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ABSTRACT

Chae, Junghoon Ph.D., Purdue University, December 2016. Visual Analytics of Location-
based Social Networks for Decision Support. Major Professor: David S. Ebert.

Recent advances in technology have enabled people to add location information to so-

cial networks called Location-Based Social Networks (LBSNs) where people share their

communication and whereabouts not only in their daily lives, but also during abnormal

situations, such as crisis events. However, since the volume of the data exceeds the bound-

aries of human analytical capabilities, it is almost impossible to perform a straightforward

qualitative analysis of the data. The emerging field of visual analytics has been introduced

to tackle such challenges by integrating the approaches from statistical data analysis and

human computer interaction into highly interactive visual environments.

Based on the idea of visual analytics, this research contributes the techniques of knowl-

edge discovery in social media data for providing comprehensive situational awareness.

We extract valuable hidden information from the huge volume of unstructured social me-

dia data and model the extracted information for visualizing meaningful information along

with user-centered interactive interfaces. We develop visual analytics techniques and sys-

tems for spatial decision support through coupling modeling of spatiotemporal social media

data, with scalable and interactive visual environments. These systems allow analysts to

detect and examine abnormal events within social media data by integrating automated

analytical techniques and visual methods. We provide comprehensive analysis of public

behavior response in disaster events through exploring and examining the spatial and tem-

poral distribution of LBSNs. We also propose a trajectory-based visual analytics of LBSNs

for anomalous human movement analysis during crises by incorporating a novel classifica-

tion technique. Finally, we introduce a visual analytics approach for forecasting the overall

flow of human crowds.
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1. INTRODUCTION

Since the high global Internet penetration rate and the Web 2.0 era, humans have become a

biggest data source. Humans extremely fast generate a variety of big data using multiple de-

vices, such as personal computers, smartphones and tablets in multiple environments, such

as social networks and (micro)blogs. The data generated by humans is worth understand-

ing, estimating, and predicting their behavior in many areas including marketing, research,

and public administration and management. Also recent advances in technology have en-

abled people to add location information to social networks called Location-Based Social

Networks (LBSNs) where millions of people share their communication and whereabouts

not only in their daily lives, but also during abnormal situations, such as crisis events. Such

spatiotemporal data not only provides location-embedded information, but also bring new

solutions to a wide range of challenges in analyzing social behaviors and interaction in the

physical world.

However, the data has challenging issues. Since the volume of the data exceeds the

boundaries of human analytical capabilities and normal computing performance, it is al-

most impossible to perform a straightforward qualitative analysis of the data. Also, the

contents of the data are usually unstructured and have a high degree of noise. To address

these challenges, researchers have proposed visual analytics that is defined as “the science

of analytical reasoning facilitated by interactive visual interfaces” [1]. Currently, many vi-

sual analytics techniques integrating approaches from data mining, statistics, and human

computer interaction have been proposed to combine the computing power of machines

and human analytical capabilities.

In this thesis, We propose four visual analytics approaches that provide users with scal-

able and interactive visual spatiotemporal social media data analysis supporting compre-

hensive situational awareness for spatial decision support. In this chapter, the following
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four sections describe an overview of each approach and Section 1.5 provides our thesis

statement.

1.1 Visual Analytics of Location-based Social Networks for Abnormal Event Detec-

tion

Internet users from all over the world have created a large volume of time-stamped,

geo-located data. Such spatiotemporal data has immense value for increasing situational

awareness of local events, providing insights for investigations and understanding the ex-

tent of incidents, their severity, and consequences, as well as their time-evolving nature. In

analyzing social media data, researchers have mainly focused on finding temporal trends

according to volume-based importance. Thus, a relatively small volume of relevant mes-

sages for situational awareness are usually buried by a majority of irrelevant data. Finding

and examining these messages without smart aggregation, automated text analysis and ad-

vanced filtering strategies is almost impossible and extracting meaningful information is

even more challenging.

In this thesis, we present a visual analytics approach that provides users with scal-

able and interactive social media data analysis and visualization including the exploration

and examination of abnormal topics and events within various social media data sources,

such as Twitter, Flickr and YouTube. In order to find and understand abnormal events,

the analyst can first extract major topics from a set of selected messages and rank them

probabilistically using Latent Dirichlet Allocation (LDA) [2], which extracts and proba-

bilistically ranks major topics contained in textual parts of the social media data. The ranks

of the categorized topics generally provide a volume-based importance, but this impor-

tance does not reflect the abnormality or criticality of the topic. In order to obtain a ranking

suitable for situational awareness tasks, we discard daily chatter by employing a Seasonal-

Trend Decomposition procedure based on Loess smoothing (STL) [3]. Our whole analysis

process, including the application of automated tools, is guided and informed by an ana-

lyst using a highly interactive visual analytics environment. It provides tight integration
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of semi-automated text-analysis and probabilistic event detection tools together with tradi-

tional zooming, filtering and exploration following the Information-Seeking Mantra [4].

1.2 Visual Analytics for Public Behavior Analysis in Disaster Events

For emergency and disaster management, analysis of public behavior, such as how

people prepare and respond to disasters, is important for evacuation planning. As social

media has played a pervasive role in the way people think, act, and react to the world, in

even emergency situations, people seek social confirmation before acting in response to

a situation, where they interact with others to confirm information and develop a better

informed view of the risk [5]. Moreover, a growing number of people are using LBSN

services, such as microblogs, where they create time-stamped, geo-located data and share

this information about their immediate surroundings using smart phones with GPS. Such

spatiotemporal data has great potential for enhancing situational awareness during crisis

situations and providing insight into the evolving event, the public response, and potential

courses of action.

However, finding meaningful information from social media is challenging because the

large volume of unstructured social media data hinders exploration and examination. Even

though we could extract certain information from the data, it is not always easy to determine

whether the analysis result of the extracted information is meaningful and helpful. Thus,

there is a need for advanced tools to handle such big data and aid in examining the results in

order to understand situations and glean investigative insights. Given the incomplete, com-

plex, context-dependent information, a human in this analysis and decision-making loop

is crucial. Therefore, a visual analytics approach offers great potential through interactive,

scalable, and verifiable techniques, helping analysts to extract, isolate, and examine the

results interactively.

In this research, we present an interactive visual analytics approach for spatiotemporal

microblog data analysis to improve emergency management, disaster preparedness, and

evacuation planning. We demonstrate the ability to identify spatiotemporal differences in
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patterns between emergency and normal situations, and analyze spatial relationships among

spatial distributions of microblog users, locations of multiple types of infrastructure, and

severe weather conditions. Furthermore, we show how both spatiotemporal microblog and

disaster event data can help the analysts to understand and examine emergent situations.

1.3 Visual Analytics of Anomalous Human Movement Analysis

Analysis of human movement patterns is important for urban planning [6], traffic fore-

casting [7], and understanding the pandemic spread of diseases [8]. For crisis and disaster

events, movement analysis, such as where people move to/from and how people respond

to disasters, is also critical for evacuation management. Unfortunately, finding meaningful

data is challenging and collecting relevant data can be costly. However, the rapid develop-

ment and increasing availability of mobile communication and location acquisition devices

allow people to share location data using existing social networks. These location-based so-

cial networks (LBSNs) have been gaining attention as promising data sources for analyzing

human movements. Particularly, trajectories—sequences of geo-referenced data nodes of

each user—extracted from such LBSNs provide opportunities and solutions to challenges

in human movement analysis [9–11]. In addition, semantic context of the data enhances

understanding of local events and human movements [12, 13].

Previous studies have mainly focused on finding regular movement patterns using spa-

tial data. They have demonstrated that human movements are normally influenced by geo-

graphic constraints, life patterns, and spatial and temporal events, such as local festivals and

holiday seasons [14,15]. However, during disaster events, since human movement patterns

(e.g., volume and direction of movements) are unusual compared to normal situations, a

new approach is required to analyze the movements. Also, analyzing location data alone

has shown limitations in achieving situational awareness of local events. For example, they

cannot answer why people move and what situations occur.

To address these challenges, we propose a trajectory-based visual analytics system for

anomalous human movement analysis during disasters using multi-type online media. Our
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system extracts geo-location information of each data node from LBSNs and generates

trajectories using the information. The generated raw trajectories, however, do not have

enough fine-grained spatial positions. We supplement the sparse positions in the trajecto-

ries using route information between each position. We group the individual trajectories

into classes of similar sub-trajectories using a trajectory clustering model based on the

partition-and-group framework [16]. This enables users to discover sub-common patterns,

rather than finding common patterns as a whole. We also propose a classification model

based on historical data for detecting abnormal movements using human expert interaction.

In addition, we integrate multiple visual representations using relevant context extracted

from different online media sources, such as Tweet text, shared photos, public webcam

videos, and news media to allow users to discover and analyze anomalous human move-

ment patterns; thereby, improving situational awareness in disaster management situations.

1.4 Visual Analytics of Forecasting the Flow of Human Crowds

Forecasting human crowd flows plays a significant role in a range of applications, from

urban and traffic planning [6,7] to predicting epidemic dynamics [8,17]. Various location-

based services are also highly dependent on foreseeing human movement patterns [18]. The

volume and variety of data that capture the different aspects of human mobility have greatly

increased due to ubiquitous crowdsourced activities and the advent of several location-

based social networking services. The potential impacts and availability of such data have

caught the attention of researchers from various domains. They have put considerable

efforts into understanding and predicting human mobility patterns [19–21]. They have

also discovered that human mobility behaviors can contain discernible patterns that can

be used for forecasting purposes. For example, Song et al. [22] reported a 93% potential

predictability in human mobility from anonymized mobile phone data, and although the

overall travel patterns were vastly different, the variability in predictability was found to be

significantly low.
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Many previous techniques for predicting human movements have treated the individual

mobility behaviors as discrete entities and focused on predicting the next destinations of the

individuals based on the observations of their past movement patterns or frequent behaviors

of similar users [20,21,23]. While recent work has made progress in predicting human mo-

bility patterns, the proposed models that are based on movements of individuals suffer from

many limitations. For example, the data modeling techniques used in these methods (e.g.,

Hidden Markov Model) typically require extensive training of the data models using his-

torical observed data [20,24]. This process can be expensive and rate limiting, especially in

case of large scale datasets (e.g., taxi data in large urban regions), and can further severely

restrict interactive visual analytic system behaviors. Other challenges include privacy con-

cerns for the individuals [20, 25]. Furthermore, the individual spatial sequence trajectory

datasets, especially those derived from location-based social networks, can also suffer from

data sparsity and noise problems [26, 27]. These can often prove to be prohibitive for ac-

curate data modeling. Standard methods to mitigate for these challenges include clustering

techniques that summarize the overall movement paths in trajectory data analysis. These

require analysts to carefully select appropriate abstraction levels for clustering in order

to prevent the original vector flow data from getting distorted. However, when these ab-

straction levels are carefully chosen, the analysis of collective flows of human crowds can

provide new insights that may not be available at finer granularity levels [28, 29].

To this end, this thesis presents a space-based approach for forecasting the flow of

human crowds. Our work is motivated by weather simulation and forecasting modeling

techniques that are built using local atmospheric observations from weather stations. In

this work, we embed individual movements into a two-dimensional Euclidean space and

model for the space instead of the moving objects. In other words, given a space with a large

number of moving objects, we discretize the space into smaller sub-spaces and model the

movement flows for each sub-space. Our model forecasts the future flow based on observed

historical patterns of each sub-space using a seasonal trend analysis technique [3]. We then

combine the results to visualize the future flow as a whole for the entire space.
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Our approach consists of a directional flow density estimation method that preserves

the original paths and directions of moving entities, and a flow smoothing method based

on both local and global trajectory trends to mitigate for the data sparseness and noise

issues. We also provide a novel visualization technique for showing the probability density

distribution of flow. We demonstrate our work using location-based social media data and

GPS tracking human and taxi data.

1.5 Thesis Statement

This research contributes the techniques of knowledge discovery in social media data

to provide comprehensive situational awareness for decision making. We extract valuable

hidden information from the huge volume of unstructured social media data and model

the extracted information for visualizing meaningful information along with user-centered

interactive interfaces. This thesis presents the design and development of visual analyt-

ics techniques and systems for spatial decision support through coupling modeling of spa-

tiotemporal social media data, with scalable and interactive visual environments. The major

contributions of this work are the following:

1. Abnormal topic detection within social media data by combining the STL and the

LDA topic model

2. Design of visual analytics system that enables integration of LBSN data with geo-

spatial disaster and infrastructure data for supporting spatial decision-making in crisis

management

3. Common human movement pattern discovery from LBSNs using a trajectory clus-

tering model based on the partition-and-group framework

4. Abnormal human mobility pattern detection and visualization using a trajectory-

based anomaly detection model

5. Development of visual means to improve human movement analysis using semantic

context available from multiple online media sources
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6. Development of a new method to estimate the directional flow density that represents

the overall movement direction and preserves the original paths and directions of

moving entities

7. Development of a new flow smoothing method based on both local and global move-

ment trends for improving forecast accuracy by mitigate the effect of the data sparsity

and noise

8. Development of a new model to forecast vector field data with the STL by transform-

ing data to a series of magnitude values from the smoothed representative vectors
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2. BACKGROUND AND RELATED WORK

In recent years social media data has become a popular topic in a range of application do-

mains. Researchers in the fields of data mining and visual analytics have found through

studies among users and domain experts, that the analysis of such data can be essential for

spatiotemporal situational awareness [30,31]. Also, several researchers have proposed and

presented systems for social media analysis and important studies covering the use of so-

cial media during crisis events have been conducted. Thus, as the size of social media data

increases, scalable computational tools for the effective analysis and discovery of critical

information within the data are a vital research topic. This section presents previous work

that has focused on visual analytics of movement data and LBSNs, crisis related social me-

dia exploration, visualization, and human movement analysis using LBSNs, and predictive

movement data exploration.

2.1 Visual Analytics of Movement Data

With the belief that location-based visual analysis can intuitively assist users to under-

stand environments and find out key events [32–34], much research has been performed that

led to the development of various techniques and approaches in the area of visual analysis

of trajectory-based movement [35]. Here, we describe the analysis approaches according to

Andrienko’s categorization [36] (direct depiction, summarization, and pattern extraction).

The techniques in the direct depiction category directly visualize data on a screen and

allow analysts to extract information with interaction methods. In general, visualizations

of this type extensively use a line-based movement representation such as visualizations

with polyline paths [37], stacking-based attributed trajectories [38], arrows [39] and space

time cubes [40]. Even thought the techniques in this category are intuitive to understand,
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they have a visual clutter issue when trajectories are very complex, such as aircraft trajec-

tories [41]. This creates a need for a trajectory summarization approach.

In the summary visualization techniques, statistical computations are performed on the

data and then the results of the computations are visualized. One of the popular compu-

tation techniques is aggregation\clustering [42, 43]. In particular, aggregation helps users

to understand sparse trajectories by reducing uncertainties in terms of time and space [32].

Often, the computation results generate additional characteristics that permit a new analysis

in different aspects. For example, Andrienko et al.’s algorithm transforms geo-located data

into individual-group relation data that allows another type of movement analysis [44].

This allows researchers to design new visualization techniques or reuse many advanced

visualization techniques for movement data analysis including multivariate glyph visual-

ization [45], density map [46], origin-destination (OD) map [47, 48], and Flowstrates [49].

Some of previous work also adopt vector field related approaches [42, 50, 51]. Poco et

al. [50] take account the road network as a graph and compute plausible routes for the

New York taxi trips by computing possible paths and choose a path whose distance is sim-

ilar enough to the actual distance. They compute the vector-valued traffic function based

on the inferred paths and visualize the function using the particle advection techniques to

show traffic mobility dynamics. Ferreira et al. [42] generate vector fields based on trajec-

tory data and classify the groups of movements by clustering the vector fields. Nascimento

et al. [51] also derive vector fields from trajectory data and represent the movement patterns

as mixture of models.

The goal of the techniques in the pattern extraction category is to provide an environ-

ment for investigating hidden patterns in various aspects (e.g., themes [52], semantics [53],

context [54], co-occurrence [55]) with additional complex computations based on algo-

rithms from trajectory mining [56]. Trajectory mining itself is a wide research theme that

includes most of the algorithms introduced in this section. In this work, we provide a visual

predictive trajectory analytics environment based on a new flow forecasting model adapting

a seasonal trend analysis. In addition, we provide a new visualization technique to show

directional density of the flow of trajectories.
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2.2 Visual Analytics of Location-based Social Networks

As social media platforms move towards LBSNs. researchers have proposed various

approaches to analyze spatiotemporal document collections, in general, and spatiotempo-

ral social media data, in particular. VisGets [57] provides linked visual filters for the space,

time and tag dimensions to allow the exploration of datasets in a faceted way. The user is

guided by weighted brushing and linking, which denotes the co-occurrences of attributes.

