132 research outputs found

    Adapting Deep Learning for Underwater Acoustic Communication Channel Modeling

    Get PDF
    The recent emerging applications of novel underwater systems lead to increasing demand for underwater acoustic (UWA) communication and networking techniques. However, due to the challenging UWA channel characteristics, conventional wireless techniques are rarely applicable to UWA communication and networking. The cognitive and software-defined communication and networking are considered promising architecture of a novel UWA system design. As an essential component of a cognitive communication system, the modeling and prediction of the UWA channel impulse response (CIR) with deep generative models are studied in this work. Firstly, an underwater acoustic communication and networking testbed is developed for conducting various simulations and field experiments. The proposed test-bed also demonstrated the capabilities of developing and testing SDN protocols for a UWA network in both simulation and field experiments. Secondly, due to the lack of appropriate UWA CIR data sets for deep learning, a series of field UWA channel experiments have been conducted across a shallow freshwater river. Abundant UWA CIR data under various weather conditions have been collected and studied. The environmental factors that significantly affect the UWA channel state, including the solar radiation rate, the air temperature, the ice cover, the precipitation rate, etc., are analyzed in the case studies. The obtained UWA CIR data set with significant correlations to weather conditions can benefit future deep-learning research on UWA channels. Thirdly, a Wasserstein conditional generative adversarial network (WCGAN) is proposed to model the observed UWA CIR distribution. A power-weighted Jensen–Shannon divergence (JSD) is proposed to measure the similarity between the generated distribution and the experimental observations. The CIR samples generated by the WCGAN model show a lower power-weighted JSD than conventional estimated stochastic distributions. Finally, a modified conditional generative adversarial network (CGAN) model is proposed for predicting the UWA CIR distribution in the 15-minute range near future. This prediction model takes a sequence of historical and forecast weather information with a recent CIR observation as the conditional input. The generated CIR sample predictions also show a lower power-weighted JSD than conventional estimated stochastic distributions

    Smart Rocks and Wireless Communication System for Real-Time Monitoring and Mitigation of Bridge Scour -- A Proof-of-Concept Study

    Get PDF
    This study aims to integrate commercial measurement and communication components into a scour monitoring system with magnets or electronics embedded in smart rocks, and evaluate and improve its performance in laboratory and field conditions for the movement of smart rocks. Properly-designed smart rocks were found to be automatically rolled into the very bottom of a scour hole and can give critical information about the maximum scour depth and effectiveness of rip-rap mitigation strategies. Four types of smart rock technologies were investigated in this proof-of-concept phase of study, including passive with embedded magnets, active with magneto-inductive communication, active with controllable magnet rotation, and active with acoustic communication. Their performances were evaluated against three criteria: 1) movement accuracy within 0.5 m, 2) transmission distance between 5 and 30 m, and 3) at least one measurement every 15 minutes. Test results demonstrated that the proposed smart rocks are cost-effective, viable technologies for bridge scour monitoring

    Upravljanje autonomnim površinskim plovilima u svrhu lokalizacije podvodnoga vozila korištenjem jednostrukih akustičkih mjerenja udaljenosti

