and the
creation of two connected components. This scenario occurred quite often during
our tests, as can be seen from Figure 3.3b. This scenario can be considered to
improve the performance of some solution approaches. For example, an idea to
investigate in future research could be the definition of a two-stage algorithm that
firstly, computes in parallel several paths as partial solutions using these nodes that
cause disconnection as the source or the destination nodes. Lastly, in a second phase,
it could try to combine the partial solution by avoiding inadmissible scenarios. Any
approach used to compute the path between the source node ns and the destination
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node nd can be applied twice in parallel, first from ns to ni and second from ni to
nd. This parallelisation can drastically reduce the computation time. However, in
the k-CSPP, this idea cannot be applied. This is because the colour variables must
be considered for the global path and not only in the sub-graph. This approach can
cause the creation of an inadmissible path that uses more than k colours. Despite
this, it may be interesting to consider this scenario in further research.

3.5 Reduced ILP

The purpose of the exact approach proposed in this thesis is to drastically reduce
the computational time compared to the other exact approaches proposed in the
literature. To achieve this objective, we combine the effectiveness of the ILP for-
mulation and the speediness of our heuristic algorithm. In order to compute an
optimal solution, we propose the Reduced ILP (RILP) algorithm. Our algorithm
starts by computing an admissible solution using the heuristic approach described in
Section 3.3. If this solution is optimal, that is, its name is the same as the shortest
path from ns to nd, the algorithm stops and returns the identified optimal solution.
If the heuristic solution is not optimal, it can be used as an upper bound for the
reduction algorithm proposed in Section 3.4. We use the GRA to remove, from the
graph G, all the nodes and edges that are useless in the discovery of the optimal
solution. Finally, on the reduced graph, our approach executes the ILP formulation
to identify the optimal solution.

Figure 3.4 shows the flowchart of the RILP approach. The technique takes as
input the graph G, the source node ns and the destination node nd, and the penalty
list penList (Step (1)). Then, using the proposed heuristic algorithm, a solution
Sol, considered as the upper bound for the algorithm, is computed in Step (2).
A shortest path on graph G is computed in Step (3), and its length is compared
with the upper bound solution in Step (4). If the length of the heuristic solution is
equal to the length of the shortest path, then the algorithm stops, and the obtained
solution is returned (Step (9)). Otherwise, the GRA is applied on graph G in Step
(5). After the reduction phase has removed from the graph all the useless nodes
and edges, the ILP formulation is applied in Step (6) to obtain the optimal solution.
Finally, the solution obtained in Step (7) is returned in Step (8).
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Figure 3.4: Flowchart of the exact approach described in Section 3.5. The algorithm,
exploiting the properties of the Colour-Constrained Dijkstra Algorithm and the
Graph Reduction Algorithm, guarantees optimal solutions in a reasonable amount
of time.
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3.6 Results

To investigate the effectiveness of the proposed approaches, in this section, we show
and discuss the results of our computational experiments. To validate the solutions
produced by the approaches developed in this thesis, we have compared our solutions
with the best ones from the literature. We use the two sets of benchmark instances
proposed by Ferone et al. in [37] and [35]. These sets of instances, namely set A

(Tables 3.1 and 3.3) and set B (Tables 3.2 and 3.4), are characterised by grid-graph-
based instances and random-graph-based instances, respectively.

These four sets of instances are made up of 10 different instances for each scenario;
the scenarios are identified in the ‘Name’ column of each table. In particular, in the
first column, the name that represents the group of 10 instances is shown. Then,
in order, the following attributes are reported: the number of nodes, the number of
edges, the number of colours divided by the number of edges (given as a percentage),
the number of colours, and finally, the maximum number of colours (k) that can
be used to generate a solution. Note that in each instance, each value is an integer
number even if the mean value reported is real. For all of the following tables, for
each row, we provide the mean values of the ten instances.

Name |N | |E| %Colour |C| k
A-G1 10000 39600 15% 5940 194.90
A-G2 10000 39600 20% 7920 195.40
A-G3 20000 79400 15% 11910 298.10
A-G4 20000 79400 20% 15880 298.90
A-G5 62500 249000 15% 37350 498.50
A-G6 62500 249000 20% 49800 499.60
A-G7 125000 498500 15% 74775 765.10
A-G8 125000 498500 20% 99700 766.30
A-G9 250000 998000 15% 149700 1005.10
A-G10 250000 998000 20% 199600 1005.30
A-G11 500000 1997000 15% 299550 1533.70
A-G12 500000 1997000 20% 399400 1535.00

Table 3.1: Summary of the characteristics of grid instances belonging to set A.
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Name |N | |E| %Colour |C| k
B-G1 10000 39600 1% 396 154.30
B-G2 10000 39600 2% 792 174.10
B-G3 20000 79400 1% 794 250.00
B-G4 20000 79400 2% 1588 273.70
B-G5 62500 249000 1% 2490 455.90
B-G6 62500 249000 2% 4980 480.20
B-G7 125000 498500 1% 4985 713.90
B-G8 125000 498500 2% 9970 740.40
B-G9 250000 998000 1% 9980 960.00
B-G10 250000 998000 2% 19960 985.70
B-G11 500000 1997000 1% 19970 1479.50
B-G12 500000 1997000 2% 39940 1508.70

Table 3.2: Summary of the characteristics of grid instances belonging to set B.

Name |N | |E| %Colour |C| k
A-R1 75000 750000 15% 112500 6.10
A-R2 75000 750000 20% 150000 6.00
A-R3 75000 1125000 15% 168750 5.20
A-R4 75000 1125000 20% 225000 5.20
A-R5 75000 1500000 15% 225000 5.50
A-R6 75000 1500000 20% 300000 5.50
A-R7 100000 1000000 15% 150000 5.70
A-R8 100000 1000000 20% 200000 6.30
A-R9 100000 1500000 15% 225000 5.30
A-R10 100000 1500000 20% 300000 5.30
A-R11 100000 2000000 15% 300000 5.60
A-R12 100000 2000000 20% 400000 5.60
A-R13 125000 1250000 15% 187500 6.30
A-R14 125000 1250000 20% 250000 6.30
A-R15 125000 1875000 15% 281250 5.30
A-R16 125000 1875000 20% 375000 5.30
A-R17 125000 2500000 15% 375000 5.40
A-R18 125000 2500000 20% 500000 5.40

Table 3.3: Summary of the characteristics of random instances belonging to set A.
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Name |N | |E| %Colour |C| k
B-R1 75000 750000 1% 7500 5.60
B-R2 75000 750000 2% 15000 5.60
B-R3 75000 1125000 1% 11250 4.80
B-R4 75000 1125000 2% 22500 4.80
B-R5 75000 1500000 1% 15000 4.20
B-R6 75000 1500000 2% 30000 4.20
B-R7 100000 1000000 1% 10000 6.10
B-R8 100000 1000000 2% 20000 6.30
B-R9 100000 1500000 1% 15000 5.00
B-R10 100000 1500000 2% 30000 5.00
B-R11 100000 2000000 1% 20000 4.70
B-R12 100000 2000000 2% 40000 4.70
B-R13 125000 1250000 1% 12500 5.90
B-R14 125000 1250000 2% 25000 5.90
B-R15 125000 1875000 1% 18750 5.30
B-R16 125000 1875000 2% 37500 5.30
B-R17 125000 2500000 1% 25000 4.10
B-R18 125000 2500000 2% 50000 4.10

Table 3.4: Summary of the characteristics of random instances belonging to set B.

Information about the instances used to test our approaches is shown in Tables
3.1, 3.2, 3.3 and 3.4; these tables, for each scenario composed of 10 instances, report
the average values.

As can be deduced from the tables, the main difference between sets A and B,
for both grid and random instances, is related to the number of colours: in set A,
the number of colours is equal to 15% or 20% of the number of edges, while in set
B, the number of colours is equal to 1% or 2% of the number of edges. The main
difference between grid instances and random instances, in addition to the graph
structure, lies in the value of the parameter k. For the grid instances, this value
increases proportionally with the size of the graph, while for the random instances,
the value of the parameter k is small (lower than 10) and independent of the size of
the instances.

In the remainder of this section, we show the results of our computational ex-
periments. The tests are performed using CentOS Linux 7 with an Intel Xeon CPU
E5-2650 v3 2.30GHz and 126 GB of RAM. The approaches are implemented in Java
1.8, and the mathematical formulation is implemented using CPLEX 12.10. The
time limit imposed on all the algorithms is 900 seconds.
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3.6.1 Comparison Results

The computational results are organised as follows. Tables 3.5, 3.6, 3.7 and 3.8 show
a comparison between the exact approach proposed in this thesis, namely RILP, the
mathematical formulation presented in Section 3.2, namely ILP, and the state-of-
the-art Dynamic Programming approach proposed by Ferone et al. [35]. Results
are reported for both the grid and random instances of sets A and B. Furthermore,
Tables 3.9, 3.10, 3.11 and 3.12 show a comparison between our CCDA and the
RILP approach to assess the effectiveness of our heuristic compared to the optimal
solutions. Tables 3.5 and 3.6 compare the ILP formulation, RILP, and the Dynamic
Programming technique. For all the approaches, these tables show the computation
time (in seconds) and the number of optimum solutions identified. For ILP and
RILP, the objective function is also shown. For ILP the number of feasible solutions
identified is reported. For DP and RILP, the number of feasible solutions is not
shown because all of the feasible solutions are also optimum. Finally, for DP, the
objective function is not shown for the reason described previously. A summary row
is given at the end of both tables.

