3,424 research outputs found

    TweeProfiles4: a weighted multidimensional stream clustering algorithm

    Get PDF
    O aparecimento das redes sociais abriu aos utilizadores a possibilidade de facilmente partilharem as suas ideias a respeito de diferentes temas, o que constitui uma fonte de informação enriquecedora para diversos campos. As plataformas de microblogging sofreram um grande crescimento e de forma constante nos últimos anos. O Twitter é o site de microblogging mais popular, tornando-se uma fonte de dados interessante para extração de conhecimento. Um dos principais desafios na análise de dados provenientes de redes sociais é o seu fluxo, o que dificulta a aplicação de processos tradicionais de data mining. Neste sentido, a extração de conhecimento sobre fluxos de dados tem recebido um foco significativo recentemente. O TweeProfiles é a uma ferramenta de data mining para análise e visualização de dados do Twitter sobre quatro dimensões: espacial (a localização geográfica do tweet), temporal (a data de publicação do tweet), de conteúdo (o texto do tweet) e social (o grafo dos relacionamentos). Este é um projeto em desenvolvimento que ainda possui muitos aspetos que podem ser melhorados. Uma das recentes melhorias inclui a substituição do algoritmo de clustering original, o qual não suportava o fluxo contínuo dos dados, por um método de streaming. O objetivo desta dissertação passa pela continuação do desenvolvimento do TweeProfiles. Em primeiro lugar, será proposto um novo algoritmo de clustering para fluxos de dados com o objetivo de melhorar o existente. Para esse efeito será desenvolvido um algoritmo incremental com suporte para fluxos de dados multi-dimensionais. Esta abordagem deve permitir ao utilizador alterar dinamicamente a importância relativa de cada dimensão do processo de clustering. Adicionalmente, a avaliação empírica dos resultados será alvo de melhoramento através da identificação e implementação de medidas adequadas de avaliação dos padrões extraídos. O estudo empírico será realizado através de tweets georreferenciados obtidos pelo SocialBus.The emergence of social media made it possible for users to easily share their thoughts on different topics, which constitutes a rich source of information for many fields. Microblogging platforms experienced a large and steady growth over the last few years. Twitter is the most popular microblogging site, making it an interesting source of data for pattern extraction. One of the main challenges of analyzing social media data is its continuous nature, which makes it hard to use traditional data mining. Therefore, mining stream data has also received a lot of attention recently.TweeProfiles is a data mining tool for analyzing and visualizing Twitter data over four dimensions: spatial (the location of the tweet), temporal (the timestamp of the tweet), content (the text of the tweet) and social (relationship graph). This is an ongoing project which still has many aspects that can be improved. For instance, it was recently improved by replacing the original clustering algorithm which could not handle the continuous flow of data with a streaming method. The goal of this dissertation is to continue the development of TweeProfiles. First, the stream clustering process will be improved by proposing a new algorithm. This will be achieved by developing an incremental algorithm with support for multi-dimensional streaming data. Moreover, it should make it possible for the user to dynamically change the relative importance of each dimension in the clustering. Additionally, the empirical evaluation of the results will also be improved.Suitable measures to evaluate the extracted patterns will be identified and implemented. An empirical study will be done using data consisting of georeferenced tweets from SocialBus

    Social Media for Cities, Counties and Communities

    Get PDF
    Social media (i.e., Twitter, Facebook, Flickr, YouTube) and other tools and services with user- generated content have made a staggering amount of information (and misinformation) available. Some government officials seek to leverage these resources to improve services and communication with citizens, especially during crises and emergencies. Yet, the sheer volume of social data streams generates substantial noise that must be filtered. Potential exists to rapidly identify issues of concern for emergency management by detecting meaningful patterns or trends in the stream of messages and information flow. Similarly, monitoring these patterns and themes over time could provide officials with insights into the perceptions and mood of the community that cannot be collected through traditional methods (e.g., phone or mail surveys) due to their substantive costs, especially in light of reduced and shrinking budgets of governments at all levels. We conducted a pilot study in 2010 with government officials in Arlington, Virginia (and to a lesser extent representatives of groups from Alexandria and Fairfax, Virginia) with a view to contributing to a general understanding of the use of social media by government officials as well as community organizations, businesses and the public. We were especially interested in gaining greater insight into social media use in crisis situations (whether severe or fairly routine crises, such as traffic or weather disruptions)

    Enhanced Heartbeat Graph for emerging event detection on Twitter using time series networks

    Full text link
    © 2019 Elsevier Ltd With increasing popularity of social media, Twitter has become one of the leading platforms to report events in real-time. Detecting events from Twitter stream requires complex techniques. Event-related trending topics consist of a group of words which successfully detect and identify events. Event detection techniques must be scalable and robust, so that they can deal with the huge volume and noise associated with social media. Existing event detection methods mostly rely on burstiness, mainly the frequency of words and their co-occurrences. However, burstiness sometimes dominates other relevant details in the data which could be equally significant. Besides, the topological and temporal relationships in the data are often ignored. In this work, we propose a novel graph-based approach, called the Enhanced Heartbeat Graph (EHG), which detects events efficiently. EHG suppresses dominating topics in the subsequent data stream, after their first detection. Experimental results on three real-world datasets (i.e., Football Association Challenge Cup Final, Super Tuesday, and the US Election 2012) show superior performance of the proposed approach in comparison to the state-of-the-art techniques