    Get PDF
    Mobile beacon vehicles are used as a navigational aid for autonomous underwater vehicles when performing navigation using single range measurements. They remove the constraints imposed on the underwater vehicle trajectory by executing trajectory that provides informative range measurements. In thesis, a novel control algorithm for the beacon vehicle which ensures observability of the underwater vehicle's navigation filter is presented. The algorithm was tested in real--life environment and the acquired experimental results were validated using a metric proposed in the thesis. In the case when it is not possible to acquire range measurements, time difference of arrival of an acoustic signal can be used for localization. Therefore, control algorithm for an autonomous surface system consisting of two acoustic receivers, capable of measuring the time difference of arrival of an underwater acoustic signal and utilizing this value in order to steer the system towards the acoustic source, is presented. Furthermore, simulation results are shown, where the influence of a constant disturbance caused by sea currents, and a relationship between the time difference of arrival measurement noise and the sensor baseline are investigated. Experimental results in which the algorithm was deployed on two autonomous surface vehicles equipped with acoustic receivers have shown that the algorithm successfully steers the vehicle formation towards the acoustic source, despite the noisy and intermittent measurements. Scientific contributions of the thesis are novel control algorithms for acoustic localization and navigation of the underwater vehicles and validation method for underwater navigation and localization algorithms using single range measurements.Ljudi od davnina teže istraživanju različitih prostora koji ih okružuju. Od kopnenih površina, mora i morskih dubina do neba i svemirskih prostranstva. Istraživanje svakog od tih područja predstavljalo je, i dan danas predstavlja znatne izazove. Posebno se to odnosi na istraživanje morskih dubina. Naime, iako smo okruženi morima i oceanima uz dostupnu tehnologiju još uvijek vrlo malo znamo o najvećim morskim dubinama i tajnama koje skrivaju. Razlozi tomu su višestruki, od velikih hidrostatskih tlakova prisutnih na velikim dubinama, sigurnosti ljudski posada pod morem pa sve do problema koji se javljaju pri navigaciji u dubinama. U posljednje vrijeme sve je veći interes istraživača za korištenjem autonomnih podvodnih vozila koja bi samostalno mogla pokriti velika podmorska prostranstva i omogućiti nove spoznaje. Veliku prepreku uspješnom istraživanju podmorja predstavlja upravo navigacija pod morem. Na kopnu su dostupni razni oblici lokalizacije vozila i tu se ponajprije misli na globalni pozicijski sustav, odnosno GPS. Korištenje GPS signala pod vodom, i općenito komunikaciju pod vodom onemogućavaju fizikalna svojstva vode, naime, pod vodom se elektromagnetski signali jako brzo prigušuju i nije moguće uspostaviti takav oblik komunikacije i lokalizacije. Stoga se autonomna podvodna vozila oslanjaju na koračnu navigaciju, korištenjem mjerenja dobivenih od senzora brzine i inercijalnih senzora, zbog koje imaju neograničnu lokalizacijsku pogrešku koja raste s vremenom, brzinom ovisnom o kvaliteti senzora i navigacijskog algoritma. Mnoga autonomna podvodna vozila zbog toga povremeno izranjaju na površinu kako bi dobili GPS mjerenje i time odredili vlastitu poziciju. Alternativna tehnika lokalizacije i komunikacije, i ona koja se najviše koristi kod podvodnih vozila, jest korištenje akustičkih uređaja za komunikaciju i lokalizaciju. Međutim, postojeća rješenja koja se temelje na akustičkoj navigaciji su nepraktična i često preskupa. Primjerice, postavljanje podvodnih LBL ( engl. Long baseline) sustava, kod kojih se u podmorje spušta veći broj predajnika i potom se iz mjerenja udaljenosti vozila u odnosu na njih i poznavanja njihovoga točnoga položaja može trilateracijom odrediti položaj vozila, vrlo je zahtjevno. Nedostatak USBL-a ( engl. Ultra short baseline), uređaja koji osim mjerenja udaljenosti, daje i mjerenja kuta između vozila i predajnika, predstavlja njegova vrlo visoka cijena. Navedeni problemi u lokalizaciji jesu jedan od glavnih razloga zašto veliki interes pobuđuje istraživanje navigacije korištenjem jednostrukih mjerenja udaljenosti koje predstavlja jeftiniju alternativu danas dostupnim tehnikama podvodne navigacije. Doktorski rad rezultat je istraživanja u području podvodne lokalizacije i upravljanje autonomnim plovilima korištenjem jednostrukih mjerenja udaljenosti. Istraživanje je usredotočeno na upravljačke algoritme za plovila koji potpomažu lokalizaciju podvodnih objekata kada su dostupna mjerenja udaljenosti. Temeljem upravljačkih algoritama i metodologija za validaciju algoritama razvijenih unutar doktorata izdvojena su tri znanstvena doprinosa: ∙ Algoritam upravljanja autonomnim površinskim plovilom s ciljem povećanja pokazatelja osmotrivosti navigacijskog sustava podvodnog vozila koje koristi jednostruka mjerenja udaljenosti od predajnika na površinskom plovilu ∙ Algoritam kooperativnog upravljanja dvama autonomnim površinskim plovilima koji koristi razliku vremena dolaska akustičkog signala s podvodnog izvora u svrhu njegove lokalizacije ∙ Postupak validacije kvalitete algoritama za podvodnu navigaciju i lokalizaciju korištenjem jednostrukih mjerenja udaljenosti, te njegova primjena u analizi rezultata terenskih eksperimenata. Doktorski rad podijeljen je na uvodni dio, matematičko modeliranje plovila, navigaciju i upravljanje plovilima korištenjem jednostrukih mjerenja udaljenosti, upravljanje mobilnim predajnikom pri navigaciji jednostrukim mjerenjima udaljenosti, traženje izvora signala korištenjem razlike vremena dolaska signala te zaključni dio. Prvo poglavlje („1. Introduction“) daje kratak pregled tehnika podvodne lokalizacije i poteškoća prilikom iste. Potreba za jednostavnom i dostupnom podvodnom lokalizacijom u prisustvu više vozila opremljenih akustičkim senzorima naglašena je kao motivacija za disertaciju. Nadalje, razrađene su hipoteze i doprinosi doktorskog rada. Poglavlje završava pregledom ostalih poglavlja doktorskog rada i opisom autonomnih vozila i akustičkih senzora korištenih unutar disertacije. Matematičko modeliranje podvodnih plovila obrađuje se u drugom poglavlju („2. Mathematical modelling of underwater vehicles”). Unutar poglavlja, proveden je teoretski pregled i prikazani su osnovni matematički modeli raspodjele potiska, dinamičkih i kinematičkih modela koji su korišteni tijekom istraživanja. Prikazani su isključivo podjednostavljeni modeli koji su korišteni prilikom sinteze sustava upravljanja i simulacijama predstavljenim u drugim poglavljima Također, prikazana je struktura navigacije, vođenja i upravljanja korištena na vozilima za potrebe simulacija i provođenja eksperimenata. Treće poglavlje (“3. Navigation and Control of Marine Vehicles Using Single Range Measurements”) započinje pregledom tehnika akvizicije akustičkih mjerenja udaljenosti. U podvodnom okolišu mjerenja udaljenosti uobičajeno se pribavljaju korištenjem akustičkih modema. Udaljenost se može odrediti korištenjem tehnike mjerenja jednostrukog puta ili dvostrukog puta signala. Kod tehnike jednostrukog puta udaljenost se odreduje iz vremena putovanja akustičkog signala koji se propagira između modema na iv strani predajnika te na strani vozila. Takvo mjerenje zahtijeva vrlo precizne satove kako bi se postigla sinkronizacija. Tehnika mjerenja dvostrukog puta signala najčešće je korištena tehnika mjerenja udaljenosti budući da ne zahtijeva preciznu sinkronizaciju satova, već zahtijeva interakciju između dva modema tako da modem na strani vozila akustički šalje zahtjev modemu na strani predajnika koji odgovara na zahtjev. Modem na strani vozila prima odgovor i na temelju ukupnog vremena propagacije signala estimira se udaljenost između uredaja. Korištenje mjerenja udaljenosti pribavljenih akustičkom komunikacijom predstavlja veliki izazov budući da takva mjerenja nisu dostupna u svakom trenutku. Također ona su pod utjecajem raznih čimbenika koji uvode pogrešku poput promjenjive brzine zvuka u vodi, refleksija od fizičkih prepreka, opadajućem omjeru snage signala i šuma kako se udaljenost između dva objekta povećava. U nastavku poglavlja, prikazana je navigacija korištenjem jednostrukih mjerenja udaljenosti u odnosu na statični i mobilni predajnik. Obrađen je problem osmotrivosti pri navigaciji jednostrukim mjerenjima udaljenosti koji predstavlja jednu od glavnih prepreka prilikom navigacije jednostrukim mjerenjima udaljenosti jest pitanje osmotrivosti sustava budući da jedno mjerenje udaljenosti, zajedno s mjerenjem dubine vozila, ograničava moguću poziciju na skup rješenja opisanih kružnicom. Između pojedinih mjerenja udaljenosti relativno gibanje vozila estimira se koristeći mjerenja brzine i orijentacije vozila. Pokazano je da postoji velik broj radova koji se bave ostmotrivošću navigacije jednostrukim mjerenjima udaljenosti korištenjem različitih metodologija i generalni zaključak navedenih radova jest da kako bi se postigla osmotrivost sustava u slučaju nepoznatih struja, vozilo mora izvršavati trajektorije sa odredenom zakrivljenošću, odnosno trajektorije koje dovoljno pobuđuju sustav. Slučaj u kojemu predajnik miruje zanimljiv je za primjene poput pronalaženja neke početne točke ronilice, lociranja objekata poput ‘crnih kutija‘ pri avionskim nesrećama. No kao što je već spomenuto, nedostatak leži u tome što kako bi vozilo estimiralo svoj položaj mora putovati dovoljno informativnom trajektorijom kako bi sustav bio osmotriv i pritom ne može obavljati neke druge zadatake koji zahtjevaju trajektorije koje nisu pogodne za estimaciju položaja. Stoga je zanimljiv pristup gdje je predajnik također vozilo, površinsko ili podvodno, koje se može gibati. U tom slučaju vozilo koje koristi navigaciju jednostrukim mjerenjima udaljenosti može odrađivati svoj zadatak bez obzira koliko je zadana trajektorija informativna, dok se predajnik giba kako bi mjerenja udaljenosti u odnosu na vozilo bila dovoljno informativna, a samim time i sustav navigacije osmotriv. Pri takvoj navigaciji bitno je da predajnik dobro zna svoj položaj što je u slučaju površinskoga predajnika lako ostvarivo korištenjem GPS mjerenja. U poglavlju su predstavljeni i pokazatelji kvalitete korišteni za validaciju trajektorija mobilnoga predajnika pri navigaciji korištenjem jednostrukih mjerenja udaljenosti koji u obzir uzimaju v osmotrivost ostvarenih trajektorija mobilnoga predajnika i ukupan ostvaren put za postiznje iste. Osim teme navigacije, obrađena je i tema upravljanja koje koristi jednostruka mjerenja udaljenosti. Ponekad je cilj vozila postići isključivo ekstrem nekoga kriterija, primijerice minimizirati udaljenost vozila i nekoga objekta, i pritom apsolutna pozicija vozila nije bitna informacija. U literaturi koja se dotiče podvodnih vozila postoje pristupi kod kojih se unutar navigacijskog filtra, najčešće proširenog Kalmanovog filtra, estimira položaj izvora koristeći jednostruka mjerenja udaljenosti, a potom se konvencionalni upravljački algoritmi koriste kako bi se dosegnula željena točka. Također, korištenje tehnike traženja ekstrema (engl. Extremum seeking) za navigaciju autonomnih vozila prema nepoznatom izvoru u okolišu bez GPS signala koristeći mjerenja koja daju vrijednost nekoga polja u pojedinoj točki je čest istraživački problem. Tehnika traženja ekstrema uobičajeno se primjenjuje u slučaju kada je model sustava slabo poznat ili u potpunosti nepoznat. Njegova velika prednost leži u tome da konstantni poremećaji koji djeluju na vozilo poput gravitacije, plovnosti te struja se automatski kompenziraju unutar upravljačke petlje. U poglavlju je prikazan kratak pregled tehnike traženja ekstrema , i pokazano je kako se ista može koristiti kao sredstvo navigacije prema podvodnim objektima kad su dostupna isključivo mjerenja udaljenosti. Pokazatelji kvalitete za validaciju takvih algoritama, koji uzimaju u obzir ukupan put i ukupno vrijeme potrebno za pronalaženje signala, su uvedeni i primijenjeni na simulacijskim i eksperimentalnim rezultatima koji su pokazali primjenjivost algoritma u realnim uvjetima. U četvrtom poglavlju (“4. Mobile Beacon Control in Single Range Navigation”) prikazan je algoritam za upravljanje mobilnim predajnikom u svrhu smanjenja lokalizacijske pogreške prilikom navigacije podvodnoga vozila jednostrukim mjerenjima udaljenosti. Prikazani algoritam karakteriziraju vrlo niski računalni i komunikacijski zahtjevi što ga čini izrazito pogodnim za zadatke poput praćenja podvodnih objekata uz istovremeno pružanje dovoljno informativnih mjerenja udaljenosti za potrebe lokalizacije objekta. Glavna ideja algoritma jest vođenje površinskoga mobilnoga predajnika uz trajektorije koje smanjuju lokalizacijsku pogrešku podvodnoga vozila. Površinski predajnik akustički šalje svoju apsolutnu poziciju navigacijskome filtru koji se izvodi na podvodnome vozilu. Informacija generirana u navigacijskome filtru se koristi kako bi se izračunao skalarni pokazatelj lokalizacijske pogreške podvodnoga vozila. Navedeni skalarni pokazatelj, se potom akustički šalje mobilnome predajniku, koji ga koristi u upravljačkoj shemi inspririranoj upravljačkim shemama kakve se koriste pri tehnikama traženja ekstrema, kako bi vodio mobilni predajnik prema trajektorijama kojima se ostvaruje osmotrivost navigacijskog filtra na podvodnom vozilu. U upravljačkoj shemi referenca brzine zaošijanja ima konstantan iznos, dok je referenca unaprijedne brzine porporcionalna iznosu pokazatelja vi lokalizacijske pogreške. Ponovnim slanjem pozicije predajnika prema podvodnom vozilu dobiva se mjerenje udaljenosti između mobilnoga predjanika i podvodnoga vozila te se time i zatvara upravljačka petlja. Predstavljeni algoritam rezultira sprialnim trajektorijama kojima mobilni predajnik prilazi podvodnome vozilu, te u konačnici kružnim trajektorijama predajnika oko podvodnoga vozila za koje je pokazano da osiguravaju osmotrivost lokalizacijskoga sustava, što je potvrđeno simulacijskim rezultatima. Dan je i matematički uvid u stabilnost algoritma. Pokazuje se da prilikom spiralnoga gibanja, u trenucima kada su kut između vektora relativne udaljenosti i vektora relativne brzine približno ortogonalni, vrijednost pokazatelja lokalizacijske pogreške se smanjuje što uzrokuje da mobilni predajnik prilazi vozilu brže nego što se udaljava od njega, odnosno u prosjeku udaljenost između vozila i predajnika se smanjuje, sve dok se ne uspostavi kružna trajektorija predajnika oko podvodnoga vozila. Naposljetku, prikazani su opširni eksperimentalni rezultati, za podaktuirani i nadaktuirani mobilni predajnik te su primijenjeni odgovarajući pokazatelji kvalitete za usporedbu predstavljenoga algoritma s već postojećim. U situacijama kada su mjerenja udaljenosti nedostupna, tehnika mjerenja razlike dolaska akustičkoga signala na fiksne prijemnike se može koristiti za lokalizaciju akustičkih izvora signala. Kako bi se to ostvarilo potrebna su minimalno tri fiksna prijemenika. U petom poglavlju (“5. Time Difference of Arrival Source Seeking”), predstavljen je algoritam namjenjen autonomnom površinskom sustavu opremeljenom s isključivo dva akustička senzora koji omogućuju mjerenja razlike vremena dolaska podvodnog akustičkog signala i korištenje tog signala kako bi se naveo sustav prema izvoru signala. Dva akustička prijemenika su postavljena tako da tvore osnovicu kojom je moguće upravljati u horizontalnoj ravnini. Upravljački algoritam sastoji se od sheme za traženje ekstrema zadužene za upravljanje orijentacijom sustava odnosno okretanje osnovice prema izvoru akustičkoga signala, te regulatora unaprijedne brzine koji je zadužen za gibanje osnovice prema izvoru signala. Stabilnost predloženoga algoritma analizirana je korištenjem aproksimacije Lievim zagradama, gdje je pokazano da sustav konvergira prema izvoru akustičkoga signala u horizontalnoj ravnini. U pratećim simulacijskim rezultatima, posebna pažnja je posvećena vezi između mjernoga šuma i udaljenosti između dva akustička senzora. Izazovi prisutni u praktičnoj implementaciji algoritma, vezani uz činjenicu da je pozicija izvora akustičkoga signala nepoznata, su istraženi. Konačno, prikazani su ekspermentalni rezultati u kojima su korištena dva autonomna površinska plovlila opremljena jednim akustičkim prijemnikom. Navedena konfiguracija omogućava promjenu duljine osnovice ovisno o mjernom šumu senzora. Rezultati pokazuju da je algoritam, usprkos mjernom šumu i isprekidanim mjerenjima, primjenjiv u stvarnim uvjetima. vii Doktorski rad završava elaboracijom hipoteza i doprinosa prezentiranih u sadržaju doktorskoga rada