As can be seen in Tables 3.5 and 3.6, for grid instances, the ILP formulation can
obtain optimal solutions only in small instances; therefore, it loses effectiveness as
the instance size increases. In fact, for medium and large instances, it can barely
obtain admissible solutions, often reaching the time-limit value. However, our exact
approach also performs better than the Dynamic Programming technique; it can
identify, in all cases, the optimum solution in a small amount of time, while the
DP approach is not able to identify a feasible solution for the grid instances of set
A, especially the largest ones. On the grid instances of set B, even though the DP
approach is able to identify the optimum solution in all cases, our approach requires,
on average, less time. In particular, the time required by the DP algorithm increases
quickly as the instance size increases. This demonstrates RILP’s effectiveness re-
gardless of the size of the instances. Tables 3.7 and 3.8 compare the ILP formulation,
RILP, and the Dynamic Programming technique. For all the approaches, the ta-
bles show the computation time (in seconds) and the number of optimum solutions
identified. All the methods can identify the optimum solutions in all cases. The
first column reports the average fitness value. A summary row is given at the end
of the table. For the random scenarios (Tables 3.7 and 3.8), all three approaches
can always identify optimum solutions. Therefore, in these instances, the results
highlight that the DP approach is the best algorithm in terms of computation time.
Even though both the RILP and DP approaches are faster than the ILP, for both
set A and set B, the DP approach is the fastest method; in all cases, it requires less
than 2 seconds. The DP approach only required more time when it found unfeasible
instances. This is because this technique has an advantage in scenarios where the
number of colours k is small. It is interesting to note that RILP is more stable than
the other methods; in fact, regardless of the size, kind, density, and characteristics
of the instance, it is always able to identify the optimum solution in a reasonable
amount of time.
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Name
ILP RILP DP

ff time #Feas #Opt ff time #Opt time #Opt
A-G1 6203.40 37.66 10 10 6203.40 0.27 10 0.92 10
A-G2 6204.40 35.49 10 10 6204.40 0.24 10 60.81 9
A-G3 9336.60 232.49 10 9 9670.40 0.41 10 3.81 10
A-G4 9670.80 202.28 10 10 9670.80 0.37 10 12.69 10
A-G5 25073.56 827.00 9 - 15448.10 0.79 10 130.83 8
A-G6 25538.00 TL 8 1 15448.70 0.81 10 130.01 8
A-G7 39181.30 TL 10 - 23876.40 2.05 10 64.99 9
A-G8 40581.80 TL 10 - 23876.00 2.20 10 62.00 9
A-G9 52656.56 TL 9 - 30808.10 4.89 10 367.50 4
A-G10 54160.90 TL 10 - 30808.00 5.52 10 362.37 4
A-G11 79212.20 TL 10 - 47639.70 11.90 10 232.51 7
A-G12 82025.50 TL 10 - 47639.70 11.90 10 275.19 6
Mean 645.73 9.67 3.33 3.45 10 141.97 7.83

Table 3.5: Comparison of the performances of the ILP formulation, RILP, and the
Dynamic Programming technique on grid instances from set A.

Name
ILP RILP DP

ff time #Feas #Opt ff time #Opt time #Opt
B-G1 6196.70 18.64 10 9 6197.50 0.16 10 0.03 10
B-G2 6200.00 32.21 10 9 6199.60 0.20 10 0.07 10
B-G3 9656.70 119.63 10 9 9665.40 0.56 10 0.11 10
B-G4 9656.60 124.20 10 9 9665.30 0.37 10 0.09 10
B-G5 - TL - - 15444.40 0.86 10 0.92 10
B-G6 25779.40 TL 10 1 15444.50 0.72 10 0.79 10
B-G7 - TL - - 23874.60 2.15 10 1.01 10
B-G8 40506.70 TL 10 - 23875.20 2.30 10 2.41 10
B-G9 - TL - - 30806.30 4.60 10 50.67 10
B-G10 54227.70 TL 10 - 30805.80 4.51 10 18.37 10
B-G11 - TL - - 47638.80 13.90 10 46.33 10
B-G12 81828.50 TL 10 - 47639.00 11.35 10 69.49 10
Mean 630.04 6.67 3.08 3.47 10 15.86 10

Table 3.6: Comparison of the performances of the ILP formulation, RILP, and the
Dynamic Programming technique on grid instances from set B.
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Name ff Opt
ILP RILP DP

time #Opt time #Opt time #Opt
A-R1 250.18 172.90 10 17.92 10 1.56 10
A-R2 210.80 95.14 9 6.60 9 2.35 9
A-R3 187.80 131.23 9 6.97 9 60.24 9
A-R4 187.80 132.51 9 7.37 9 60.24 9
A-R5 179.55 231.90 10 8.21 10 0.47 10
A-R6 179.55 248.22 10 7.98 10 0.49 10
A-R7 232.91 139.55 10 12.50 10 0.65 10
A-R8 224.80 128.55 9 10.29 9 3.95 9
A-R9 195.27 232.27 10 13.05 10 0.47 10
A-R10 195.27 259.18 10 13.15 10 0.50 10
A-R11 164.45 265.73 10 10.98 10 0.49 10
A-R12 164.45 269.23 10 10.85 10 0.50 10
A-R13 242.18 178.60 10 17.56 10 0.43 10
A-R14 242.18 208.26 10 18.08 10 0.43 10
A-R15 209.73 287.02 10 20.60 10 0.63 10
A-R16 209.73 336.75 10 20.59 10 0.64 10
A-R17 164.36 408.05 10 20.36 10 0.71 10
A-R18 164.36 453.29 10 19.30 10 0.72 10
Mean 232.13 9.78 13.46 9.78 7.53 9.78

Table 3.7: Comparison of the performances of the ILP formulation, RILP, and the
Dynamic Programming technique. The methods were applied to random instances
from set A. The scenarios in which there is an instance that does not allow admissible
solutions for the given k value are shown in bold.
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Name ff Opt
ILP RILP DP

time #Opt time #Opt time #Opt
B-R1 234.40 206.78 10 15.16 10 0.28 10
B-R2 226.90 270.65 10 18.00 10 0.29 10
B-R3 205.00 283.22 10 16.03 10 0.29 10
B-R4 221.78 294.64 10 21.38 10 0.29 10
B-R5 235.11 248.61 10 18.71 10 0.91 10
B-R6 239.22 190.36 10 13.21 10 1.01 10
B-R7 271.30 210.80 10 17.68 10 0.32 10
B-R8 225.10 240.70 10 12.86 10 0.31 10
B-R9 209.50 267.22 10 14.81 10 0.40 10
B-R10 205.44 290.80 10 17.86 10 0.40 10
B-R11 231.44 276.19 10 19.87 10 0.80 10
B-R12 235.44 233.95 10 19.65 10 0.84 10
B-R13 233.40 180.45 10 12.75 10 0.45 10
B-R14 229.40 241.53 10 15.89 10 0.47 10
B-R15 221.90 297.48 10 18.77 10 1.01 10
B-R16 201.56 291.08 10 16.49 10 1.16 10
B-R17 230.89 293.31 10 21.60 10 0.81 10
B-R18 252.67 241.53 10 19.13 10 0.82 10
Mean 253.30 10 17.21 10 0.60 10

Table 3.8: Comparison of the performances of the ILP formulation, RILP, and the
Dynamic Programming technique. The methods were applied on random instances
from set B.

A detailed analysis of the heuristic approach proposed in Section 3.3 is reported
in Tables 3.9 and 3.10 for grid instances and in Tables 3.11 and 3.12 for random
instances. These tables report, for the CCDA, the gap to the RILP algorithm, the
computation time, and the number of optimum solutions identified. The number
of admissible solutions identified is not shown because our approach can obtain
a feasible solution for each instance. For reference, the fitness function value for
the RILP algorithm is also reported. At the end of each table, a summary row is
provided.

For grid instances (Tables 3.9 and 3.10), the CCDA provides very good results;
it is able to obtain optimal or near-optimal solutions with an average gap equal to
0.05% of the optimum for set A and 0.07% of the optimum for set B in less than two
seconds. The results obtained for the random instances (Tables 3.11 and 3.12) are
in line with the results obtained for the grid instances. In fact, the CCDA obtains
solutions with an average gap equal to 0.59% of the optimum for set A and 0.13% of
the optimum for set B. Even though this gap is worse than the gap obtained for the
grid instances, the number of optimum solutions obtained is considerably higher.
Furthermore, our heuristic approach is always able to obtain admissible solutions
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regardless of the size of the graph and the number of colours.

Name ff Opt
CCDA

gap time #Opt
A-G1 6203.40 0.04% 0.04 8
A-G2 6204.40 0.14% 0.04 7
A-G3 9670.40 0.13% 0.09 5
A-G4 9670.80 0.11% 0.09 6
A-G5 15448.10 0.03% 0.31 4
A-G6 15448.70 0.02% 0.32 5
A-G7 23876.40 0.02% 0.80 3
A-G8 23876.00 0.02% 0.80 3
A-G9 30808.10 0.04% 2.44 2
A-G10 30808.00 0.04% 2.49 3
A-G11 47639.70 0.02% 6.66 1
A-G12 47639.70 0.02% 5.67 1
Mean 0.05% 1.65 4.00

Table 3.9: Analysis of the results obtained by applying the CCDA heuristic to the
grid instances of set A.

Name ff Opt
CCDA

gap time #Opt
B-G1 6197.50 0.11% 0.02 3
B-G2 6199.60 0.15% 0.03 3
B-G3 9665.40 0.21% 0.06 2
B-G4 9665.30 0.13% 0.07 2
B-G5 15444.40 0.07% 0.28 -
B-G6 15444.50 0.02% 0.23 2
B-G7 23874.60 0.04% 0.64 -
B-G8 23875.20 0.05% 0.79 -
B-G9 30806.30 0.02% 1.75 -
B-G10 30805.80 0.02% 1.88 1
B-G11 47638.80 0.04% 7.00 -
B-G12 47639.00 0.03% 5.68 1
Mean 0.07% 1.54 1.17

Table 3.10: Analysis of the results obtained by applying the CCDA heuristic to the
grid instances of set B.
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Name ff Opt
CCDA

gap time #Opt
A-R1 250.18 0.29% 5.07 9
A-R2 210.80 0.00% 3.87 9
A-R3 187.80 0.00% 3.79 9
A-R4 187.80 0.00% 3.79 9
A-R5 179.55 1.72% 4.25 7
A-R6 179.55 1.72% 4.41 7
A-R7 232.91 0.00% 7.74 10
A-R8 224.80 0.44% 5.91 9
A-R9 195.27 0.33% 7.53 7
A-R10 195.27 0.33% 7.53 7
A-R11 164.45 0.06% 4.39 9
A-R12 164.45 0.06% 4.43 9
A-R13 242.18 0.45% 11.21 7
A-R14 242.18 0.45% 11.05 7
A-R15 209.73 0.17% 12.53 9
A-R16 209.73 0.17% 12.41 9
A-R17 164.36 2.21% 10.08 8
A-R18 164.36 2.21% 10.11 8
Mean 0.59% 7.23 8.28

Table 3.11: Analysis of the results obtained by applying the CCDA heuristic to
the random instances of set A. The scenarios in which an instance does not allow
admissible solutions for the given k value are shown in bold.
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Name ff Opt
CCDA

gap time #Opt
B-R1 234.40 0.13% 9.90 10
B-R2 226.90 0.00% 10.88 10
B-R3 205.00 0.00% 10.05 10
B-R4 221.78 0.50% 13.62 10
B-R5 235.11 0.00% 12.52 10
B-R6 239.22 0.09% 7.68 10
B-R7 271.30 0.07% 10.98 9
B-R8 225.10 0.18% 7.20 9
B-R9 209.50 0.19% 8.32 9
B-R10 205.44 0.00% 11.21 9
B-R11 231.44 0.00% 11.42 10
B-R12 235.44 0.47% 10.70 10
B-R13 233.40 0.13% 7.05 8
B-R14 229.40 0.13% 10.04 8
B-R15 221.90 0.00% 11.04 9
B-R16 201.56 0.00% 10.21 8
B-R17 230.89 0.48% 13.74 10
B-R18 252.67 0.00% 13.03 10
Mean 0.13% 10.53 9.39

Table 3.12: Analysis of the results obtained by applying the CCDA heuristic to the
random instances of set B.

