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Abstract

The recent emerging applications of novel underwater systems lead to increasing de-

mand for underwater acoustic (UWA) communication and networking techniques.

However, due to the challenging UWA channel characteristics, conventional wireless

techniques are rarely applicable to UWA communication and networking. The cog-

nitive and software-defined communication and networking are considered promising

architecture of a novel UWA system design. As an essential component of a cognitive

communication system, the modeling and prediction of the UWA channel impulse

response (CIR) with deep generative models are studied in this work.

Firstly, an underwater acoustic communication and networking testbed is developed

for conducting various simulations and field experiments. The proposed test-bed also

demonstrated the capabilities of developing and testing SDN protocols for a UWA

network in both simulation and field experiments.

Secondly, due to the lack of appropriate UWA CIR data sets for deep learning, a

series of field UWA channel experiments have been conducted across a shallow fresh-

water river. Abundant UWA CIR data under various weather conditions have been

collected and studied. The environmental factors that significantly affect the UWA

channel state, including the solar radiation rate, the air temperature, the ice cover,

xxi



the precipitation rate, etc., are analyzed in the case studies. The obtained UWA

CIR data set with significant correlations to weather conditions can benefit future

deep-learning research on UWA channels.

Thirdly, a Wasserstein conditional generative adversarial network (WCGAN) is pro-

posed to model the observed UWA CIR distribution. A power-weighted Jensen-

Shannon divergence (JSD) is proposed to measure the similarity between the gener-

ated distribution and the experimental observations. The CIR samples generated by

the WCGAN model show a lower power-weighted JSD than conventional estimated

stochastic distributions.

Finally, a modified conditional generative adversarial network (CGAN) model is pro-

posed for predicting the UWA CIR distribution in the 15-minute range near future.

This prediction model takes a sequence of historical and forecast weather information

with a recent CIR observation as the conditional input. The generated CIR sam-

ple predictions also show a lower power-weighted JSD than conventional estimated

stochastic distributions.

xxii



Chapter 1

Introduction

There are a variety of novel underwater infrastructures that have recently emerged,

such as offshore wind generators, deep-sea aquaculture facilities, underwater data cen-

ter systems, offshore drilling platforms with the subsea oil tree, etc. With the help of

advancing robotic and sensing technologies, an accelerated growing number of under-

water mobile systems are employed for the construction, deployment, inspection, and

maintenance of these underwater infrastructures. The underwater wireless commu-

nication and networking system plays an increasingly important part in controlling,

coordinating, and cooperating with these underwater mobile systems. However, the

underwater wireless communication and networking demands not only still have not

yet been satisfied but also are growing rapidly.
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The wireless communication paradigms that can be used for underwater mobile sys-

tems include underwater magnetic inductive (MI) communication, underwater radio

frequency (RF) wireless communication, underwater optical communication, and un-

derwater acoustic (UWA) communication. Both the underwater MI and RF support

∼Mbps level high data rate, but their communication ranges are within ∼10m due

to the absorption of electrical magnetic waves by the water, especially the seawater.

The underwater optical communication also supports a high data rate within the

∼100m range due to obstacles, light scattering, and ambient light noises. The UWA

communication supports ∼kbps data rate within the ∼10km range and has been

playing an important role in wireless communication and networking of underwater

systems. Given the operating range and environment of underwater infrastructures

with mobile systems, UWA communication is considered the only practical paradigm

with balanced power efficiency, data rate, and communication range for underwater

networks.

Due to the distinctive physical characteristics of sound propagation in water, the

UWA channel is considered one of the most challenging wireless communication chan-

nels that are different from the well-studied and standardized terrestrial RF channels

[2, 3, 4]. Sound propagation speed in water is about 1500 m/s, which is much slower

than the RF waveform speed. Thus, the UWA channel has a significant propaga-

tion delay. Moreover, the sound speed is usually inhomogeneously distributed at
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different depths because the underwater sound speed depends on the salinity/Con-

ductivity, Temperature, and pressure/Depth (CTD) of the water. According to the

inhomogeneous distribution of speed, underwater acoustic rays converge and diverge

at different locations under complex refraction conditions. Combined with the re-

flections of sound waves at the surface and the bottom, the multi-path of the UWA

channel is more complex due to the propagation ray distributions. Depending on

the multi-path geometry and the sound speed profile, the delay spread of a UWA

channel can be as long as ∼100ms [5], which is in the same order as a data frame

duration. The underwater acoustic attenuation consists of both spreading loss and

absorption loss, which lead to acoustic signal traveling along a path with a longer

distance that may have a shorter propagation delay but a more extensive path loss

[2]. Since the UWA attenuation is frequency-dependent and the signal with a higher

frequency has a higher absorption rate, the available bandwidth for UWA communi-

cation is minimal and usually in the same order as the center frequency [2]. Hence,

the narrow-band assumptions typically used in RF communication rarely apply to

UWA channels [3, 6, 7]. As the attenuation of UWA waveform increases with fre-

quency, the available bandwidth could be extremely limited but not negligible with

respect to the center frequency, which causes that UWA communication systems are

inherently wide-band and the achievable data rates heavily depend on the distance.[2]

For example, 50 bit/s was achieved over ∼550 km in [8], while, in offshore shallow

water, ∼5 Kbit/s could be achieved over ∼5 km [9], and ∼1 Mbit/s was achieved
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over 100 m in a small lake [10]. The Doppler spreading and shifting of UWA is much

more significant in RF communication since the speed of sound in water is only about

1500 m/s, and many mobile platforms can operate at 10 m/s or faster. Even if trans-

mitters and receivers were stationary, path-specific Doppler rates were often observed

in field experiments due to the dynamics introduced by currents and waves [7]. In

addition to the ambient noises caused by tides, currents, storms, wind, rain, etc., the

UWA communication bandwidth also overlaps with the spectrum used by some sea

creatures and the mechanical noises caused by other artificial system activities [11].

