1,620 research outputs found

    Characteristics of surface-water flows in the ridge and slough landscape of Everglades National Park: implications for particulate transport

    Get PDF
    Over the last one hundred years, compartmentalization and water management activities have reduced water flow to the ridge and slough landscape of the Everglades. As a result, the once corrugated landscape has become topographically and vegetationally uniform. The focus of this study was to quantify variation in surface flow in the ridge and slough landscape and to relate flow conditions to particulate transport and deposition. Over the 2002–2003 and 2003–2004 wet seasons, surface velocities and particulate accumulation were measured in upper Shark River Slough in Everglades National Park. Landscape characteristics such as elevation, plant density and biomass also were examined to determine their impact on flow characteristics and material transport. The results of this study demonstrate that the release of water during the wet season not only increases water levels, but also increased flow speeds and particulate transport and availability. Further, flow speeds were positively and significantly correlated with water level thereby enhancing particulate transport in sloughs relative to ridges especially during peak flow periods. Our results also indicate that the distribution of biomass in the water column, including floating plants and periphyton, affects velocity magnitude and shape of vertical profiles, especially in the sloughs where Utricularia spp. and periphyton mats are more abundant. Plot clearing experiments suggest that the presence of surface periphyton and Utricularia exert greater control over flow characteristics than the identity (i.e., sawgrass or spike rush) or density of emergent macrophytes, two parameters frequently incorporated into models describing flow through vegetated canopies. Based on these results, we suggest that future modeling efforts must take the presence of floating biomass, such as Utricularia, and presence of periphyton into consideration when describing particulate transport

    Method for Quantifying Floating Marsh Strength and Interaction with Hydrodynamics

    Get PDF
    Louisiana possesses over 350,000 acres of unique floating vegetated systems known as floating marshes or flotants. Due to their buoyant nature, floating marshes are susceptible to high energy changes in the hydrodynamic environment that may result from proposed river diversion projects which introduce flow to areas that are typically somewhat isolated. The overall goal of this research is to improve the understanding of how exposed flotants deteriorate under increased hydrodynamic stresses. More specifically, this thesis aims to answer how the material limits of floating marshes can be measured and how the mats interact with hydrodynamics. The two primary objectives are: 1) Develop a technique for accurate, in-situ measurement vegetative mat root-soil matrix material properties; and 2) Develop a means for predicting floating marsh washout (critical velocities) through numerically modeled derived empirical relationships. The device constructed to capture the tensile properties of the vegetative mats, called the Marsh Mat Tensile Strength Tester (MMTST), successfully produced full stress-strain profiles including the Young’s modulus, yield stress, and ultimate strength of a root-soil matrix (sod). The estimated mean Young’s modulus, yield stress, and ultimate strength values (sod) were found to be 31.95 kPa, 9.58 kPa, and 9.91 kPa, respectively. Next, flows around 25 idealized mat geometries were simulated with 2-D & 3-D Fluent models. Mat-specific drag coefficients (Cd,m) were found ranging from 1.084-1.645 depending on mat aspect ratio. An equation developed for predicting Cd,m successfully estimated the modeled drag coefficients with a mean percentage error of 2.33%. A finite element analysis (FEA) was performed on the 25 mat shapes using the predicted drag forces and the material properties measured by the MMTST. By applying various failure criteria (Fc), a correlation was found between the modified mat width-to-length aspect ratio () and critical velocity (Vc). The critical velocities ranged from 0.31-1.48 m/s depending on mat aspect ratio and material properties. The general equation developed for predicting floating marsh failure due to flow, in the form: Vc = f(,Fc), performed well with a mean percentage error of 3.33% relative to the unique values directly extracted from the FEA

    Review of best management practices for aquatic vegetation control in stormwater ponds, wetlands, and lakes