    Upravljanje autonomnim površinskim plovilima u svrhu lokalizacije podvodnoga vozila korištenjem jednostrukih akustičkih mjerenja udaljenosti

    Get PDF
    Mobile beacon vehicles are used as a navigational aid for autonomous underwater vehicles when performing navigation using single range measurements. They remove the constraints imposed on the underwater vehicle trajectory by executing trajectory that provides informative range measurements. In thesis, a novel control algorithm for the beacon vehicle which ensures observability of the underwater vehicle's navigation filter is presented. The algorithm was tested in real--life environment and the acquired experimental results were validated using a metric proposed in the thesis. In the case when it is not possible to acquire range measurements, time difference of arrival of an acoustic signal can be used for localization. Therefore, control algorithm for an autonomous surface system consisting of two acoustic receivers, capable of measuring the time difference of arrival of an underwater acoustic signal and utilizing this value in order to steer the system towards the acoustic source, is presented. Furthermore, simulation results are shown, where the influence of a constant disturbance caused by sea currents, and a relationship between the time difference of arrival measurement noise and the sensor baseline are investigated. Experimental results in which the algorithm was deployed on two autonomous surface vehicles equipped with acoustic receivers have shown that the algorithm successfully steers the vehicle formation towards the acoustic source, despite the noisy and intermittent measurements. Scientific contributions of the thesis are novel control algorithms for acoustic localization and navigation of the underwater vehicles and validation method for underwater navigation and localization algorithms using single range measurements.Ljudi od davnina teže istraživanju različitih prostora koji ih okružuju. Od kopnenih površina, mora i morskih dubina do neba i svemirskih prostranstva. Istraživanje svakog od tih područja predstavljalo je, i dan danas predstavlja znatne izazove. Posebno se to odnosi na istraživanje morskih dubina. Naime, iako smo okruženi morima i oceanima uz dostupnu tehnologiju još uvijek vrlo malo znamo o najvećim morskim dubinama i tajnama koje skrivaju. Razlozi tomu su višestruki, od velikih hidrostatskih tlakova prisutnih na velikim dubinama, sigurnosti ljudski posada pod morem pa sve do problema koji se javljaju pri navigaciji u dubinama. U posljednje vrijeme sve je veći interes istraživača za korištenjem autonomnih podvodnih vozila koja bi samostalno mogla pokriti velika podmorska prostranstva i omogućiti nove spoznaje. Veliku prepreku uspješnom istraživanju podmorja predstavlja upravo navigacija pod morem. Na kopnu su dostupni razni oblici lokalizacije vozila i tu se ponajprije misli na globalni pozicijski sustav, odnosno GPS. Korištenje GPS signala pod vodom, i općenito komunikaciju pod vodom onemogućavaju fizikalna svojstva vode, naime, pod vodom se elektromagnetski signali jako brzo prigušuju i nije moguće uspostaviti takav oblik komunikacije i lokalizacije. Stoga se autonomna podvodna vozila oslanjaju na koračnu navigaciju, korištenjem mjerenja dobivenih od senzora brzine i inercijalnih senzora, zbog koje imaju neograničnu lokalizacijsku pogrešku koja raste s vremenom, brzinom ovisnom o kvaliteti senzora i navigacijskog algoritma. Mnoga autonomna podvodna vozila zbog toga povremeno izranjaju na površinu kako bi dobili GPS mjerenje i time odredili vlastitu poziciju. Alternativna tehnika lokalizacije i komunikacije, i ona koja se najviše koristi kod podvodnih vozila, jest korištenje akustičkih uređaja za komunikaciju i lokalizaciju. Međutim, postojeća rješenja koja se temelje na akustičkoj navigaciji su nepraktična i često preskupa. Primjerice, postavljanje podvodnih LBL ( engl. Long baseline) sustava, kod kojih se u podmorje spušta veći broj predajnika i potom se iz mjerenja udaljenosti vozila u odnosu na njih i poznavanja njihovoga točnoga položaja može trilateracijom odrediti položaj vozila, vrlo je zahtjevno. Nedostatak USBL-a ( engl. Ultra short baseline), uređaja koji osim mjerenja udaljenosti, daje i mjerenja kuta između vozila i predajnika, predstavlja njegova vrlo visoka cijena. Navedeni problemi u lokalizaciji jesu jedan od glavnih razloga zašto veliki interes pobuđuje istraživanje navigacije korištenjem jednostrukih mjerenja udaljenosti koje predstavlja jeftiniju alternativu danas dostupnim tehnikama podvodne navigacije. Doktorski rad rezultat je istraživanja u području podvodne lokalizacije i upravljanje autonomnim plovilima korištenjem jednostrukih mjerenja udaljenosti. Istraživanje je usredotočeno na upravljačke algoritme za plovila koji potpomažu lokalizaciju podvodnih objekata kada su dostupna mjerenja udaljenosti. Temeljem upravljačkih algoritama i metodologija za validaciju algoritama razvijenih unutar doktorata izdvojena su tri znanstvena doprinosa: ∙ Algoritam upravljanja autonomnim površinskim plovilom s ciljem povećanja pokazatelja osmotrivosti navigacijskog sustava podvodnog vozila koje koristi jednostruka mjerenja udaljenosti od predajnika na površinskom plovilu ∙ Algoritam kooperativnog upravljanja dvama autonomnim površinskim plovilima koji koristi razliku vremena dolaska akustičkog signala s podvodnog izvora u svrhu njegove lokalizacije ∙ Postupak validacije kvalitete algoritama za podvodnu navigaciju i lokalizaciju korištenjem jednostrukih mjerenja udaljenosti, te njegova primjena u analizi rezultata terenskih eksperimenata. Doktorski rad podijeljen je na uvodni dio, matematičko modeliranje plovila, navigaciju i upravljanje plovilima korištenjem jednostrukih mjerenja udaljenosti, upravljanje mobilnim predajnikom pri navigaciji jednostrukim mjerenjima udaljenosti, traženje izvora signala korištenjem razlike vremena dolaska signala te zaključni dio. Prvo poglavlje („1. Introduction“) daje kratak pregled tehnika podvodne lokalizacije i poteškoća prilikom iste. Potreba za jednostavnom i dostupnom podvodnom lokalizacijom u prisustvu više vozila opremljenih akustičkim senzorima naglašena je kao motivacija za disertaciju. Nadalje, razrađene su hipoteze i doprinosi doktorskog rada. Poglavlje završava pregledom ostalih poglavlja doktorskog rada i opisom autonomnih vozila i akustičkih senzora korištenih unutar disertacije. Matematičko modeliranje podvodnih plovila obrađuje se u drugom poglavlju („2. Mathematical modelling of underwater vehicles”). Unutar poglavlja, proveden je teoretski pregled i prikazani su osnovni matematički modeli raspodjele potiska, dinamičkih i kinematičkih modela koji su korišteni tijekom istraživanja. Prikazani su isključivo podjednostavljeni modeli koji su korišteni prilikom sinteze sustava upravljanja i simulacijama predstavljenim u drugim poglavljima Također, prikazana je struktura navigacije, vođenja i upravljanja korištena na vozilima za potrebe simulacija i provođenja eksperimenata. Treće poglavlje (“3. Navigation and Control of Marine Vehicles Using Single Range Measurements”) započinje pregledom tehnika akvizicije akustičkih mjerenja udaljenosti. U podvodnom okolišu mjerenja udaljenosti uobičajeno se pribavljaju korištenjem akustičkih modema. Udaljenost se može odrediti korištenjem tehnike mjerenja jednostrukog puta ili dvostrukog puta signala. Kod tehnike jednostrukog puta udaljenost se odreduje iz vremena putovanja akustičkog signala koji se propagira između modema na iv strani predajnika te na strani vozila. Takvo mjerenje zahtijeva vrlo precizne satove kako bi se postigla sinkronizacija. Tehnika mjerenja dvostrukog puta signala najčešće je korištena tehnika mjerenja udaljenosti budući da ne zahtijeva preciznu sinkronizaciju satova, već zahtijeva interakciju između dva modema tako da modem na strani vozila akustički šalje zahtjev modemu na strani predajnika koji odgovara na zahtjev. Modem na strani vozila prima odgovor i na temelju ukupnog vremena propagacije signala estimira se udaljenost između uredaja. Korištenje mjerenja udaljenosti pribavljenih akustičkom komunikacijom predstavlja veliki izazov budući da takva mjerenja nisu dostupna u svakom trenutku. Također ona su pod utjecajem raznih čimbenika koji uvode pogrešku poput promjenjive brzine zvuka u vodi, refleksija od fizičkih prepreka, opadajućem omjeru snage signala i šuma kako se udaljenost između dva