Further works demonstrate the value of visualizing and analyzing the spatial context in-

formation of microblogs for social network users [58] or third parties like crime investiga-

tors [59] and urban planners [60]. With Senseplace2, MacEachren et al. [30] demonstrate a

visualization system that denotes the message density of actual or textually inferred Twitter

message locations. The messages are derived from a textual query and can then be filtered

and sorted by space and time. Their work also has shown that social media can be a po-

tential source for crisis management. With ScatterBlogs [61], our own group developed

a scalable system enabling analysts to work on quantitative findings within a large set of

geolocated microblog messages. In contrast to Senseplace2, where the analysts still have

to find and manage the appropriate keywords and filters to gather relevant messages in the

high volume of insignificant messages, we propose a semi-automatic approach that finds

possibly relevant keywords and ranks them according to their ‘abnormality’.

Special LBSN for certain domains, like Bikely [62] and EveryTrail [63] have an even

stronger focus on the sharing and tracing of user locations. Ying et al. [64] present various

location based metrics using spatial information of these LBSNs to observe popular people

who receive more attention and relationships within the network. Similarly, there are many

related works for non-spatial temporal document collections, for example IN-SPIRE [65],

which is a general purpose document analysis system that depicts document clusters on a

visual landscape of topics.
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2.3 Event Detection and Topic Analysis of Social Media

One of the major challenges in analyzing social media data is the discovery of critical

information obscured by large volumes of random and unrelated daily chatter. Due to the

nature of microblogging, message streams like Twitter are very noisy compared to other

digital document collections. Recently, many researchers have tried to solve this challenge

by means of automated and semi-automated detection and indication of relevant data.

Sakaki et al. [31] propose a natural disaster alert system using Twitter users as virtual

sensors. In their work, they were able to calculate the epicenter of an earthquake by an-

alyzing the delays of the first messages reporting the shock. Weng and Lee [66] address

the challenge by constructing a signal for each word occurring in Twitter messages using

wavelet analysis, thereby making it easy to detect bursts of word usage. Frequently recur-

ring bursts can then be filtered by evaluating their auto-correlation. The remaining signals

are cross correlated pairwise and clustered using a modularity-based graph partitioning of

the resulting matrix. Due to the quadratic complexity of pairwise correlation, they rely on

heavy preprocessing and filtering to reduce their test set to approx 8k words. As a result,

they detected mainly, large sporting events, such as soccer world cup games, and elections.

Our approach, in contrast, provides a set of topics through a probabilistic topic extraction

algorithm which can be iteratively applied to subsets and subtopics within user selected

message sets.

Lee and Sumiya [67] as well as Pozdnoukhov and Kaiser [68] present methods to de-

tect unusual geo-social events by measuring the spatial and temporal regularity of Twitter

streams. Lee and Sumiya propose a concept to detect unusual behavior by normalizing the

Twitter usage in regions of interests which are defined by a clustering-based space parti-

tioning. However, their results are mainly a measurements of unusual crowd behavior and

do not provide further means for analyzing the situation. Pozdnoukhov and Kaiser ob-

serve abnormal patterns of topics using spatial information embedded in Twitter messages.

Similar to our approach, they apply a probabilistic topic model (Online Latent Dirichlet

Allocation) as a means of analyzing the document collection. A Gaussian RBF kernel den-
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sity estimation examines the geo-spatial footprint of the resulting topics for regularities.

The usual message count of identified areas is then learned by a Markov-modulated non-

homogeneous Poisson process. The spatial patterns are shown as a static heat map. The

resulting system does not provide interactive analytics capabilities.

Recently, researchers have applied LDA topic modeling to social media data to sum-

marize and categorize Tweets [69] and find influential users [70]. Zhao et al. [69] demon-

strate characteristics of Twitter by comparing the content of Tweets with a traditional news

medium, such as the New York Times. They discuss and adapt a Twitter-LDA model

and evaluate this model against the standard topic model and the so-called author-topic

model [71], where a document is generated by aggregating multiple Tweets from a sin-

gle user, in terms of meaningfulness and coherence of topics and Twitter messages. In

this work, we do not use the author-topic model, since a users Tweet timeline is usually a

heterogeneous mixture of unrelated comments and messages and not a homogenous frame-

work of interrelated topics like a traditional document. Furthermore, the evaluation of

Zhao et al. [69] shows that the standard model has quite reasonable topic modeling results

on Tweets, although the Twitter-LDA model outperforms the standard model. Works from

Ramage et al. [72] also show promising results in LDA based Twitter topic modeling by

evaluating another type of LDA model (Labeled LDA) [73]. ParallelTopics [74] also ex-

tracts meaningful topics using LDA from a collection of documents. The visual analytics

system allows users to interactively analyze temporal patterns of the multi-topic documents.

The system, however, does not not deal with spatial information, but takes an abnormality

estimation into account.

In our previous work [75], we proposed a spatiotemporal anomaly overview based on a

streaming enabled clustering approach that is applied for each term in the dataset individ-

ually. The resulting clusters can be used to generate a spatially and temporally explorable

term map of large amounts of microblog messages as an entry point for closer examina-

tion. Even though the scalable event detection and our current approach share the same

workbench, they can be used independently as well as complementary. The combination

of LDA and STL allows for an ad-hoc analysis of a user selected set of messages regard-
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ing the topical distribution of messages and the abnormal presence of topics. Due to this

characteristic, it provides an iterative analysis loop for qualitative analysis and drill down

operations.

2.4 Disaster Management based on Social Media Analysis

Most recent analysis environments for crisis-related social media exploration and vi-

sualization are from MacEachren et al. [30], Marcus et al. [76], and Thom et al. [75].

Their systems combine traditional spatial and geographic visualizations with means for au-

tomated location discovery, trend and outlier search, anomaly and event discovery, large

scale text aggregation and highly interactive geovisual exploration. Approaches putting

less focus on visualizations and more on fully automated data mining mechanisms have

been proposed by Sakaki et al. [31] that use Kalman and Particle Filters to detect the loca-

tion of earthquakes and typhoons based on Twitter. Various techniques for spatiotemporal

data analysis and anomaly detection using visualization or machine learning techniques

have been proposed by Andrienko et al. [77], Lee and Sumiya [67], and Pozdnoukhov and

Kaiser [68]. Twitcident from Abel et al. [78] provides a web-based framework to search and

filter crisis-related Tweets. Using the Netherlands emergency broadcast system, Twitcident

automatically reacts on reported incidents and collects related information from Twitter

based on semantic enrichment. In all these system the focus is primarily on individual

messages and aggregated message volumes and how insight can be generated by under-

standing their content. In contrast, our system investigates a more user focused approach

that tries to identify the whereabouts and movements of people in order to understand mass

behavior.

Researchers have also examined the usage of Twitter during incidents and disasters.

Terpstra et al. [79] investigate more than 90k Twitter messages that were sent during and

after a storm hit the Belgium Pukkelpop musicfestival in 2011. They categorize Tweets

into warnings about the severe weather conditions, rumors and self organization of relief

measures. They show that valuable information for crisis response and decision support can
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be gathered from the messages. Vieweg et al. [80] investigate the differences in reaction to

different crisis events. For their study they investigate eyewitness reports in Twitter from

people that were affected by Oklahoma Grassfires in April 2009 and Red River Floods in

March and April 2009. Their research also demonstrates the high value that the extraction

of meaningful comments from crisis-related communication can have to generate insights.

Furthermore, Heverin et al. [81] demonstrate that Twitter can also be a useful source of

information for smaller events as they investigate the reaction to a shooting of four police

officers and the subsequent search for the suspect that took place in the Seattle-Tacoma

area. Based on the collection and categorization of 6000 messages they are able to show

that citizens use the service to communicate and seek information related to the incident.

In this thesis, we also present case studies on crisis-related information gathered from

Twitter data. However, in contrast to the discussed studies that harvest information directly

out of the content of the messages, our method is primarily based on observing movement

patterns and identifying local hotspots in order to learn about the effects of the crisis and

the performance of evacuation measures.

2.5 Human Movement Analysis using Location-based Social Networks

As many social networks move towards LBSNs, researchers have proposed various ap-

proaches to analyze spatiotemporal social media data. Adrienko et al. [82] describe a visual

analysis approach for exploring Tweet text and spatiotemporal patterns. Krueger et al. [54]

extract frequent visited places from vehicle movement data and further use semantics dis-

tilled from the social network to decode daily activities of people. Approaches putting

less focus on visualizations and more on data mining mechanisms have been proposed by

some studies [7, 83, 84] to discover human movement patterns based on LBSNs. For the

research on collective movement, clustering is a popular approach in looking for common

patterns. Andrienko et al. [28] propose a wide range of clustering-based analytics models

and combine those with visualization techniques. Their clustering models group similar

trajectories as a whole and extract common trips. In this work, we focus on finding com-
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mon sub-trajectories. Our clustering of sub-trajectories (as opposed to whole trajectories)

enables the extraction of similar portions of trajectories, even when no overall clusters may

exist.

Existing anomaly detection models [85–87] for trajectory data have mainly focused on

identifying outliers from a target dataset. The models are usually based on non-supervised

learning—they generally do not have factors for the outliers, and assume that the outliers

make for a small sub-set from the entire dataset. These models look for major patterns and

determine whether each trajectory belongs to the majority according to specific criteria.

However, during abnormal situations, even the major behaviors can be unusual compared

to normal situations.

To address this challenge, our work focuses on the anomalous human behavior analysis

through the combination of user expert knowledge and automatic anomaly detection mod-

els. The research [33,44,88] dealing with GPS data for collective movement analysis takes

advantage in high spatial density compared to density of LBSNs. However, it is difficult

to collect data for areas of interest and the data usually has no other context. In order to

resolve these issues, we utilize additional context (i.e., Tweet text) from LBSNs and visu-

ally incorporate the information to enhance the human movement analysis by improving

situational awareness.

2.6 Predicting Movement

Recent advances in location acquisition technology have generated fine-grained move-

ment data that contains individual object movement tracking. For predicting movement

data, a movement modeling process [89] is first performed where individual moving ob-

jects are embedded in a 2D or 3D Euclidean space as a series of locations. Then varying

algorithms are applied for predicting future movement of these modeled objects.

There are many approaches proposed for these movement prediction. The most com-

mon underlying algorithms utilized are based on a structured prediction model, such as Hid-

den Markov Models (HMM) [20, 24], Conditional Random Fields [90, 91], and Bayesian
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network [92]. For example, Mathew et al. [24] propose a hybrid HMM model where mov-

ing object’s location histories are clustered, and the model is trained for each cluster with

location characteristics as unobservable parameters. Some of previous work uses template

matching based on feature extraction and similarity metrics. Another popular approach to

predict the next location of a new trajectory utilizes trajectory pattern matching algorithms.

Much work can be grouped in this category. Monreale et al. [23] build a trajectory pat-

tern tree and find the best matching pattern to predict the next destination. Ying et al. [21]

utilize geographic and semantic context (e.g., bank, park, school) of geo-location points

to generate a semantic sequence. Then, they cluster the trajectories based on the seman-

tic sequence—each cluster contains the frequent behaviors of similar users. Finally, they

evaluate the next location based on user’s semantic behaviors using the pre-defined clusters.

Although many techniques and algorithms have been proposed for frequency-based in-

dividual object movement prediction, not much research has been performed on predicting

group movement. Recently many visual analytics approach [93–95] is used to support

group movement analysis. Andrienko et al. [93] propose a visual analytics framework to

support data abstraction and generalization for modeling transportation networks and three

high-level tasks, assess, forecast, and develop options. Landesberger et al. [94] contribute

another visual approach to reveal temporal changes of human mobility patterns. While

they also present the spatiotemporal variation of movements, they do not provide forecast-

ing features. OD-Wheel [95] detect and analyze original-destination dynamic patterns of

different regions in the central city. In this work, we embed individual movements into a

two-dimensional Euclidean space and model for the space instead of the moving objects.

Given a space with a large number of moving objects, we discretize the space into smaller

sub-spaces and model the movement flows for each sub-space. Our model forecasts the

future directional density of moving objects based on observed historical patterns of each

sub-space using a seasonal trend analysis technique [3]. We then combine the results to

visualize the future flow as a whole for the entire space. Our model takes into account flow

forecasting of a large group of human crowds and also visualization of their continuous

flow. Movement analysis as a large group using flow maps can provide a valuable spatial
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overview of the group movement [28] while preserving the privacy of individuals [20, 25].

We also provide an interactive visual analytics environment which enables effective explo-

ration of the predicted results and further analysis [89].
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3. VISUAL ANALYTICS OF SPATIOTEMPORAL SOCIAL MEDIA
FOR ABNORMAL EVENT DETECTION

Social media services, e.g, Twitter, Youtube, Flickr, provide a rich and freely accessible

database of user-generated situation reports. As advances in technology have enabled the

widespread adoption of GPS enabled mobile communication devices, these reports are

able to capture important local events observed by an active and ubiquitous community.

The different forms of social media content provided by the users, such as microposts,

images or video footage, can have immense value for increasing the situational awareness

of ongoing events.

However, as data volumes have increased beyond the capabilities of manual evalua-

tion, there is a need for advanced tools to aid understanding of the extent, severity and

consequences of incidents, as well as their time-evolving nature, and to aid in gleaning in-

vestigative insights. Due to the large number of individual social media messages it is not

straightforward to analyze and extract meaningful information. For example, in Twitter,

more than 200 million Tweets are posted each day [96]. Thus, in a developing event, the

relevant messages for situational awareness are usually buried by a majority of irrelevant

data. Finding and examining these messages without smart aggregation, automated text

analysis and advanced filtering strategies is almost impossible and extracting meaningful

information is even more challenging.

To address these challenges, we present an interactive spatiotemporal social media an-

alytics approach for abnormal topic detection and event examination [97]. In order to find

relevant information within a user defined spatiotemporal frame we utilize the LDA topic

model [2], which extracts and probabilistically ranks major topics contained in textual parts

of the social media data. The ranks of the categorized topics generally provide a volume-

based importance, but this importance does not reflect the abnormality or criticality of the

topic. In order to obtain a ranking suitable for situational awareness tasks, we discard daily
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chatter by employing the STL [3]. In our work, globally and seasonally trending portions

of the data are considered less important, whereas major non-seasonal elements are con-

sidered anomalous and, therefore, relevant.

However, due to the large volumes of data, the very specific syntax and semantics of

microposts and the complex needs of situational analysis, it would not be feasible to apply

these techniques in the form of a fully automated system. Therefore, our whole analysis

process, including the application of automated tools, is guided and informed by an ana-

lyst using a highly interactive visual analytics environment. It provides tight integration

of semi-automated text-analysis and probabilistic event detection tools together with tradi-

tional zooming, filtering and exploration following the Information-Seeking Mantra [4].

3.1 Spatiotemporal Social Media Analytics for Event Examination

Since several social media sources recently provide space-time indexed data, traditional

techniques for spatiotemporal zooming, filtering and selection can now be applied to ex-

plore and examine the data. However, the vast amount of data is beyond the human an-

alytics capabilities. In order to cope with the data volumes, traditional interaction and

visualization techniques have to be enhanced with automated tools for language processing

and signal analysis, helping an analyst to find, isolate and examine unusual outliers and

important message subsets.

To address this issue, we present an interactive analysis process that integrates advanced

techniques for automated topic modeling and time series decomposition with a sophisti-

cated analysis environment enabling large scale social media exploration. In part 3.1.1 of

this Section we first explain how the Latent Dirichlet Allocation, a well established topic

modeling technique in the information retrieval domain, can be used to extract the inher-

ent topic structure from a set of social media messages. The output of this technique is a

list of topics each given by a topic proportion and a set of keywords prominent within the

topics messages. In a subsequent step, our system then re-ranks the retrieved topic list by

identifying unusual and unexpected topics. This is done by employing a seasonal-trend de-
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composition algorithm to the historic time series data for each topic, retrieving its seasonal,

trending and remainder components. Using a z-score evaluation, we locate peaks and out-

liers in the remainder component in order to find an indicator of unusual events. While the

LDA topic extraction is done primarily for Twitter data, the abnormality estimation is also

applied to different social media data sources, such as Flickr and YouTube, for each topic.

This is achieved by searching matching entries for each term of a topic and applying the

same STL analysis on the resulting time series. The results are available to the analyst for

cross validation. The details of this step are described in Subsection 3.1.2 and the complete

detection model is formally described in Subsection 3.1.3. In Section 3.2, we describe

how powerful tools based on these techniques are used within our analysis environment,

Scatterblogs, in order to iteratively find, isolate and examine relevant message sets.

3.1.1 Topic Extraction

Our monitoring component collects space-time indexed Twitter messages using the

Twitter-API. The received messages are preprocessed and then stored in our local database.