After a deep analysis, we determined that the reason for the excellent perfor-
mance of the DP approach on random instances is related to the k value. For the
grid instances, this value goes from 147 to 1544, while for random instances, this
value goes from 4 to 7. Given that the DP algorithm performs better when the k

value is small, it obtains better results on random scenarios. Therefore, this also
demonstrates that our algorithms, including both the exact and heuristic algorithms,
are stable in terms of the quality of the results and the computation time, regardless
of the size of the graph, the number of colours, and the k value.

Unfeasible Solutions

After an analysis of the performed tests, we noticed that among the random in-
stances of set A, there are four instances for which it was not possible to identify an
admissible solution. These cases are shown in bold in Tables 3.7 and 3.11. In the
two papers of Ferone et al. [37], [35], if we look at random instances of set A, there
are four cases for which neither optimal nor feasible solutions are identified. These
instances are given below:

• 1 = Random_75000x75000_150000_27003;
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• 2 = Random_75000x1125000_168750_27006;

• 3 = Random_75000x1125000_225000_27006;

• 4 = Random_100000x1000000_200000_27014.

Given that these are the only instances for which our approaches could not obtain
optimal or admissible solutions, we performed further analyses to understand the
reasons behind this problem. In particular, we implemented a simplified version,
for one single path, of the model proposed by Yuan et al. [94]. Their model can
identify the minimum number of colours that must be used to define several paths
between a set of source nodes and a set of destination nodes. We simplified the
proposed model for a single path and tried to use this formulation to determine the
minimum number of colours required to identify a path in the given instances. We
implemented the model in CPLEX, relaxing the integer constraints of the model,
and then we executed it. The results, shown in Table 3.13, highlight that for each
instance, at least one more colour is required to obtain a feasible solution (the values
reported in the table were rounded to the next integer value). Next, we modified
the instances, increasing the k colour value of 1, and executed our approaches again.
For these new instances, our approaches are able to identify the optimal solution in
all cases, as shown in Table 3.13.

Instance k min k ff Opt ILP time RILP time CCDA time
1 5 6 272 229.10 32.43 4.54
2 5 6 221 550.57 8.29 5.64
3 5 6 221 846.51 111.55 5.65
4 5 6 298 483.71 9.65 7.23

Table 3.13: Four random instances of set A that, with the original k value, do not
admit solutions for the k-CSPP. The ‘Instance’ column refers to the instance list
reported before. By increasing the k value to the value shown in column ‘min k’, the
instances admit a feasible solution. All three approaches obtain the optimum, which
is reported in column ‘ff Opt’. The time required by each method is also reported.

3.6.2 Reduction Analysis

In this section, we propose two further analyses to study the GRA and determine
how its application could modify the input graph. First, we analyse the size of the
graph G and the percentage of nodes and edges removed after the application of
the reduction approach proposed in Section 3.4. As can be seen in Tables 3.14 and
3.15 and in Figures 3.5 and 3.6, respectively, for the grid and random instances,
the percentage of the graph removed goes from 95% to 99% for grid instances and
from 89% to 99% for random instances. The effectiveness of this GRA is due to
the effectiveness of the CCDA, which, as shown previously in this section, obtains
optimal or near-optimal solutions in all cases. As can be seen, for grid instances, the
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larger the instance, the higher the reduction percentage; this is probably because
the larger the graph, the higher the number of nodes and edges that are too far
from the optimal path to be part of a good solution. Furthermore, the high quality
of solutions provided by the CCDA translates into a threshold for the GRA that
removes most of the graph. As shown in Figure 3.5, for grid instances, the reduction
percentage increases linearly with respect to the size of the graph, while the random
instances (Figure 3.6) have a more random behaviour, as expected. Therefore, for
the random instances of both set A and set B, the reduction is globally very high
and stable, except for some boundary cases.

Figure 3.5: Reduction percentage for grid instances. In this figure, each value
represents the mean reduction percentage of ten instances of the same size, generated
with different seeds. The values for the grid instances of both set A and set B are
higher than 95%. Furthermore, after an initial decrease, this percentage increases
as the instance size increases, achieving values close to 99.5%.

62



Figure 3.6: Reduction percentage for random instances. In this figure, each value
represents the mean reduction percentage of ten instances of the same size, generated
with different seeds. The values for the random instances of both set A and set B are
higher than 89%. Furthermore, while for set A this percentage is very close to 99%,
excluding the instance R1, for set B, it has a more random behaviour, as expected
considering the instance type.

Set A %Reduct Time Set B %Reduct Time
A-G1 96.88 0.13 B-G1 97.47 0.11
A-G2 95.55 0.07 B-G2 96.85 0.08
A-G3 96.66 0.10 B-G3 96.39 0.11
A-G4 96.85 0.11 B-G4 97.29 0.11
A-G5 98.93 0.32 B-G5 98.68 0.33
A-G6 98.91 0.32 B-G6 98.97 0.32
A-G7 99.15 0.91 B-G7 98.99 0.94
A-G8 99.15 0.73 B-G8 98.86 0.79
A-G9 99.21 1.79 B-G9 99.45 1.64
A-G10 99.23 1.68 B-G10 99.47 1.66
A-G11 99.53 3.89 B-G11 99.34 3.99
A-G12 99.53 3.71 B-G12 99.47 3.90
Mean 98.30 1.15 Mean 98.43 1.16

Table 3.14: Reduction percentages and computation times of the reduction process
for grid instances of both sets. At the end of the table, a summary row with mean
values is given.
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Set A %Reduct Time Set B %Reduct Time
A-R1 89.25 2.67 B-R1 99.21 2.68
A-R2 99.93 2.65 B-R2 99.21 2.69
A-R3 99.95 3.17 B-R3 99.76 3.16
A-R4 99.95 3.18 B-R4 99.76 3.15
A-R5 99.69 3.48 B-R5 92.43 3.54
A-R6 99.70 3.51 B-R6 92.43 3.53
A-R7 98.05 4.35 B-R7 99.84 4.52
A-R8 99.89 4.56 B-R8 99.94 4.54
A-R9 99.88 5.18 B-R9 99.90 5.39
A-R10 99.88 5.28 B-R10 99.90 5.38
A-R11 99.92 5.80 B-R11 97.39 6.17
A-R12 99.94 5.87 B-R12 97.39 5.99
A-R13 99.96 6.58 B-R13 99.75 7.24
A-R14 99.92 6.85 B-R14 99.75 6.88
A-R15 99.83 8.22 B-R15 98.51 8.12
A-R16 99.86 8.22 B-R16 96.73 8.18
A-R17 99.96 8.59 B-R17 98.89 9.33
A-R18 99.81 8.82 B-R18 98.89 8.98
Mean 99.19 5.39 Mean 98.32 5.53

Table 3.15: Reduction percentages and computation times of the reduction process
for random instances of both sets. At the end of the table, a summary row with
mean values is given.

The second analysis performed on the GRA takes into account the number of
residual edges per colour remaining in the graph after the reduction process. This
analysis is interesting because it allows us to understand not only the new size of the
graph but also the distribution of the edges according to their colours. Before the
reduction process, the distribution of edges per colour is uniform between instances
of the same set. An effective reduction process, like the one proposed in this thesis,
removes most of the edges and colours; the remaining colours are only associated
with a few edges. This means that on the reduced graphs, it is quite easy to identify
the optimal solutions.
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(a)

(b)

Figure 3.7: The number of residual edges per colour after the execution of the
reduction process for grid instances of (a) set A and (b) set B. In particular, in (a),
the chart indicates that, after the reduction, most of the colours (94.490%) have 0

edges left, while 5.018% have 1 edge left, and so on.
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(a)

(b)

Figure 3.8: The number of residual edges per colour after the execution of the
reduction process for random instances of (a) set A and (b) set B. In particular, in
(a), the chart indicates that, after the reduction, most of the colours (98.589%) have
0 edges left, while 0.805% have 1 edge left, and so on.

As can be seen in Figure 3.7 and 3.8, most of the colours for both random and
grid instances are removed because they do not have any remaining edges; however,
if there are any remaining edges for a given colour, the number of edges is small
and almost always lower than 3. These figures show in blue the percentage of
colours removed; the other percentages represent the percentage of colours that,
after the reduction, have one, two, three, or more than three edges remaining. It is
clear that the percentages decrease as the number of edges per colour increases. The
percentage for more than three colours is low compared to the rest of the percentages;
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this means that the reduction process proposed in this thesis considerably reduces
the complexity of the instances, allowing the application of exact approaches like
the one proposed in Section 3.5. The main exceptions are the grid instances of set
B. In some of these instances, the reduction percentage is a bit lower, and thus, the
number of edges per colour is higher. Therefore, even in this case, the effectiveness
of the GRA is clear. The Appendix includes tables containing detailed information
about this analysis.

3.7 Conclusions

In this chapter, we analyse the k-Colour Shortest Path Problem. The k-CSPP is
defined on a weighted edge-coloured graph, where the maximum number of different
colours that can be used is fixed to be k. It is a variant of the Shortest Path
Problem that consists of finding a shortest path for which the maximum number
of different usable colours is defined a priori. The k-CSPP can be used to model
several real-world scenarios, in particular in the field of network optimisation; it
is able to improve the reliability of networks while reducing the connection cost
between nodes.

To solve this problem, defined in [37], we first propose a heuristic approach,
namely the Colour-Constrained Dijkstra Algorithm (CCDA), that, in a small amount
of time, provides very good solutions, regardless of the size of the instances. We
propose a graph reduction technique, called the GRA, that is able to remove on
average more than 90% of the nodes and edges from the input graph, drastically
reducing the size of the instances. Finally, we present an exact approach, called Re-
duced ILP (RILP), that, taking advantage of the heuristic and the Graph Reduction
Algorithm, can provide optimal solutions in a reasonable amount of time, even for
large instances.

Several tests are performed to verify the effectiveness of the proposed approaches.
First, we compare our algorithms with state-of-the-art methods using the benchmark
instances proposed in [35] and [37]. Furthermore, we perform other tests to under-
stand the behaviour of our approaches for different kinds of instances. We analyse
how the reduction process affects the instances in terms of the residual nodes and
residual edges per colour.