objekta povećava. U nastavku poglavlja, prikazana je navigacija korištenjem jednostrukih mjerenja udaljenosti u odnosu na statični i mobilni predajnik. Obrađen je problem osmotrivosti pri navigaciji jednostrukim mjerenjima udaljenosti koji predstavlja jednu od glavnih prepreka prilikom navigacije jednostrukim mjerenjima udaljenosti jest pitanje osmotrivosti sustava budući da jedno mjerenje udaljenosti, zajedno s mjerenjem dubine vozila, ograničava moguću poziciju na skup rješenja opisanih kružnicom. Između pojedinih mjerenja udaljenosti relativno gibanje vozila estimira se koristeći mjerenja brzine i orijentacije vozila. Pokazano je da postoji velik broj radova koji se bave ostmotrivošću navigacije jednostrukim mjerenjima udaljenosti korištenjem različitih metodologija i generalni zaključak navedenih radova jest da kako bi se postigla osmotrivost sustava u slučaju nepoznatih struja, vozilo mora izvršavati trajektorije sa odredenom zakrivljenošću, odnosno trajektorije koje dovoljno pobuđuju sustav. Slučaj u kojemu predajnik miruje zanimljiv je za primjene poput pronalaženja neke početne točke ronilice, lociranja objekata poput ‘crnih kutija‘ pri avionskim nesrećama. No kao što je već spomenuto, nedostatak leži u tome što kako bi vozilo estimiralo svoj položaj mora putovati dovoljno informativnom trajektorijom kako bi sustav bio osmotriv i pritom ne može obavljati neke druge zadatake koji zahtjevaju trajektorije koje nisu pogodne za estimaciju položaja. Stoga je zanimljiv pristup gdje je predajnik također vozilo, površinsko ili podvodno, koje se može gibati. U tom slučaju vozilo koje koristi navigaciju jednostrukim mjerenjima udaljenosti može odrađivati svoj zadatak bez obzira koliko je zadana trajektorija informativna, dok se predajnik giba kako bi mjerenja udaljenosti u odnosu na vozilo bila dovoljno informativna, a samim time i sustav navigacije osmotriv. Pri takvoj navigaciji bitno je da predajnik dobro zna svoj položaj što je u slučaju površinskoga predajnika lako ostvarivo korištenjem GPS mjerenja. U poglavlju su predstavljeni i pokazatelji kvalitete korišteni za validaciju trajektorija mobilnoga predajnika pri navigaciji korištenjem jednostrukih mjerenja udaljenosti koji u obzir uzimaju v osmotrivost ostvarenih trajektorija mobilnoga predajnika i ukupan ostvaren put za postiznje iste. Osim teme navigacije, obrađena je i tema upravljanja koje koristi jednostruka mjerenja udaljenosti. Ponekad je cilj vozila postići isključivo ekstrem nekoga kriterija, primijerice minimizirati udaljenost vozila i nekoga objekta, i pritom apsolutna pozicija vozila nije bitna informacija. U literaturi koja se dotiče podvodnih vozila postoje pristupi kod kojih se unutar navigacijskog filtra, najčešće proširenog Kalmanovog filtra, estimira položaj izvora koristeći jednostruka mjerenja udaljenosti, a potom se konvencionalni upravljački algoritmi koriste kako bi se dosegnula željena točka. Također, korištenje tehnike traženja ekstrema (engl. Extremum seeking) za navigaciju autonomnih vozila prema nepoznatom izvoru u okolišu bez GPS signala koristeći mjerenja koja daju vrijednost nekoga polja u pojedinoj točki je čest istraživački problem. Tehnika traženja ekstrema uobičajeno se primjenjuje u slučaju kada je model sustava slabo poznat ili u potpunosti nepoznat. Njegova velika prednost leži u tome da konstantni poremećaji koji djeluju na vozilo poput gravitacije, plovnosti te struja se automatski kompenziraju unutar upravljačke petlje. U poglavlju je prikazan kratak pregled tehnike traženja ekstrema , i pokazano je kako se ista može koristiti kao sredstvo navigacije prema podvodnim objektima kad su dostupna isključivo mjerenja udaljenosti. Pokazatelji kvalitete za validaciju takvih algoritama, koji uzimaju u obzir ukupan put i ukupno vrijeme potrebno za pronalaženje signala, su uvedeni i primijenjeni na simulacijskim i eksperimentalnim rezultatima koji su pokazali primjenjivost algoritma u realnim uvjetima. U četvrtom poglavlju (“4. Mobile Beacon Control in Single Range Navigation”) prikazan je algoritam za upravljanje mobilnim predajnikom u svrhu smanjenja lokalizacijske pogreške prilikom navigacije podvodnoga vozila jednostrukim mjerenjima udaljenosti. Prikazani algoritam karakteriziraju vrlo niski računalni i komunikacijski zahtjevi što ga čini izrazito pogodnim za zadatke poput praćenja podvodnih objekata uz istovremeno pružanje dovoljno informativnih mjerenja udaljenosti za potrebe lokalizacije objekta. Glavna ideja algoritma jest vođenje površinskoga mobilnoga predajnika uz trajektorije koje smanjuju lokalizacijsku pogrešku podvodnoga vozila. Površinski predajnik akustički šalje svoju apsolutnu poziciju navigacijskome filtru koji se izvodi na podvodnome vozilu. Informacija generirana u navigacijskome filtru se koristi kako bi se izračunao skalarni pokazatelj lokalizacijske pogreške podvodnoga vozila. Navedeni skalarni pokazatelj, se potom akustički šalje mobilnome predajniku, koji ga koristi u upravljačkoj shemi inspririranoj upravljačkim shemama kakve se koriste pri tehnikama traženja ekstrema, kako bi vodio mobilni predajnik prema trajektorijama kojima se ostvaruje osmotrivost navigacijskog filtra na podvodnom vozilu. U upravljačkoj shemi referenca brzine zaošijanja ima konstantan iznos, dok je referenca unaprijedne brzine porporcionalna iznosu pokazatelja vi lokalizacijske pogreške. Ponovnim slanjem pozicije predajnika prema podvodnom vozilu dobiva se mjerenje udaljenosti između mobilnoga predjanika i podvodnoga vozila te se time i zatvara upravljačka petlja. Predstavljeni algoritam rezultira sprialnim trajektorijama kojima mobilni predajnik prilazi podvodnome vozilu, te u konačnici kružnim trajektorijama predajnika oko podvodnoga vozila za koje je pokazano da osiguravaju osmotrivost lokalizacijskoga sustava, što je potvrđeno simulacijskim rezultatima. Dan je i matematički uvid u stabilnost algoritma. Pokazuje se da prilikom spiralnoga gibanja, u trenucima kada su kut između vektora relativne udaljenosti i vektora relativne brzine približno ortogonalni, vrijednost pokazatelja lokalizacijske pogreške se smanjuje što uzrokuje da mobilni predajnik prilazi vozilu brže nego što se udaljava od njega, odnosno u prosjeku udaljenost između vozila i predajnika se smanjuje, sve dok se ne uspostavi kružna trajektorija predajnika oko podvodnoga vozila. Naposljetku, prikazani su opširni eksperimentalni rezultati, za podaktuirani i nadaktuirani mobilni predajnik te su primijenjeni odgovarajući pokazatelji kvalitete za usporedbu predstavljenoga algoritma s već postojećim. U situacijama kada su mjerenja udaljenosti nedostupna, tehnika mjerenja razlike dolaska akustičkoga signala na fiksne prijemnike se može koristiti za lokalizaciju akustičkih izvora signala. Kako bi se to ostvarilo potrebna su minimalno tri fiksna prijemenika. U petom poglavlju (“5. Time Difference of Arrival Source Seeking”), predstavljen je algoritam namjenjen autonomnom površinskom sustavu opremeljenom s isključivo dva akustička senzora koji omogućuju mjerenja razlike vremena dolaska podvodnog akustičkog signala i korištenje tog signala kako bi se naveo sustav prema izvoru signala. Dva akustička prijemenika su postavljena tako da tvore osnovicu kojom je moguće upravljati u horizontalnoj ravnini. Upravljački algoritam sastoji se od sheme za traženje ekstrema zadužene za upravljanje orijentacijom sustava odnosno okretanje osnovice prema izvoru akustičkoga signala, te regulatora unaprijedne brzine koji je zadužen za gibanje osnovice prema izvoru signala. Stabilnost predloženoga algoritma analizirana je korištenjem aproksimacije Lievim zagradama, gdje je pokazano da sustav konvergira prema izvoru akustičkoga signala u horizontalnoj ravnini. U pratećim simulacijskim rezultatima, posebna pažnja je posvećena vezi između mjernoga šuma i udaljenosti između dva akustička senzora. Izazovi prisutni u praktičnoj implementaciji algoritma, vezani uz činjenicu da je pozicija izvora akustičkoga signala nepoznata, su istraženi. Konačno, prikazani su ekspermentalni rezultati u kojima su korištena dva autonomna površinska plovlila opremljena jednim akustičkim prijemnikom. Navedena konfiguracija omogućava promjenu duljine osnovice ovisno o mjernom šumu senzora. Rezultati pokazuju da je algoritam, usprkos mjernom šumu i isprekidanim mjerenjima, primjenjiv u stvarnim uvjetima. vii Doktorski rad završava elaboracijom hipoteza i doprinosa prezentiranih u sadržaju doktorskoga rada