Rank Proportion Topics

1 0.10004 day back school today

2 0.09717 lls bout dat wit

3 0.09443 people make hate wanna

4 0.08226 earthquake thought house shaking

5 0.05869 earthquake felt quake washington

Table 3.1
An example of extracted topics and their proportions. We extracted top-
ics from Tweets written on August 23, 2011 around Virginia, where an
earthquake occurred on this day. One can see that topics consisting of or-
dinary and unspecific words can have high proportion values, while the
earthquake related topics have a relatively low proportion value.
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When users of these services witness or participate in unusual situations they often inform

their friends, relatives or the public about their observations. If enough users participate,

the communication about the situation constitutes a topic that makes up a certain propor-

tion of all messages within the database, or some messages within a predefined area and

timespan. In most cases, however, the proportion will be smaller than that of other preva-

lent topics, such as discussions about movies, music, sports or politics. In order to extract

each of the individual topics exhibited within a collection of social media data, we employ

Latent Dirichlet Allocation, a probabilistic topic model that can help organize, understand,

and summarize vast amounts of information.

The LDA topic model approach, as presented by David Blei et al. [2], is a probabilistic

and unsupervised machine learning model to identify latent topics and corresponding docu-

ment clusters from a large document collection. Basically, it uses a “bag of words”approach

and assumes that a document exhibits multiple topics distributed over words with a Dirich-

let prior. In other words, the LDA assumes the following generative process for each docu-

ment: First, choose a distribution over topics, choose a topic from the distribution for each

word, and choose a word associated with the chosen topic. Based on this assumption one

can now apply a Bayesian inference algorithm to retrieve the topic structure of the message

set together with each topic’s statistical proportion and a list of keywords prominent within

the topic’s messages. Table 3.1 shows an example set of extracted topics resulting from the

application of LDA to Twitter data ordered by the proportion ranking. The example social

media data was collected from Twitter for the Virginia area on August 23rd. On this day,

the area was struck by an earthquake with a magnitude of 5.88. As seen in the table, this

earthquake event was captured as a topic within the Twitter messages.

In our system, the MALLET toolkit [98] is used for the topic analysis. Prior to the topic

extraction, the stemming algorithm KSTEM by Krovetz [99] is applied to every term in the

messages. The results of KSTEM are more readable and introduce fewer ambiguities than

the often used Porter stemmer.

For the unsupervised LDA classification and topic retrieval one has to define two param-

eters: the number of expected topics and the number of iterations for the Gibbs sampling
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Number of Iteration Steps in the LDA process

50

foursquare pic hall brooklyn

time night day back

newyork nyc tweetmyjobs finance

york brooklyn ave street

york ave park btw

300

time back night day

york ave brooklyn btw pic bar food nyc

foursquare occupywallstreet park mayor

newyork tweetmyjobs finance citigroup

1000

time night nyc day

york ave brooklyn park

foursquare occupywallstreet mayor ousted

newyork tweetmyjobs finance citigroup

san gennaro street italy

Table 3.2
An example of topic model results depending on the number of iteration
steps in the LDA process. The topics are extracted from the Tweets posted
in New York City on September 17 and 18, 2011 where the Occupy Wall
Street protest movement began and a famous festival, San Gennaro oc-
curred. A higher number of sampling iterations provides a better topic
retrieval describing the two different events.

process [100], which is used in MALLET for the topic inference. The number of topics that

should be chosen depends on the size of the document collection and the required overview

level. A small number of topics (e.g., 10) will provide a broad overview of the documents,
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whereas a large number (e.g., 100) provides fine-grained results. The number of sampling

iterations is a trade-off between computation time and the quality of discovered topics. To

illustrate this, Table 3.2 shows the experimental results of the topic model using a varying

number of sampling iterations while the number of topics was set to four. The topics were

extracted from Tweets posted in New York City on September 17 and 18, 2011, where a

large group of protesters occupied Wall Street in New York City. A topic indicating the

Occupy Wall Street protests can be seen when using at least 300 iterations. At the time of

these protests, there was also a famous annual festival, the San Gennaro, occurring in Little

Italy. This can only be seen when using at least 1000 iterations. As shown in Table 3.2,

the topics with 50 iterations do not indicate any meaningful events. The topics with 300

iterations, on the other hand, consist of more distinguishable classes. Finally, the topics

with 1000 iterations obviously point out individual events which happened in the city.

3.1.2 Abnormality Estimation using Seasonal-Trend Decomposition

Abnormal events are those that do not happen frequently and usually they cover only a

small fraction of the social media data stream. As shown in Table 3.1, even during an earth-

quake episode, highly ranked topics consist of ordinary and unspecific words. The third and

fourth ranked topics include words indicating the earthquake event of August 2011: earth-

quake felt quake washington. From this observation in the distributions of ordinary and

unusual topics over the social media data, it is necessary to differentiate the unusual topics

from the large number of rather mundane topics. In order to identify such abnormal topics,

we utilize the STL [3]. For each extracted topic of the LDA topic modeling, our algorithm

retrieves messages associated with the topic and then generates a time series consisting of

daily message counts from their timestamps. The time series can be considered as the sum

of three components: a trend component, a seasonal component, and a remainder:

Y = T +S+R (3.1)

Here Y is the original time series of interest, T is the trend component, S is the seasonal

component, and R is the remainder component. STL works as an iterative nonparamet-
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ric regression procedure using a series of Loess smoothers [101]. The iterative algorithm

progressively refines and improves the estimates of the trend and the seasonal compo-

nents. The resulting estimates of both components are then used to compute the remainder:

R=Y−T−S. Under normal conditions, the remainder will be identically distributed Gaus-

sian white noise, while a large value of R indicates substantial variation in the time series.

Thus, we can utilize the remainder values to implement control chart methods detecting

anomalous outliers within the topic time series. We have chosen to utilize a seven day

moving average of the remainder values to calculate the z-scores, z = (R(d)−mean)/std,

where R(d) is the remainder value of day d, mean is the mean remainder value for the

last seven days, and std is the standard deviation of the remainders, with respect to each

topic. If the z-score is higher than 2, events can be considered as abnormal within a 95%

confidence interval. The calculated z-scores are thus used as abnormality rating and the

retrieved topics will be ranked in the analytics environment according to this estimate.

3.1.3 Detection Model

To conclude this section, we formalize our abnormal event detection model based on

the probabilistic topic extraction and time series decomposition.

An abnormal event is associated with a set of social media messages that provides

its contents, location, and time-stamp. To detect abnormal events for a given area and

timespan, we define a set called social spacetime as follows:

S = (T,∆time,∆area,msgs) (3.2)

where T is a set of topics, ∆time is a time period (e.g., one day), ∆area is a bounded

geographical region, and msgs is a set of messages. The user selected parameters ∆area

and ∆time define the analysis context for which all messages are loaded into the analysis

system. In this context, the user selects a subset of messages (msgs) for which the LDA

topic modeling procedure (described in Section 3.1.1) extracts the set of topics, ti ∈ T . Each

topic is defined as:

ti = (Mi,Wi,zi,Yi, pi) (3.3)
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where Wi is a set of words describing the topic, Mi is a set of relevant messages, zi is an

abnormality score (z-score), Yi is a time series, and pi is a statistical proportion of the topic

in msgs.

For each topic (ti), our algorithm searches relevant messages (Mi) in the selected area

(∆area) and time period (∆time) and a predefined time span of historic data preceding

∆time (e.g. one month). Messages are considered relevant if they contain at least one word

in Wi. From Mi a daily message count time series (Yi) is generated from the timestamps of

the messages. The algorithm decomposes Yi to obtain a remainder component series using

the STL and calculates a z-score (zi) from the remainder series. Lastly, it sorts the topics

based on the z-scores.

For cross validation of each topic, we search for relevant entries in Flickr and YouTube

by their meta-data that includes titles, descriptions, tags, and timestamps, using the respec-

tive APIs. We repeat the steps for generating a time series from the collected timestamps,

applying STL to decompose the time series, and calculating the z-score from the remainder

component series.

3.2 Interactive Analysis Process

The complete topic extraction, abnormality estimation, and event examination are tightly

integrated into a highly interactive visual analysis workbench, that allows an analyst to

observe, supervise, and configure the method in each individual step. The following sec-

tions introduce the details of this system and describe how the event detection is embedded

within a sophisticated analysis process as shown in Figure 3.1.

3.2.1 Social Media Retrieval and Analysis System

Our modular analysis workbench ScatterBlogs was already featured in previous works

[61, 75]. It proved itself very useful for fundamental tasks like collection, exploration and

examination of individual, as well as aggregated, social media messages. The UI of the

system is composed of several interconnected views and the main view houses a zoomable
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Fig. 3.1. Overview of our iterative analysis scheme for event detection and examination.

openstreetmaps implementation showing message geolocations on a world map. The sys-

tem features a text search engine and visual content selection tools that can be used to

retrieve messages, show spatial and temporal distributions and display textual message

contents. Additional visualizations and map overlays provide the analyst with powerful

inspection tools, such as a kernel-density heatmap similar to [102], to show aggregated and

normalized message distributions and a movable lens-like exploration tool (called ‘con-

tent lens’) that aggregates keyterm frequencies in selected map areas [61]. To indicate

spatiotemporal anomalies in the message set, the system features a mechanism to detect

spatiotemporal clusters of similar term usage, and suspicious message clusters can be rep-

resented as Tag Clouds on the map [75]. For the real-time collection of messages using the

Twitter Streaming API the system features a scalable extraction and preprocessing com-

ponent. This component was used to collect Twitter messages since August 2011 and it

currently processes up to 20 Million messages per day, including the almost complete vol-

ume of up to 4 million messages that come with precise geolocation information.
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3.2.2 Visual Topic Exploration and Event Evaluation

Results from the topic retrieval and event detection as described in Section 3.1 can be

iteratively refined by means of visual result presentation and interactive parameter steer-

ing. Both, the final result of event detection as well as intermediary findings during data

filtering and topic extraction can be used by the analyst to adjust the process in order to

identify interesting topics and keyterms as well as relevant map areas and timespans for

a given analysis task. New insights can be generated on each of four individual analy-

sis layers which, in conclusion form an iterative analysis loop from data filtering to result

visualization:

• Spatiotemporal Data Filtering: The analyst selects an initial spatiotemporal con-

text of Twitter messages to be represented in the visualization and to serve as a basis

for analysis. He can do so by using textual as well as spatiotemporal query and fil-

ter mechanisms that load the relevant base message set from a larger database into

active memory. The analyst can further filter the base set and remove unimportant

parts by using a time-slider, depicting temporal message densities, or polygon and

brush selection tools. Using these tools the analyst can gain an initial impression of

the spatial and temporal distribution and location of messages that could be relevant

for his analysis task.

• LDA Topic Examination: In the subsequent step the analyst can choose to start the

topic extraction either on the whole analysis context or on some subset of selected

messages. At this stage he can utilize the configuration parameters of LDA extraction

to interactively explore available topics by generalization and specialization. In this

regard the most important parameter is the number of topics that have to be defined

for the topic model inference. If the analyst decreases the number using the provided

tools, the extracted topics will be more general. If he increases it, they will be more

specific and thus candidates for small but possible important events. Once topics

are generated from the data they will be presented to the analyst through a list of

small tag clouds for each topic. He can now select the topics from the list to see
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their individual message distribution on the map and the temporal distribution in the

time-slider.

• STL Evaluation: Depending on the analyst’s choice, the topics can be evaluated and

ordered based either on absolute topic frequency or based on abnormality estimates

that have been computed using STL. As described in Section 3.1.2, a valid estimate of

abnormality depends on the computation of z-scores from data seven days prior to the

observed time frame. Therefore, the STL evaluation will extend the data examination

to a range prior to the selected spatiotemporal context, if data is available. Once

abnormality is computed for each topic, the topic list will be ordered according to

the values and the topics with most outstanding abnormality are highlighted.

• Crosscheck Validation: Each selection of messages is accompanied by charts show-

ing the total time series and the remainder components for the selected message set

using STL. This is true for spatiotemporal selections as well as for selections using

the LDA topic list. In addition to the geolocated Twitter messages this STL is at

the same time performed for data that has been extracted from supplemental services

like Flickr and YouTube. Based on the multiple charts the analyst can crosscheck the

importance and abnormality of examined events and topics.

In our system, the analyst is supposed to iteratively use these means of semi-automated

processing, visualization and interaction to refine the selection of messages up to a point

where he can begin to examine individual message details. For this task, he can then utilize

tools like the content lens for small scale aggregation or the table view to read the mes-

sages textual content. The application of these tools is shown in Figure 3.2. Usually the

most valuable messages will be reports from local eyewitnesses of an important event or

from insiders for a given topic. Thus, to retrieve large quantities of such messages helping

to understand an ongoing event or situation will be the final goal of the iterative process.

Unusual topics, suspicious keyword distributions and events with high STL abnormality

discovered on the repeatedly traversed analysis layers can guide the analysis from a very
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broad and general overview to very specific topics and a relatively small message set suit-

able for detailed examination.

Fig. 3.2. Examining the location of the Chardon high school shooting with
a text aggregating content lens.

3.3 Case Study

In this section, we present three case studies for our system covering different types

of events including the Chardon High School Shooting, the Occupy Wall Street protests in

New York, and the 2011 Virginia Earthquake. The first case shows how analysts can use

our system efficiently to find and explore an abnormal event. The second case highlights

the differences between social media types by cross validation of a planned event. Finally,

the last example showcases the effects of an abrupt, unexpected, natural disaster.
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3.3.1 Ohio High School Shooting

On February 27, 2012, a student opened fire inside the Chardon High School cafeteria

in the early morning. The gunman killed one student and injured four, from which two

eventually died after the incident.

To examine this incident we first locate and select the broader Cleveland area on the

map and select a time frame covering three days from February 26 to February 28. Using

the text search engine and a wildcard query (‘*’) we can establish an exploration context

showing all messages plotted on the map with their respective contents and meta data listed

in a separate table view. First, we want to get a broad overview of the topics discussed in

the region and thus we select all messages in the area and apply the LDA extraction tool

to the current selection. In order to see the most general topics, we chose a low parameter

value for the number of topics and a high iteration count to achieve good separation. At

this level of semantic detail, the extracted topics indicate messages about the NBA all-star

game (February 26 in Orlando) with keywords like kobe, game, dunk and lebron as well

as the showing of the movie ‘The Lion King’on TV with keywords king, lion, tv. If we

look at the STL-Diagrams of these topics and the computed z-scores, we also see a peak

for these events. By clicking on the retrieved topic representations the associated messages

are highlighted in each view. By reading some of the message contents (e.g. ’Watching my

fav. Movie on ABC family..... Lion King!!!!’, ’Can’t wait till the dunk contest starts!’), the

analyst can easily disqualify these from further analysis.

To get a higher semantic resolution we can now increase the number of topics and

slightly decrease the iteration count in order to achieve a fast computation. By selecting 20

topics, the topic indicating the shooting event is extracted and indicated by keyterms like

shooting, chardon and school, alongside the other topics. Although the proportion of the

topic is not very high compared to the others, the topic receives a very high z-score (i.e.,

3.77) and is ranked among the top five topics (highlighted in orange). Figure 3.3 demon-

strates the system view of this observation. An analyst can now select the incident topic to

see the spatial distribution of associated messages on the maps as well as the temporal dis-
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Fig. 3.3. Social media analysis system including message plots on a map,
abnormality estimation charts and tables for message content and topic ex-
ploration. It can be seen, how the Ohio High School Shooting on February
27, 2012 is examined using the system. The selected messages, marked as
white dots on the map, show retrieved Tweets that are related to the event.

tribution in the timeslider histogram. By examining messages using the content lens to ag-

gregate topics over map areas as well as the tools for reading individual message contents,

we can easily distinguish between messages informed by media reaction and messages of

actual observers in the Chardon High School area. In this case, after isolating the messages

from local observers, we find messages like ‘Omg shooting at Chardon High School?!?!’

and ‘Helicopter overhead. We are on scene. Message from school says students moved to

middle school’.

3.3.2 Occupy Wall Sreet

Starting on September 17, 2011 in the Wall Street financial district in New York City,

people have been gathering for the Occupy Wall Street protest movement. The movement

against economic inequality has since spread to other major cities throughout the world.

Various social media services including Twitter, Facebook, Flickr and Youtube have been

utilized both by the participants and the global media for communication and reports about



33

Fig. 3.4. Cross validation of an event using Twitter, Flickr, and YouTube
data for the Occupy Wall Street Protests. The protests occurred on Sep.
17 and 30, Oct. 5 and 15. The line charts show the remainder components
R (blue) and the original data volumes Y (red) for the STL evaluation.
The scales on the right and left side of each chart view are adapted to the
maximum values.

the movement in forms of text, images and videos. For the related extracted topic (oc-

cupywallstreet, wall, takewallstreet, takewallst, park), Figure 3.4 shows the results of our

abnormality estimation for the three social media services Twitter, Flickr, and YouTube

over the course of one month. As shown in Figure 3.5, in each of the marked regions,

at least two of the services show z-scores over 2.0 and they correspond to actual events

during the Occupy Wall Street protests. From this experimental result, one can derive a

strong correlation between the three social media data sources. The related data volumes

and remainder (R) are shown in Figure 3.4 for all three providers.

As shown in Figure 3.5, on September 17 (the first day of the protests with approxi-

mately 1,000 participants [103]), only the Twitter stream received an abnormal score while

the Flickr and YouTube data artifacts are delayed by 1-3 days. We attribute this initial

delay to the simple nature of Twitter usage compared to Flickr and YouTube where the

data potentially has to be recorded, edited, and uploaded and is thus more labor intensive.