    Get PDF
    Auckland Council (AC) is responsible for the development and operation of a stormwater network across the region to avert risks to citizens and the environment. Within this stormwater network, aquatic vegetation (including plants, unicellular and filamentous algae) can have both a positive and negative role in stormwater management and water quality treatment. The situations where management is needed to control aquatic vegetation are not always clear, and an inability to identify effective, feasible and economical control options may constrain management initiatives. AC (Infrastructure and Technical Services, Stormwater) commissioned this technical report to provide information for decision- making on aquatic vegetation management with in stormwater systems that are likely to experience vegetation-related issues. Information was collated from a comprehensive literature review, augmented by knowledge held by the authors. This review identified a wide range of management practices that could be potentially employed. It also demonstrated complexities and uncertainties relating to these options that makes the identification of a best management practice difficult. Hence, the focus of this report was to enable users to screen for potential options, and use reference material provided on each option to confirm the best practice to employ for each situation. The report identifies factors to define whether there is an aquatic vegetation problem (Section 3.0), and emphasises the need for agreed management goals for control (e.g. reduction, mitigation, containment, eradication). Resources to screen which management option(s) to employ are provided (Section 4.0), relating to the target aquatic vegetation, likely applicability of options to the system being managed, indicative cost, and ease of implementation. Initial screening allows users to shortlist potential control options for further reference (Section 5.0). Thirty-five control options are described (Section 5.0) in sufficient detail to consider applicability to individual sites and species. These options are grouped under categories of biological, chemical or physical control. Biological control options involve the use of organisms to predate, infect or control vegetation growth (e.g. classical biological control) or manipulate conditions to control algal growth (e.g. pest fish removal, microbial products). Chemical control options involve the use of pesticides and chemicals (e.g. glyphosate, diquat), or the use of flocculants and nutrient inactivation products that are used to reduce nutrient loading, thereby decreasing algal growth. Physical control options involve removing vegetation or algal biomass (e.g. mechanical or manual harvesting), or setting up barriers to their growth (e.g. shading, bottom lining, sediment capping). Preventative management options are usually the most cost effective, and these are also briefly described (Section 6.0). For example, the use of hygiene or quarantine protocols can reduce weed introductions or spread. Catchment- based practices to reduce sediment and nutrient sources to stormwater are likely to assist in the avoidance of algal and possibly aquatic plant problems. Nutrient removal may be a co-benefit where harvesting of submerged weed biomass is undertaken in stormwater systems. It should also be considered that removal of substantial amounts of submerged vegetation may result in a sudden and difficult-to-reverse s witch to a turbid, phytoplankton dominated state. Another possible solution is the conversion of systems that experience aquatic vegetation issues, to systems that are less likely to experience issues. The focus of this report is on systems that receive significant stormwater inputs, i.e. constructed bodies, including ponds, amenity lakes, wetlands, and highly-modified receiving bodies. However, some information will have application to other natural water bodies

    Near-Wake Flow Structure of a Suspended Cylindrical Canopy Patch

    Get PDF
    Urban stormwater is an important environmental problem, especially for metropolitans worldwide. The most important issue behind this problem is the need to find green infrastructure solutions, which provide water treatment and retention. Floating treatment wetlands, which are porous patches that continue down from the free-surface with a gap between the patch and bed, are innovative instruments for nutrient management in lakes, ponds, and slow-flowing waters. Suspended cylindrical vegetation patches in open channels affect the flow dramatically, which causes a deviation from the logarithmic law. This study considered the velocity measurements along the flow depth, at the axis of the patch, and at the near-wake region of the canopy, for different submerged ratios with different patch porosities. The results of this experimental study provide a comprehensive picture of the effects of different submergence ratios and different porosities on the flow field at the near-wake region of the suspended vegetation patch. The flow field was described with velocity and turbulence distributions along the axis of the patch, both upstream and downstream of the vegetation patch. Mainly, it was found that suspended porous canopy patches with a certain range of densities (SVF20 and SVF36 corresponded to a high density of patches in this study) have considerable impacts on the flow structure, and to a lesser extent, individual patch elements also have a crucial role

    Automated identification of river hydromorphological features using UAV high resolution aerial imagery

    Get PDF
    European legislation is driving the development of methods for river ecosystem protection in light of concerns over water quality and ecology. Key to their success is the accurate and rapid characterisation of physical features (i.e., hydromorphology) along the river. Image pattern recognition techniques have been successfully used for this purpose. The reliability of the methodology depends on both the quality of the aerial imagery and the pattern recognition technique used. Recent studies have proved the potential of Unmanned Aerial Vehicles (UAVs) to increase the quality of the imagery by capturing high resolution photography. Similarly, Artificial Neural Networks (ANN) have been shown to be a high precision tool for automated recognition of environmental patterns. This paper presents a UAV based framework for the identification of hydromorphological features from high resolution RGB aerial imagery using a novel classification technique based on ANNs. The framework is developed for a 1.4 km river reach along the river Dee in Wales, United Kingdom. For this purpose, a Falcon 8 octocopter was used to gather 2.5 cm resolution imagery. The results show that the accuracy of the framework is above 81%, performing particularly well at recognising vegetation. These results leverage the use of UAVs for environmental policy implementation and demonstrate the potential of ANNs and RGB imagery for high precision river monitoring and river management

    Computational fluid dynamics modelling of residence times in vegetated stormwater ponds

    Get PDF
    Experimental data characterising dispersion within Typha latifolia were previously collected in a laboratory setting. This mixing characterisation was combined with previously proposed computational fluid dynamics modelling approaches to predict residence time distributions for vegetated stormwater treatment pond layouts (including a wetland) derived from Highways England design guidance. The results showed that the presence of vegetation resulted in residence times closer to plug flow, indicating significant improvements in stormwater treatment capability. The new modelling approach reflects changes in residence time due to mixing within the vegetation, but it also suggests that it is more important to include vegetation within the model in the correct location than it is to accurately characterise it. Estimates of hydraulic efficiency suggest that fully vegetated stormwater ponds such as wetlands should function well as a treatment device, but more typical ponds with clear water need to be designed to be between 50% and 100% larger than their nominal residence times would suggest when designed against treatment criteria

    Wave Height Attenuation and Flow Resistance Due to Emergent or Near-Emergent Vegetation.