    Upravljanje autonomnim površinskim plovilima u svrhu lokalizacije podvodnoga vozila korištenjem jednostrukih akustičkih mjerenja udaljenosti

    Get PDF
    Mobile beacon vehicles are used as a navigational aid for autonomous underwater vehicles when performing navigation using single range measurements. They remove the constraints imposed on the underwater vehicle trajectory by executing trajectory that provides informative range measurements. In thesis, a novel control algorithm for the beacon vehicle which ensures observability of the underwater vehicle's navigation filter is presented. The algorithm was tested in real--life environment and the acquired experimental results were validated using a metric proposed in the thesis. In the case when it is not possible to acquire range measurements, time difference of arrival of an acoustic signal can be used for localization. Therefore, control algorithm for an autonomous surface system consisting of two acoustic receivers, capable of measuring the time difference of arrival of an underwater acoustic signal and utilizing this value in order to steer the system towards the acoustic source, is presented. Furthermore, simulation results are shown, where the influence of a constant disturbance caused by sea currents, and a relationship between the time difference of arrival measurement noise and the sensor baseline are investigated. Experimental results in which the algorithm was deployed on two autonomous surface vehicles equipped with acoustic receivers have shown that the algorithm successfully steers the vehicle formation towards the acoustic source, despite the noisy and intermittent measurements. Scientific contributions of the thesis are novel control algorithms for acoustic localization and navigation of the underwater vehicles and validation method for underwater navigation and localization algorithms using single range measurements.Ljudi od davnina teže istraživanju različitih prostora koji ih okružuju. Od kopnenih površina, mora i morskih dubina do neba i svemirskih prostranstva. Istraživanje svakog od tih područja predstavljalo je, i dan danas predstavlja znatne izazove. Posebno se to odnosi na istraživanje morskih dubina. Naime, iako smo okruženi morima i oceanima uz dostupnu tehnologiju još uvijek vrlo malo znamo o najvećim morskim dubinama i tajnama koje skrivaju. Razlozi tomu su višestruki, od velikih hidrostatskih tlakova prisutnih na velikim dubinama, sigurnosti ljudski posada pod morem pa sve do problema koji se javljaju pri navigaciji u dubinama. U posljednje vrijeme sve je veći interes istraživača za korištenjem autonomnih podvodnih vozila koja bi samostalno mogla pokriti velika podmorska prostranstva i omogućiti nove spoznaje. Veliku prepreku uspješnom istraživanju podmorja predstavlja upravo navigacija pod morem. Na kopnu su dostupni razni oblici lokalizacije vozila i tu se ponajprije misli na globalni pozicijski sustav, odnosno GPS. Korištenje GPS signala pod vodom, i općenito komunikaciju pod vodom onemogućavaju fizikalna svojstva vode, naime, pod vodom se elektromagnetski signali jako brzo prigušuju i nije moguće uspostaviti takav oblik komunikacije i lokalizacije. Stoga se autonomna podvodna vozila oslanjaju na koračnu navigaciju, korištenjem mjerenja dobivenih od senzora brzine i inercijalnih senzora, zbog koje imaju neograničnu lokalizacijsku pogrešku koja raste s vremenom, brzinom ovisnom o kvaliteti senzora i navigacijskog algoritma. Mnoga autonomna podvodna vozila zbog toga povremeno izranjaju na površinu kako bi dobili GPS mjerenje i time odredili vlastitu poziciju. Alternativna tehnika lokalizacije i komunikacije, i ona koja se najviše koristi kod podvodnih vozila, jest korištenje akustičkih uređaja za komunikaciju i lokalizaciju. Međutim, postojeća rješenja koja se temelje na akustičkoj navigaciji su nepraktična i često preskupa. Primjerice, postavljanje podvodnih LBL ( engl. Long baseline) sustava, kod kojih se u podmorje spušta veći broj predajnika i potom se iz mjerenja udaljenosti vozila u odnosu na njih i poznavanja njihovoga točnoga položaja može trilateracijom odrediti položaj vozila, vrlo je zahtjevno. Nedostatak USBL-a ( engl. Ultra short baseline), uređaja koji osim mjerenja udaljenosti, daje i mjerenja kuta između vozila i predajnika, predstavlja njegova vrlo visoka cijena. Navedeni problemi u lokalizaciji jesu jedan od glavnih razloga zašto veliki interes pobuđuje istraživanje navigacije korištenjem jednostrukih mjerenja udaljenosti koje predstavlja jeftiniju alternativu danas dostupnim tehnikama podvodne navigacije. Doktorski rad rezultat je istraživanja u području podvodne lokalizacije i upravljanje autonomnim plovilima korištenjem jednostrukih mjerenja udaljenosti. Istraživanje je usredotočeno na upravljačke algoritme za plovila koji potpomažu lokalizaciju podvodnih objekata kada su dostupna mjerenja udaljenosti. Temeljem upravljačkih algoritama i metodologija za validaciju algoritama razvijenih unutar doktorata izdvojena su tri znanstvena doprinosa: ∙ Algoritam upravljanja autonomnim površinskim plovilom s ciljem povećanja pokazatelja osmotrivosti navigacijskog sustava podvodnog vozila koje koristi jednostruka mjerenja udaljenosti od predajnika na površinskom plovilu ∙ Algoritam kooperativnog upravljanja dvama autonomnim površinskim plovilima koji koristi razliku vremena dolaska akustičkog signala s podvodnog izvora u svrhu njegove lokalizacije ∙ Postupak validacije kvalitete algoritama za podvodnu navigaciju i lokalizaciju korištenjem jednostrukih mjerenja udaljenosti, te njegova primjena u analizi rezultata terenskih eksperimenata. Doktorski rad podijeljen je na uvodni dio, matematičko modeliranje plovila, navigaciju i upravljanje plovilima korištenjem jednostrukih mjerenja udaljenosti, upravljanje mobilnim predajnikom pri navigaciji jednostrukim mjerenjima udaljenosti, traženje izvora signala korištenjem razlike vremena dolaska signala te zaključni dio. Prvo poglavlje („1. Introduction“) daje kratak pregled tehnika podvodne lokalizacije i poteškoća prilikom iste. Potreba za jednostavnom i dostupnom podvodnom lokalizacijom u prisustvu više vozila opremljenih akustičkim senzorima naglašena je kao motivacija za disertaciju. Nadalje, razrađene su hipoteze i doprinosi doktorskog rada. Poglavlje završava pregledom ostalih poglavlja doktorskog rada i opisom autonomnih vozila i akustičkih senzora korištenih unutar disertacije. Matematičko modeliranje podvodnih plovila obrađuje se u drugom poglavlju („2. Mathematical modelling of underwater vehicles”). Unutar poglavlja, proveden je teoretski pregled i prikazani su osnovni matematički modeli raspodjele potiska, dinamičkih i kinematičkih modela koji su korišteni tijekom istraživanja. Prikazani su isključivo podjednostavljeni modeli koji su korišteni prilikom sinteze sustava upravljanja i simulacijama predstavljenim u drugim poglavljima Također, prikazana je struktura navigacije, vođenja i upravljanja korištena na vozilima za potrebe simulacija i provođenja eksperimenata. Treće poglavlje (“3. Navigation and Control of Marine Vehicles Using Single Range Measurements”) započinje pregledom tehnika akvizicije akustičkih mjerenja udaljenosti. U podvodnom okolišu mjerenja udaljenosti uobičajeno se pribavljaju korištenjem akustičkih modema. Udaljenost se može odrediti korištenjem tehnike mjerenja jednostrukog puta ili dvostrukog puta signala. Kod tehnike jednostrukog puta udaljenost se odreduje iz vremena putovanja akustičkog signala koji se propagira između modema na iv strani predajnika te na strani vozila. Takvo mjerenje zahtijeva vrlo precizne satove kako bi se postigla sinkronizacija. Tehnika mjerenja dvostrukog puta signala najčešće je korištena tehnika mjerenja udaljenosti budući da ne zahtijeva preciznu sinkronizaciju satova, već zahtijeva interakciju između dva modema tako da modem na strani vozila akustički šalje zahtjev modemu na strani predajnika koji odgovara na zahtjev. Modem na strani vozila prima odgovor i na temelju ukupnog vremena propagacije signala estimira se udaljenost između uredaja. Korištenje mjerenja udaljenosti pribavljenih akustičkom komunikacijom predstavlja veliki izazov budući da takva mjerenja nisu dostupna u svakom trenutku. Također ona su pod utjecajem raznih čimbenika koji uvode pogrešku poput promjenjive brzine zvuka u vodi, refleksija od fizičkih prepreka, opadajućem omjeru snage signala i šuma kako se udaljenost između dva