The variations in these UWA channel characteristics also show significant spatial-

temporal correlations [12]. Besides the movement of the transmitters and receivers,

most of the environmental factors that influence the UWA channel characteristics are

mainly related to variations from two perspectives, namely the sound interactions

with the surface or bottom and the inhomogeneity of the water medium [13]. The

localized geographic features, such as the bottom’s topography and sediment com-

ponents, strongly affect the sound ray tracing spreading patterns from the bottom

reflection perspective. In addition, temporal variational factors, such as the weather

conditions and the hydrodynamic movements of the water body, affect the UWA

channel characteristics by agitating the surface reflections and fluctuating the inho-

mogeneity of the underwater CTD distribution. These spatial-temporal variational

factors result in UWA channels observed in different field experiments often follow

distinct patterns [4]. The relatively static spatial and long-term temporal correlated

4



variations of a UWA channel result in localized deterministic characters of the UWA

channel patterns, such as the nominal acoustic propagation that could be analyzed

by ray tracing models. Other short-term temporal correlated variations affect the

uncertainty patterns of a UWA channel under different conditions. These short-term

variations were conventionally modeled by stochastic distributions.

UWA communication and networking techniques require specialized designs to han-

dle the challenging UWA channel characteristics, including but not limited to the

large propagation delay, limited available bandwidth, high error probability, etc [14].

The conventional RF wireless communication techniques rarely show satisfying perfor-

mances when tackling these challenging characteristics of UWA channels by only tun-

ing timings and adjusting parameters [4]. To develop a UWA application-optimized

communication and networking system, the resource-aware and constraint-aware cog-

nitive design is the key to addressing the challenging UWA channel characteristics in

real-time.

The workflow of a typical cognitive communication system is shown in Figure 1.1 [1].

The cognitive communication system concurrently monitors the environment and ac-

quires an awareness of the channel state information (CSI) based on its knowledge

database. With a prediction of possible states, the cognitive communication system

will infer the performances of available communication configuration options. An op-

timal communication configuration will be decided based on performance predictions
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Figure 1.1: The workflow of a cognitive communication system [1]

and communication strategies. After conducting a series of communication trials, the

communication results will be collected to compare to the previous predictions. Then,

the knowledge database for CSI awareness modeling and prediction will be updated

based on the differences between the communication results and the predictions, as

well as the communication strategy policies.

Due to the uncertainty of communication media, the CSI usually can be considered

random variables following stochastic distributions, which are conditioned on the envi-

ronment states. Hence, the optimal configuration is decided based on the performance

expectation of a specific communication option over the distribution of the random

CSI. This performance expectation can be estimated by directly averaging the results

of multiple communication trials due to the short delays and low power consumption

of RF communications. However, effective estimations cannot be obtained in time

6



due to the long delays, the high error rate, and the fast-fading characteristics of UWA

channels. Moreover, the limited battery capacity of the underwater system also can-

not afford the high transmission power consumption of frequent UWA communication

trials. Thus, UWA channel modeling and simulations play an essential part in the

cognitive UWA communication system.

In practical communication scenarios, the CSI can be modeled as a channel impulse

response (CIR) function and formulated as:

h(t) =

Np
∑

p=1

Apδ(t− τp)e
2πjθp (1.1)

where Np denotes the total number of multi-paths. Ap, τp, and θp denote the gain, de-

lay, and phase shift of the pth path, respectively. In conventional RF communication

theory assumptions, Ap follows distributions such as Rayleigh distribution, Rician

distribution, Log-Normal distribution, or Nakagami distribution for different simpli-

fied channel types. τp can be assumed following exponential distributions. However,

due to the challenging UWA channel characteristics, there is no standardized catego-

rization of UWA channel types [4]. The long delay spread and complex multi-path

conditions lead to an elusive mathematical description of the UWA CIR function.

The conventional distribution parameter estimation methods used for RF channels

may no longer be applicable for UWA channels [2].
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Meanwhile, similar challenges are encountered by machine learning models when try-

ing to model a picture by the joint probability distribution of values at each pixel.

The deep generative models show impressive performance for representing the dis-

tribution of pixel values of a picture [15]. A deep generative model can learn the

target distribution of a picture. Then, the trained deep generative model can convert

random samples drawn from a known standard distribution, i.e., the standard Nor-

mal distribution, to values following the learned target distribution of the pictures.

If a deep generative model can learn the distribution of UWA channels, the gener-

ated samples can be used to evaluate the performances of configuration options under

different conditions.