Starting from the approach proposed in this thesis, for future research, it may be
interesting to work on the definition of new heuristic or meta-heuristic approaches
such as, for example, a combination of our reduction process and the DP approach.
The effectiveness of the reduction technique introduced in this thesis encourages us to
investigate the applicability of this technique to other path identification problems.
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Chapter 4

The Close Enough Generalized
Routing Problem

4.1 Introduction

The second main topic handled in this thesis concerns the definition of tours. A tour
is a path that starts and ends in a depot node and connects it with all the targets
of the graph. If a target is equipped with a proximity sensor (e. g. an R-FID
tag), it can be served from any point within a certain distance. The Close-Enough
Arc Routing Problem (CEARP) [31], and the Close-Enough Travelling Salesman
Problem (CETSP) [27] are proposed to handle these new possibilities. In these two
generalizations, the aim consists of finding a shortest tour that starts and ends at
the depot node and intersects the neighborhood of each target once. These problems
have several practical applications in the context of Unmanned Aerial Vehicles for
military and civil missions like supply delivery (food, munition, etc.), geographic
region monitoring, and military surveillance [12], [93], [78].

In this thesis, we propose a new generalization of the Close-Enough Travelling
Salesman Problem, namely Close-Enough Generalized Routing Problem (CEGRP).
It, combining the properties of the Close-Enough Travelling Salesman Problem and
the Close-Enough Arc Routing Problem, can handle all the scenarios in which the
movement of a UAV can be constrained or unconstrained according to its position
on the graph. CEGRP models the scenarios in which a vehicle (e.g. a drone) must
cover a set of targets that can be placed in a constrained location. If we consider
locations such as schools, hospitals, military or residential areas, flying over these
areas is usually prohibited for several reasons such as safety, public order, privacy,
etc. In the CEGRP, we introduce the concept of a flight zone. We differentiate two
cases: one in which the drone can fly freely, called Free Flight Zone (FFZ), and
a second one in which the possibility of flight is limited to specific corridors (e.g.,
roads) or prohibited, called Constrained Flight Zone (CFZ).

In this thesis, we formally define the problem, and we also propose a heuristic
approach, namely, the Convert and Conquer Algorithm (C&C) that performs a set of
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conversion steps to solve the CEGRP by reducing it into the Generalized Travelling
Salesman Problem (GTSP) [68]. The GTSP is an extension of the TSP, where, given
a set of targets and a partition of them into groups, we want to find a minimum
length tour that includes exactly one city from each group. We propose a new set of
benchmark instances to test the C&C algorithm. The results address the validity of
the proposed generalization and the effectiveness of the proposed heuristic approach.

4.2 Problem Definition

To provide a generalized approach able to model scenarios that combine the CETSP
and the CEARP, in this thesis, we propose a new problem that can handle both these
two problems and also further applications given by a combination of the previous
ones. It, namely Close-Enough Generalized Routing Problem, is formally defined
on the ideas of Free Flight Zones and Constrained Flight Zones.

4.2.1 Flight Zones

An application example for the CETSP can be seen in a drone that, to reach a target,
can fly directly without constraints. Unfortunately, this scenario is not realistic at
all. In the real world, flying over a school, a hospital, a military zone, or a residential
district, could be prohibited. This is due to many reasons related, for example, to
people’s safety, privacy, or public order. An example of this scenario is shown in
Figure 4.1. Until today, to model this scenario are defined zones where flight is
prohibited or at least constrained. If the usage of prohibited areas is selected as
a modeling strategy, in some cases, serving a target with its neighborhood fully
inside this kind of zone, is impossible. If the usage of constrained areas is selected
as a modeling strategy, the problem could be divided into two subproblems. In
particular, a CETSP is defined only for targets outside the areas with constraints,
and a CEARP is defined for targets inside it. This one is a valid solution but
can limit the goodness of the solutions. It also requires further computation effort
to merge the solutions of the sub-problems into a feasible solution for the original
instance.

In this new formulation, we define a new type of flight zone, where flight is not
fully prohibited, but is constrained to predefined moving corridors. An example of
this scenario is presented in Figure 4.2. This new zone, called Constrained Flight
Zone, can model scenarios where the movement is constrained, using defined moving
corridors or prohibited, using areas without moving corridors. The complementary
part of the CFZ, namely Free Flight Zone, represents the portion of the graph where
the movement is free.
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Figure 4.1: This figure shows an example of areas where flight is constrained or
prohibited in Rome. The red one on the top left corner corresponds to a prohibited
flight zone (the Rebibbia prison). The other blue areas represent areas where the
flight is allowed but with more attention to people’s safety, and privacy.

Figure 4.2: This figure shows an example instance for the CEGRP, where the graph
contains different flight zones. In black are represented the edges, in blue are re-
ported the targets with their neighborhood and, in red, are reported the Constrained
Flight Zone. On the bottom left area of the image can be seen an example of a Pro-
hibited Flight Zone. This area is represented as a CFZ without moving corridors
inside.

4.2.2 The CEGRP

The CEGRP is defined on a graph G = (N,E, T, Z), where N represents the set of
nodes, E represents the set of edges, T represents the set of targets to serve, each
target t ∈ T has a neighborhood Nt of radius r, and finally, Z represents the set
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of Constrained Flight Zones described before. Let d : E −→ R+
0 be a non-negative

distance function defined for each edge e ∈ E. The problem aims to find a path,
of minimum length, that starts and ends in a depot node nd and intersects the
neighborhood of each target t ∈ T . An example instance of this problem can be
seen in Figure 4.2.

Interesting to highlight is that extending the idea of CFZ to the whole graph,
reduces the CEGRP into an instance of the CEARP; on the other hand, instead,
if the idea of FFZ is extended to the whole graph, the CEGRP is reduced into an
instance of the CETSP. Furthermore, for the CEGRP, the CETSP, and the CEARP
represent, respectively, a Lower Bound and an Upper Bound for the problem. This
demonstrates that the CEGRP, is a generalization and a combination of the CETSP
and the CEARP. Finally, we can affirm that our new problem can model several real-
world applications of both the original problems and many others that cannot be
modeled using the existing formulations.

The CEGRP is an NP-Hard problem. We can motivate this assumption as fol-
lows. This problem is a generalization of the CETSP and the CEARP, which are
generalizations of, respectively, TSP and ARP. Given that, as largely discussed ([26],
[13]), the TSP is NP-Complete, we can say that the CEGRP is at least as complex
as the CETSP and so it is NP-Hard.

4.3 Convert and Conquer Algorithm

The CEGRP is a new routing problem that consists of finding a shortest tour that
intersects the neighborhood of each target, regardless of the position of the target, in
a CFZ, or an FFZ. In this thesis, we propose a heuristic approach, namely Convert
and Conquer Algorithm (C&C). The C&C first reduces an instance of the CEGRP
into an instance of the Generalized Travelling Salesman Problem (GTSP) and then
solves it using an effective algorithm for the GTSP, namely 2-Opt. We define this
approach starting from the assumption that the CEGRP combines the properties of
the CETSP and the CEARP; then, if we perform some transformation on the original
graph, we can use existing, and effective, algorithms to provide good solutions for
the original problem.

Figure 4.3 shows the flow chart of the Convert phase of the C&C Algorithm. The
method takes as input a graph G in Step (1). It removes, in Steps (2-5), from G all
the edges and nodes that are outside all the CFZ. This is because, as said before,
these edges and nodes are useless. A new set of edges, that surround each CFZ
are created in Step (6). The approach performs, in Step (7), a discretization step
to select a fixed number of points as candidate positions to cover each target, and
then, using these points, it creates a new set of edges to make the graph connected
in Step (8). At the end of these steps, a new graph G′ is created in Steps (9-11).
Finally, in Step (12), the algorithm returns the new instance for the GTSP.

In the following sections, the main phases of the C&C algorithm are described in
detail.
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Figure 4.3: This figure shows the flow chart of the convert phase in the Convert
and Conquer Algorithm. Given an instance graph G for the CEGRP, this approach
produces an instance graph G′ for the GTSP.

4.3.1 Graph Reduction

The first step of the conversion process consists of a reduction of the original graph
by removing the edges and the nodes inside the FFZ. This can be done because, in
the FFZ, a vehicle can move without constraints, so, for the triangle inequality, the
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shortest path between two points is the straight path between them. Furthermore,
this step also leads to a reduction of the graph complexity. In Figure 4.4 we can see
an example of this step applied on the instance shown in Figure 4.2. We can see
that the edges, partially inside the CFZ and partially outside, are split, removing
the part outside and leaving only the part inside the CFZ. Finally, we can note that,
around the CFZ, a set of new nodes and edges are created to allow the drone to fly
on the perimeter of the CFZ.

Figure 4.4: In this figure is shown an example of the application of the ReduceGraph
Step. As can be seen, all the edges outside a CFZ are removed and new edges, that
surround the CFZ are created.

4.3.2 Discretize Targets

Once removed, from the original graph, the useless edges and nodes, the algorithm
performs an extremely important task, namely the target’s discretization process.
This step consists of defining a set of DPt discretization points for each target. These
points represent where the target neighborhood can be intersected by the vehicle.
The number |DPt| is set a priori and is equal for all targets. In literature, several
works propose effective approaches to identify these points [13].

The approach, used in this thesis to identify these points, has different behavior
depending on whether the target t ∈ T is inside a CFZ, or not. For what concern
targets t ∈ T completely inside FFZ, the discretization points are selected randomly
on the circumference that bounds the neighborhood. In particular, given a target
t ∈ T , and the number |DPt| of points to select, a random angle is chosen, this
will be the first point dpt ∈ DPt; to select the others, we multiply the angle with
a scalar value i, such that i = 1, 2, ..., |DPt|. The product is performed in modular
arithmetic. For what concerns the targets t ∈ T inside the CFZ, the discretization
points dpt ∈ DPt are selected considering the intersections between the edges of the
CFZ and the circumference that bounds the neighborhood of each target. Given
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that, in this case, the points are not generated, we select only the first |DPt| points
identified by the intersections. If a target t ∈ T has its neighborhood partially in a
CFZ and partially in a FFZ, both approaches are applied. First, points by edge’s
intersection are selected, and then, to achieve a total of |DPt| points, the remaining
points, are randomly generated on the portion of the neighborhood that is in the
FFZ. For each discretization point dpt ∈ DPt of each target t ∈ T a node n ∈ N is
created.

Figure 4.5 shows an example of targets with the new set of discretization points
defined and highlighted in pink. As can be seen, for each target, |DPt| = 4 dis-
cretization points are selected.

Figure 4.5: This figure shows the result of the application of the DiscretizeTargets
Step. As can be seen, the pink dot placed on the neighborhood boundary represents
the discretization points.