objekta povećava. U nastavku poglavlja, prikazana je navigacija korištenjem jednostrukih mjerenja udaljenosti u odnosu na statični i mobilni predajnik. Obrađen je problem osmotrivosti pri navigaciji jednostrukim mjerenjima udaljenosti koji predstavlja jednu od glavnih prepreka prilikom navigacije jednostrukim mjerenjima udaljenosti jest pitanje osmotrivosti sustava budući da jedno mjerenje udaljenosti, zajedno s mjerenjem dubine vozila, ograničava moguću poziciju na skup rješenja opisanih kružnicom. Između pojedinih mjerenja udaljenosti relativno gibanje vozila estimira se koristeći mjerenja brzine i orijentacije vozila. Pokazano je da postoji velik broj radova koji se bave ostmotrivošću navigacije jednostrukim mjerenjima udaljenosti korištenjem različitih metodologija i generalni zaključak navedenih radova jest da kako bi se postigla osmotrivost sustava u slučaju nepoznatih struja, vozilo mora izvršavati trajektorije sa odredenom zakrivljenošću, odnosno trajektorije koje dovoljno pobuđuju sustav. Slučaj u kojemu predajnik miruje zanimljiv je za primjene poput pronalaženja neke početne točke ronilice, lociranja objekata poput ‘crnih kutija‘ pri avionskim nesrećama. No kao što je već spomenuto, nedostatak leži u tome što kako bi vozilo estimiralo svoj položaj mora putovati dovoljno informativnom trajektorijom kako bi sustav bio osmotriv i pritom ne može obavljati neke druge zadatake koji zahtjevaju trajektorije koje nisu pogodne za estimaciju položaja. Stoga je zanimljiv pristup gdje je predajnik također vozilo, površinsko ili podvodno, koje se može gibati. U tom slučaju vozilo koje koristi navigaciju jednostrukim mjerenjima udaljenosti može odrađivati svoj zadatak bez obzira koliko je zadana trajektorija informativna, dok se predajnik giba kako bi mjerenja udaljenosti u odnosu na vozilo bila dovoljno informativna, a samim time i sustav navigacije osmotriv. Pri takvoj navigaciji bitno je da predajnik dobro zna svoj položaj što je u slučaju površinskoga predajnika lako ostvarivo korištenjem GPS mjerenja. U poglavlju su predstavljeni i pokazatelji kvalitete korišteni za validaciju trajektorija mobilnoga predajnika pri navigaciji korištenjem jednostrukih mjerenja udaljenosti koji u obzir uzimaju v osmotrivost ostvarenih trajektorija mobilnoga predajnika i ukupan ostvaren put za postiznje iste. Osim teme navigacije, obrađena je i tema upravljanja koje koristi jednostruka mjerenja udaljenosti. Ponekad je cilj vozila postići isključivo ekstrem nekoga kriterija, primijerice minimizirati udaljenost vozila i nekoga objekta, i pritom apsolutna pozicija vozila nije bitna informacija. U literaturi koja se dotiče podvodnih vozila postoje pristupi kod kojih se unutar navigacijskog filtra, najčešće proširenog Kalmanovog filtra, estimira položaj izvora koristeći jednostruka mjerenja udaljenosti, a potom se konvencionalni upravljački algoritmi koriste kako bi se dosegnula željena točka. Također, korištenje tehnike traženja ekstrema (engl. Extremum seeking) za navigaciju autonomnih vozila prema nepoznatom izvoru u okolišu bez GPS signala koristeći mjerenja koja daju vrijednost nekoga polja u pojedinoj točki je čest istraživački problem. Tehnika traženja ekstrema uobičajeno se primjenjuje u slučaju kada je model sustava slabo poznat ili u potpunosti nepoznat. Njegova velika prednost leži u tome da konstantni poremećaji koji djeluju na vozilo poput gravitacije, plovnosti te struja se automatski kompenziraju unutar upravljačke petlje. U poglavlju je prikazan kratak pregled tehnike traženja ekstrema , i pokazano je kako se ista može koristiti kao sredstvo navigacije prema podvodnim objektima kad su dostupna isključivo mjerenja udaljenosti. Pokazatelji kvalitete za validaciju takvih algoritama, koji uzimaju u obzir ukupan put i ukupno vrijeme potrebno za pronalaženje signala, su uvedeni i primijenjeni na simulacijskim i eksperimentalnim rezultatima koji su pokazali primjenjivost algoritma u realnim uvjetima. U četvrtom poglavlju (“4. Mobile Beacon Control in Single Range Navigation”) prikazan je algoritam za upravljanje mobilnim predajnikom u svrhu smanjenja lokalizacijske pogreške prilikom navigacije podvodnoga vozila jednostrukim mjerenjima udaljenosti. Prikazani algoritam karakteriziraju vrlo niski računalni i komunikacijski zahtjevi što ga čini izrazito pogodnim za zadatke poput praćenja podvodnih objekata uz istovremeno pružanje dovoljno informativnih mjerenja udaljenosti za potrebe lokalizacije objekta. Glavna ideja algoritma jest vođenje površinskoga mobilnoga predajnika uz trajektorije koje smanjuju lokalizacijsku pogrešku podvodnoga vozila. Površinski predajnik akustički šalje svoju apsolutnu poziciju navigacijskome filtru koji se izvodi na podvodnome vozilu. Informacija generirana u navigacijskome filtru se koristi kako bi se izračunao skalarni pokazatelj lokalizacijske pogreške podvodnoga vozila. Navedeni skalarni pokazatelj, se potom akustički šalje mobilnome predajniku, koji ga koristi u upravljačkoj shemi inspririranoj upravljačkim shemama kakve se koriste pri tehnikama traženja ekstrema, kako bi vodio mobilni predajnik prema trajektorijama kojima se ostvaruje osmotrivost navigacijskog filtra na podvodnom vozilu. U upravljačkoj shemi referenca brzine zaošijanja ima konstantan iznos, dok je referenca unaprijedne brzine porporcionalna iznosu pokazatelja vi lokalizacijske pogreške. Ponovnim slanjem pozicije predajnika prema podvodnom vozilu dobiva se mjerenje udaljenosti između mobilnoga predjanika i podvodnoga vozila te se time i zatvara upravljačka petlja. Predstavljeni algoritam rezultira sprialnim trajektorijama kojima mobilni predajnik prilazi podvodnome vozilu, te u konačnici kružnim trajektorijama predajnika oko podvodnoga vozila za koje je pokazano da osiguravaju osmotrivost lokalizacijskoga sustava, što je potvrđeno simulacijskim rezultatima. Dan je i matematički uvid u stabilnost algoritma. Pokazuje se da prilikom spiralnoga gibanja, u trenucima kada su kut između vektora relativne udaljenosti i vektora relativne brzine približno ortogonalni, vrijednost pokazatelja lokalizacijske pogreške se smanjuje što uzrokuje da mobilni predajnik prilazi vozilu brže nego što se udaljava od njega, odnosno u prosjeku udaljenost između vozila i predajnika se smanjuje, sve dok se ne uspostavi kružna trajektorija predajnika oko podvodnoga vozila. Naposljetku, prikazani su opširni eksperimentalni rezultati, za podaktuirani i nadaktuirani mobilni predajnik te su primijenjeni odgovarajući pokazatelji kvalitete za usporedbu predstavljenoga algoritma s već postojećim. U situacijama kada su mjerenja udaljenosti nedostupna, tehnika mjerenja razlike dolaska akustičkoga signala na fiksne prijemnike se može koristiti za lokalizaciju akustičkih izvora signala. Kako bi se to ostvarilo potrebna su minimalno tri fiksna prijemenika. U petom poglavlju (“5. Time Difference of Arrival Source Seeking”), predstavljen je algoritam namjenjen autonomnom površinskom sustavu opremeljenom s isključivo dva akustička senzora koji omogućuju mjerenja razlike vremena dolaska podvodnog akustičkog signala i korištenje tog signala kako bi se naveo sustav prema izvoru signala. Dva akustička prijemenika su postavljena tako da tvore osnovicu kojom je moguće upravljati u horizontalnoj ravnini. Upravljački algoritam sastoji se od sheme za traženje ekstrema zadužene za upravljanje orijentacijom sustava odnosno okretanje osnovice prema izvoru akustičkoga signala, te regulatora unaprijedne brzine koji je zadužen za gibanje osnovice prema izvoru signala. Stabilnost predloženoga algoritma analizirana je korištenjem aproksimacije Lievim zagradama, gdje je pokazano da sustav konvergira prema izvoru akustičkoga signala u horizontalnoj ravnini. U pratećim simulacijskim rezultatima, posebna pažnja je posvećena vezi između mjernoga šuma i udaljenosti između dva akustička senzora. Izazovi prisutni u praktičnoj implementaciji algoritma, vezani uz činjenicu da je pozicija izvora akustičkoga signala nepoznata, su istraženi. Konačno, prikazani su ekspermentalni rezultati u kojima su korištena dva autonomna površinska plovlila opremljena jednim akustičkim prijemnikom. Navedena konfiguracija omogućava promjenu duljine osnovice ovisno o mjernom šumu senzora. Rezultati pokazuju da je algoritam, usprkos mjernom šumu i isprekidanim mjerenjima, primjenjiv u stvarnim uvjetima. vii Doktorski rad završava elaboracijom hipoteza i doprinosa prezentiranih u sadržaju doktorskoga rada