Table 1.1

The published UWA experiment data sets

Data set TX interval

Available Maximum

CIR samples compatible

CIR samples

SPACE 08[16] 2 hours 781440 56880
MACE 10[17] 4 min 46128 23808
Watermark[18] 6-10 min 56664 30600
KWAUG14[12] 15 min 34640 34640

Much research has been carried out on using machine learning for adaptive UWA

communication in recent years [19, 20, 21, 22]. In an ideal case, a large amount of

UWA CIR data for training and evaluating these machine learning models should be

generated by UWA channel simulators. However, existing UWA channel simulators

can usually only simulate certain aspects of the channel. A few UWA channel models

8



have demonstrated the capability to simulate the CIRs that match the data on a time

scale appropriate for practical adaptive communication scenarios [4, 13]. Even if such

a simulator exists, it is difficult to provide sufficient detailed data on environmental

factors, especially their temporal variations, for a realistic simulation. Thus, the field

experiment data still play an essential part in the analysis and evaluation of UWA

communication designs [4, 13]. The CIR observations from field experiments can be

stochastically replayed with random noise to simulate a UWA channel. An ensemble

of CIR observations from multiple field experiments was collected as a benchmark for

UWA physical layer algorithms [18]. In [13], a database of ocean CIR was proposed,

and the characteristics of interests for the UWA channel were pointed out to ensure

the validity and reusability of the UWA channel data for UWA communication per-

formance evaluation purposes. However, besides the CIR data itself, the real-time

environmental data, such as the air temperature, wind, rain, etc., can also be utilized

for predicting the UWA channel state, thereby contributing to the optimal adaptive

UWA communication scheme selection. Due to the high costs of UWA communica-

tion experiments, as shown in Table 1.1, there is no available published UWA data

set with sufficient CIR samples for training a deep learning model. Since the objec-

tives of these experiments were not targeting estimating the CIR distribution, the

transmission intervals between packets were designed as long as tens of minutes to

extend the battery lifetime of the deployed system. Hence, there are only tens of CIR

samples can be used to estimate an instantaneous channel state.
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This thesis mainly focuses on employing deep learning models to contribute to the

awareness of the current situation and predict possible states as part of a cogni-

tive communication system. A test-bed system has been developed for conducting

field UWA communication experiments to collect the CIR samples for training deep

learning models. With the help of the proposed test-bed system, a series of field

experiments have been conducted in a shallow freshwater area across a river under

various weather conditions in different seasons. Abundant UWA CIR data has been

collected with corresponding real-time weather information. The characteristics of

the UWA channel impulse response distribution are analyzed in the case studies of

the field experiment data. To model the various UWA channel distribution patterns

under different weather conditions, a Wasserstein conditional generative adversarial

network (WCGAN) is proposed to learn the representation of the UWA CIR distribu-

tions. Then, a modified conditional generative adversarial network (CGAN) taking

weather data sequences as input is proposed to perform the channel state prediction.

This dissertation mainly consists of four parts:

First, the UWA test-bed system developed for simulation and field experiments is

introduced in Chapter 2. Nodes equipped with UWA modems can be deployed in

the field environment and remotely controlled during the experiment. The UWA

network protocols can be developed and tested in the simulation environment. Then

the program can be directly migrated to emulation and field experiment systems for
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real-environment experiments.

Second, in Chapter 3, a field experiment across the Keweenaw Waterway was con-

ducted to collect the UWA channel state information data. Abundant UWA CIR

samples under various weather conditions were collected for training deep learning

models. The temperature and solar radiation rate that affect the water temperature

distribution at different depths showed significant correlations to the UWA communi-

cation performances. The precipitation and wind speed also affect the signal-to-noise

ratio of the received UWA waveform.

Third, a WCGAN is proposed to model the UWA CIR distribution in Chapter 4. A

power-weighted JensenShannon divergence (JSD) is proposed to measure the similar-

ity between the generated distribution and the experimental observations. The CIR

samples generated by the WCGAN model show a lower power-weighted JSD than

conventional estimated stochastic distributions.

Fourth, in Chapter 5, a modified CGAN model is proposed for predicting the UWA

CIR distribution in the 15-minute-range near future. This prediction model takes a

sequence of historical and forecast weather information with a recent CIR observation

as the conditional input. The generated CIR sample predictions also show a lower

power-weighted JSD than conventional estimated stochastic distributions.
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Chapter 2

An Experiment Test-bed for

Underwater Acoustic

Communication and Networking

A UWA test-bed is designed to conduct multiple UWA communication and network-

ing experiments in various environments, including simulation, in-lab emulation, and

field experiments. A UWA test-bed for field experiments usually consists of an on-

shore control center, several surface nodes equipped with both RF and UWA modems,

and sometimes UWA bottom nodes or underwater mobile nodes. The control center

provides a web user interface for operating the equipment, uploading programs, and

downloading experiment data. A user can send commands to operate the surface
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nodes deployed in the field via RF link from the control center to run the UWA com-

munication or networking experiment programs. Due to the high deployment costs

and limited system battery lifetime in the field environment, the simulation and in-lab

emulation systems play an essential part in developing and testing the hardware and

software systems for a UWA field experiment.

The objective of developing this test-bed system includes collecting UWA CIR data

with corresponding environmental data under different weather conditions for deep

learning. Thus, field node deployment time lasts at least several days are expected.

The local data storage space and the battery lifetime of field nodes must be tailored

for such deployment duration. The various weather conditions during deployment

also require the electronic devices of field nodes must be hosted with water-proof and

weather-proof enclosures. Moreover, the environmental sensors collecting correspond-

ing weather data are also needed.