Additionally, eighty protesters where arrested while marching uptown on September 24,

but even though Flickr and YouTube reaction on this event created higher z-scores in the

following days, they were not significant enough to register an event. The following spikes
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Fig. 3.5. Abnormality and correlation on multiple social media sources.
As a result of high z-scores around the same time periods, we found a
strong correlation between the three social media sources. Marked regions
correspond to periods where at least 2 providers received scores over 2.0.

of high z-scores overlap with a march across the Brooklyn Bridge (Oct. 1 [104]), a large

demonstration (Oct. 5 [105]), and globally coordinated protests (Oct. 15 [106]).

3.3.3 2011 Virginia Earthquake

For the last use case we examine a magnitude 5.8 earthquake that occurred on the

afternoon of August 23rd 2011 in Mineral, Virginia [107]. Starting with the minute of the

earthquakes occurrence, Twitter users posted more than 40.000 earthquake-related Tweets

reporting tremors they felt along the East Coast [108]. Among these were messages like:

‘EARTHQUAKE!!!!!!!’; ‘Whoa!!!! Just experienced an earthquake here in Virginia!!!!’;

and ‘Omg I just felt an earthquake’. Figure 3.6 gives an impression how our system is

applied to examine this event.
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Fig. 3.6. Virginia earthquake on August 23rd, 2011. Our abnormal
event detection system detects the earthquake event using our STL based
anomaly detection algorithm. The abnormality degree is extremely high
on August 23rd, 2011 (times are given in UTC).

For the analysis we begin with selecting the Virginia area from Baltimore to Virginia

Beach and three days around the 23th. A topic extraction with 5 topics and just 100 it-

erations already retrieves two earthquake related topics showing that this event is very

prominent within the selection. By clicking these topics one can observe that the highest

density of earthquake messages can be found in the Washington, Baltimore and Richmond

areas.

To observe the areas in more detail we combine the topic selection with a spatial selec-

tion of the three cities and reapply the topic extraction. This time we use 20 topics with

500 iterations. Since we are now operating only on earthquake related messages, the re-

trieved topics all contain earthquake as a dominant keyword. On this level of detail we can

see topics indicating that buildings have been evacuated due to the earthquake (earthquake,

people, evacuated, early, building) and that damage has been caused (earthquake, building,

shake, damage). The z-scores for all top ranked topics are now very high (often above 8.0)

and thus indicate the high abnormality of this event.
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Finally, when going into even higher detail with 100 topics and 1000 iterations we can

see smaller events within the big earthquake event. For example, one topic indicates that

damage was caused to the Washington Monument and by clicking on the topic we can see

messages like ‘damage to Washington Monument’; ‘Washington Monument is tilting?!? ’;

and ‘Helicopter just landed next to Washington Moniment, west side. #DCearthquake ’.

There are also misleading messages, indicating that the damage to the Washington Monu-

ment was just false rumors: ‘the Washington monument was not damaged in any way from

the earthquake. #rumor’. However, media crosschecks show that visible damages did in

fact happen and will probably cost the city 15 million dollars to repair [109].

At this point, it is important to note, that while several earthquake topics produced sig-

nificant z-values in Twitter, the event did not produce high z-scores in Flickr and YouTube.

This is probably due to fact, that many people will write a quick message after a shock has

been felt by themselves, but it takes quite some time until images or videos are uploaded

from cameras to Flickr and YouTube. The event also demonstrates that large and unex-

pected events will produce immediate and significant reactions in services like Twitter and

they can thus easily be detected by using our system.

3.4 Discussion

In this section we want to discuss four important notes and observations relevant to the

presented approach.

Event Types: As was demonstrated with the three case studies, events in social media

can be categorized into two different types. The 2011 Virginia Earthquake and the Ohio

High School Shooting can be categorized as abrupt or disaster events, while Occupy Wall

Street can be considered a social and planned event. The two types of events have quite

distinguishable features. For the abrupt events, there is a strong change in daily counts

mainly in the text based Twitter messages. For the planned event, the Twitter signal may

still be faster, but due to the gradual increase and decrease, it is less pronounced. In con-

trast, Flickr and YouTube have delayed, but very prominent changes, for planned events;
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however, we could not find significant signals for abrupt events. This reflects that video

and photo recording happen rarely during abrupt events. Social events, e.g., Occupy Wall

Street or election debates, however, have a high impact on such multimedia based social

media; Relevant videos, photos, and even meta-data (e.g., descriptions, tags) allow analysts

to find additional information about them. We, therefore, think that cross validating events

among multiple social media types is important in order to establish situational awareness.

Base Data: Regarding the base data, it is important to note, that our approach depends

on geo-located Twitter messages with precise coordinates, which are only a fraction of the

whole Twitter stream. While this fraction still consists of several million messages per day,

it is not a representative sample of the population, because it mainly covers mobile users

equipped with GPS enabled devices. We think, however, that mobile users, who share their

daily experiences freely, are the most relevant group for situational awareness scenarios.

Some studies [110, 111] tried to overcome the problem of location information scarcity in

Twitter messages, which adds another source of uncertainty. First, the user’s self reported

locations can be outdated. Second, the geo-coding of the location can be considerably

wrong due to place name ambiguities. Furthermore, we have just shown the feasibility of

the approach for Twitter, Flickr, and YouTube data, but it can easily be adapted to other

social media providers like Facebook or Forsquare as well, in order to widen the sample of

the population.

Probabilistic Models: In this work, we use STL to decompose time series of topic

streams. There are many alternative statistical models for this task, such as DHR (Dynamic

Harmonics Regression) [112] and SARIMA (Seasonal AutoRegressive Intergrated Moving

Average) [113]. DHR and SARIMA models are particularly useful for forecasting and STL

can also be used for prediction based on seasonal (periodic) time series [114]. Our main

reasons for choosing STL was the fact that it is non-parametric, can be computed faster

than SARIMA [114] and needs less training data for equally good results.

End User Feedback: We requested informal feedback from users within our institutes

and received comments and suggestions. To compare the LDA topic modeling plus the

seasonal-decomposition based abnormality analysis versus only the LDA topic modeling,
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we enabled our system to switch between these modes. The users were impressed by the

fact that both results (two lists of topics) from two different modes were quite different.

Highly ranked topics by LDA topic modeling consisted of ordinary words, while the com-

bined analysis was indicating unusual events. They noted that the tightly integrated visual

analysis workbench was useful to apply the automated methods. Furthermore, they sug-

gested a function allowing people to see a pattern of abnormality for a user-defined topic.

3.5 Summary

We presented an interactive abnormal event detection and examination system for the

analysis of multiple social media data sources. The system uses an abnormality estimation

scheme based on probabilistic topic modeling and seasonal-trend decomposition to find

and examine relevant message subsets. This scheme is tightly integrated into an highly

interactive visual analytics system, which supplements tools based on automated message

evaluation with sophisticated means for parameter steering, filtering and aggregated result

set exploration. Three use cases demonstrated the visualization and user interaction within

the system and its capabilities to detect and examine several different event types from

social media data. The ability to crosscheck findings based on three distinct social media

sources revealed the kinds of correlations that can be expected from various event types.
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4. VISUAL ANALYTICS OF MICROBLOG DATA FOR PUBLIC
BEHAVIOR ANALYSIS IN DISASTER EVENTS

In this chapter, we introduce a visual analytics approach for public behavior analysis in

disaster events. Analysis of public behavior plays an important role in crisis management,

disaster response, and evacuation planning. Unfortunately, collecting relevant data can be

costly and finding meaningful information for analysis is challenging. A growing number

of LBSN services provides time-stamped, geo-located data that opens new opportunities

and solutions to a wide range of challenges. Such spatiotemporal data has substantial po-

tential to increase situational awareness of local events and improve both planning and

investigation. However, the large volume of unstructured social media data hinders ex-

ploration and examination. To analyze such social media data, our system provides the

analysts with an interactive visual spatiotemporal analysis and spatial decision support en-

vironment that assists in evacuation planning and disaster management. We demonstrate

how to improve investigation by analyzing the extracted public behavior responses from

social media before, during and after natural disasters, such as hurricanes and tornadoes.

This study is performed using Tweets, as Twitter has been the most popular microblog

service in the United States. We extend our previous work [115] with additional features of

our system and examine their capabilities with several expanded examples in Section 4.2.2.

We also add a discussion section for comparisons and analysis of the case studies.

Our system evaluates visual analytics of spatiotemporal distribution of Tweets to iden-

tify public behavior patterns during natural disasters. The main features of our approach

are as follows:

• Spatial analysis and decision support: The system provides effective analysis for

exploring and examining the spatial distribution of Twitter users and supporting spa-
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tial decision-making using a large volume of geo-located Tweets and multiple types

of supplementary information during specific time periods (i.e., disaster events).

• Temporal pattern analysis: Our visualization system enables the analysts to an-

alyze the temporal distribution of the number of Twitter users posting Tweets in a

given location and time.

• Spatiotemporal visualization: We provide a visualization that allows the analysts

to simultaneously analyze both aspects: space and time in a single view.

4.1 Problem Statement and Interactive Analysis Process Design

Analysis of public behavior, such as how people prepare and respond to disasters, plays

an important role in crisis management, disaster response, and evacuation planning. Re-

cently, social media becomes popular and people utilize it for communications not only in

their daily lives, but also in abnormal disastrous situations. Thus, Location-based Social

Networks services offer a new opportunity for enhancing situational awareness during dis-

aster events. Unfortunately, collecting relevant data can be costly and finding meaningful

information from the huge volume of social media data is very challenging. Therefore,

there is a need for an advanced tool to analyze such massive (“big”) streaming data and aid

in examining the analysis results to better understand situations more efficiently.

Our proposed visual analytics approach provides multiple analysis methods: spatial

analysis, spatial decision support, temporal pattern analysis, abnormal topic analysis, and

interactive spatiotemporal visualization as shown in Figure 4.1. In our system, all meth-

ods are tightly integrated based on a user-centered design in order to enhance the ability

to analyze huge social media data (Figure 4.1 (A, B, C)). Our Tweet collection component

obtains real-time Tweets using the Twitter API—to collect about 2.2 million geotagged

Tweets within the United States per day. In general for spatial analysis, the required ac-

curacy of the geocoordinate depends upon the required level of location granularity. The

data, however, is generated by very reliable GPS and software. We can be reasonably cer-

tain about the data accuracy as illustrated in [116]. For the temporal accuracy of Tweets,
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Fig. 4.1. Overview of our interactive analysis scheme for public behavior
analysis using social media data.

we use the time when each Tweet is created. Therefore, it is highly accurate if the time

setting of the device posting a Tweet is correct. This large volume of data is stored in

our database in order to maintain and track the history of the Twitter stream. Our system

allows the analysts to query Tweets with a specific area and time span condition (Fig-

ure 4.1 (A)). The initially selected spatiotemporal context of Tweets can be represented

by two different analytics components: spatial analysis and spatiotemporal visualization.

Spatial analysis allows the analysts to examine the overall distribution of Twitter users and

discover hotspots where relatively more Twitter users post Tweets. The analysts are able to

add supplementary information (infrastructure locations, tornado paths) on top of current

information representing outcomes in order to better understand events and increase situa-
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tional awareness (Figure 4.1 (B)). Furthermore, the analysts can select a sub-region within

the initial area, so that he can analyze the temporal patterns of the number of Twitter users

and extract abnormal topics from the text messages in the selected region (Figure 4.1 (C)).

In addition, our interactive spatiotemporal visual analytics provides a single view represen-

tation for the analysis of both aspects: spatial and temporal characteristics of Tweets at the

same time.

4.2 Spatiotemporal Analysis

In this work, we present a visual analytics approach to handle the vast amount of mi-

croblog data such as Twitter messages, provide interactive spatiotemporal analysis, and

enable the use of multiple types of supplementary spatial infrastructure information for

spatial decision support. Analysts select an initial spatiotemporal context of Tweets to be

represented in the visualization to serve as a basis for analysis. They can also perform the

interactive spatiotemporal queries that load the relevant datasets from a larger database.

4.2.1 Spatial Analysis

Social media embedding geo-location information into the data is extremely useful in

analyzing location-based public behaviors. Such spatial analysis, therefore, is important in

order to manage and prepare plans for disaster and emergency situations.

In late October in 2012, a massive hurricane, Sandy, devastated Northeastern United

States [117]. Due to the severeness of the hurricane, on October 28th in 2012, the New

York City Authorities ordered residents to leave some low-lying areas—the mandatory

evacuation zones (red color) are shown in Figure 4.9 (Right). We investigate an area of

Manhattan, since the area is the most populated and severely damaged. Through the map

view in our system, analysts navigate to the Manhattan area in New York City and filter

Tweets posted within the area. Initially we tried to reveal public movement flows during

the disaster event, but the movement patterns were too complicated to find meaningful

flows due to movement randomness and the visual clutter of the flows. Then, we examined



43

0                      12              16 >20 0                      12              16 >20 0                      12              16 >20

12:00 ~ 16:00, Oct. 14 12:00 ~ 16:00, Oct. 21 12:00 ~ 16:00, Oct. 28

Super-
market

Park

Shelter

Hospital

School

Theater

Fig. 4.2. Spatial user-based Tweet distribution in the Manhattan area in
New York City during four hours right after the evacuation order (from
12:00 PM to 4:00 PM on October 28th, 2012 (Right)). Previous distribu-
tion of Tweets on 14th (Left) and 21st (Center).

the spatial distribution of the users for specific time frames. Based on our experiments,

a geospatial heatmap was useful for an overview of the spatial distribution and for trend

approximation. We utilize a divergent color scheme to generate the heatmap, where satu-

rated colors are used for the data distribution to avoid any confusion from the color scheme

from the desaturated colormap of the background map. Analysts can specify a threshold

range to emphasize hotspots, where the upper bound is mapped to a red color and the lower

bound to a yellow color. Additionally, the blue color is mapped by the analysts to the value

of the overall distribution of Twitter users. In Figure 4.2, we show three heatmaps of spa-

tial user-based Tweet distribution from 12:00 PM to 4:00 PM on October 14th (Left), 21st

(Center), and 28th (Right). In this work, we use the number of Twitter users instead of the

number of Tweets for the heatmap generations to properly reflect the flow of evacuation

unbiased by personal Tweet activity or behavior of individual users, since some enthusi-

astic Twitter users generate a large number of Tweets at the same location during a short

time period (more than 20 Tweets per hour). The heatmaps in Figure 4.2 (Left and Cen-

ter) represent normal situations of Twitter user distribution in the Manhattan area, and the
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heatmap (Right) shows the situation right after the evacuation order that was announced at

10:30 AM on October 28th, 2012. This standard heatmap visualization allows analysts to

explore the spatial pattern of Twitter users for any specified time period. In Section 4.2.2,

we will provide further analysis for the spatial decision support.

October 24th, 2012 October 31st, 2012

120

160

0

>200

120

160

0

>200

Fig. 4.3. Twitter user distribution on the eastern coast area in New Jersey,
after the hurricane passed over the area on October 31st (Right). Previous
distribution on October 24th is shown on the Left.

Hurricane Sandy damaged not only New York City, but also the entire eastern coast area

of New Jersey. Most cities in the area also announced evacuation orders on October 28th,

2012. The distribution of Twitter users in the area from Atlantic City to the upper eastern
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shore area for two different dates are shown in Figure 4.3. The heatmaps in Figure 4.3 (Left)

represent the previous normal situation of Twitter user distribution on October 24th and the

heatmap (Right) shows the post distribution after Sandy passed over the area on October

31st. As shown in the result, many hotspots are gone or diminished. This situation shows

that the number of Twitter users had significantly decreased after the hurricane damaged

the area. In fact, a huge number of homes were damaged or destroyed and a couple of

million households lost power because of Hurricane Sandy [118]. In disaster management

this type of visualization can support analysts estimating which areas were highly damaged

and even which areas still need reconstruction.

4.2.2 Spatial Decision Support

In Section 4.2.1, we introduced our spatial analysis to explore the Twitter user distri-

bution. In addition to the analysis, our system allows the analysts to utilize supplementary

information in order to support understanding of the situations and decision-making in

disaster management. The spatial characteristics together with heterogeneous information

can assist in disaster management and migrating hazards where the problems have spatial

components [119]. The supplementary information can be various types of infrastructures

(i.e., school, park, supermarket, and shelter), as well as spatial information of disaster

events (i.e., hurricane path and damage area of a tornado). In this section, we describe how

our system supports spatial decision-making by correlating such spatial information with

location-based microblog data.