4.3.3 Create Edges

The third step of the conversion process consists of the creation of new edges; these
new edges have to connect all the targets of the graph between each other. In
particular, for every two targets t, t′ ∈ T completely contained in a FFZ, this step
creates an edge between each couple nodes n, n′ ∈ N related to the discretization
points dpt ∈ DPt and dpt′ ∈ DPt′ . For targets completely contained in a CFZ,
no edges are created at all. Finally, if a target t is partially contained in a CFZ,
an edge between the nodes n ∈ N related to the discretization points dpt ∈ DPt

of t and all the other nodes created starting from the discretization points for all
t′ ∈ T not completely contained in a CFZ is created. We note that a new edge
created connecting two targets could cross one or more CFZ. To avoid inadmissible
scenarios, only edges that do not cross CFZ, are created.

Furthermore, to make the graph connected, an edge connecting the nodes n ∈ N ,
related to the discretization points dpt ∈ DPt of all targets t ∈ T that are not
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contained in a CFZ, to each node n′ ∈ N on the border of each CFZ (corner
included) is created. Finally, an edge between each pair of nodes corresponding to
the points on the border of two different CFZ is created, only if this new edge does
not cross other CFZ. An example of the application of this step is shown in Figure
4.6. Consider for example the target in the bottom left part of the graph. The
approach creates an edge between each discretization point of that target and all
other discretization points of other ones. Then, a few edges between the same points
and the corner of the CFZ are created. Also, the intersection points of the edges
inside the CFZ and the border of the zones are connected with a new edge to the
discretization points of the bottom left target. Finally, the two CFZ are connected
between them, by creating a set of edges between the corner nodes and the ones on
the perimeter of the zones.

Figure 4.6: This figure shows an example of the application of the CreateEdges Step.
As can be seen, each pair of discretization points of two different targets, each pair
of CFZ, and each couple of discretization points and CFZ are connected with a new
edge.

4.3.4 Graph Conversion

Once completed all the previous steps, a last further process has to be done to
complete the conversion of the original graph into an instance for the GTSP. This
process converts the graph G = (N,E, T, Z) obtained after all the steps described
before, into a new Graph G′ = (N ′, E′, V ′), which is an instance for the GTSP. In
particular, for each node n ∈ N related to each discretization point dpt ∈ DPt of
each target t ∈ T , a new node n′ ∈ N ′ is created. A cluster v′ ∈ V ′ is created
for each target t ∈ T , containing all the nodes n′ ∈ N ′ created starting from the
discretization points dpt ∈ DPt of that specific target t ∈ T . Finally, E′ represents
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the new set of edges where ∀e′ ∈ E′ : e′ = {es, ..., ed}, ei ∈ E. This means that each
e′ ∈ E′ is a subset of the edges of the original graph after the execution of the three
steps described before. In particular, each edge e′ that connects two nodes n′i and n′j
of G′ is just a shortest path between the two nodes ni, nj ∈ N of the graph G. We
note that in the remaining of this chapter e′ ∈ E′ can be represented also as (i, j).
Lastly, c(e′) represents the length of the edge e′. A generic tour TGTSP , that is a
solution for the GTSP, can be simply converted into a tour TCEGRP , considering
the relation between each edge e′ ∈ TGTSP : e′ ∈ E′ and the set of corresponding
edges e ∈ E (e′ = {es, ..., ed}). Figure 4.7 presents the result of the application of
the conversion process on instance shown in Figure 4.2.

Figure 4.7: This figure presents the instance Graph for the GTSP obtained from the
instance of Figure 4.2 on which the C&C conversion process is applied. The red
dots represent the nodes, and the red circles group the nodes of the same cluster.
The blue dot represents the depot node.

4.3.5 ILP formulation for the GTSP

The Convert & Conquer algorithm reduces an instance for the CEGRP into an
instance for the GTSP. In this way, it tries to provide a solution for a problem
that combines two different problems that are commonly solved using different ap-
proaches [31], [27]. After the application of the conversion process described before,
we define two techniques to compute a solution for the GTSP. The former described
here, consists of the ILP formulation for the GTSP.

We used the formulation proposed by Noon et al. [68]. Given G′ = (N ′, E′, V ′),
let xe′ = xij be a binary variable where

xij =

{
1, if (i, j) ∈ E′ is used in solution
0, otherwise
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Given these variables, the formulation consists of

min
∑

(i,j)∈E′

cijxij (4.1)

s.t.
∑
i∈v′

∑
j /∈v′:(i,j)∈E′

xij = 1 ∀v′ ∈ V ′ (4.2)

∑
i/∈v′

∑
j∈v′:(i,j)∈E′

xij = 1 ∀v′ ∈ V ′ (4.3)

∑
i∈N ′:(i,j)∈E′

xij −
∑

k∈N ′:(j,k)∈E′

xjk = 0 ∀j ∈ N ′ (4.4)

∑
(i,j)∈ES

xij ≤ |S| − 1 ∀S ⊂ N : 2 ≤ |S| ≤ |N | − 1 (4.5)

xij = {0, 1} ∀(i, j) ∈ E′ (4.6)

The objective function (4.1) consists of minimizing the cost of all the edges used in
the solution. Constraints (4.2) and (4.3) impose that for each cluster of nodes v′ ∈ V ′

one edge enters and one edge exits the nodes of the cluster v′ ∈ V ′. Constraints
(4.4) guarantee the balancing in the number of entering and exiting edges in each
node. Finally, constraints (4.5) prevent the definition of sub-tour in the path. Let S
be a possible subset of nodes. Let ES be the edges of the graph that belong to the
subset S. Constraints (4.5) impose that the edges used in a possible subset must
be lower or equal to the number of nodes that belong to the subset minus one. We
note that the number of constraints (4.5) grows exponentially with the size of the
graph. This is because all possible subsets of nodes correspond to the power set of
the nodes, which size is exponential with respect to the number of elements [59].

4.3.6 2-Opt

Due to the complexity of the problem, the ILP formulation for the GTSP cannot
obtain optimum solutions within the time limit. Even if it can obtain feasible
solutions in all instances, it cannot certify the optimum except for some cases.
For this reason, we present a second technique based on a 2-Opt algorithm [33]
to compute a path connecting the depot node nd with one node for each cluster
v′ ∈ V ′. A 2-Opt algorithm [33] is a simple local search approach whose main idea
consists of taking a tour that crosses over itself and reordering it so that it does not.
The 2-Opt algorithm is mainly proposed to compare the computation times and the
quality of the solutions of the ILP formulation with a heuristic approach.

Given a set of nodes N ′, a set of cluster V ′, and a sequence of nodes S such that
S contains a node n′ ∈ N ′ for each cluster v′ ∈ V ′, a complete 2-Opt local search
tries every possible 2-opt of two nodes in the sequence. An exchange is performed by
reversing a sub-sequence delimited by two nodes only if the length of the sequence
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obtained by the 2-opt is less than the actual one. After a 2-opt, the algorithm starts
again to check every possible combination. Furthermore, it is possible to change
the node n′ ∈ N ′ in which a specific cluster v′ ∈ V ′ is covered. The algorithm
stops when all possible combinations are performed with no improvements or when
a maximum number of iterations equal to MaxIter = |V ′| ∗ 100 are executed.

Algorithm 3 shows the pseudo-code of the 2-Opt algorithm used at the end of the
Convert & Conquer algorithm. The approach starts with the input graph G′ in Step
(1). It initializes the sequence of nodes to cover in Step (2), and then it generates a
random sequence of nodes, one for each cluster v′ ∈ V ′ (Step (3-5)). While the stop
criteria is not reached (Step (9)), the algorithm tries to improve the initial random
solution. In Step (12) and (13), for all different pairs of nodes si and sj the approach
generates a new sequence S∗ (Step (14)) that is composed as follows. From 0 to i−1

the new sequence S∗ is equal to the solution Sbest, Step (15). From i to j in the new
sequence S∗ are inserted the nodes of Sbest in reverse order, Step (16). Finally, from
j + 1 to the end of the sequence, S∗ is equal to the solution Sbest, Step (17). The
length of the new sequence dist is computed in Step (18), and if this value is lower
than the length of the incumbent best solution in Step (19), the 2-opt is saved, and
the new solution is updated to be the best incumbent in Step (21). In Step (22), the
algorithm returns to the while condition to try to find a new 2-opt that improves the
solution. If no 2-opt are found, the algorithm tries to refine the solution by looking
for the node that minimizes the path length within the ones of the same cluster. In
Step (27), for each node si of the solution, and for each node n′ of the same cluster
v′ of si in Step (28), a new solution that uses n′ instead of si is generated in Steps
(29) and (30). The length of the new sequence dist is computed in Step (31), and if
this value is lower than the length of the best incumbent solution in Step (32), the
new solution is updated to be the best incumbent in Step (34). In Step (35), the
algorithm returns to the while condition to start the process from scratch. When
the stop criteria are reached, the algorithm returns the best solution found in Step
(41).

During the comparison of the results in Section 4.4, we consider two variants of
the 2-Opt algorithm. The former, applies an improvement as soon as it finds it, so
all 2-opt are applied. The latter applies in each iteration, the best possible 2-opt.
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Algorithm 3 2-Opt
1: Input: G′

2: Sbest = ∅
3: for all v′ ∈ V ′ do
4: add in Sbest a random n′ ∈ v′

5: end for
6: i = 0

7: improved = true

8: best ← l(Sbest)

9: while i ≤MaxIter and improved do
10: i = i+ 1

11: improved = false

12: for all si ∈ Sbest do
13: for all sj ∈ Sbest − si do
14: S∗ ← ∅
15: S∗ ← Sbest, from s0 to si−1

16: S∗ ← Sbest, from si to sj in reverse order
17: S∗ ← Sbest, from sj to send
18: dist = l(S∗)

19: if dist < best then
20: improved = true

21: Sbest ← S∗

22: goto Step 9
23: end if
24: end for
25: end for
26: if not improved then
27: for all si ∈ Sbest do
28: for all n′ ∈ v′ : si ∈ v′, n′ ̸= si do
29: S∗ ← Sbest

30: S∗
i = n′

31: dist = l(S∗)

32: if dist < best then
33: improved = true

34: Sbest ← S∗

35: goto Step 9
36: end if
37: end for
38: end for
39: end if
40: end while
41: return Sbest
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4.4 Computational Results

This section reports the results obtained by applying the approach proposed in
Section 4.3 on a set of benchmark instances defined for this problem. These instances
are created starting from a practical application for the problem. It consists of
defining a tour of minimum length for a drone that has to cover a set of R-FID tags
in a port scenario. The R-FID tags are placed on a set of containers that have to be
monitored. The drone has to cover all the targets while moving in constrained areas,
namely the row of containers, and free areas (the empty spaces between them).

The instances are created starting from a grid graph. The grid size goes from
10x10 up to 100x100. Thus, the graph size goes from 100 nodes and 180 edges up
to 10000 nodes and 19800 edges. For each graph, a set of targets that goes from 10

up to 100 is generated. For each target, we consider three different radii: 30, 50,
and 100 meters. Finally, for each one of these scenarios, a set of CFZ of random size
is defined. This number goes from 1 up to 10. The percentage of space inside the
CFZ is on average 25% of the total space of the graph. An instance is created for
each combination of these characteristics, and the total number of instances created
is 180. A summary of the properties of the instances is reported in Table 4.1. More
information about the instances is shown in the Appendix.