This chapter introduced the hardware system design of the test-bed and summarized

the experiments facilitated by this test-bed.

Part of this chapter was published at the 16th International Conference on Un-

derwater Networks & Systems (WUWNet22), November, 14-16, 2022, Boston [23]

(https://doi.org/10.1145/3567600.3568155).
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2.1 Related work on UWA test-bed system

In [24], most of the popular UWA communication and networking test-beds are re-

viewed and compared in detail from both the hardware and software system perspec-

tives, including DESERT [25], SUNSET [26], Ocean-TUNE [9], and SUNRISE [27].

Most field experiment systems employ a host device running an operating system to

control the acoustic modems. By remotely accessing the host device, one can perform

UWA communication or networking experiments by running a script or program in

the host operating system. The remote access and control of the host device can be

implemented via WiFi, RF modems, cellular modems, or acoustic modems.

The field experiment test-beds can be categorized as long-term and short-term, and

high-cost and low-cost designs. The long-term design is usually for experiments that

require multiple field trips to deploy and recover nodes. The long-term surface nodes

are usually equipped with a heavy battery pack and solar panels mounted on a large

buoy that needs a crane to deploy [28]. Even if equipped with solar panels, the on-

duty time of the test-beds mentioned above is still constrained by the battery lifetime

of their system. In contrast, short-term experiments are often finished within a single

field trip. The light-weighted platform of short-term test-beds only needs water-proof

enclosures to prevent short circuits. The weather-proof design for long-term design

may be optional. Although there are cabled offshore test-beds such as the Ocean
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Observatories Initiative (OOI) [29] that can support long-term deployment without

battery lifetime constraints, the data obtained in UWA communication-related ex-

periments are usually processed offline after the devices are recovered. Because most

commercial acoustic modems still use RS232/485 serial ports to communicate with

host devices, the received waveform is usually too large to transmit back in real-time

during a deployment. Thus, the OOI test-bed is better utilized by oceanographic

researchers to collect measurements of various environmental data.

2.2 Test-bed system design

The hardware system consists of a control center, a RF master node, multiple field

nodes, and environmental data sensors including a weather station and the web cam-

eras monitoring the surrounding area. The schematic diagram of the experiment

system is shown in Fig. 2.1.
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Figure 2.1: Schematic diagram of the experiment system
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The field node employed in this experiment is a low-cost design version of the Ocean-

TUNE[9] test-bed surface nodes, which integrate commercial devices. A field node

consists of a control box, an AquaSeNT AM-OFDM-13A acoustic modem, and a

power source. As shown in Fig. 2.2, a control box hosts a Raspberry Pi as the host

device, a MicroHard n920 RF modem for remote control, a GPS, two different serial

port converters, and two DC-DC converters providing 12V and 5V DC power supply.

In different situations, the Raspberry Pi can be remotely accessed via the on-board

WiFi module, the RF modem connecting to the console port, or the acoustic modem

with SeaLinx[30] acoustic remote control module running. The housing of the field

node should be both submersible and weatherproof. A sizeable diurnal amplitude can

cause condensation inside the box, and the accumulated dew may cause short circuits

of electronic devices. To avoid cumulative condensation, rather than cable glands,

waterproof penetration connectors with bulkheads are preferred for connecting the

control box with other equipment. The box should avoid having clear windows on

the top. All the electronic devices should be mounted on an elevated panel, and wires

should be appropriately connected and organized. Some desiccant packs could be

kept in the box during the deployment time.

Since the RF modems are working in a master-slave mode, there is an RF master

node that works as the gateway node connecting the control center and all field

nodes. The RF master node was deployed inside the building, which is within the

WiFi coverage and can overlook all field nodes. By remote accessing the Raspberry

17



Pi of the RF master node, one can use serial port terminal programs like Minicom to

type commands, operate the master RF modem, and communicate with Raspberry

Pis in each field node control box.

Figure 2.2: Field node control box Figure 2.3: Weather station sensor

As shown in Fig. 2.3, the Sainlogic FT0835-plus weather station used in this experi-

ment is a smart home device that costs less than two hundred dollars. The outdoor

weather station sensor first reports data samples to an indoor control panel via a

900MHz RF link. Then, the indoor control panel will upload the weather data to

a weather data website once every minute. The 5-minute average weather data will

be recorded on the website, including historical data from all other available weather

stations in the neighborhood. A python crawler script was developed to collect a

weather station data sample and a screen-shot of the public web camera from corre-

sponding websites every minute. Moreover, the web camera monitoring the campus

area can also be hooked up in the test-bed and provide pictures of some experiment
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area every minute.

The emulation system of the test-bed consists of lab UWA modems directly connected

to the control center server via serial ports. The field nodes can be tested with the

lab UWA modems in a water tank before the field deployment trip.