Infrastructure Data

During a natural disaster event, such as Hurricane Sandy, analysts would assume that

many people might want to go to the supermarket before staying or evacuating, but they

would need supporting evidence before making appropriate decisions and plans. With

our system support, the analysts can simply overlay the locations of large supermarkets

on the heatmap of the Twitter user distribution. The infrastructure locations are indicated
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by standard symbols [120] as shown on the right side of Figure 4.2. A relatively large

number of people immediately went to supermarkets nearby the evacuation area, instead

of the emergency shelter as shown in Figure 4.2 (Right). However, October 28th was

Sunday and many people generally would go for grocery shopping on Saturday or Sunday;

therefore, the analysts might need to verify whether the heatmap shown in the figure is

a normal periodic situation. The analysts can investigate new Twitter user distributions

for different time frames by simply manipulating the time context. In Figure 4.2 (Left

and Center), we show two distributions for one and two weeks before the disaster period

respectively. Here, we see that the hotspot locations are very different from the ones for

October 28th shown in Figure 4.2 (Right). For further analysis, we can explore another

popular Sunday location—large parks—by superimposing the locations on each heatmap.

As shown in Figure 4.2 (Left and Center), many hotspots overlap with the park areas in

normal situations. Therefore, we can conclude that the situation on October 28th is an

unusual non-periodic pattern.

Disaster Event Data

In Section 4.2.2, we explained how the infrastructure data help the analysts to under-

stand and examine the emergent situations. During severe weather conditions, people tend

to be sensitive to the dynamic variance of the weather conditions. Relationship analy-

sis, therefore, between the public responses and the spatiotemporal pattern of the severe

weather is important. Our system overlays geographic information of disaster events, for

example, center positions and tracks of a hurricane, and damaged areas by a tornado, in

order to provide further analysis. Two case studies are presented as follows:

Track of Hurricane: Figure 4.4 (1) and (2) show the southeastern coast areas of the

United States, whereas, Figure 4.4 (3), (4), and (5) show the northeastern coast areas.

In the figures the distributions of Twitter users for each consecutive date, from October

26th to 30th, 2012, are presented using the heatmap visualizations. We use the number

of Twitter users who posted Twitter messages containing one of the following keywords:
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hurricane, storm, and sandy in order to analyze Tweets that are highly related to Hurricane

Sandy. Note that Hurricane Sandy reached the southeastern Florida coast on October 26th

and passed, then, over the northeastern coast on October 30th, 2012 [117]. As shown in

Figure 4.4, our system is able to overlay the track of the hurricane on the map. The blue pins

and the blue lines represent the center locations of the hurricane and its path respectively.

10/26 00:00

10/26 12:00

10/27 00:00

10/27 12:00

10/28 00:00

10/27 00:00

10/28 12:00

10/29 00:00

10/29 12:00

10/29 18:00

10/30 00:00 10/30 00:00

10/30 12:00

(1)

(2)
(3) (4) (5)120 160 >2000

120 160 >2000

120 160 >2000 120 160 >2000 120 160 >2000

Fig. 4.4. Distribution of Twitter users of each consecutive date (Oct. 26 ∼
30, 2012), who post hurricane related Tweets on the southeastern (1 and
2) and northeastern coast (3, 4, and 5) area of the United States. We can
see the variance of Twitter user reactions along the track of the hurricane
center locations.

Twitter users also actively respond to the severe weather conditions. In Figure 4.4,

we indicate that the distribution pattern of Twitter users had dynamically varied along the

track of the hurricane center locations. When Sandy moved to the southeastern coast on

October 26th, there were bursts on eastern Florida’s coast (Figure 4.4 (1)). Next day, the

bursts disappeared, because Sandy moved towards the northeast away from the east coast of

United States (Figure 4.4 (2)). Sandy kept moving towards a few hundred miles southeast of

North Carolina on October 28th (Figure 4.4 (3)). In the next day, the hurricane’s track bent

towards the north and the hurricane made landfall at night in the northeast of Atlantic City

(Figure 4.4 (4)). Throughout the days, Twitter users were actively reacting to Hurricane
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Sandy’ arrival in a wide range of areas. After the landfall, the storm turned toward the

northwest and was gradually weakened. The big outbreaks were diminished on October

30th as shown in Figure 4.4 (5). As shown in the figures, we can see how Twitter users

reacted according to the spatiotemporal pattern of the severe weather conditions in the

social media domain.

Damage Area from a Tornado: An extremely strong Tornado passed through the city

of Moore in southern metropolitan Oklahoma City [121] in the afternoon on May 20th,

2013. The larger than one-mile-wide tornado damaged the city with a wind speed of more

than 200 mph. Figure 4.5 shows the damaged part of the city. The tornado entered the area

at about 3:16 PM and exited the area after about 10 minutes. We visualize the distribution

of Twitter users on the map during 24 hours, from May 20th 4:00 PM to 21st 4:00 PM.

We also overlay an approximate extent of tornado damage (transparent orange color) and

locations of multiple infrastructures, such as schools, hospitals, and supermarkets, on the

map view. Since the tornado suddenly happened and disappeared, we were not able to

find significantly abnormal patterns before and during the event. After the disaster event,

however, many Twitter users moved toward some specific areas: two elementary schools,

a medical center, a theater, and two large supermarkets. The two elementary schools, the

medical center, and the theater were located within the highly damaged area and they were

severely destroyed. Also many people were hurt and died in these infrastructures. The

increased number of Twitter users was probably due to the fact that many people went

to these places in order to rescue the victims [122]. Moreover, people might have gone

to supermarkets to obtain indispensable things. In Figure 4.5 (1), the heatmap shows a

normal situation of Twitter user distribution in the same area. The distribution is very

different from the situation after the tornado hit the area. This example demonstrates how

our visual analytics system enables the analysts to analyze public responses using spatial

disaster data and infrastructure data for disaster management.
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Fig. 4.5. Spatial pattern of Twitter users during 24 hours in the city of
Moore after damages from a strong tornado. Relatively many people
moved to severely damaged areas after the disaster. This situation is much
different from the previous normal situation (1). We selected a specific
region (2) that includes severely damaged areas in order to extract topics
(3) from Tweets within the selected area.

Fig. 4.6. Topic cloud: Topics from Tweets within the selected area in
Figure 4.5 (2) are ordered by their abnormality scores.

Abnormal Topic Analysis

Our system also provides analysts with abnormal topic examination within the mi-

croblog data. Each Twitter message provides not only spatiotemporal properties, but also
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textual contents. The text messages are also important to understand and examine the emer-

gent situations. Our system allows the analysts to extract major topics from many Tweets

posted within a specific area using the LDA [2]. We also employ, then, the STL [3] to

identify unusual topics within the selected area. For each extracted topic of the LDA topic

modeling, our algorithm retrieves messages associated with the topic and then generates a

time series consisting of daily message counts from their timestamps. The time series can

be considered as the sum of three components: a trend component, a seasonal component,

and a remainder. Under normal conditions, the remainder will be identically distributed

Gaussian white noise, while a large value of the remainder indicates substantial variation

in the time series. Thus, we can utilize the remainder values to implement control chart

methods detecting anomalous outliers within the topic time series. We have chosen to uti-

lize a seven day moving average of the remainder values to calculate the z-scores. Note

that we use the z-score as the abnormality score in this work. If the z-score is higher than

2, events can be considered as abnormal within a 95% confidence interval. The details

of these techniques are described in the previous work [97]. We select a sub area in Fig-

ure 4.5 (2) that includes severely damaged areas: the selected region (black rectangle) on

the map. The extracted topics, which are ordered based on their abnormalities, are dis-

played as Topic Clouds at the bottom-right corner (Figure 4.5 (3)) on the map. The topic

cloud is enlarged and shown in Figure 4.6. In this case study, most topics are related to

the disaster event. However, the last topic—moore, oklahoma, tornado, warren, theatre,

has a relatively low abnormality although they seem related to the disaster event, because

tornadoes frequently occur in the area. Figure 4.7 shows an abnormality graph for the first

topic in Figure 4.6. The abnormality score for the topic had significantly increased when

the tornado hit the region on May 20th (Marked region). As shown in Figure 4.7, the ab-

normality score (6.75) is much higher than the average abnormality score(0.42); therefore,

the analysis of the microblog data provides a statistically significant difference during this

severe weather condition.
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Fig. 4.7. Abnormality of the first topic in Figure 4.6. The abnormality
score of the topic had significantly increased when the tornado hit the re-
gion on May 20th (Marked region).

4.2.3 Temporal Pattern Analysis

In the previous sections, we presented the spatial analysis of social media and spatial

decision support. In this section, we demonstrate analysis of the relationships between the

temporal patterns of the number of Twitter users and certain public situational behaviors:

how many people go where and how different is it from previous situations? Analysis

of temporal trends and relationships between data values across space and time provides

underlying insights and improves situational awareness [123, 124].

After selecting the initial spatiotemporal context of Tweets as a basis for the analysis,

the analysts can explore the temporal patterns of the number of Twitter users who posted

Tweets within the spatial boundary using the bar chart as shown in Figure 4.8. The values

of each bar are the number of users in four hour intervals and represent data two weeks

before and after the selected date. Once a mouse cursor hovers over one of the bars in

the graph, every bar that corresponds to that time period, is highlighted in dark yellow
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color as shown in Figure 4.8. As previously mentioned, the heatmap in the figure shows

the Twitter user density distribution from 12:00 PM to 4:00 PM on October 28th, right

after the announcement of the evacuation order. We select a hotspot that includes one of

the supermarket locations: the selected region (black rectangle) on the map in Figure 4.2

(Right). We can indicate that the number of Twitter users (red rectangle in Figure 4.8)

in the corresponding time period is higher than for the same time period from other dates

(October 14th, 21st and November 4th, 5th) by 35% more from the average. Moreover,

there is another interesting finding—the number of people during each of the following

time frame (4:00 ∼ 8:00 PM) on the dates from the previous weeks are higher than the

number of people in the selected time frame. This is because many shoppers were lining

up at stores and emptied the shelves to prepare for Hurricane Sandy. Some actual Twitter

messages posted in the area are following: ‘The line at Trader Joes is unbelievable ...’ and

‘There is amazing line here ...’. Furthermore, since October 29th, the number of people

has significantly decreased because most residents left the area before the arrival of the

hurricane. The increase in the number of people after one week reflects that some people

came back to the area.

••• ••• •••

October 14th, 2012 October 28th ~ 31st, 2012 November 4th and 5th, 2012October 21st, 2012

Evacuation Order Hurricane Sandy’s 
Arrival at NYC

Fig. 4.8. Temporal analysis for public behaviors during the disaster event,
Sandy. Top shows our entire system view. The bar chart (Bottom) for the
number of Twitter users within the selected region including a supermarket
in Figure 4.2 (Right) in four hour intervals is shown. We see that many
people went to the supermarket right after the evacuation order.



53

10/29 
6 PM ~ 12 AM 

10/29 
12 PM ~ 6 PM 

10/30 
6 AM ~ 12 PM 

10/30 
12 PM ~ 6 PM 

Fig. 4.9. Visualization for spatiotemporal social media data (Left). A
hexagon represents the spatial (position) and temporal (color) information
of a Tweet. Hurricane evacuation map [125] (Right). Residents in Zone
A (red) faced the highest risk of flooding, Zone B (yellow) and Zone C
(green) are moderate and low respectively.

4.2.4 Spatiotemporal Visualization

There is abundant research published on the topic of spatiotemporal data visualization.

Still, exploration of time-referenced geographic data is still a challenging issue [126]. We

introduce a modest visualization that enables analysts to analyze both aspects: space and

time in a single view. Each Tweet is independent and contains multiple properties, such

as location, time, the number of re-Tweet, etc. In this study, therefore, we utilize a glyph-
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based visualization to depict both location and time aspects of the independent data record

using two visual features. As shown in Figure 4.9 (Left), each hexagon corresponding to a

Tweet represents the spatial and temporal information where the center of each hexagon is

the location of each Tweet and the color represents its posting time. In other words, space

and time properties are encoded in a single visualization to harness the spatial analysis

features of human visual perception [127]. In Figure 4.9 (Left), the hexagons with blue (12

PM∼ 6 PM) or green (6 PM∼ 12 AM) ) color correspond to Tweets published on October

29th, 2012 and ones with orange or red color correspond to Tweets posted on the following

day after the hurricane. New York City announced the evacuation of Zone A (red color)

in Figure 4.9 (Right); residents in Zone A faced the highest risk of flooding, whereas,

Zone B (yellow color) and Zone C (green color) are moderate and low respectively. In the

visual representation, analysts can indicate overall spatiotemporal patterns of people and

their movements during the disaster event—many people still remained at home one day

after the mandatory evacuation order, but most people left home on the following day as

the hurricane damaged the city.

4.3 Discussion and Evaluation

In this work we found out that the public responses to disaster events in social media

streams are different according to the disaster event types. Hurricane Sandy had a long time

duration—more than one week, and affected a wide range of areas. Therefore, there were

many reactions in the potential damage area before the hurricane impacted the area. How-

ever, no or significantly less hotspots were found right after the hurricane passed over the

area. This was because the hurricane severely affected the areas—communication facility

damage and power outages occurred in the area. Moreover, we found out that unusual post-

event situations in the Twitter user distribution continued for a certain time period from a

couple of days to more than one week as shown in Figure 4.4 and 4.8. The analysts could

estimate how long it took for the reconstructions in the areas.
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Regarding the tornado case, we intended to find abnormal patterns in the Twitter user

distribution before and during the disaster event but there was no unusual patterns in the

area. In contrast to the hurricane, the tornado generally affected the areas relatively shortly,

for example, a few minutes to an hour. The abrupt natural disaster did not strongly influence

the social media stream before and even during the event. However, as shown in Figure 4.5,

we were able to find many hotspots within the damaged areas after the tornado passed. In

fact, the tornado damaged some small areas (i.e., a couple of miles wide), in contrast to the

wide range of damaged areas for the hurricane case. This indicated that communication

facilities were still available and many people were interested in the disaster, similar to the

hurricane. Thus, our social media analysis could support the analysts to make plans and

manage for the emergent situations according to the types of the disasters.

The above cases demonstrate how our system supports spatial decision making through

evaluation of varying-density population area to determine changes in behavior, movement,

and increase overall situational assessment. This increased spatial activity and behavioral

understanding provides rapid situational assessment and provides insight into evolving sit-

uational needs to provide appropriate resource allocation and other courses of action (e.g.,

traffic rerouting, crowd control).

We requested informal feedback for the usability of our system from users within our

universities, and received useful and positive comments and suggestions. They were inter-

ested in the findings of the abnormal situations during the disaster events in Section 4.2.1

and 4.2.3. They also noted that the use of the infrastructure symbols on the heatmaps im-

proved the legibility of the Twitter user distributions in Figure 4.2 and they suggested a

visualization for the deviations between multiple heatmaps in order to show the differences

clearly, which we plan to develop in the future.

4.4 Summary

We presented a visual analytics system for public behavior analysis and response plan-

ning in disaster events using social media data. We proposed multiple visualizations of
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spatiotemporal analysis for disaster management and evacuation planning. For the spatial

decision support, we demonstrated an analytical scheme by combining multiple spatial data

sources. Our temporal analysis enables analysts to verify and examine abnormal situations.

Moreover, we demonstrated an integrated visualization that allows spatial and temporal as-

pects within a single view. We have still some limitations with these techniques including

the potential occlusion issues in the spatiotemporal visualization.
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5. TRAJECTORY-BASED VISUAL ANALYTICS FOR
ANOMALOUS HUMAN MOVEMENT ANALYSIS

Analysis of human movement patterns are important for urban planning, understanding the

pandemic spread of diseases, disaster response, and evacuation planning in crisis manage-

ment. The rapid development and increasing availability of mobile communication and

location acquisition technologies allow people to add location data to existing social net-

works so that people share location-embedded information. For human movement analysis,

such location-based social network services have been gaining attention as promising data

sources. Researchers have mainly focused on finding daily activity patterns and detecting

outliers. However, during crisis events, since the movement patterns are irregular, a new

approach is required to analyze the movements. Also, analyzing location data alone is

limited in achieving situational awareness of the events. To address these challenges, in

this thesis we propose a trajectory-based visual analytics system for analyzing anomalous

human movements during disasters using multi-online media. We extract trajectories from

location-based social media and cluster the trajectories into sets of similar sub-trajectories

in order to discover common human movement patterns. We also propose a classifica-

tion model based on historical data for detecting abnormal movements using human expert

interaction. In addition, we integrate multiple visual representations using relevant con-

text extracted from different online media sources. This enhances the human movement

analysis by improving situational awareness. The major contributions of this work are as

follows:

• We develop a visual analytics system to discover and explore common structural

movement patterns from unstructured massive movement data.

• We design a trajectory-based classification model for abnormal movement detection

using human expert interaction.
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• We develop visual means to improve human movement analysis using semantic con-

text available from multiple online media sources.

• We demonstrate the effectiveness of our system in disaster management and evacua-

tion planning through case studies.

5.1 System Overview

Our system is designed for exploring and discovering common movement patterns and

detecting abnormal situations using LBSN data. The system consists of four major compo-

nents: a trajectory extraction module, a data analysis module, a context extraction module,

and a visualization module as illustrated in Figure 5.1. The trajectory extraction module

(Section 5.1.1) generates two different sets of trajectories: target and normal trajectories.

