2,295 research outputs found

    Trust Evaluation for Embedded Systems Security research challenges identified from an incident network scenario

    Get PDF
    This paper is about trust establishment and trust evaluations techniques. A short background about trust, trusted computing and security in embedded systems is given. An analysis has been done of an incident network scenario with roaming users and a set of basic security needs has been identified. These needs have been used to derive security requirements for devices and systems, supporting the considered scenario. Using the requirements, a list of major security challenges for future research regarding trust establishment in dynamic networks have been collected and elaboration on some different approaches for future research has been done.This work was supported by the Knowledge foundation and RISE within the ARIES project

    Touchalytics: On the Applicability of Touchscreen Input as a Behavioral Biometric for Continuous Authentication

    Full text link
    We investigate whether a classifier can continuously authenticate users based on the way they interact with the touchscreen of a smart phone. We propose a set of 30 behavioral touch features that can be extracted from raw touchscreen logs and demonstrate that different users populate distinct subspaces of this feature space. In a systematic experiment designed to test how this behavioral pattern exhibits consistency over time, we collected touch data from users interacting with a smart phone using basic navigation maneuvers, i.e., up-down and left-right scrolling. We propose a classification framework that learns the touch behavior of a user during an enrollment phase and is able to accept or reject the current user by monitoring interaction with the touch screen. The classifier achieves a median equal error rate of 0% for intra-session authentication, 2%-3% for inter-session authentication and below 4% when the authentication test was carried out one week after the enrollment phase. While our experimental findings disqualify this method as a standalone authentication mechanism for long-term authentication, it could be implemented as a means to extend screen-lock time or as a part of a multi-modal biometric authentication system.Comment: to appear at IEEE Transactions on Information Forensics & Security; Download data from http://www.mariofrank.net/touchalytics

    Towards a Framework for Preserving Privacy in VANET

    Get PDF
    Vehicular Ad-hoc Network (VANET) is envisioned as an integral part of the Intelligent Transportation Systems as it promises various services and benefits such as road safety, traffic efficiency, navigation and infotainment services. However, the security and privacy risks associated with the wireless communication are often overlooked. Messages exchanged in VANET wireless communication carry inferable Personally Identifiable Information(PII). This introduces several privacy threats that could limit the adoption of VANET. The quantification of these privacy threats is an active research area in VANET security and privacy domains. The Pseudonymisation technique is currently the most preferred solution for critical privacy threats in VANET to provide conditional anonymous authentication. In the existing literature, several Pseudonym Changing Schemes(PCS) have been proposed as effective de-identification approaches to prevent the inference of PII. However, for various reasons, none of the proposed schemes received public acceptance. Moreover, one of the open research challenges is to compare different PCSs under varying circumstances with a set of standardized experimenting parameters and consistent metrics. In this research, we propose a framework to assess the effectiveness of PCSs in VANET with a systematic approach. This comprehensive equitable framework consists of a variety of building blocks which are segmented into correlated sub-domains named Mobility Models, Adversary Models, and Privacy Metrics. Our research introduces a standard methodology to evaluate and compare VANET PCSs using a generic simulation setup to obtain optimal, realistic and most importantly, consistent results. This road map for the simulation setup aims to help the research \& development community to develop, assess and compare the PCS with standard set of parameters for proper analysis and reporting of new PCSs. The assessment of PCS should not only be equitable but also realistic and feasible. Therefore, the sub-domains of the framework need coherent as well as practically applicable characteristics. The Mobility Model is the layout of the traffic on the road which has varying features such as traffic density and traffic scenarios based on the geographical maps. A diverse range of Adversary Models is important for pragmatic evaluation of the PCSs which not only considers the presence of global passive adversary but also observes the effect of intelligent and strategic \u27local attacker\u27 placements. The biggest challenge in privacy measurement is the fact that it is a context-based evaluation. In the literature, the PCSs are evaluated using either user-oriented or adversary-oriented metrics. Under all circumstances, the PCSs should be assessed from both user and adversary perspectives. Using this framework, we determined that a local passive adversary can be strong based on the attacking capabilities. Therefore, we propose two intelligent adversary placements which help in privacy assessment with realistic adversary modelling. When the existing PCSs are assessed with our systematic approach, consistent models and metrics, we identified the privacy vulnerabilities and the limitations of existing PCSs. There was a need for comprehensive PCS which consider the context of the vehicles and the changing traffic patterns in the neighbourhood. Consequently, we developed a Context-Aware \& Traffic Based PCS that focuses on increasing the overall rate of confusion for the adversary and to reduce deterministic information regarding the pseudonym change. It is achieved by increasing the number of dynamic attributes in the proposed PCS for inference of the changing pattern of the pseudonyms. The PCS increases the anonymity of the vehicle by having the synchronized pseudonym changes. The details given under the sub-domains of the framework solidifies our findings to strengthen the privacy assessment of our proposed PCS

    Threats and countermeasures for network security

    Get PDF
    In the late 1980's, the traditional threat of anonymous break-ins to networked computers was joined by viruses and worms, multiplicative surrogates that carry out the bidding of their authors. Technologies for authentication and secrecy, supplemented by good management practices, are the principal countermeasures. Four articles on these subjects are presented

    ANCHOR: logically-centralized security for Software-Defined Networks

    Get PDF
    While the centralization of SDN brought advantages such as a faster pace of innovation, it also disrupted some of the natural defenses of traditional architectures against different threats. The literature on SDN has mostly been concerned with the functional side, despite some specific works concerning non-functional properties like 'security' or 'dependability'. Though addressing the latter in an ad-hoc, piecemeal way, may work, it will most likely lead to efficiency and effectiveness problems. We claim that the enforcement of non-functional properties as a pillar of SDN robustness calls for a systemic approach. As a general concept, we propose ANCHOR, a subsystem architecture that promotes the logical centralization of non-functional properties. To show the effectiveness of the concept, we focus on 'security' in this paper: we identify the current security gaps in SDNs and we populate the architecture middleware with the appropriate security mechanisms, in a global and consistent manner. Essential security mechanisms provided by anchor include reliable entropy and resilient pseudo-random generators, and protocols for secure registration and association of SDN devices. We claim and justify in the paper that centralizing such mechanisms is key for their effectiveness, by allowing us to: define and enforce global policies for those properties; reduce the complexity of controllers and forwarding devices; ensure higher levels of robustness for critical services; foster interoperability of the non-functional property enforcement mechanisms; and promote the security and resilience of the architecture itself. We discuss design and implementation aspects, and we prove and evaluate our algorithms and mechanisms, including the formalisation of the main protocols and the verification of their core security properties using the Tamarin prover.Comment: 42 pages, 4 figures, 3 tables, 5 algorithms, 139 reference
    • …
    corecore