2.3 UWA channel test capability

The UWA channel tests usually transmit the designed UWA waveform from one or

multiple sender nodes and then collect the received waveform at the other receiver

nodes. The proposed test-bed has supported UWA channel tests collecting UWA

channel data for multiple research projects at different locations under various weather

conditions. In [31], a field node was integrated with an unmanned surface vehicle and

collected UWA channel data from the mobile node. In [32], seven field nodes were

deployed in the Keweenaw Waterway area to study the spatial-temporal variations

of the UWA channel in both summer and winter time. The proposed test-bed field

nodes also supported the under-ice UWA channel experiments in Portage Lake.
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2.4 UWA networking test capability

Besides the aforementioned UWA communication experiments, the proposed test-bed

also supports multiple types of UWA networking experiments. In [33], a software-

defined networking (SDN) simulation experiment was conducted by integrating the

mininet [34] platform with UWA channels simulated by ns-3 [35]. The simulated UWA

SDN was configured and operated with the OpenFlow protocol [36]. A UWA media

access control (MAC) protocol was developed with the SDN platform of this test-

bed in [37, 38]. The developed UWA SDN MAC protocol was tested in simulation,

emulation, and field experiments hosed by the proposed test-bed [38].

2.5 Summary of the test-bed system

The test-bed is a low-cost design for long-term UWA field experiments. The sub-

mersible and weather-proof field node design with the UWA modem memory space

extension fulfilled the long-term intensive UWA channel experiment requirements.

The proposed test-bed system demonstrated its capabilities of hosting the UWA

communication experiment in multiple research projects, as well as the simulation,

emulation, and field experiments of UWA SDN tests.
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Chapter 3

An Experimental Study of

Underwater Acoustic Channel

Impulse Response Distributions in

the Keweenaw Waterway

The typical UWA channel experiments are simply transmitting and receiving UWA

waveforms designed for UWA communication. Usually, the transmitted waveform is

designed based on signal processing algorithms to be evaluated in the experiment. The

UWA CIR can be estimated by comparing the transmitted and received waveform.

The monitored ambient noise and observed CIR can be used for stochastic replay
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modeling of the UWA channel in simulation experiments. Also, the signal level com-

munication performance metrics, such as signal-to-noise ratio (SNR), Doppler effect,

and bit error rate (BER), can be used as references for setting parameters in UWA

communication and networking simulations. Since only the frequency band utilized

by the transmitted waveform can be studied, the design of the waveform and trans-

mission patterns determines how the UWA channel characteristics can be observed

from the received data.

The objective of conducting this experiment is to collect abundant data for modeling

the UWA channel with deep learning models. The UWA CIR data is supposed to be

sampled as frequently as possible to illustrate the instantaneous distribution of the

UWA channel. Meanwhile, the duration of the waveform transmission should also

be continuous and as long as possible for studying both small-scale and large-scale

variations of the UWA channel.

This chapter presents an experimental study of UWA CIRs in the Keweenaw Wa-

terway. An orthogonal frequency division multiplexing (OFDM) waveform was in-

tensively transmitted at the same location for several days in different seasons. The

abundantly received signal was collected with real-time weather information. The

temperature, solar radiation, wind speed, and precipitation are observed as the pri-

mary weather factors that influence the UWA channel. The obtained data has been
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organized as the first UWA channel database consisting of millions of CIR data sam-

ples and corresponding real-time weather information at a minute-level sampling rate,

which could facilitate future machine learning research of UWA communication. The

CIR data shows obvious correlations to some environmental conditions. The UWA

CIRs under several typical channel conditions are introduced in detail in the case

studies. The phenomena discussed in these case studies can be features of interest for

future deep learning models.

Part of this chapter was published at the 16th International Conference on Un-

derwater Networks & Systems (WUWNet22), November, 14-16, 2022, Boston [23]

(https://doi.org/10.1145/3567600.3568155).

3.1 Related work on the experimental study of

UWA channel

The CIR is estimated by processing the received waveform obtained during a UWA

communication experiment. Hence, the waveform to be transmitted is usually de-

signed for evaluating proposed signal processing algorithms rather than for collecting

a CIR data set. Due to the high costs, most existing field experiments transmit wave-

form either intensively in a burst for short-term tests or periodically once every tens

of minutes for long-term tests. The CIRs obtained in either experiment scheduling
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can usually only reflect small-scale or large-scale variations, but rarely both.

In short-term experiments that deploy and recover the equipment during the same

voyage, a common experiment design is to transmit the designed waveform in a burst

of several hundreds of packets or data frames, i.e. in [39, 40]. The intensive transmis-

sion schedule is targeting obtaining sufficient data samples to demonstrate the effec-

tiveness of the studied algorithms. Besides leaving the equipment in water overnight

may not be allowed in the shallow water area, the field nodes qualified for overnight

deployment are expensive due to the mooring size requirement and the extra devices

for traffic safety concerns. Considering the high costs of ship voyages to the offshore

area, the intense transmitting scheduling is preferred for minimizing the total deploy-

ment time. The short-term intense transmitting scheduling can better help observe

small-scale variations due to more CIR samples in a short time period being obtained,

but the large-scale variations that span in periods of hours or days may not be able

to be observed during the short total deployment time.

In long-term experiments that recover the deployed equipment in a second voyage, the

waveform is usually periodically transmitted in a frequency as low as once every 15-

60 minutes, i.e. the SPACE08 and MACE10 experiments in [41] or the KWAUG14

experiment in [12]. The periodical transmission schedule can obtain diverse data

samples at different times of a day. The long idle time between transmissions can

extend the total battery lifetime by utilizing the recovery effect of the battery, and
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transmitting in a burst will drain the battery faster due to the battery rate capacity

effect [9].

According to existing field experiment data, neither of these two experiment de-

signs can obtain a decent histogram of the UWA CIRs that can illustrate both the

small-scale and large-scale variations, especially for studying the spatial-temporal

correlations of UWA CIRs and the environment data.