The data analysis module (Section 5.1.2) consists of two components: common movement

discovery and abnormal pattern detection. For the given trajectory sets, the first compo-

nent discovers major common routes based on the partition-based clustering model, and

the other component assesses the abnormality for each common route. The context extrac-
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Movements 
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Abnormal Pattern Detection
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Spatiotemporal 
filter

Target & Normal
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Fig. 5.1. Overview of our iterative analysis scheme for human common
movement discovery and anomaly analysis.
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tion module (Section 5.2) finds relevant context information including keywords, photos,

videos from web cameras, and news media based on the results from the analysis mod-

ule. The visualization module (Section 5.1.3) allows the users to explore the trajectories,

common routes, and abnormal movements, and obtain a better understanding of movement

patterns using additional context. Users can iteratively make visual queries and refine the

parameters used for clustering and anomaly detection to optimize the results.

5.1.1 Trajectory Extraction

Our system extracts trajectories from location-based social media data. Users first select

a geographical boundary and a target time window of interest. The users additionally select

one or more past time windows representing normal situations to compare against the target

time frame. The trajectory extraction module then requests two sets of Tweets from the

database for the two selected time windows. The module generates two sets of trajectories:

target and normal trajectories using geo-location information of chronologically ordered

Tweets for each person.

Fig. 5.2. Supplementing a sparse trajectory (Blue) using route direction
information (Yellow).

The generated trajectories, however, are usually sparse and incomplete. For example, as

shown in Figure 5.2, the sparse trajectory (a blue line) does not represent a realistic move-

ment. In order to reduce the spatial sparseness of the raw trajectories, we fill the trajectories

with supplementary points between two points for each pair of the trajectories, which are

calculated by shortest-path-based route directions (a yellow poly line in Figure 5.2). In
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this work, we use the Bing Maps API to obtain route information. We can choose one of

the following travel modes: walking, driving, or public transportation mode depending on

the location and the situation. For example, we select the walking mode for the Boston

Marathon case because many traffic routes along the marathon course were closed on the

race day.

5.1.2 Data Analysis

In this section we describe the data analysis module. This module analyzes the trajec-

tories given by the trajectory extraction module. The following sub-sections provide the

details of this module.

Common Movement Discovery

Discovering common movements is a critical process for exploration and analysis of

a large volume of trajectory data. Clustering is a popular approach in looking for com-

mon patterns in the trajectory data. Representative clustering algorithms for trajectory

include DBSCAN [128] and OPTICS [129]. Andrienko et al. [28] propose a wide range of

clustering-based analytics models and combine those with visualization techniques. Their

clustering models, however, group similar trajectories as a whole and extract common

whole trips. In this work, we utilize a modified partition-based clustering model, TRA-

CLUS [16], in order to find common sub-trajectories. For each given trajectory, this model

first partitions a trajectory into a set of line segments, and then groups the line segments

into clusters of similar line segments. Clustering the line segments (as opposed to whole

trajectories) eables the extraction of similar portion of trajectories. For example, Figure 5.3

shows that the three trajectories (green, black, red) have different origins and destinations,

but there is a common path in all three trajectories (blue).

Clustering the line segments requires a distance function measuring the distance be-

tween line segments. We use the distance function based on a modified line segment Haus-

dorff distance [130], which is comprised of three components: the perpendicular distance
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Fig. 5.3. Discovering a common sub-trajectory.

(d⊥), the parallel distance (d‖), and the angle distance (dθ ). Let si and ei be the starting and

ending points of line Li, and s j and e j for line L j. Without loss of generality, the longer line

segment is assigned to Li, and the shorter one to L j. These are illustrated in Figure 5.4.

For our distance function, we use d⊥ and d‖ as defined by [130], but redefine dθ

as the existing model does not consider the directions of the two line segments for the

angle distance measure. In this work direction is an important factor in clustering and

abnormal movement detection. To consider the direction, we utilize the cosine-similarity

that measures the cosine of the angle between line segments, and is used as a bounded

similarity function within [0,1]. dθ (Li,L j) is defined as:

dθ (Li,L j) =‖ L j ‖ ×
cos−1(cosine-similarity(Li,L j))

π
(5.1)

where ‖ L j ‖ denote length of L j, and θ (0◦ ≤ θ ≤ 180◦) denote the smaller intersecting

angle between Li and L j, and cosine-similarity(Li,L j) is defined as:

cosine-similarity(Li,L j) = cos(θ) =
−→siei ·−−→s je j

‖ −→siei ‖‖ −−→s je j ‖
(5.2)

‖ L j ‖ denote length of L j, and θ (0◦ ≤ θ ≤ 180◦) denote the smaller intersecting angle

between Li and L j.

The distance function is finally defined as the sum of three components:

dist(Li,L j) = w⊥ ·d⊥(Li,L j)+w‖ ·d‖(Li,L j)+wθ ·dθ (Li,L j) (5.3)
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Fig. 5.4. Similarity measurement for two line segments.

where w⊥, w‖, and wθ are weight values, which are determined depending on applications.

The partition-based clustering model utilized in this work is based on the algorithm

DBSCAN [128]. Given a set of line segments, the algorithm groups the line segments

into a set of clusters according to the distance function Equation (5.3). DBSCAN requires

two parameters: ε (as neighborhood distance) and MinLns (as minimum cluster size). The

clustering model estimates the optimal parameter values based on input data. An initial

result generated by the estimated parameters is given to users. However, the automatically

estimated parameter values do not always provide optimal results. Especially, MinLns

relies on user’s domain knowledge and application requirements. So, our system allows the

users to manually adjust the estimated values. The system then generates a representative

trajectory for each cluster, which epitomizes the line segments (sub-trajectories) belonging

to the corresponding cluster. More detailed information about these procedures can be

found in [16].

Abnormal Movement Detection

Existing anomaly detection models [85,131] for trajectory data have mainly focused on

identifying outliers from a target dataset. The models are usually based on non-supervised

learning—they generally do not have factors for the outliers, and assume that the outliers
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make for a small sub-set from the entire dataset. These models first look for major flow

patterns and then determine whether each trajectory belongs to the majority according to

specific criteria. However, during abnormal situations, such as natural disasters and crisis

events, even the major behaviors can be unusual compared to normal situations.

In this work, we propose a classification model based on historical data for abnormal

movement detection using human expert interaction. We allows the users to utilize their

domain knowledge of the geographical and temporal characteristics of the location where

an abnormal event of interest occurs. The users select a target time window for the abnor-

mal situation and also chooses another time window representing a normal/regular situation

for the location. We extract two sets of trajectories for the two different time frames and

cluster each set of trajectories into two sets of trajectory clusters. Next, we generate two

different sets of representative trajectories: target T and comparable C. A representative

trajectory RTti ∈ T is classified as an outlier if there is a close representative trajectory

RTci ∈C. More specifically, we identify outlying line segments Lti ∈ RTti [131], which are

determined by the distance from neighboring RTci. We define a representative trajectory

RTci is close to a line segment Lti if ∑Lci∈CRTc len(Lci) ≤ len(Lti) where CRTc is the set of

RTci’s line segments within the distance D from Lti, {Lci | dist(Lci,Lti)≤ D}. A larger

value of D detects a smaller number of outliers, and a smaller value of D a larger number

of outliers. Then, intuitively a representative trajectory RTti is outlying, if the percentage

of the total length of outlying line segments is more than P. The default value of P is set to

30. Finally, the outlying representative trajectories are visualized. Our system allows the

users to adjust the two parameter values, D and P in order to refine their results.

5.1.3 Visualization and Analysis

In this section we describe our design goals. We introduce the visualization module to

show common and abnormal movement patterns discovered by the data analysis module.

To illustrate our method, we use the Tweets generated near the finish line of the Boston

Marathon during first 24 hours after the two explosions on April 15, 2013.
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Design Rationale

Our design goal is to show trajectories extracted from geo-tagged Tweets of each per-

son. Displaying the trajectories without grouping can also reveal new insights when users

drill down to individual movements. However, when the number of trajectories shown over

the map increases, visual clutter issues arise that hinder the discover of flow patterns. To re-

duce clutter, we use a modified partition-based trajectory clustering model for discovering

common sub-trajectory patterns [16]. The discovered common movements have multiple

attributes to be analyzed, such as cluster size, direction, and length. The users need to not

only identify abnormal movement patterns, but also understand how abnormal and normal

movement patterns differ. The required clustering level can also vary with the application.

So, we need to allow the users to adjust the clustering level.

Visualization of Common Movements

Figure 5.5 shows the process of discovering common movement patterns. If we display

the raw trajectories, it is difficult to understand the realistic movement patterns because of

the high degree of sparseness of the trajectories as shown in Figure 5.5 (left). Therefore, we

reduce the sparseness of the raw trajectories using the method described in Section 5.1.1

and display the supplemented trajectory on the map with 30% opacity in Figure 5.5 (cen-

ter). Users are able to examine more realistic human mobilities with the supplemented

trajectories rather than using the raw ones. Next, we cluster the trajectories into sets of sim-

ilar sub-trajectories and generate representative trajectories for each cluster as described in

Section 5.1.2. The representative trajectories represent common movement behaviors in

Figure 5.5 (right).

We provide visual cues to show multiple attributes for a representative trajectory. We

use a poly line with an arrow head to display the length and the direction of the repre-

sentative trajectory. The thickness of the line represents the size (i.e., the number of sub-

trajectories belonging to a cluster) of the corresponding cluster. Figure 5.6 shows the rep-

resentative trajectories within the region same as the one in Figure 5.5 (right). Placement
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Fig. 5.5. The process of discovering common human movement patterns
using location-based social networks data. Visualization of sub-trajectory
clusters (right). The thickness of each trajectory represents the size of the
cluster.

order of the trajectories depends on the length; the longest trajectory is placed at the bottom

and the shortest one at the top, to avoid obscuring the shorter trajectories.

Our system also enables users to adjust and refine the ε (as neighborhood distance)

and MinLns (as minimum cluster size) values used by the clustering algorithm depending

on their requirements by visual inspection. We display an initial clustering result calcu-

lated with the automatically estimated parameter values as described in Section 5.1.2. The

optimal result in Figure 5.7 (top) is achieved at ε = 25 and MinLns = 3. The algorithm

generates a larger number of smaller clusters, when ε is smaller or MinLns is larger com-

pared to the optimal values. In contrast, the algorithm generates a smaller number of larger

clusters when ε is larger or MinLns is smaller. For example, the result at ε = 25 and

MinLns = 4 is shown in Figure 5.7 (center) and the results at ε = 30 and MinLns = 2 is

shown in Figure 5.7 (bottom).

Visualization of Abnormal Movements

Our analytics model identifies abnormal representative trajectories from target ones by

comparing with normal ones as described in Section 5.1.2. We define target outliers are the

abnormal representative trajectories and target normal trajectories are the rest of the target

representative trajectories; the target normal trajectories are close to the normal representa-

tive trajectories. We visualize the three different types of representative trajectories: target

outlier, target normal, and normal using a similar visual encoding scheme described in the



66

Fig. 5.6. Visualization of sub-trajectory clusters. The thickness of each
trajectory represents the size of the cluster.

previous section. We use different colors to distinguish between the different types: target

outlier with red, target normal with orange, and normal with blue as shown in Figure 5.8.

We can see that the trajectories (1), (2), and (3) are close to the normal trajectory (4), but

they head toward the opposite direction. Those are, therefore, classified as outliers. The

trajectory (6) is not classified as an outlier, because it is close to the normal trajectory (5)

and also has the same direction. We also provide an option to turn on/off each type to focus

on a specific type.

5.2 Improving Analysis using Multi-Context Information

In this section we describe our design goals of usage of each context. We describe

how we extract the context from multiple data sources. Also, we show how the context is

visually incorporated into the system.
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Fig. 5.7. Clustering results depending on two parameters: ε and MinLns.
Top (ε = 25, MinLns = 3) is optimal. Center (ε = 25, MinLns = 4) shows
less number of trajectory clusters. Bottom (ε = 30, MinLns = 2) shows
more.

5.2.1 Keyword Extraction and Visualization

Analyzing the spatial behaviors alone is limited in achieving situational awareness of

local events—they cannot answer why people move and what situations occur. To address
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(1)

(2) (6)(5)

(3) (4)

Fig. 5.8. The trajectories (red and orange) shows the human movement
patterns around the finish line at the Boston Marathon 2013 during 2 hours
after the explosions. The trajectories (blue) represent the movements for
the normal situation (the same time period of the same event in 2014). The
two markers indicate the locations of the two explosions.

this challenge, we extract keywords from the tweets used to generate a trajectory cluster

and also those located close to the cluster, because such Tweets can contain common topics

indicating an event occurring around a similar mobility. Then we display the extracted

keywords for providing additional insights into the event and the mobility patterns.

We select a set of Tweets that constitute sub-trajectories belonging to a cluster and are

located within a specific distance to the representative trajectory of the cluster. In this work,

the default value of the distance threshold is set to 200 meters. Then, we extract keywords

from the text of the selected Tweets. We calculate the frequencies of each word in the

aggregate text and select top keywords based on the frequencies.

To display the extracted keywords, we utilize ‘tag cloud’visualization. Tag clouds have

been used to represent a most frequent or important words in order to summarize text

collections [132]. Also, tag clouds can be exploited for analytics tasks, such as topic-

based document navigation and labeling geographical points of interest [75, 133]. In this

work, we display the keywords along their corresponding representative trajectory without

overlapping. The font size of each keyword encodes the frequency to show the popularity
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of the keyword. Figure 5.9 (top) shows an example of showing extracted keywords display

along the center trajectory.

Fig. 5.9. The extracted keywords along the trajectory close to the ex-
plosion locations show a strong relationship to the explosions (top). The
chronologically displayed photos (bottom) extracted from the same trajec-
tory show the scenes of evolving situations.
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5.2.2 Additional Context Information

For additional context, we utilize shared photos, public web camera videos, and news

media related to each representative trajectory. These data sources provide additional chan-

nels of information to users; thereby, providing a more comprehensive situational aware-

ness for any emerging situation.

Shared photos: Right after people take photos, they can post the photos to LBSNs with

their smartphones. For example, we collected more than 230 of Tweets with photos were

generated within the first 5 hours after the explosions at the Boston Marathon in 2013.

The photos allow first responders and emergency managers to obtain a better situational

awareness of what is happening on the site during a crisis.

In our system, we first select the Tweets in the same manner as for keyword extrac-

tion. we identify Tweets with photos from the selected tweets for each trajectory cluster;

tweets with photos contain photo links in a particular format. Images are retrieved from

links within Tweets and displayed chronologically in a separate window (e.g., as shown in

Figure 5.9). Photo sizes correspond to relative differences in their sharing count (sum of

retweets and replies) [134]. When a photo is selected, the location of the photo’s Tweet is

highlighted on the map.

Public live web camera videos: We utilize public webcam video feeds to allow the

emergency managers to obtain a better situational awareness of an emerging crises situa-

tion [135]. In our system, we mark available camera locations on the map with pre-loaded

camera location data [136]. Once users click on one of the web cameras icons on the

map, the live streaming feed or most recent snapshots are provided (e.g., as shown in Fig-

ure 5.10).

News media: We augment the information provided by the public in social media

with news media reports from major news agencies. News media reports related to the

context of movements can provide more reliable information. We search news reports with

extracted keywords from nearby Tweets for each cluster using the Google search APIs.
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The results, including titles, summaries and links of each news report, are displayed in a

separate window.

(3)

(1)

(2)

(4)

Fig. 5.10. The trajectories (red and orange) shows the human movements
around the campus during 2 hours after the shooting. The normal trajec-
tories (blue) extracted from the same time period on normal day. Photos
(1), News reports (2), Keywords (3), and Webcam videos (4). The green
rectangles indicate the locations of the web cameras around the campus.
The yellow one is the selected camera. The marker indicate the building
where the accident occurred.

5.3 Case Study

In this section we demonstrate how our analytics model can assist emergency managers

in discovering common/anomalous human movement patterns during crisis events, and

how our visual analytics system improves movement analysis for disaster management

personnel.
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5.3.1 Boston Marathon Explosion

Boston Marathon is an annual marathon held in Greater Boston and one of the world’s

best-known athletic events. On April 15, 2013, two bombs exploded near the finish line

during the Boston Marathon at 2:49 pm EDT. Figure 5.8 shows two markers that indicate

the locations of explosions. The trajectories in Figure 5.8 show the movement patterns at

the Boston Marathon, where the orange colored trajectories show the movements during

the Boston Marathon bombing using Twitter data for the 2 hours after the explosions The

blue colored trajectories represent the normal movements using the data from next years’

Boston Marathon event (we use next year’s data for illustrative purposes instead of the pre-

vious year’s data due to the unavailability of data for the previous year in our database).

The system utilizes these two trajectories in order to compute the abnormal trajectories

(shown in red). The target trajectories (shown in orange) show that people were dispersed

from the locations of the explosions and did not use the road where the accidents occurred.