Grid Size |T| Radius |Z|
10x10 10 30 1
50x50 20 50 2

100x100 50 100 3
100 5

10

Table 4.1: Summary of the characteristics of the benchmark instances. For each
combination of each characteristic, an instance is created to assess the performance
of the proposed approach.

In the remainder of this section, we show the results of our computational exper-
iments. The tests are performed on an Arch Linux OS with an Intel Core i9-11950H
2.60GHz CPU and 32 GB of RAM. The approaches are implemented in Java 15, and
the mathematical formulation for the GTSP is implemented using CPLEX 22.10.
The sub-tour elimination constraints 4.5 used in the formulation proposed in Section
4.3.5 are implemented as lazy constraints using the CPLEX solver. The time limit
for all the algorithms is 600 seconds.

The results proposed, consider the same conversion phase for the C&C algorithm
and compare the objective function, the computation times, the gap to and the per-
centage of the best solution found by the 2-Opt algorithm, and the ILP formulation
of the GTSP. Focusing on the 2-Opt algorithm, we report both the results for the
variant that applies all the possible 2-opt and the one that applies only the best
one in each iteration. Best 2-opt means that in each iteration, all possible 2-opt
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are computed. The one with the highest improvement of the objective function is
applied to the path. The results of the ILP formulation are named ‘ILP’. The results
of the 2-Opt algorithm that applies all possible 2-opt and only the best 2-opt are
indicated, respectively, by ‘2-Opt AS’ and ‘2-Opt BS’.

Name Conversion ILP 2-Opt AS 2-Opt BS
10x10-10t 0.04 563.41 0.00 0.00
50x50-10t 0.25 564.41 0.00 0.00

100x100-10t 1.01 522.54 0.00 0.00
Mean 10t 0.44 550.12 0.00 0.00
10x10-20t 0.08 600.12 0.01 0.01
50x50-20t 1.06 600.25 0.01 0.01

100x100-20t 4.55 600.78 0.01 0.02
Mean 20t 1.90 600.39 0.01 0.01
10x10-50t 4.24 600.31 0.79 0.85
50x50-50t 12.27 600.20 0.66 1.22

100x100-50t 32.48 600.23 0.79 1.44
Mean 50t 15.60 600.25 0.75 1.17
10x10-100t 19.46 603.64 36.66 38.70
50x50-100t 93.67 605.07 35.46 60.11

100x100-100t 233.18 606.29 46.04 71.49
Mean 100t 115.44 605.00 39.38 56.77

Table 4.2: Summary of the computation times required by all the approaches. Each
line contains the average value for the instances of the size and number of targets
specified in the column ‘Name’. After each set of instances with the same number
of targets, a summary row is shown. All the times are shown in seconds.

Table 4.2 contains the information about the computation time required by the
algorithm proposed in Section 4.3. In particular, the conversion time required by
the convert phase of the C&C algorithm is reported in column ‘Conversion’. Then,
the times required by the ILP formulation of the GTSP, the 2-Opt algorithm that
applies all possible 2-opt, and the one that applies only the best ones are shown. All
the times are in seconds. As can be seen the time required by the conversion phase
increase exponentially as increases the size of the graph and the number of targets.
The number of targets has an important impact due to the number of discretization
points used in the conversion phase. The ILP formulation achieves on average the
time limit of 600 seconds in all instances except for some boundary cases. The two
variants of the heuristic approach are considerably faster with respect to the ILP
formulation. The fastest algorithm is the 2-Opt which applies all possible 2-opt.
This is because it does not look for the best improvement of the solutions, and so,
in bigger instances, it results in a reduction of the computation time of 30%.

Table 4.3 contains the average results obtained by the proposed approaches. For

81



each algorithm the table reports the value of the objective function, the percentage
gap with respect to the best solution found over all the algorithms, and the percent-
age of the best solutions found. In Table 4.3, each line contains the average value
for the instances of the size and number of targets specified in the ‘Name’ column
(e. g. the first line contains the average value between all instances with graph size
10x10 and 10 targets). After each set of instances with the same number of targets,
a summary row is shown. All the algorithms can obtain at least admissible solutions
in all instances except for the ILP formulation that in instances with 100 targets
reaches the time limit without obtaining admissible solutions.

Name
ILP 2-Opt AS 2-Opt BS

ff gap % best ff gap % best ff gap % best
10x10 10t 2592.18 0.00% 100.00% 2819.99 8.76% 0.00% 2772.97 6.73% 6.67%
50x50 10t 14554.30 0.00% 100.00% 16487.86 13.83% 0.00% 15513.49 6.93% 13.33%

100x100 10t 29636.97 0.00% 93.33% 31524.50 6.49% 6.67% 32081.10 8.05% 6.67%
Mean 15594.48 0.00% 97.78% 16944.12 9.69% 2.22% 16789.19 7.24% 8.89%

10x10 20t 2764.63 0.01% 80.00% 3663.90 27.00% 6.67% 3866.49 33.22% 13.33%
50x50 20t 16111.24 0.08% 86.67% 20301.55 34.04% 6.67% 19500.24 29.14% 6.67%

100x100 20t 33312.51 0.01% 93.33% 43366.76 35.79% 6.67% 38538.27 21.55% 0.00%
Mean 18076.66 0.04% 86.67% 23548.74 32.28% 6.67% 21743.40 27.97% 6.67%

10x10 50t 4344.64 7.20% 93.33% 9520.53 57.15% 6.67% 10050.73 73.59% 0.00%
50x50 50t 31353.66 14.17% 80.00% 30751.45 35.56% 13.33% 33761.83 45.11% 6.67%

100x100 50t 58278.24 3.22% 73.33% 65777.92 29.93% 13.33% 67440.29 36.72% 13.33%
Mean 31325.52 8.20% 82.22% 36929.02 40.88% 11.11% 39386.19 51.80% 6.67%

10x10 100t - - - 18184.90 2.99% 73.33% 21474.72 15.06% 26.67%
50x50 100t - - - 44555.28 0.45% 86.67% 50060.92 14.84% 13.33%

100x100 100t - - - 95054.25 0.71% 86.67% 107915.56 15.51% 13.33%
Mean - -% -% 56153.01 1.38% 82.22% 63627.83 15.14% 17.78%

Table 4.3: Summary of the results obtained by all the approaches. Each line contains
the average value for the instances of the size and number of targets specified in the
column ‘Name’. After each set of instances with the same number of targets, a
summary row is shown.

The results shown in Table 4.3 are extremely interesting. First, we can highlight
that the ILP formulation for small instances can obtain, in all cases, the best possible
solution even if it cannot certify the optimum in the given time limit. The ‘2-Opt
AS’ is the approach that obtains the worse results on the small instances. It obtains
a gap to the best of 9.69% and a percentage of the best solution equal to 2.22%.
The ‘2-Opt BS’, even if the quality of the solutions is not comparable with the one
produced by the ILP formulation, is better if compared to the ‘2-Opt AS’. Increasing
the size of the instances, the ILP formulation is as well the algorithm that performs
better both in terms of gap and the percentage of the best solution found. Interesting
to highlight is that the heuristic approach, when increasing the size of the graph,
obtains a higher number of best solutions, but also a higher gap to them. This means
that, even if in some cases, the algorithm can find the best solution, in many others
the quality of the solutions is poor and far from the optimum. A drastic change in
the behaviours of the algorithms occurs in the instances with 100 targets where the
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ILP formulation, within the time limit, cannot obtain admissible solutions. In these
instances, only the heuristic approaches can obtain admissible solutions. Here the
algorithm that performs better is the ‘2-Opt AS’. The search strategy applied by
the ‘2-Opt BS’ performs better in small instances where the search space is smaller.
Therefore, when the size of the instances increases, selecting the best possible 2-opt
induces the convergence into a local optimum while selecting randomly the 2-opt
opens possibilities that induce better solutions.

In conclusion, we can affirm that the best algorithm in terms of computation
time is ‘2-Opt AS’; with a small amount of time, the ‘2-Opt BS’ can obtain better
solutions on small instances. Therefore the search strategy loses effectiveness as
increase the size of the instances. Instead, in terms of the quality of the solutions,
the best approach remains the ILP formulation.

4.5 Conclusion

The problems that belong to the class of the Close Enough family are getting, year
by year, more attention. This is thanks to the fast growth of wireless technologies,
such as Bluetooth, Wi-Fi, and tag R-FID. In this thesis, we presented a new prob-
lem, namely Close-Enough Generalized Routing Problem (CEGRP) that, combining
the characteristics of the CETSP and the CEARP, tries to handle all the scenarios
in which the movements of an Unnamed Aerial Vehicle can be constrained, uncon-
strained or prohibited. Using the definition of the Constrained Flight Zone and the
Free Flight Zone we handle, respectively, constrained and unconstrained movement
for the vehicle. Furthermore, an effective conversion algorithm, namely, the Convert
& Conquer Algorithm, is proposed. It converts an instance for the CEGRP into
an instance for the Generalized Travelling Salesman Problem, by applying a set of
conversion steps. This conversion allows us to apply on the converted instances,
effective approaches for the GTSP.

We define a set of benchmark instances for the CEGRP of increasing size to
assess the effectiveness of our algorithms. The results highlight how the conversion
technique proposed can efficiently reduce the CEGRP into the GTSP. The results
also demonstrate how even a simple technique such as the 2-Opt algorithm can
provide good solutions in a reasonable amount of time.

The problem proposed in this thesis opens many possibilities for future research.
First, new approaches can be defined to handle the problem not only in mixed
instances but also in the two boundary conditions, which consist of considering only
CFZ or only FFZ. New meta-heuristic approaches such as Genetic Algorithm [66] can
be applied to obtain good solutions in mixed instances. A further important aspect
consists of the position of the discretization points. In particular, a new approach
that can dynamically change these points (Second Order Cone Programming Model
[12]) could drastically improve the quality of the solutions. Nevertheless, we are
still working on the definition of new instances of bigger size, of different types (e.g.
random instances), and with a higher area of CFZ.
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Chapter 5

Conclusion and Future Works

In this dissertation, we discussed in depth the problem of finding, in a reasonable
amount of time, several paths or tours on graphs, defining advanced solving meth-
ods, as the ones proposed for the k-Colour Shortest Path Problem (k-CSPP), and
describing new variants of the problem, such as the Concurrent Shortest Path Prob-
lem (CSPP) and the Close-Enough Generalized Routing Problem (CEGRP).