3.2 Experiment Design

The experiment design of a UWA channel experiment includes the design of the wave-

form and the transmission procedure. The waveform design is based on the signal

processing algorithms used for estimating the UWA channel, which determines what

channel characteristics can be observed from the experiment data. The transmission

procedure determined the CIR sampling rate and experiment duration. The CIR

sampling rate determines how well the instantaneous CIR distribution can be esti-

mated. The experiment duration should be sufficient for reflecting the large-scale

variations of the UWA channel.
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3.2.1 Transmitted OFDM Waveform

As shown in Fig. 3.1, the transmitted waveform consists of several preambles, 20 ZP-

OFDM [42] data blocks, a one-second idle time for recording the background noise,

and an ending Hyperbolic Frequency Modulation (HFM) chirp. The total duration

of the waveform is about 9s, but when it is transmitted by the AquaSeNT OFDM

modem, an extra preamble will be added to the waveform. If the modem-added

preamble is not detected or correctly decoded, the waveform will not be recorded by

the receiving UWA modem.
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Figure 3.1: The transmitted OFDM waveform

The transmitted waveform uses the 21-27kHz frequency band. For the OFDM data

blocks, there are 1024 subcarriers uniformly allocated in the 6kHz bandwidth, which

consists of 256 pilot subcarriers, 672 data subcarriers, and 96 null subcarriers. The 256
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pilot subcarriers are evenly located at the (4k − 1)th subcarriers, k = 1, 2, 3, ..., 256.

Besides the one pilot subcarrier in every 4 adjacent subcarriers, the lowest and highest

32 subcarriers are filled with null subcarriers. All data subcarriers are located in

the middle frequency range, and there is one null subcarrier in every 20 adjacent

subcarriers among the data subcarriers. Each data block lasts 170ms and is followed

by an 80ms guard time interval. In a conventional communication scenario, the signal

at pilot subcarriers is known to be both the sender and the receiver. The CIR can

be estimated based on the received signal at the pilot subcarriers. Then, the data

symbols can be detected based on the estimated CIR.

3.2.2 Experiment transmission Procedure

There was one transmitter and two receivers during three deployment stages. The

deployment locations are shown in Fig. 3.2. The transmitter was deployed at Node

A. The two receivers were deployed at Node B and Node C during the first two

deployments and then changed to Node C and Node D during the third deployment

due to location availability issues. The distance between Node A and B is about

300 meters, and the distance from Node A to Node C or D is about 600 meters.

Each receiver node was equipped with two acoustic modems with different hardware

configurations. The acoustic modems were deployed at the depths around half of the

water depths at their deployment locations.
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Figure 3.2: Deployment locations of the acoustic modems

The OFDM waveform and a short text message were transmitted during the exper-

iment every 20s. Meanwhile, the weather station mounted at Node A, as shown in

Figure 2.3, reports the weather data every minute to a weather data website. A web

crawler program running on the control center can log these 1-minute data with a

permitted API. The website also logged the 5-minute average of the weather data of

all weather stations nearby. The campus webcams monitoring the experiment area

provide a bird-view of the river surface. The screenshot of these webcams can be

recorded every minute with a web crawler program. There is also a time-lapse file

for each day available on the webcam website. Screenshots of every 5 minutes can be
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extracted from the time-lapse file.

3.3 Field Experiment Results and analysis

There were three deployment stages started on 12/22/2021, 04/19/2022, and

05/18/2022. The experiments were interrupted several times due to various reasons.

Thus, there are seven effective experiment stages as listed in Table 3.1.

3.3.1 Data obtained

There are three types of data obtained from the presented experiments, namely the

environmental data, the communication performance measures obtained from decod-

ing the packet headers, and the channel information from processing the received

waveform. All these data are organized with the timestamp and equipment ID infor-

mation in a MySQL database.

The weather data from the weather stations include the temperature, dew point,

humidity, wind speed, wind gust, pressure, precipitation rate, solar radiation rate,

etc.

The OFDM modem generated a packet header for each OFDM waveform and text
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message transmission. By decoding this header, several communication performance

measures were provided in the acoustic modem log file, including input signal-to-noise

ratio (INSNR), pilot signal-to-noise ratio (PSNR), effective signal-to-noise ratio [43],

center frequency offset (CFO), etc. These communication performance measures can

be used as references for parameter settings in network simulations.

The received OFDM waveform was stored in the modem only when the packet header

had been correctly decoded. There are 4 receiving hydrophones on each acoustic

modem, and there are 20 OFDM blocks within each OFDM waveform. Thus, 80

CIR samples can be obtained from a successfully decoded OFDM waveform packet.

Except for the lost packets or the waveform that cannot be decoded, the total CIR

samples obtained during each deployment are listed in Table 3.1.