    Intelligent ultrasound hand gesture recognition system

    Get PDF
    With the booming development of technology, hand gesture recognition has become a hotspot in Human-Computer Interaction (HCI) systems. Ultrasound hand gesture recognition is an innovative method that has attracted ample interest due to its strong real-time performance, low cost, large field of view, and illumination independence. Well-investigated HCI applications include external digital pens, game controllers on smart mobile devices, and web browser control on laptops. This thesis probes gesture recognition systems on multiple platforms to study the behavior of system performance with various gesture features. Focused on this topic, the contributions of this thesis can be summarized from the perspectives of smartphone acoustic field and hand model simulation, real-time gesture recognition on smart devices with speed categorization algorithm, fast reaction gesture recognition based on temporal neural networks, and angle of arrival-based gesture recognition system. Firstly, a novel pressure-acoustic simulation model is developed to examine its potential for use in acoustic gesture recognition. The simulation model is creating a new system for acoustic verification, which uses simulations mimicking real-world sound elements to replicate a sound pressure environment as authentically as possible. This system is fine-tuned through sensitivity tests within the simulation and validate with real-world measurements. Following this, the study constructs novel simulations for acoustic applications, informed by the verified acoustic field distribution, to assess their effectiveness in specific devices. Furthermore, a simulation focused on understanding the effects of the placement of sound devices and hand-reflected sound waves is properly designed. Moreover, a feasibility test on phase control modification is conducted, revealing the practical applications and boundaries of this model. Mobility and system accuracy are two significant factors that determine gesture recognition performance. As smartphones have high-quality acoustic devices for developing gesture recognition, to achieve a portable gesture recognition system with high accuracy, novel algorithms were developed to distinguish gestures using smartphone built-in speakers and microphones. The proposed system adopts Short-Time-Fourier-Transform (STFT) and machine learning to capture hand movement and determine gestures by the pretrained neural network. To differentiate gesture speeds, a specific neural network was designed and set as part of the classification algorithm. The final accuracy rate achieves 96% among nine gestures and three speed levels. The proposed algorithms were evaluated comparatively through algorithm comparison, and the accuracy outperformed state-of-the-art systems. Furthermore, a fast reaction gesture recognition based on temporal neural networks was designed. Traditional ultrasound gesture recognition adopts convolutional neural networks that have flaws in terms of response time and discontinuous operation. Besides, overlap intervals in network processing cause cross-frame failures that greatly reduce system performance. To mitigate these problems, a novel fast reaction gesture recognition system that slices signals in short time intervals was designed. The proposed system adopted a novel convolutional recurrent neural network (CRNN) that calculates gesture features in a short time and combines features over time. The results showed the reaction time significantly reduced from 1s to 0.2s, and accuracy improved to 100% for six gestures. Lastly, an acoustic sensor array was built to investigate the angle information of performed gestures. The direction of a gesture is a significant feature for gesture classification, which enables the same gesture in different directions to represent different actions. Previous studies mainly focused on types of gestures and analyzing approaches (e.g., Doppler Effect and channel impulse response, etc.), while the direction of gestures was not extensively studied. An acoustic gesture recognition system based on both speed information and gesture direction was developed. The system achieved 94.9% accuracy among ten different gestures from two directions. The proposed system was evaluated comparatively through numerical neural network structures, and the results confirmed that incorporating additional angle information improved the system's performance. In summary, the work presented in this thesis validates the feasibility of recognizing hand gestures using remote ultrasonic sensing across multiple platforms. The acoustic simulation explores the smartphone acoustic field distribution and response results in the context of hand gesture recognition applications. The smartphone gesture recognition system demonstrates the accuracy of recognition through ultrasound signals and conducts an analysis of classification speed. The fast reaction system proposes a more optimized solution to address the cross-frame issue using temporal neural networks, reducing the response latency to 0.2s. The speed and angle-based system provides an additional feature for gesture recognition. The established work will accelerate the development of intelligent hand gesture recognition, enrich the available gesture features, and contribute to further research in various gestures and application scenarios