Also, the outlier trajectories 1, 2, and 3 in Figure 5.8 show that participants and spectators

moved in the opposite direction of the finish line or crossed the bridge in order to get away

from the location of impact. Furthermore, Figure 5.9 (top) shows the keywords and photos

extracted along the trajectory labeled 6 in Figure 5.8 (note that the the photos chronologi-

cally displayed in the system). Since the trajectory is close to the explosion locations, the

extracted keywords along the trajectory show a strong relationship to the accident. The sys-

tem can thus enable first responders and law enforcement to detect anomalous movements

and maintain a situational awareness of an emerging situation in their areas of responsibil-

ity.

5.3.2 Purdue University Shooting

On Tuesday, Jan 21st 2014, a shooting occurred inside one of the buildings of Purdue

University, Indiana (shown by the marker in Figure 5.10). Figure 5.10 shows the movement

patterns of people around the campus during 2 hours after the incident, where red colored

trajectories show anomalous behavior, and orange colored trajectories show the movements
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during the 2 hours after the incident. We compare the movements to the normal movements

(blue) extracted from the same time period on another Tuesday. We can observe anomalous

behavior from the results where people moved to the left or upper-left regions. Upon further

investigation, we find that these locations house student residence halls. Only a few people

moved around the site of the incident, because of a lock down order given by the police.

In Figure 5.10, the photos (1) provide a visual context extracted from nearby Tweets of the

trajectory (i.e., the scenes around the area and inside buildings). The keywords (3) extracted

from the selected trajectory convey more information describing the accident. The news

reports (2) extracted using the keywords along the tracectory (3) allow users to get more

detailed information about the event. Finally, the video feed (4) enables users to monitor

the region in real time. Emergency managers can thus utilize social media as another input

information source to maintain a situational awareness using our system.

5.4 Summary

We presented a trajectory-based visual analytics system, making it possible to: 1) gen-

erate trajectories using geo-tagged Tweets, 2) discover human common movement patterns,

3) detect abnormal movements, and 4) improve human movement analysis using semantic

context available from multiple online media sources. In order to find common movements,

we utilize an enhanced partition-based clustering model that allows to extract similar por-

tion of movements. We proposed a classification model using human expert interaction to

identify abnormal movements. We described how we effectively extract and utilize relevant

context, such as keywords extracted from Tweet text, shared photos, web camera videos,

and news media for providing a better understanding of spatial movement behaviors. We

demonstrated the usage and effectiveness of our system for human movement analysis in

abnormal situations by case studies.
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6. FORECASTING THE FLOW OF HUMAN CROWDS

Researchers from various domains have put considerable effort into modeling the mobil-

ity of individuals to understand their movement patterns using different data sources. A

wide range of applications, such as urban planning and traffic planning, depend greatly

on the movement behaviors of large crowds. In this thesis, we introduce a novel visual

analytics approach for forecasting the overall flow of these human crowds. Given a space

with a large number of moving individuals, our model partitions the space into smaller

sub-spaces, and then calculate the directional density of flows for each sub-space. We ap-

ply seasonal trend analysis techniques on the directional density data in each sub-space to

forecast the future crowd movement based on the observed historical flow patterns. We

then combine the predicted results to visualize the overall future flow. Our methodology

considers road directions for more accurate directional flow density estimation and applies

a data imputation technique to mitigate data sparsity issues. We present results from a se-

ries of statistical tests for evaluation of our methodology across different spatial movement

datasets (e.g., location-based social network, GPS tracks of humans and taxis). The main

contributions of this work include the following:

• We introduce a new method to estimate the directional flow density that represents

the overall movement directions of moving objects over a 2D space.

• We propose a new model to forecast the flow of human crowds based on the historical

directional density data.

• We develop a new flow visualization technique of multi-vector fields to represent the

directional flow density.
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Fig. 6.1. Trajectory tessellation and directional density estimation

6.1 Flow Data Modeling, Forecasting, and Visualization

Our flow modeling methodology consists of a pipeline of several processes. We first ap-

ply a directional density estimation technique (Section 6.1.1). As the next step, we provide

two different procedure choices: flow smoothing (Section 6.1.3) and missing-data impu-

tation (Section 6.1.5), where the two procedures is to mitigate the data sparseness. After

these processes are completed, we forecast the future flows using the seasonal trend de-

composition based on loess technique (Section 6.1.4) and finally visualize the results using

multiple flow visualization techniques (Section 6.1.6). These processes are described in

detail in the following sub-sections.

6.1.1 Directional Density Estimation: Classification of Fixed Direction Sector

Given a set of trajectories T R = {tr1, · · · , trnum−tra} for a specific time window t, we

equally divide a space Ω⊂R2 into smaller sub-spaces Ω =
{

sp1, · · · ,spnum−spa
}

. We then

estimate the directional density for each sub-space that represents the overall movement

direction for each sub-space using the following methodology (Figure 6.1). For each sub-
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space spi, we first segment the individual trajectories tri that occur in each sub-space grid

by checking the crossing points of the trajectory segments at the boundary. Figure 6.1 (A)

shows the result of this process where six points (highlighted in red) are detected and are

assigned to be either the start or end locations for each segment that passes through the

grid (highlighted in blue). These points are used to identify partial trajectories (i.e., sub-

trajectories) for a trajectory tri. Next, we transform the sub-trajectories into a Euclidean

vector space ~vi and translate the start points and end points in the space to align with the

center location of the sub-space. That is, the starting points of the sub-trajectories within

the sub-space are located at the center of the sub-space (Figure 6.1 (B)).

The next step in our approach is to summarize these vectors in order to generate mean-

ingful representative movement vectors for each sub-space. The conventional approach

of summarizing vectors includes performing computations (e.g., average, addition) over

the entire space. However, this approach is often not optimal in generating representative

movement vectors as the final summary vectors could be meaningless. For example, if we

have two same magnitude but opposite direction vectors, they will cancel each other out

to yield a zero resultant vector. Accordingly, there is a need to preserve meaningful vec-

tors after summarization. Our approach is designed in order to help preserve the original

directions of the vectors. For each sub-space, we divide one full turn (360◦) into S circular

sectors of the same size. For demonstration, we use 8 sectors (i.e., S = 8) as default config-

uration in Figure 6.1 (B), where each sector covers a 45◦region. For each sector k (where

k = 1, · · · ,S), we generate a representative vector ~Vk by aggregating the corresponding vec-

tors ~vi within the sector k (as demonstrated in Figure 6.1 (C)). The magnitude M(~Vk) of the

representative vector for each sector is the sum of magnitudes of the vectors (M(~v)) that

belong to the corresponding sector. The direction D(~Vk) of the representative vector for

each sector is the angle calculated from the north. In this way, each sub-space will have a

set of S representative vectors Rspi =
{
~V1, · · · , ~VS

}
. The representative vectors encode the

directional density of a sub-space, and summarize the directions of flow for each individual

sub-space.
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6.1.2 Directional Density Estimation: Considering Road Direction

In addition to the fixed direction classification method described in Section 6.1.1, we

propose another method considering road direction. Using the fixed direction sectors to

classify flow directions has a limitation in representing actual flow directions. The method

can make large distortion of moving directions because it uses fixed same directions for

every sub-space, even if it can have different road directions. Eventually, it can cause

inaccurate directional density of flows over a space. Thus, to resolve this issue, we propose

another method that classify flows directions based on road directions. Figure 6.2 shows

the calculation process of the new method. Given the raw trajectories passing over a space

as shown in Figure 6.2 (A), we first calculate the shortest path of each trajectory, which

reflect the road directions in Figure 6.2 (B). Then, for each sub-space, we segment the

individual trajectories by checking the crossing points of the trajectory segments at the

boundary. These points are used to identify sub-trajectories of a whole trajectory. Next,

we transform the sub-trajectories into a vector space and translate the start and end points

align with the center location of the sub-space in Figure 6.2 (C). And, accumulate the

vectors according to their directions . We compute this estimation for every sub-space and

generate a specific vector field. We call it as multi-vector field, because traditionally each

location has only one vector, but for our case, each location can have multiple vectors. For

the new method the directions are adapted to the actual road directions of each sub-space so

that the directional density estimation become more accurate. In Figure 6.2 (C), the purple

dashed arrows are the result by using fixed direction sectors. In addition, the new method

provides another benefit. The number of directions to be computed decreases as the sub-

spaces have 4 directions or less in most cases, while the fixed direction sector method have

to consider at least 8 or more directions for every sub-space.

We visualize the directional densities by a glyph-based visualization as shown in Fig-

ure 6.3. The directions and the lengths of the blue arrows in a sub-space represent the

directions of the flows across the sub-space and their magnitudes, respectively. Figure 6.3

shows two different results of directional densities around Manhattan in New York City.
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Fig. 6.2. Trajectory tessellation and directional density estimation based
on shortest path considering road directions

The left result is calculated by using fixed direction sectors and the right one by the road

direction method. In Figure 6.3 the yellow lines are the raw trajectories (Left) and the short-

est paths (Right) calculated based on the raw trajectories. In result, the directional densities

shown in Figure 6.3 (Right) indicate more accurate and realistic human mobilities. Fig-

ure 6.4 shows the directional densities around the downtown area in Chicago. For even this

case, the directional densities in Figure 6.4 (Right) reflect more realistic movement paths

of people than the results in Figure 6.4 (Left).

6.1.3 Flow Smoothing

Sparse and noisy flow data often generate non-smooth flow patterns that cannot be used

for accurate prediction. In order to mitigate the effect caused by the data sparseness and

noise, we propose a new flow smoothing method based on local and global trend estimation.

The rationale behind our algorithm is that individuals in a crowd tend to follow dominant

paths of the crowd [137].

In our algorithms, for each sub-space, we adjust directional density with consideration

of neighbor sub-spaces’ trends and a global movement that considers the entire space. First,

local neighbor sub-spaces of spi is defined by N(spi) =
{

sp j ∈Ω | sp j is ad jacent to spi
}



79

Fig. 6.3. Directional density of New York City resulted by the method 1
(Left) and the method 2 (Right)

and the local directional trend of spi is computed using the neighbor representative vectors

Rsp j , sp j ∈ N(spi).

Next, we define the global movement of a sub-space as a major movement of a larger

space including the sub-space. In order to compute a global trend, we extract the major

movements from the trajectories of the entire space using a density-based trajectory clus-

tering algorithm [16]. Figure 6.5 (A) shows an example computation process. Here, the

representative vectors RcenterSpace of the center sub-space are almost evenly distributed in

multiple directions before smoothing but the major local and global trends move toward

the bottom-right. Thus, after smoothing based on the trends, the vector V4 ∈ RcenterSpace

heading toward the bottom-right becomes a major vector.

The next question is that which sub-spaces should be affected by the global trend since

there is uncertainty in the influence of a global trend. Therefore, we assume that the sub-
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Fig. 6.4. Directional density of New York City resulted by the method 1
(Left) and the method 2 (Right)

spaces that are close to the global trend are more affected than the ones more distant.

Figure 6.5 (B) shows how we classify the sub-spaces where dark gray sub-spaces are more

influenced by the global trend than the light gray ones that are the neighbors of the dark

gray ones. The white sub-spaces are not within the influence area.

As shown in Algorithm 1, all sub-spaces are visited in our algorithm to perform indi-

vidual smoothing operations (line 1, 2). In each visit, the average magnitude is computed

with consideration of the neighbor sub-spaces (line 3-12). Then, our algorithm computes

interpolation based on original magnitude of spi, the average magnitude of neighbor sub-

spaces, and the global magnitude based on a local smoothing parameter λ and a global

smoothing parameter τ (line 13-18). Finally, the algorithm updates the magnitude of each

sector for each sub-space based on the interpolation results.

Figure 6.6 shows the local and the global directional densities trends of taxi move-

ments with our glyph-based visualization in southern Manhattan during in the morning on
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After Smoothing

Global Trend

Local Trend

𝑉4

Global Trend

(B)(A)

Global Trend

Fig. 6.5. Each space’s directional density is computed based on its neigh-
bors’ and global trends.

May 24th, 2013. Each sub-space has a set of arrows where each arrow indicates the cor-

responding representative vector. The orange long arrow represents the global movement

in the area. The yellow lines are actual taxi trajectories. The local directional densities

and the global movement move toward bottom-left, as the observed time window is in the

morning. Figure 6.7 shows an example smoothing result where the directional density of

the sub-space A changes along the local directional trend. Note that before the smooth-

ing process is performed, the sub-space B did not have the directional density due to data

sparseness. After smoothing, it has one accommodating the local directional trend.

6.1.4 Forecasting Future Flow

To forecast directional density using historical vector-based crowd data, we apply sea-

sonal trend decomposition based on loess technique [3] over the entire space. Figure 6.8

illustrates the overall process of our forecasting method. For a given geo-location bound-

ary Ω and a past time window t, we first prepare the geospace with the trajectory data (Fig-

ure 6.8 (A)). Next, we fragment the geospace Ω into sub-spaces and compute a set of vec-
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Fig. 6.6. Local directional density (purple arrows) and global (orange ar-
row) trends of taxi movements in southern Manhattan between 6:00 AM
and 10:00 AM.

tors for each individual sub-space using the methodology described in Sections 6.1.2. As

discussed previously, we generate a specific vector field ~Vk for every sub-space. We call it as

multi-vector field, because traditionally each location has only one vector, but for our case,

each location can have multiple vectors. This is shown in Figure 6.8 (A). In our approach,

we define these vector fields for the given time window t as V Ft =
{
Mspi, spi ∈Ω

}
, where

Mspi is a set of vectors for sub-space spi. This process is repeated for every sub-space in

geospace for a given time step, and then over time for the entire time window t (Fig-

ure 6.8 (B)). Next, we generate a time series of the magnitude values of the vectors of the

series of Mspi of the sub-space (Figure 6.8 (C)). This time series is defined as:

Yk =
{

M(~Vk) : ~Vk ∈Mspi,Mspi ∈V Ft , t ∈ T
}
,k = {1, · · · ,S} (6.1)
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A

B

A

B

Before smoothing After smoothing

Fig. 6.7. An example of the smoothing result. Sub-space B does not have
density due to sparseness data (Left). Sub-space has the density (Right).

Fig. 6.8. The process of multi-vector field prediction.

Here, T is the time range of observed historical data.

In order to model the time series Yk and forecast for the future value, we employ the

seasonal-trend decomposition technique (STL) described in [138, 139]. The technique is

based on a locally weighted regression (loess) methodology (STL) [3]. For each sub-space,
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Algorithm 1: Flow Smoothing
Input : (1) Ω = {sp1, · · · ,spn}

(2) Global vector of spi Gspi

(3) A local smoothing parameter λ

(4) A global smoothing parameter τ

Note: (0≤ λ + τ ≤ 1)

Output: Smoothed flow of each sub-space

/* For each sub-space, smooth its directional density */

1 for each spi ∈Ω do

/* For each sector, adjust its magnitude based on the local and global

directional trends */

2 for k = 1 to S do

3 let avgNeighborMag = 0

4 let numNeighbor = 0

/* For each neighbor sub-space of spi */

5 for each sp j ∈ N(spi) do

6 m = M(Vk), Vk ∈Rsp j

7 if (m > 0) then

8 avgNeighborMag = avgNeighborMag+m

9 numNeighbor = numNeighbor+1

10 end

11 end

12 avgNeighborMag = avgNeighborMag/numNeighbor

13 originalMag = M(Vk),Vk ∈Rspi

/* Update the original magnitude */

14 if (D(Gspi) is in sector k) then

15 originalMag = (1−λ − τ)×originalMag+λ ×avgNeighborMag+ τ×M(Gspi)

16 else

17 originalMag = (1−λ )×originalMag+λ ×avgNeighborMag

18 end

19 end

20 end
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we predict the future magnitude value of the vector (Figure 6.8 (C)). Finally, we repeat

this process for every single sub-space and generate the future multi-vector field V Ft+1

(Figure 6.8 (D)).

6.1.5 Missing-Data Imputation

We propose another approach to reduce the data sparsity issue so that we improves

the performance of our prediction model. Since the movement data is sparse, the time

series which is underlying data for forecasting described in Section 6.1.4 would be not

continuous. The missing-data has a significant effect on the forecasting results, since it can

increase the impact of data uncertainty in the forecasting process. For example, the graph

in Figure 6.9 (Top) shows the magnitude values of a specific direction in a cell for 150 days

with 4 hours time window. There are many missing data points that can cause inaccurate

data forecasting. Thus, we apply a data imputation technique to reduce the data sparsity

impact. We utilize spline interpolation technique [140] which is one of popular polynomial

interpolation techniques to replace the missing data points with estimated value based on

other available data points. The graph in Figure 6.9 (Bottom) shows the interpolation result.

The blue circles are the observed data points and the red ones are imputed ones. We use the

interpolated magnitude values to forecast the future value. In result, this data imputation

approach improves the forecasting accuracy. More detailed evaluation results are explained

in Section 6.2.