Table 3.1

Number of transmitted packets and obtained CIR samples

Start TX Node B Node C Node D

Date pkts M 04 M 47 M 02 M 41 M 04 M 47
12/24/21 19788 1559200 1555520 1571120 1581920 - -
04/19/22 3400 271840 271840 267280 267600 - -
04/21/22 29532 2356000 2352960 2358800 2358880 - -
04/30/22 1166 93120 93200 70800 77760 - -
05/01/22 4359 348480 348640 275200 330240 - -
05/19/22 10496 - - 808080 788560 800640 768640
05/22/22 26587 - - 1870000 1793680 1787200 1755200
Subtotal 95328 4628640 4622160 7221360 7198560 2587840 2523840

Total CIR 28782400
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3.3.2 Channel Impulse Response Results and Analysis

The CIRs are estimated with the received signal at the frequencies of pilot subcarriers

with both least squares (LS) and SpaRSA channel estimator [44]. A CIR sample in

its time domain representation is a vector of 256 complex values and a vector of 1024

complex values in its frequency domain representation. The time resolution of these

256 pixels is 1/(2BW ) = 1/12ms, and the observable channel time is about 21.33ms.

Since the start time of the estimated CIR is determined by the synchronization process

of the signal, we can shift the CIR array circularly to align the value with the larges

amplitude, namely the main tap, to a specific pixel without affecting the decoding

accuracy. In our data set, the main taps are aligned to the 30th pixel of the CIR

vector.

By grouping the CIRs obtained within a time window, here we briefly reviewed the

CIR in the time domain from the arrival time distributions of the multi-paths, as well

as the tap gain distributions.

3.3.3 The Arrival Time Distributions of Significant Taps

After aligning the main peak value with the largest amplitude in a time domain CIR

sample to the 30th pixel of the 256-value CIR vector, the delay spread distributions
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of other paths can be studied by analyzing the relative delay of significant taps to

the main peak. As shown in the left figure in Figure 3.3, a significant tap in a CIR

sample is a value whose amplitude is larger than both adjacent pixels and 0.05 of the

largest amplitude value. By histogram of the arrival time of the 10 largest significant

taps, the distribution of significant tap arrival times of a single time window is shown

in the middle figure of Figure 3.3. Then, after aligning the histogram of significant

tap arrival times for all time windows together, the large-scale variations of the tap

arrival time distributions are shown as the time lapse in the right figure of Figure 3.3.

Figure 3.3: Histogram of arrival times of significant taps

3.3.4 The Main Tap Gain Distributions

The main peak amplitude histogram of CIRs within a one-hour time window is shown

in Figure 3.4. The amplitude values are fitted to the classic distributions used in RF

communication assumptions for tap gain distributions, including the Rayleigh, Rician,

Log-Normal, and Nakagami distributions. The parameters of these distributions are
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estimated by calculating the corresponding observed CIR values and then converted

to an equivalent power mass distribution (PMF) at each histogram bin center as

shown in Figure 3.4. Then, the equivalent JensenShannon divergence (JSD) [45] of

the observed CIR histogram and each distribution with its estimated parameters can

be calculated with the following equation.

JSD(P ‖ Q) =
1

2
KLD(P ‖ M) +

1

2
KLD(Q ‖ M) (3.1)

where M is the average PMF of two distributions

M =
1

2
(P +Q) (3.2)

and the KLD(P ‖ M) denotes the KullbackLeibler divergence (KLD) [46]

KLD(P ‖ M) =















ΣP (x)log
(

P (x)
M(x)

)

, P (x) > 0

0 , P (x) = 0

(3.3)

The distribution with the lowest JSD value fits the observed CIR histogram the best.

Due to the temporal variations of the UWA channel, the CSI may significantly vary

within the histogram time window. Thus, the amplitude histogram of the main

peak will no longer satisfy the communication theory assumptions for the four classic

distributions. As shown in Figure 3.5, there are multiple peaks can be observed in
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Figure 3.4: An example of the histogram of the main peak gains in a 1-hour
time window

the histogram of some time windows, which will result in large JSD values for all four

distributions. Also, as listed in Table 3.2, the distribution with the least JSD value

may vary for different time windows.
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Figure 3.5: Histogram fit examples with different JSD

As shown in 3.6, the JSD of each distribution varies as the time window slides. The

34



Table 3.2

JSDs of the four distributions in Figure 3.5

Distribution Left Middle Right

Rayleigh 0.0185 0.1238 0.0092
Rician 0.0184 0.0053 0.0086
Log Normal 0.0267 0.0156 0.0207
Nakagami 0.0187 0.0079 0.0092

color of the shadow on the top part of each figure denotes which distribution has the

least JSD during each time window.

Figure 3.6: An example of the JSD trend

3.4 Case Study 3.1: UWA Channel affected by

Water Temperature Distribution

The propagation speed of underwater acoustic waveform is determined by the conduc-

tivity, temperature, and depth of the water. Since the experiments were in a shallow

freshwater area, the water temperature distribution is the main factor that affects the
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sound speed profile (SSP). With an inhomogeneous distributed SSP, the sound ray

will travel along a curved ray. The CIRs observed in the experiments show that the

water temperature distribution significantly affected the UWA channel.

The UWA CIRs at different weather conditions, which leads to different water tem-

perature distributions, are shown in Figure 3.7 and Figure 3.16. The first row of

Figure 3.7 show the air temperature and solar radiation data that affect the water

temperature. The second row shows the wind speed and precipitation rate that affects

the water surface condition. The third row shows the packet loss ratio and the PSNR

range of received packet headers for each 15-minute time window. The blue line is the

average PSNR, and the light blue shading area denotes the 90% middle-value range

PSNR values. The fourth row shows the average and the 90% middle-value range of

the bit error rate (BER) of the received OFDM waveform.
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The results from the two sunny summer days are shown in the left column of Fig-

ure 3.7. It is shown that both the packet loss ratio and BER increase and the PSNR

decreases when the solar radiation and temperature decrease due to the sunset. For

data during a gloomy summer day shown in the middle column and a winter day in

the right column, the variation ranges of temperature and solar radiation rate are

smaller, which leads to better UWA communication performances with higher PSNR

and lower packet loss ratio and BER. This can be a good training data set case for

reinforcement learning studies that try to schedule UWA communication at optimal

time windows.