    Iterative decoding and detection for physical layer network coding

    Get PDF
    PhD ThesisWireless networks comprising multiple relays are very common and it is important that all users are able to exchange messages via relays in the shortest possible time. A promising technique to achieve this is physical layer network coding (PNC), where the time taken to exchange messages between users is achieved by exploiting the interference at the relay due to the multiple incoming signals from the users. At the relay, the interference is demapped to a binary sequence representing the exclusive-OR of both users’ messages. The time to exchange messages is reduced because the relay broadcasts the network coded message to both users, who can then acquire the desired message by applying the exclusive-OR of their original message with the network coded message. However, although PNC can increase throughput it is at the expense of performance degradation due to errors resulting from the demapping of the interference to bits. A number of papers in the literature have investigated PNC with an iterative channel coding scheme in order to improve performance. However, in this thesis the performance of PNC is investigated for end-to-end (E2E) the three most common iterative coding schemes: turbo codes, low-density parity-check (LDPC) codes and trellis bit-interleaved coded modulation with iterative decoding (BICM-ID). It is well known that in most scenarios turbo and LDPC codes perform similarly and can achieve near-Shannon limit performance, whereas BICM-ID does not perform quite as well but has a lower complexity. However, the results in this thesis show that on a two-way relay channel (TWRC) employing PNC, LDPC codes do not perform well and BICM-ID actually outperforms them while also performing comparably with turbo codes. Also presented in this thesis is an extrinsic information transfer (ExIT) chart analysis of the iterative decoders for each coding scheme, which is used to explain this surprising result. Another problem arising from the use of PNC is the transfer of reliable information from the received signal at the relay to the destination nodes. The demapping of the interference to binary bits means that reliability information about the received signal is lost and this results in a significant degradation in performance when applying soft-decision decoding at the destination nodes. This thesis proposes the use of traditional angle modulation (frequency modulation (FM) and phase modulation (PM)) when broadcasting from the relay, where the real and imaginary parts of the complex received symbols at the relay modulate the frequency or phase of a carrier signal, while maintaining a constant envelope. This is important since the complex received values at the relay are more likely to be centred around zero and it undesirable to transmit long sequences of low values due to potential synchronisation problems at the destination nodes. Furthermore, the complex received values, obtained after angle demodulation, are used to derive more reliable log-likelihood ratios (LLRs) of the received symbols at the destination nodes and consequently improve the performance of the iterative decoders for each coding scheme compared with conventionally coded PNC. This thesis makes several important contributions: investigating the performance of different iterative channel coding schemes combined with PNC, presenting an analysis of the behaviour of different iterative decoding algorithms when PNC is employed using ExIT charts, and proposing the use of angle modulation at the relay to transfer reliable information to the destination nodes to improve the performance of the iterative decoding algorithms. The results from this thesis will also be useful for future research projects in the areas of PNC that are currently being addressed, such as synchronisation techniques and receiver design.Iraqi Ministry of Higher Education and Scientific Research

    Introduction to modern instrumentation: for hydraulics and environmental sciences

    Get PDF
    Preface Natural hazards and anthropic activities threaten the quality of the environment surrounding the human being, risking life and health. Among the different actions that must be taken to control the quality of the environment, the gathering of field data is a basic one. In order to obtain the needed data for environmental research, a great variety of new instruments based on electronics is used by professionals and researchers. Sometimes, the potentials and limitations of this new instrumentation remain somewhat unknown to the possible users. In order to better utilize modern instruments it is very important to understand how they work, avoiding misinterpretation of results. All instrument operators must gain proper insight into the working principles of their tools, because this internal view permits them to judge whether the instrument is appropriately selected and adequately functioning. Frequently, manufacturers have a tendency to show the great performances of their products without advising their customers that some characteristics are mutually exclusive. Car manufacturers usually show the maximum velocity that a model can reach and also the minimum fuel consumption. It is obvious for the buyer that both performances are mutually exclusive, but it is not so clear for buyers of measuring instruments. This book attempts to make clear some performances that are not easy to understand to those uninitiated in the utilization of electronic instruments. Technological changes that have occurred in the last few decades are not yet reflected in academic literature and courses; this material is the result of a course prepared with the purpose of reducing this shortage. The content of this book is intended for students of hydrology, hydraulics, oceanography, meteorology and environmental sciences. Most of the new instruments presented in the book are based on electronics, special physics principles and signal processing; therefore, basic concepts on these subjects are introduced in the first chapters (Chapters 1 to 3) with the hope that they serve as a complete, yet easy-to-digest beginning. Because of this review of concepts it is not necessary that the reader have previous information on electronics, electricity or particular physical principles to understand the topics developed later. Those readers with a solid understanding of these subjects could skip these chapters; however they are included because some students could find them as a useful synthesis. Chapter 4 is completely dedicated to the description of transducers and sensors frequently used in environmental sciences. It is described how electrical devices are modified by external parameters in order to become sensors. Also an introduction to oscillators is presented because they are used in most instruments. In the next chapters all the information presented here is recurrently referred to as needed to explain operating principles of instruments. Unauthenticated Download Date | 10/12/14 9:29 PM VIII Preface Chapters 1 to 4 are bitter pills that could discourage readers interested in the description of specific instruments. Perhaps, those readers trying this book from the beginning could abandon it before arriving at the most interesting chapters. Therefore, they could read directly Chapters 5 to 11, going back as they feel that they need the knowledge of the previous chapters. We intended to make clear all the references to the previous subjects needed to understand each one of the issues developed in the later chapters. Chapter 5 contributes to the understanding of modern instrumentation to measure flow in industrial and field conditions. Traditional mechanical meters are avoided to focus the attention on electronic ones, such as vortex, electromagnetic, acoustic, thermal, and Coriolis flowmeters. Special attention is dedicated to acoustic Doppler current profilers and acoustic Doppler velocimeters. Chapter 6 deals with two great subjects; the first is devoted to instruments for measuring dynamic and quasi static levels in liquids, mainly water. Methods to measure waves at sea and in the laboratory are explained, as well as instruments to measure slow changes such as tides or piezometric heads for hydrologic applications. The second subject includes groundwater measurement methods with emphasis on very low velocity flowmeters which measure velocity from inside a single borehole. Most of them are relatively new methods and some are based on operating principles described in the previous chapter. Seepage meters used to measure submarine groundwater discharge are also presented. Chapter 7 presents methods and instruments for measuring rain, wind and solar radiation. Even though the attention is centered on new methods, some traditional methods are described not only because they are still in use, and it is not yet clear if the new technologies will definitely replace them, but also because describing them permits their limitations and drawbacks to be better understood. Methods to measure solar radiation are described from radiation detectors to complete instruments for total radiation and radiation spectrum measurements. Chapter 8 is a long chapter where we have tried to include most remote measuring systems useful for environmental studies. It begins with a technique called DTS (Distributed Temperature Sensing) that has the particularity of being remote, but where the electromagnetic wave propagates inside a fibre optic. The chapter follows with atmosphere wind profilers using acoustic and electromagnetic waves. Radio acoustic sounding systems used to get atmospheric temperature profiles are explained in detail as well as weather radar. Methods for ocean surface currents monitoring are also introduced. The chapter ends with ground penetrating radars. Chapter 9 is an introduction to digital transmission and storage of information. This subject has been reduced to applications where information collected by field instruments has to be conveyed to a central station where it is processed and stored. Some insight into networks of instruments is developed; we think this information will help readers to select which method to use to transport information from field to office, by means of such diverse communication media as fibre optic, digital telephony, Unauthenticated Download Date | 10/12/14 9:29 PM Preface IX GSM (Global System for Mobile communications), satellite communications and private radio frequency links. Chapter 10 is devoted to satellite-based remote sensing. Introductory concepts such as image resolution and instrument?s scanning geometry are developed before describing how passive instruments estimate some meteorological parameters. Active instruments are presented in general, but the on-board data processing is emphasized due to its importance in the quality of the measurements. Hence, concepts like Synthetic Aperture Radar (SAR) and Chirp Radar are developed in detail. Scatterometers, altimeters and Lidar are described as applications of the on-board instruments to environmental sciences. Chapter 11 attempts to transfer some experiences in field measuring to the readers. A pair of case studies is included to encourage students to perform tests on the instruments before using them. In this chapter we try to condense our ideas, most of them already expressed throughout the book, about the attitude a researcher should have with modern instruments before and after a measuring field work. As can be inferred from the foregoing description the book aims to provide students with the necessary tools to adequately select and use instruments for environmental monitoring. Several examples are introduced to advise future professionals and researchers on how to measure properly, so as to make sure that the data recorded by the instruments actually represents the parameters they intend to know. With this purpose, instruments are explained in detail so that their measuring limitations are recognized. Within the entire work it is underlined how spatial and temporal scales, inherent to the instruments, condition the collection of data. Informal language and qualitative explanations are used, but enough mathematical fundamentals are given to allow the reader to reach a good quantitative knowledge. It is clear from the title of the book that it is a basic tool to introduce students to modern instrumentation; it is not intended for formed researchers with specific interests. However, general ideas on some measuring methods and on data acquisition concepts could be useful to them before buying an instrument or selecting a measuring method. Those readers interested in applying some particular method or instrument described in this book should consider these explanations just as an introduction to the subject; they will need to dig deeper in the specific bibliography before putting hands on.Fil: Guaraglia, Dardo Oscar. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Hidraulica. Area Hidraulica Basica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Pousa, Jorge Lorenzo. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Laboratorio de Oceanografía Costera y Estuarios; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentin
    corecore