6.1.6 Visualization of Multi-Vector Fields

The flow of human crowds represents the temporal trend of human movement within

a certain time period. Our system is built on several vector field visualization techniques

for the generated multi-vector field data in order to observe the trends and patterns. In this

work, we utilize the particle advection technique [141] for the vector fields and extend the

web based project, earth, that visualizes global weather conditions [142]. Our web-based

flow visualization system consists of JavaScript and several APIs, such as D3.js, Back-
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Fig. 6.9. Magnitude values of a specific direction in a grid cell for 150
days with 4 hours (Top). Interpolated result (Bottom). The blue circles are
the observed data points and the red ones are imputed ones.

bone.js, and When.js. The web server visualizes the 3D globe according to the vector fields

using D3 projections. The server, then, attaches some minimum geographical information

including roads, country boundaries, and lakes using TopoJSON. The web-based flow vi-

sualization provides animated particles and the color of a particle varies accordingly as the

particle ages. If the target vector field area is too small to be visible, our system allows
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Fig. 6.10. The flows of Taxi data between 7:00 AM and 9:00 AM. Multi-
vector fields representing the directional densities (Top). Particle advec-
tion (Left-Bottom). The paths of long-life particles (Right-Bottom). The
red color indicates a high probability, whereas, the yellow represents a low
probability.

users to apply an additional map layer located between the globe layer and the particle

layer.

In Section 6.1.2, we introduce our multi-vector fields by the directional density estima-

tion preserving the original vector directions instead of one dominant or average direction.

Each direction has a density giving a hint for the probability of moving toward the direc-

tion. Since each grid cell can have multiple directions in this work, the densities for the

directions can be normalized and used as a probability. Figure 6.10 (Top) shows an exam-

ple of the multi-vector fields representing the directional densities for taxi flows in Porto,

Portugal during 2 hours from 7:00 AM to 9:00 AM. In Figure 6.10 (Top), we highlight a

region with a high probability direction (100%) and another region with 5 low probability

directions (40%, 30%, 10%, 10%, 10%). A direction with high probability indicates that

a flow is moving toward the direction with certainty whereas, a flow moving to a direction
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with low probability visualized relatively uncertain flow. For each grid cell, we visualize

the multi-vectors representing the directions of the moving flows based on its probability

distribution.

In order to represent the multi-vector fields in our flow visualization, particles are gen-

erated and then animated through the vector fields. The particle color is determined by

the probability of the movement direction of the particle, where the color gradually varies

from red (high probability) to yellow (low probabiloty). An example of probability flow is

shown in Figure 6.10 (Left-Bottom). The probability flow is created based on the probabil-

ities in the multi-vector field. Particles are randomly generated in the space, and they move

toward all non-zero directions in the multi-vector field. The number of particles in a given

direction is proportional to the probability. For example, if there are two non-zero vectors

(90% and 10%) in the multi-vector field and 100 particles are passing through the grid cell,

90 particles move in the 90% vector direction, whereas, ten particles move in 10% vector

direction.

Also, when a particle enters a new cell, the probability of the particle path is multiplied

by the prior probability. In this way, we can compute all probabilities along the particle

path from its birth to death. The probability of each path segment is encoded in the path

color as mentioned above. Since the particle path is obtained by using multi-vector fields,

the probability flow tends to become complex as combinations of all the flow directions

between grid cells are visualized at the same time. To reduce this limitation, we provide

another type of visualization. Base on the lifespan of each particle, we connect the paths

of the long-life particles. We can see more continuous and obvious paths over the space as

shown in Figure 6.10 (Right-Bottom). For this visualization, we use the same color scheme

as the previous one. The color represents the certainty/uncertainty of the flow based on the

probability of the path segment.
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6.2 Evaluation

We evaluate the performance of our forecasting model. For this experiment, we use

taxi trajectory data which includes the trajectories for all the 442 taxis running in the city

of Porto, in Portugal [143] and geo-location Twitter data generated around the New York

City. We use the Normalized Root Mean Square Error (NRMSE) [144] to measure the error

rate, instead of the Root Mean Square Error (RMSE) to help mitigate for the influence of

outliers that generate a low reliability in the evaluation and for scale-independent. The

measure is also widely applicable, and easily interpretable.

To compute NRMSE, we first define two time series: (1) Historical time series defined

by Yk = {yt : t ∈ T}, where k = {1, · · · ,S}, and (2) Forecasted time series given by Ŷk =

{ŷt : t ∈ T}. NRMSE can be calculated as follows:

NRMSE =
1

ymax− ymin

√√√√√ T
∑

t=1
(yt− ŷt)

2

T
(6.2)

Approach Comparison: We investigate the effect of the different approaches on the

forecasting results. We compare the forecasting results by between the approach 1 includ-

ing the fixed direction classification (Section 6.1.3) and the smoothing technique (Sec-

tion 6.1.1) and the approach 2 including the method considering road directions (Sec-

tion 6.1.2) and the data imputation technique (Section 6.1.5). We evaluate the impact on

the forecasting accuracy in different grid size conditions. Figure 6.11 shows the evalua-

tion results. The light blue bars represent the results of the approach 1, and orange bars

represent the results by the approach 2. As shown in the chart, the forecasting accuracy is

significantly improved under every grid size conditions when we use the approach 2, com-

paring the results of the approach 1. The approach 2 reduces the data uncertainty by using

more realistic directions of the moving objects and imputing the missing data points.

Varying Grid Sizes: We investigate the error rates on different granularity level, dif-

ferent grid sizes (e.g., 200m, 500m, 1km, 2km, and 4km) as shown in Figures 6.12. We

use the approach 2 for every grid size condition. The light blue bars represent the error

rates for the taxi data and orange bars represent the results for the Twitter data. The error
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Fig. 6.11. Comparison of forecasting results by two different approaches.

rates of Twitter data are higher than ones of the taxi data for every condition. As the taxi

data is more reliable and significantly low sparsity than the twitter data, it decreases its

uncertainty. Also, we can see when we use the grid size as 0.5 km, we can obtain the best

results for the both datasets —4.9% for the taxi data and 8.4% for the Twitter. We find out

both error rates increase as the grid size grows. It shows that a larger area can have higher

uncertainty regarding movement direction. However, the results of 0.2 km is worse than

0.5 km, that is, we model more fine grain data chunks when we use 0.2 km as the grid size,

so the impact of data sparsity increases. We discuss these results further in Section 6.3.

Method Impact Comparison: The approach 2 includes the method considering road

directions and the missing-data imputation method. We investigate the degree of the impact

of the two different methods in order to improve the methods and find new methods increas-

ing the forecasting accuracy. The chart in Figure 6.13 shows the error rates in varying grid

sizes for the Twitter data under the different combinations of the methods. In the chart, R

is the method considering road conditions, I is the missing-data imputation method, and

R+I is the combination of the both methods. For every condition, we can the both methods

improves the forecasting accuracy, but the use of R method has a higher impact on the
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Fig. 6.12. Error rates for varying grid sizes for the Twitter and the taxi datasets.

forecasting accuracy than the use of I method because when we use the R method only, the

error rates are lower than when we use the I method only. The use of R+I method provides

the lowest error rate for every grid size condition. We also conduct a similar experiment

on the taxi data. We measure only the impact of the I method since the taxi data is a set of

high-resolution trajectories with geo-location points. Figure 6.14 shows the result for the

taxi data. In this case, the use of R+I method also provides the better result than the non-use

of I method. Based on these experimental results, we believe that when the data has less

uncertainty, which means that it reflects actual or more realistic mobility, the performance

of our forecasting model improves.

Visual Comparison: We also visually compare the visualization results created by the

advanced visualization techniques described in Section 6.1.6 between observed data and

forecasting result. Figure 6.15 shows the comparison result (Top: Observed data, Bottom:

Forecasting data) by the particle advection with arrows in Porto. For this case, we use 0.5

km as the grid size; the NRMSE is 4.99%. As Figure 6.15 is a snapshot captured from ani-

mated visualization, it is not easy to compare this type of visualization. We can effectively

compare the two results of the animated version. The visualization result of the forecasting
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Fig. 6.13. Error rates for varying grid sizes for the Twitter data under the
different combinations of the methods. R is the method considering road
conditions and I is the missing-data imputation method.

data shows significantly similar patterns to the actual result patterns. Figure 6.16 shows the

comparison result (Top: Observed data, Bottom: Forecasting data) by the paths of long-life

particles in Porto. For this visualization result, we can see some different patterns around

the bottom area. The bottom area has a higher density regarding movement and direction

than the upper area as shown in Figure 6.10 (Top). When generating the paths of the long-

life particles, our algorithm considers the more number of particles in the high-density

areas. It would make different paths between the two visualization results. Figure 6.17

shows the comparison result (Left: Observed data, Right: Forecasting data) by the particle

advection in New York City. For this case, we use 0.5 km as the grid size; the NRMSE is

7.4%. Figure 6.18 shows the comparison result (Left: Observed data, Right: Forecasting

data) by the paths of long-life particles in New York City. We can see flows move from the

north to south in Manhattan and enter inside Manhattan in both results. However, the flows

in the middle of Manhattan are different between the observed and forecasting visualization

results because of the same reason of the taxi data in Porto.
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Fig. 6.14. Error rates for varying grid sizes for the taxi data under the
different approach conditions.

6.2.1 Spatial Error Analysis

We evaluate which locations have high error and low error so that we can investigate

whether the underlying characteristics of the location have a strong impact on the fore-

casting accuracy (e.g., road network characteristics (e.g., direction, speed limit), traffic

densities, and the land-use (e.g., residential or industrial area)). In order to assess the error

rates, we compute NRMSE for each location separately, and the values are normalized by

the range of the NRMSE values. The normalized values are mapped to different colors

ranging from green (low error) to red (high error). Figure 6.19 shows an example result of

the spatial analysis on taxi trajectories in the city of Porto, Portugal. We calculate the error

rate of each grid cell and fill the grid with a specific color between green and red according

to its error rate as shown in Figure 6.19 (Left). The visualization in Figure 6.19 (Left)

clearly shows the global overview of the error rates of the space. We find that the locations
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Fig. 6.15. Visual comparison of particle advection: Taxi in Porto. (Top:
Observed data, Bottom: Forecasting data)

that are near the center of the city, where have many intersecting roads, have relatively high

error rates. However, it is not easy to see the detailed geographical characteristics of each

location, even though the colors are semi-transparent. To address this limitation, we pro-

vide another type of visualization. We draw a small circle at the top-left corner of each grid

cell instead of filling the entire area using the same corresponding color. This visualization

enables seeing the geographical features of the locations as well as the region’s error rate.
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Fig. 6.16. Visual comparison of paths of long-life particles: Taxi in Porto.
(Top: Observed data, Bottom: Forecasting data)

The users can switch between the two types of visualizations. We discuss these results

further in Section 6.3.2.
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Fig. 6.17. Visual comparison of particle advection: Twitter in New York
City. (Left: Observed data, Right: Forecasting data)

Fig. 6.18. Visual comparison of paths of long-life particles: Twitter in
New York City. (Left: Observed data, Right: Forecasting data)

6.3 Discussion

In this section, we discuss issues related to the grid size and regional error rate differen-

tials for our methodology. Specifically, we discuss the challenges associated with selecting

the appropriate grid size and regional influence on the forecasting accuracy.
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Fig. 6.19. Spatial error analysis: Regional differentials in error rate. Red
color indicates the high error rate; Green color indicates the low error rate.

6.3.1 Grid Size

As discussed in Section 6.1.2, we conducted our evaluations by varying the grid size.

Our evaluation results reveal that the grid size has an impact on the accuracy of the fore-

cast results. However, selecting an appropriate grid size (i.e., geospatial scale) for analysis

remains to be a challenging task. Based on our experiment results, in general, the data with

high density is less vulnerable and the accuracy of forecasting with a higher granularity

(fine scale) is higher than that with low granularity (coarse scale). One adverse case hap-

pens when the grid size is 200 meters where we find that the forecast accuracy is worse

than that with 500 meters grid size as shown in Figure 6.12. Interestingly, this is observed

in both Twitter and Taxi data. We find out that when we use 0.2 km as the grid size, the

data sparsity increases, and the forecasting accuracy decreases. Accordingly, we believe

that there may exit a relationship between the grid size and the geographical characteristics

(e.g., demographics) that needs to be further explored. We leave this as future work.
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6.3.2 Regional Differentials in Forecasting Error Rate

The spatial error analysis described in Section 6.2 helps in understanding the relation-

ship between the forecasting accuracy and the regional characteristics. We find that the

locations with roads that have more than 4 different directions and a higher traffic density

may have higher error rates. On the other hand, we can observe that the locations with

fewer roads choices and interactions have lower error rates, even though they have a higher

traffic density. We believe that route diversity has a high impact on regular movement pat-

terns, which affects forecasting the patterns. One of the possible ways to reduce this issue

would be to adapt the grid size based on the route diversity of each location, instead of

using a fixed grid size for every location. We need further investigation to understand how

route diversity influences the forecasting accuracy and find possible solutions. We leave

this as future work.

6.4 Summary

We presented a space-based visual analytics approach for forecasting the overall flow

of human crowds. Our work utilizes individual movement trajectory data and embeds it

into a two-dimensional Euclidean space. Our approach is based on modeling for the space

instead of the more conventional approach of modeling individual objects. We propose a

new method to estimate the directional density for representing the overall flows of moving

objects. We also introduce a new model for forecasting the future flow of human crowds

using the seasonal trend decomposition based on Loess technique. Finally, we develop

a new flow visualization technique of multi-vector fields to represent the directional flow

density.
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7. CONCLUSIONS

In summary, we presented design and development of visual analytics techniques and sys-

tems for spatial decision support through coupling modeling of spatiotemporal social media

data, with scalable and interactive visual environments. We extract valuable hidden infor-

mation from the huge volume of unstructured social media data and model the extracted

information for visualizing meaningful information along with user-centered interactive

interfaces. In conclusion, we summarize the major contributions of this thesis as the fol-

lowing:

• Visual analytics of location-based social networks for abnormal event detection:

We presented a visual analytics approach that provides users with scalable and in-

teractive social media data analysis and visualization including the exploration and

examination of abnormal topics and events within various social media data sources,

such as Twitter, Flickr and YouTube. We also introduced an interactive visual spatial

decision support environment that assists in evacuation planning and disaster man-

agement.

• Visual analytics for public behavior analysis in disaster events: We demonstrated

how to improve investigation by analyzing the extracted public behavior responses

from social media before, during and after natural disasters, such as hurricanes and

tornadoes.

• Visual analytics of anomalous human movement analysis: We proposed a trajectory-

based visual analytics system for analyzing anomalous human movements during

disasters using multi-online media. We discover common human movement pat-

terns using extracted trajectories from LBSNs and propose a classification model

for detecting abnormal movements. In addition, we integrate multiple visual repre-



100

sentations using relevant context extracted from different online media sources for

improving situational awareness.

• Visual analytics of forecasting the flow of human crowds: We introduced a novel

space-based visual analytics approach for forecasting the overall flow of these human

crowds. We apply seasonal trend analysis techniques on the flow data in each sub-

space to forecast the future level of crowd movement based on the observed historical

time series flow patterns. Our methodology is comprised of directional flow density

estimation techniques for preserving original paths and movement directions, and

a novel flow smoothing method utilizing local and global trends to mitigate data

sparsity and noise issues.

7.1 Future Work

Although we have shown effectiveness of our visual analytics techniques and systems,

there are some other aspects we have not treated in detail. Furthermore, as data becomes

complex, new challenges arise. Given the visual analytics techniques for location-based

social networks that my past research has generated, my future research directions consist

of the following topics:

• Advanced anomaly Detection: We have presented a visual analytics approach that

provides users with visual analytics techniques including the exploration and exam-

ination of abnormal topics and events within various social media data sources. We

need to further investigate context-based analysis and improve the current detection

algorithm to allow for a faster analysis. Due to the fast-paced and low quality nature

of micro-blogging, the effects of additional pre-processing options like automated

spell-checking or synonym recognition under the constraint of preventing ambigui-

ties should be considered. Further research is also required to supplement the system

with real-time monitoring features, demanding additional means for adaptive atten-

tion guiding as well as interaction techniques for use in high pressure environments.
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• Enhanced visualization: We have shown a trajectory-based visual analytics system

for anomalous human movement analysis during disasters using multi-type online

media. We have limitations in reducing the visual clutter of trajectories and adding

annotations on the map. The classification model to automatically identify the ab-

normal movements is required. For the forecasting flow visualization, our framework

has used fixed directions for each grid. However, wee need to incorporate data-driven

methods to consider road directions.

• Improved analysis for data sparsity: Sparse and noisy flow data often generate

non-smooth flow patterns that cannot be used for accurate prediction. In order to

mitigate the effect caused by the data sparseness and noise, we proposed a new flow

smoothing method based on local and global trend estimation. However, this smooth-

ing technique has limitation to generate aspects, because it does not consider the road

network. We plan to investigate other approach to reduce the data sparsity issue. In

addition, further research is need that investigate the effects of data sparsity and noise

issues on our forecasting results.

• Evaluation of visual analytics tools within the crisis management: Finally, we

plan conduct a user evaluation for the usability and effectiveness of the geospatial

visual support, and the impact of interactive spatiotemporal visual analytics using

social media data with crisis management personnel and other domain experts.
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