A new NP-Hard variant of the Shortest Path Problem, namely CSPP, is pro-
posed in Chapter 2. It aims to find multiple paths of minimum length connecting
all source-destination pairs while avoiding collisions between paths. This variant
can model various scenarios such as handling the traffic in smart cities ([87], [54]),
or define paths of minimum length for robots and forklifts in a warehouse ([52],
[90]). The CSPP well fits all applications where several vehicles have to reach their
destinations without colliding between them. In this thesis, we present three math-
ematical formulations for the problem. The first one is based on a flow formulation
that considers a discretization of the time dimension. The second one is based on a
bin packing formulation, and the third one is based on a flow formulation applied to
a transformed graph to remove the time dimension. Furthermore, to handle large-
size instances, we propose two heuristic approaches, namely DSPA, and MVSPA.
We define a set of benchmark instances randomly generated. Results show that the
two formulations can be applied to small instances to obtain optimal solutions, but
cannot provide admissible solutions on the biggest ones due to the complexity of
the problem. Furthermore, computational results show that the proposed heuristics
can produce good solutions in a reasonable amount of time. This new variant of the
SPP opens various possibilities for future research. The definition of new instances
of different types and bigger sizes, or instances that change dynamically, can dras-
tically increase the complexity of the problem and provide a challenging scenario
for the proposed approaches. Furthermore, interesting can be the introduction of
a maximum completion time within which to complete all tasks. Considering that
these algorithms should be used in a real-time system, the computation time gets
a crucial role, more than the solution quality. For this reason, it gets importance
the definition of new heuristic and meta-heuristic approaches that can handle big
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scenarios in a considerably small amount of time.
In Chapter 3 we analyse the k-Colour Shortest Path Problem and provide ad-

vances in finding the optimum solution for the problem. The k-CSPP consists of
finding a shortest path on a weighted edge-coloured graph for which the maximum
number of different usable colours is defined a priori to be k. It can model several
real-world scenarios in the field of network optimisation and multi-modal transport
system. As a contribution to this problem, defined in [37], we first propose a heuris-
tic approach, namely Colour-Constrained Dijkstra Algorithm (CCDA), that, in a
few seconds, provides very good solutions, regardless of the size of the instances.
We present a graph reduction technique that can remove on average more than 90%

of the nodes, edges, and colours from the input graph. We define also an exact ap-
proach, called Reduced ILP (RILP), that, by combining the heuristic and the Graph
Reduction Algorithm with an ILP formulation, can provide optimal solutions in a
reasonable amount of time. To verify the effectiveness of the proposed approaches
we performed several tests using the benchmark instances defined in [35] and [37].
We compare our algorithms with state-of-the-art methods presented by Ferone et
al.. The results highlight that our algorithms outperform the state-of-the-art meth-
ods for grid instances. In general, our approaches are more stable in terms of the
quality of the results and the computation time, regardless of the size of the graph,
the number of colours, and the k value. We investigate the impact of the reduc-
tion technique in terms of the residual nodes and residual edges per colour. For
future investigation, it may be interesting to work on the definition of new heuristic
or meta-heuristic approaches such as, for example, a combination of our reduction
process and the DP algorithm.

In the last chapter of this dissertation, while focusing on the definition of tours
for drones, we discuss how the Close Enough problems can model several real-world
scenarios. However, the CETSP, and the CEARP are not always accurate, as the
drone is not always free to fly. We present the Close-Enough Generalized Rout-
ing Problem (CEGRP) that, combining the characteristics of the CETSP and the
CEARP, tries to handle all the scenarios in which the movements of a drone can be
constrained, unconstrained, or prohibited. We define the Constrained Flight Zone
and the Free Flight Zone to handle, respectively, constrained and unconstrained
movement. We present an effective conversion algorithm, namely, the Convert &
Conquer Algorithm. It converts an instance for the CEGRP into an instance for
the Generalized Travelling Salesman Problem, by applying a set of conversion steps.
To assess the performance of the C&C algorithm, we define a set of benchmark in-
stances for the CEGRP of increasing size. The results highlight how the conversion
technique proposed can efficiently reduce the CEGRP into the GTSP. This problem
opens many possibilities for future research. First, the above problem has only been
examined in mixed instances (e.g. both FFZ and CFZ are present). Future devel-
opments include studying the two limiting cases. New approaches can be defined
such as Genetic Algorithms [66], to obtain good solutions in any instance. A further
important aspect consists of the position of the discretization points. In particular, a
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new approach that can dynamically change these points using a Second Order Cone
Programming Model [12] could drastically improve the quality of the solutions.

This dissertation is structured to provide an overview of some of the most impor-
tant variants of the Shortest Path Problem and Close Enough problems. We present
various advances in the definition of paths and tours on graphs. Given the emerging
use of robots, drones, and autonomous vehicles in logistics and transportation, the
results presented in this thesis aim to propose further studies on the SPP and its
variants.
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Chapter 6

Appendix

CSPP

To better understand the process described in Section 2.3.4, we provide in the fol-
lowing figure a complete example of the transformation process.

(a) Original Graph G (b) Transformed graph

Figure 6.1: Graph transformation complete example

Consider as G the graph shown in Figure 6.1a, so N = {NA, NB, NC} and A =

{(NA, NB), (NB, NA), (NA, NC), (NC , NB)}, where for each arc the cost is the one
shown in the figure and the capacity is equal to its cost. Let SD = {(NA, NB, 1)}
be the pair of source-destination to connect where NA is the source node, NB is
the destination node, and tsd = 1 is the starting time. After the transformation,
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considering Tmax = 3, the graph G′ of the CSPP will be:

N ′ = {ŝ, NA0, NA1, NA2, NA3, NC0, NC1, NC2, NC3, NB0, NB1, NB2, NB3, d̂}

A′ = {(ŝ, NA1), (ŝ, NA2), (ŝ, NA3), (NA0, NB1), (NA0, NB2), (NA1, NB2), (NA1, NB3),

(NA2, NB3), (NA0, NC2), (NA0, NC3), (NA1, NC3), (NB0, NA2), (NB0, NA3), (NB1, NA3),

(NC0, NB1), (NC0, NB2), (NC1, NB2), (NC1, NB3), (NC2, NB3), (NB2, d̂, ), (NB3, d̂)}

We note that to simplify the figure and the example proposed, we consider in
G′ only the arcs with a maximum length of 2 ∗ cij , where (i, j) ∈ A. Following the
described procedure, the sets H that belong to the Compatibility Set H will be:

H0 = {(ŝ, NA1), (ŝ, NA2), (ŝ, NA3)}
H1 = {(NB2, d̂), (NB3, d̂)}
H2 = {(NA0, NB1), (NA0, NB2)}
H3 = {(NA0, NB1), (NA0, NB2), (NA1, NB2), (NA1, NB3)}
H4 = {(NA0, NB2), (NA1, NB2), (NA1, NB3), (NA2, NB3)}
H5 = {(NA1, NB3), (NA2, NB3)}
H6 = {(NA0, NC2), (NA0, NC3)}
H7 = {(NA0, NC2), (NA0, NC3), (NA1, NC3)}
H8 = {(NA0, NC2), (NA0, NC3), (NA1, NC3)}
H9 = {(NA0, NC3), (NA1, NC3)}
H10 = {(NC0, NB1), (NC0, NB2)}
H11 = {(NC0, NB1), (NC0, NB2), (NC1, NB2), (NC1, NB3)}
H12 = {(NC0, NB2), (NC1, NB2), (NC1, NB3), (NC2, NB3)}
H13 = {(NC1, NB3), (NC2, NB3)}
H14 = {(NB0, NA2), (NB0, NA3)}
H15 = {(NB0, NA2), (NB0, NA3), (NB1, NA3)}
H16 = {(NB0, NA2), (NB0, NA3), (NB1, NA3)}
H17 = {(NB0, NA3), (NB1, NA3)}

and the corresponding fH(H) are: fH(H0) = 1, fH(H1) = 1, fH(H2) = 1, fH(H3) =

1, fH(H4) = 1, fH(H5) = 1, fH(H6) = 2, fH(H7) = 2, fH(H8) = 2, fH(H9) = 2,
fH(H10) = 1, fH(H11) = 1, fH(H12) = 1, fH(H13) = 1, fH(H14) = 2, fH(H15) = 2,
fH(H16) = 2, fH(H17) = 2.

We can define the Compatibility Set H as:

H = {H0, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10,

H11, H12, H13, H14, H15, H16, H17}

Finally, the vehicle set SD is transformed in ŜD, where ŜD = {(ŝ, d̂)} with ŝ is
the super-source and d̂ is the super-destination.
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k-CSPP

Set Complete Name Name

Grid A

Grid_100x100_5940 A-G1
Grid_100x100_7920 A-G2
Grid_100x200_11910 A-G3
Grid_100x200_15880 A-G4
Grid_250x250_37350 A-G5
Grid_250x250_49800 A-G6
Grid_250x500_74775 A-G7
Grid_250x500_99700 A-G8
Grid_500x500_149700 A-G9
Grid_500x500_199600 A-G10
Grid_500x1000_299550 A-G11
Grid_500x1000_399400 A-G12

Grid B

Grid_100x100_396 B-G1
Grid_100x100_792 B-G2
Grid_100x200_794 B-G3
Grid_100x200_1588 B-G4
Grid_250x250_2490 B-G5
Grid_250x250_4980 B-G6
Grid_250x500_4985 B-G7
Grid_250x500_9970 B-G8
Grid_500x500_9980 B-G9
Grid_500x500_19960 B-G10
Grid_500x1000_19970 B-G11
Grid_500x1000_39940 B-G12

Table 6.1: The set of grid instances, the complete names of the grid instances, and
the names used in Section 3.6 for reference.
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Set Complete Name Name

Random A

Random_75000x750000_112500 A-R1
Random_75000x750000_150000 A-R2
Random_75000x1125000_168750 A-R3
Random_75000x1125000_225000 A-R4
Random_75000x1500000_225000 A-R5
Random_75000x1500000_300000 A-R6
Random_100000x1000000_150000 A-R7
Random_100000x1000000_200000 A-R8
Random_100000x1500000_225000 A-R9
Random_100000x1500000_300000 A-R10
Random_100000x2000000_300000 A-R11
Random_100000x2000000_400000 A-R12
Random_125000x1250000_187500 A-R13
Random_125000x1250000_250000 A-R14
Random_125000x1875000_281250 A-R15
Random_125000x1875000_375000 A-R16
Random_125000x2500000_375000 A-R17
Random_125000x2500000_500000 A-R18