    Listening between the Lines: Learning Personal Attributes from Conversations

    Full text link
    Open-domain dialogue agents must be able to converse about many topics while incorporating knowledge about the user into the conversation. In this work we address the acquisition of such knowledge, for personalization in downstream Web applications, by extracting personal attributes from conversations. This problem is more challenging than the established task of information extraction from scientific publications or Wikipedia articles, because dialogues often give merely implicit cues about the speaker. We propose methods for inferring personal attributes, such as profession, age or family status, from conversations using deep learning. Specifically, we propose several Hidden Attribute Models, which are neural networks leveraging attention mechanisms and embeddings. Our methods are trained on a per-predicate basis to output rankings of object values for a given subject-predicate combination (e.g., ranking the doctor and nurse professions high when speakers talk about patients, emergency rooms, etc). Experiments with various conversational texts including Reddit discussions, movie scripts and a collection of crowdsourced personal dialogues demonstrate the viability of our methods and their superior performance compared to state-of-the-art baselines.Comment: published in WWW'1

    Linking Audiences to News: A Network Analysis of Chicago Websites

    Get PDF
    The mass media model, which sustained news and information in communities like Chicago for decades, is being replaced by a "new news ecosystem" consisting of hundreds of websites, podcasts, video streams and mobile applications. In 2009, The Chicago Community Trust set out to understand this ecosystem, assess its health and make investments in improving the flow of news and information in Chicagoland. The report you are reading is one of the products of the Trust's local information initiative, Community News Matters. "Linking Audiences to News: A Network Analysis of Chicago Websites" is one of the first -- perhaps the first -- research projects seeking to understand a local

    Community tracking in a cMOOC and nomadic learner behavior identification on a connectivist rhizomatic learning network

    Get PDF
    This article contributes to the literature on connectivism, connectivist MOOCs (cMOOCs) and rhizomatic learning by examining participant interactions, community formation and nomadic learner behavior in a particular cMOOC, #rhizo15, facilitated for 6 weeks by Dave Cormier. It further focuses on what we can learn by observing Twitter interactions particularly. As an explanatory mixed research design, Social Network Analysis and content analysis were employed for the purposes of the research. SNA is used at the macro, meso and micro levels, and content analysis of one week of the MOOC was conducted using the Community of Inquiry framework. The macro level analysis demonstrates that communities in a rhizomatic connectivist networks have chaotic relationships with other communities in different dimensions (clarified by use of hashtags of concurrent, past and future events). A key finding at the meso level was that as #rhizo15 progressed and number of active participants decreased, interaction increased in overall network. The micro level analysis further reveals that, though completely online, the nature of open online ecosystems are very convenient to facilitate the formation of community. The content analysis of week 3 tweets demonstrated that cognitive presence was the most frequently observed, while teaching presence (teaching behaviors of both facilitator and participants) was the lowest. This research recognizes the limitations of looking only at Twitter when #rhizo15 conversations occurred over multiple platforms frequented by overlapping but not identical groups of people. However, it provides a valuable partial perspective at the macro meso and micro levels that contribute to our understanding of community-building in cMOOCs

    Visual analytics of location-based social networks for decision support

    Get PDF
    Recent advances in technology have enabled people to add location information to social networks called Location-Based Social Networks (LBSNs) where people share their communication and whereabouts not only in their daily lives, but also during abnormal situations, such as crisis events. However, since the volume of the data exceeds the boundaries of human analytical capabilities, it is almost impossible to perform a straightforward qualitative analysis of the data. The emerging field of visual analytics has been introduced to tackle such challenges by integrating the approaches from statistical data analysis and human computer interaction into highly interactive visual environments. Based on the idea of visual analytics, this research contributes the techniques of knowledge discovery in social media data for providing comprehensive situational awareness. We extract valuable hidden information from the huge volume of unstructured social media data and model the extracted information for visualizing meaningful information along with user-centered interactive interfaces. We develop visual analytics techniques and systems for spatial decision support through coupling modeling of spatiotemporal social media data, with scalable and interactive visual environments. These systems allow analysts to detect and examine abnormal events within social media data by integrating automated analytical techniques and visual methods. We provide comprehensive analysis of public behavior response in disaster events through exploring and examining the spatial and temporal distribution of LBSNs. We also propose a trajectory-based visual analytics of LBSNs for anomalous human movement analysis during crises by incorporating a novel classification technique. Finally, we introduce a visual analytics approach for forecasting the overall flow of human crowds

    DARIAH and the Benelux

    Get PDF
    corecore