    Get PDF
    Vegetation plays a pivotal role in fluvial and coastal flows, affecting their structure and turbulence, thus having a strong impact on the processes of transport and diffusion of nutrients and sediments, as well as on ecosystems and habitats. In the present experimental study, the attenuation of regular waves propagating in a channel through flexible vegetation is investigated. Specifically, artificial plants mimicking Spartina maritima are considered. Different plant densities and arrangements are tested, as well as different submergence ratios. Measurements of wave characteristics by six wave gauges, distributed all along the vegetated stretch, allow us to estimate the wave energy dissipation. The flow resistance opposed by vegetation is inferred by considering that drag and dissipation coefficients are strictly related. The submergence ratio and the stem density, rather than the wave characteristics, affect the drag coefficient the most. A comparison with the results obtained in the case when the same vegetation is placed in a uniform flow is also shown. It confirms that the drag coefficient for the canopy is lower than for an isolated cylinder, even if the reduction is not affected by the stem density, underlining that flow unsteadiness might be crucial in the process of dissipation

    Retention time and dispersion associated with submerged aquatic canopies

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 43 (2007): W04422, doi:10.1029/2006WR005362.The shear layer at the top of a submerged canopy generates coherent vortices that control exchange between the canopy and the overflowing water. Unlike free shear layers, the vortices in a canopy shear layer do not grow continuously downstream but reach and maintain a finite scale determined by a balance between shear production and canopy dissipation. This balance defines the length scale of vortex penetration into the canopy, δ e , and the region of rapid exchange between the canopy and overflow. Deeper within the canopy, transport is constrained by smaller turbulence scales. A two-box canopy model is proposed on the basis of the length scale δ e . Using diffusivity and exchange rates defined in previous studies, the model predicts the timescale required to flush the canopy through vertical exchange over a range of canopy density and height. The predicted canopy retention times, which range from minutes to an hour, are consistent with canopy retention inferred from tracer observations in the field and comparable to retention times for some hyporheic regions. The timescale for vertical exchange, along with the in-canopy velocity, determines the minimum canopy length for which vertical exchange dominates water renewal. Shorter canopies renew interior water through longitudinal advection. Finally, canopy water retention influences longitudinal dispersion through a transient storage process. When vertical exchange controls canopy retention, the transient storage dispersion increases with canopy height. When longitudinal advection controls water renewal, dispersion increases with canopy patch length.This material is based upon work supported by the National Science Foundation under grant EAR0309188

    Vegetation and discharge effects on the hydraulic residence time distribution within a natural pond

    Get PDF
    Results are presented from sets of field and laboratory experiments conducted to measure and quantify the Hydraulic Residence Time Distribution in treatment ponds containing vegetation. The field measurements were taken in the Lyby field pond (Sweden) with complementary experiments on a distorted, laboratory scale model pond designed and built in the University of Warwick’s engineering laboratory. Rhodamine WT Dye tracer experiments were used in both the Lyby field pond and the distorted physical scale model to investigate vegetation and discharge affects on HRTD characteristics and the technique of PIV (Particle Image Velocimetry) was used in the distorted physical scale model to investigate how surface flow profiles were affected by different vegetation and discharge configurations. The results show that the distorted physical scale pond did not reflect the HRTD characteristics of the field site, with the actual residence time, (tm), for the distorted physical scale pond ranging from 85 % to 125% of its nominal residence time. For the distorted scale model, pond vegetation and discharge did not affect the relative HRTD centroid, em, or the actual residence time, tm. This finding is attributed to the unique pond geography and associated aspect ratios However, flow rates did have a significant effect on the HRTD e0 (time of first dye arrival at the outlet) and ep (time of peak dye concentration). Changes in vegetation were found to have little effect on e0 and ep. For the laboratory pond, vegetation had a significant control on the surface flow field whereas, flow rates did not – the latter suggests that surface flow fields are not representative of the internal flow field in different layers of the pond. The experiments demonstrate that the specific shape of the distorted physical scale pond in this study enables optimal actual resident times to be achieved over a wide range of vegetation and flow rate configurations. If full scale field ponds based upon this design give the same stable centroid results, then this would be a substantial breakthrough in pond design, which would aid the design and management of pond treatment and allow more robust optimisation of treatment efficiency
    corecore