Random B

Random_75000x750000_07500 B-R1
Random_75000x750000_15000 B-R2
Random_75000x1125000_11250 B-R3
Random_75000x1125000_22500 B-R4
Random_75000x1500000_15000 B-R5
Random_75000x1500000_30000 B-R6
Random_100000x1000000_10000 B-R7
Random_100000x1000000_20000 B-R8
Random_100000x1500000_15000 B-R9
Random_100000x1500000_30000 B-R10
Random_100000x2000000_20000 B-R11
Random_100000x2000000_40000 B-R12
Random_125000x1250000_12500 B-R13
Random_125000x1250000_25000 B-R14
Random_125000x1875000_18750 B-R15
Random_125000x1875000_37500 B-R16
Random_125000x2500000_25000 B-R17
Random_125000x2500000_50000 B-R18

Table 6.2: The set of random instances, the complete names of the random instances,
and the names used in Section 3.6 for reference.
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Instances |C| 0 1 2 3 >3
A-G1 5940 88.859% 10.281% 0.806% 0.049% 0.005%
A-G2 7920 87.674% 9.994% 1.806% 0.404% 0.122%
A-G3 11910 87.301% 11.084% 1.405% 0.176% 0.034%
A-G4 15880 90.800% 8.494% 0.662% 0.039% 0.004%
A-G5 37350 96.076% 3.833% 0.088% 0.003% 0.000%
A-G6 49800 97.015% 2.933% 0.051% 0.001% 0.000%
A-G7 74775 96.973% 2.974% 0.052% 0.001% 0.000%
A-G8 99700 97.703% 2.261% 0.035% 0.001% 0.000%
A-G9 149700 96.824% 3.093% 0.081% 0.002% 0.000%
A-G10 199600 97.697% 2.259% 0.044% 0.001% 0.000%
A-G11 299550 98.265% 1.718% 0.017% 0.000% 0.000%
A-G12 399400 98.696% 1.294% 0.010% 0.000% 0.000%
Mean 112627.08 94.490% 5.018% 0.421% 0.056% 0.014%
B-G1 396 25.480% 33.258% 23.283% 10.783% 7.197%
B-G2 792 42.917% 33.093% 14.558% 6.035% 3.396%
B-G3 794 23.186% 25.088% 16.788% 10.579% 24.358%
B-G4 1588 48.558% 31.115% 13.199% 5.038% 2.091%
B-G5 2490 49.297% 32.787% 12.173% 4.096% 1.647%
B-G6 4980 75.811% 20.990% 2.890% 0.285% 0.024%
B-G7 4985 57.482% 31.045% 9.194% 1.864% 0.415%
B-G8 9970 73.224% 21.530% 4.323% 0.777% 0.146%
B-G9 9980 74.151% 21.974% 3.463% 0.381% 0.031%
B-G10 19960 86.555% 12.449% 0.952% 0.043% 0.002%
B-G11 19970 69.418% 22.541% 5.627% 1.659% 0.755%
B-G12 39940 85.872% 12.924% 1.128% 0.069% 0.007%
Mean 9653.75 59.329% 24.899% 8.965% 3.467% 3.339%

Table 6.3: Percentage of colours that have 0, 1, 2, 3, or more than 3 residual edges
after the GRA is applied for grid instances.
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Instances |C| 0 1 2 3 >3
A-R1 112500 79.402% 10.456% 6.210% 2.644% 1.289%
A-R2 150000 99.959% 0.041% 0.000% 0.000% 0.000%
A-R3 168750 99.976% 0.024% 0.000% 0.000% 0.000%
A-R4 225000 99.982% 0.018% 0.000% 0.000% 0.000%
A-R5 225000 99.836% 0.163% 0.001% 0.000% 0.000%
A-R6 300000 99.877% 0.123% 0.000% 0.000% 0.000%
A-R7 150000 96.249% 2.980% 0.661% 0.098% 0.013%
A-R8 200000 99.963% 0.037% 0.000% 0.000% 0.000%
A-R9 225000 99.921% 0.079% 0.000% 0.000% 0.000%
A-R10 300000 99.941% 0.059% 0.000% 0.000% 0.000%
A-R11 300000 99.980% 0.020% 0.000% 0.000% 0.000%
A-R12 400000 99.985% 0.015% 0.000% 0.000% 0.000%
A-R13 187500 99.932% 0.068% 0.000% 0.000% 0.000%
A-R14 250000 99.949% 0.051% 0.000% 0.000% 0.000%
A-R15 281250 99.917% 0.083% 0.000% 0.000% 0.000%
A-R16 375000 99.937% 0.063% 0.000% 0.000% 0.000%
A-R17 375000 99.883% 0.117% 0.001% 0.000% 0.000%
A-R18 500000 99.912% 0.088% 0.000% 0.000% 0.000%
Mean 262500 98.589% 0.805% 0.382% 0.152% 0.072%
B-R1 7500 89.877% 7.353% 2.128% 0.536% 0.105%
B-R2 15000 94.124% 5.032% 0.745% 0.093% 0.006%
B-R3 11250 97.663% 2.138% 0.188% 0.012% 0.000%
B-R4 22500 98.779% 1.170% 0.050% 0.001% 0.000%
B-R5 15000 75.343% 8.757% 3.615% 1.569% 10.716%
B-R6 30000 80.872% 6.906% 1.749% 0.392% 10.081%
B-R7 10000 98.003% 1.886% 0.109% 0.002% 0.000%
B-R8 20000 99.664% 0.335% 0.002% 0.000% 0.000%
B-R9 15000 99.163% 0.829% 0.008% 0.000% 0.000%
B-R10 30000 99.581% 0.415% 0.004% 0.000% 0.000%
B-R11 20000 80.435% 3.876% 3.824% 3.552% 8.314%
B-R12 40000 84.011% 6.488% 4.612% 2.712% 2.177%
B-R13 12500 96.801% 3.042% 0.154% 0.003% 0.000%
B-R14 25000 98.361% 1.599% 0.039% 0.001% 0.000%
B-R15 18750 88.728% 2.337% 1.634% 2.026% 5.276%
B-R16 37500 81.288% 4.806% 4.827% 3.966% 5.113%
B-R17 25000 90.161% 2.855% 2.649% 2.124% 2.210%
B-R18 50000 92.611% 4.000% 2.176% 0.879% 0.334%
Mean 22500 91.415% 3.546% 1.584% 0.993% 2.463%

Table 6.4: Percentage of colours that have 0, 1, 2, 3, or more than 3 residual edges
after the GRA is applied for random instances.
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Name GridSize |N| |E| |T| Radius |Z| %Z
10_10_30 10x10 100 180 10 30 1,2,3,5,10 30.142
10_10_50 10x10 100 180 10 50 1,2,3,5,10 22.334
10_10_100 10x10 100 180 10 100 1,2,3,5,10 22.502
50_10_30 50x50 2500 4900 10 30 1,2,3,5,10 24.244
50_10_50 50x50 2500 4900 10 50 1,2,3,5,10 14.542
50_10_100 50x50 2500 4900 10 100 1,2,3,5,10 17.174
100_10_50 100x100 10000 19800 10 30 1,2,3,5,10 20.272
100_10_50 100x100 10000 19800 10 50 1,2,3,5,10 29.25
100_10_50 100x100 10000 19800 10 100 1,2,3,5,10 30.766

Table 6.5: The table shows the information about the instances with 10 targets. In
order are shown: the instance name (Name), the size of the graph (GridSize), the
number of nodes (|N |), the number of edges (|E|), the number of targets (|T |), the
radius of the targets (Radius), the number of CFZ (|Z|) and the percentage of CFZ
with reference to the graph surface (%Z).

Name GridSize |N| |E| |T| Radius |Z| %Z
10_20_30 10x10 100 180 20 30 1,2,3,5,10 25.68
10_20_50 10x10 100 180 20 50 1,2,3,5,10 24.742
10_20_100 10x10 100 180 20 100 1,2,3,5,10 21.522
50_20_30 50x50 2500 4900 20 30 1,2,3,5,10 29.832
50_20_50 50x50 2500 4900 20 50 1,2,3,5,10 22.294
50_20_100 50x50 2500 4900 20 100 1,2,3,5,10 25.6
100_20_50 100x100 10000 19800 20 30 1,2,3,5,10 23.108
100_20_50 100x100 10000 19800 20 50 1,2,3,5,10 28.82
100_20_50 100x100 10000 19800 20 100 1,2,3,5,10 25.354

Table 6.6: The table shows the information about the instances with 20 targets. In
order are shown: the instance name (Name), the size of the graph (GridSize), the
number of nodes (|N |), the number of edges (|E|), the number of targets (|T |), the
radius of the targets (Radius), the number of CFZ (|Z|) and the percentage of CFZ
with reference to the graph surface (%Z).
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Name GridSize |N| |E| |T| Radius |Z| %Z
10_50_30 10x10 100 180 50 30 1,2,3,5,10 20.09
10_50_50 10x10 100 180 50 50 1,2,3,5,10 23.87
10_50_100 10x10 100 180 50 100 1,2,3,5,10 21.38
50_50_30 50x50 2500 4900 50 30 1,2,3,5,10 24.004
50_50_50 50x50 2500 4900 50 50 1,2,3,5,10 29.516
50_50_100 50x50 2500 4900 50 100 1,2,3,5,10 24.504
100_50_50 100x100 10000 19800 50 30 1,2,3,5,10 26.906
100_50_50 100x100 10000 19800 50 50 1,2,3,5,10 21.804
100_50_50 100x100 10000 19800 50 100 1,2,3,5,10 23.5

Table 6.7: The table shows the information about the instances with 50 targets. In
order are shown: the instance name (Name), the size of the graph (GridSize), the
number of nodes (|N |), the number of edges (|E|), the number of targets (|T |), the
radius of the targets (Radius), the number of CFZ (|Z|) and the percentage of CFZ
with reference to the graph surface (%Z).

Name GridSize |N| |E| |T| Radius |Z| %Z
10_100_30 10x10 100 180 100 30 1,2,3,5,10 25.4
10_100_50 10x10 100 180 100 50 1,2,3,5,10 22.024
10_100_100 10x10 100 180 100 100 1,2,3,5,10 24.182
50_100_30 50x50 2500 4900 100 30 1,2,3,5,10 28.214
50_100_50 50x50 2500 4900 100 50 1,2,3,5,10 21.724
50_100_100 50x50 2500 4900 100 100 1,2,3,5,10 22.562
100_100_50 100x100 10000 19800 100 30 1,2,3,5,10 21.722
100_100_50 100x100 10000 19800 100 50 1,2,3,5,10 28.338
100_100_50 100x100 10000 19800 100 100 1,2,3,5,10 26.478

Table 6.8: The table shows the information about the instances with 100 targets.
In order are shown: the instance name (Name), the size of the graph (GridSize), the
number of nodes (|N |), the number of edges (|E|), the number of targets (|T |), the
radius of the targets (Radius), the number of CFZ (|Z|) and the percentage of CFZ
with reference to the graph surface (%Z).
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