We measured the SSP at Node A once every hour during a summer day. The sound

speed range at different times with corresponding temperature and solar radiation

rate is shown in Figure 3.8 to Figure 3.10. The water temperature distribution is a

cumulative effect of the air temperature and solar radiation, as well as the SSP. It

shows that the sound speed range is more extensive during dusk, similar to the time

ranges when the UWA channel becomes challenging in Figure 3.7.

We simulated ray tracing of the acoustic wave with the BELLHOP simulator to

validate our assumption that the inhomogeneous water temperature distribution leads

to different UWA channel conditions in the river. In Figure 3.11 to 3.13, the ray

tracing is simulated with the SSP measured near Node A at three different times,

namely at the summer dusk, at summer night, and in winter. The water depth
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Figure 3.8: Air temperature and solar radiation

Figure 3.9: Hourly water temperature range

Figure 3.10: Hourly sound speed range

in these simulations is similar to the natural environment’s UWA channel between

Node A and Node B. Green lines denote rays with surface reflections only, blue lines

denote rays with bottom reflections only, red lines denote rays with neither surface

nor bottom reflection, and black lines denote rays with both surface and bottom

reflections. The solid black lines are rays with no more than 4 reflections, and the
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dot-dashed black lines are rays with 4 to 6 reflections in total.

With the given water depth and communication distance, the observed tempera-

ture differences at summer dusk and winter are significant enough to eliminate the

line-of-sight ray between the transmitter and the receiver. When the surface water

temperature is higher on sunny summer days, the sound speed is higher at the shal-

lower depth, which leads to the sound rays bending towards the bottom, as shown in

Fig. 3.11. When the surface water temperature is lower in winter, the sound speed

is higher at the deeper depth, which leads to the sound rays bending towards the

surface, as shown in Fig. 3.13. With the surface and bottom reflection losses set to

empirical values of 1 and 10, respectively [47], the simulated CIRs of these three cases

are shown in Fig. 3.14. The summer dusk case suffers the most severe attenuation,

while the delay spread for the winter case lasts the longest time.

3.5 Case Study 3.2: Water Surface Condition

The water surface condition can be affected by wind speed and precipitation rate.

As shown in Figure 3.15 and Figure 3.17, when the precipitation rate increases, the

PSNR decreases while the packet loss ratio and BER increase. Also, the 90% middle-

value range of these UWA communication performance-related parameters is wider

when the precipitation rate and wind speed are higher.
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Figure 3.11: BELLHOP simulation with SSP measured at 2022-06-17 21:59
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Figure 3.12: BELLHOP simulation with SSP measured at 2022-06-18 01:00

During the experiment shown in the right column of Figure 3.7, the water surface was

covered with thin ice and snow. Comparing to the right column of Figure 3.15, the
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Figure 3.13: BELLHOP simulation with SSP measured at 2020-03-06 17:40
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Figure 3.14: BELLHOP simulated channel impulse response delay profiles.
(left: summer dusk, middle: summer night, right: winter)

average PSNRs are at a similar level for open water and ice-covered cases, but the

90% middle-value range of the ice-covered case is larger even when the wind speed is

lower.
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3.6 Case Study 3.3: Flood

Although there was a weather station measuring the weather conditions at the sender

node, there were other environmental factors significantly affecting the UWA channel.

As shown in Figure 3.18, there was neither a high solar radiation rate during day time

nor severe air temperature changes. Figure 3.19 shows that there was heavy rain with

a strong wind at midnight on April 23, 2022. However, as shown in Figure 3.20 and

3.21, during the following day, the UWA channel conditions remained in a bad state

with no strong solar radiation nor wind and rain. The flood alert announced by the

local government may explain why the UWA channel in the river was not similar to

the cloudy day cases shown in Case Study 3.1 and 3.2.

3.7 Case Study 3.4: Ice Eater

There was equipment named ice eater near Node B. It periodically pumps the bottom

water to the surface to keep the dock from freezing. As shown in Figure 3.22 to 3.25,

the UWA channel conditions were significantly affected by the operating ice eater. As

clearly shown in Figure 3.24, the significant peaks suddenly converged when the ice

eater was turned on. The PSNR and BER also periodically varied with the ice eater

operating time but with some delayed effects.
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Figure 3.18: Air temperature and solar radiation

Figure 3.19: Wind speed and precipitation rate

Figure 3.20: Packet loss ratio and PSNR of packet header

Figure 3.21: BER during flooding
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Figure 3.22: PSNR and packet loss ratio at Node B

Figure 3.23: BER at Node B

Figure 3.24: Delay distribution of significant peaks

Figure 3.25: Histogram fit of the strongest peak

47



3.8 Summary of the experiment

The proposed system has been deployed at three different seasons in a year for a

series of UWA channel experiments. An OFDM waveform has been intensely trans-

mitted three times per minute for several days during each deployment under different

weather conditions. An ensemble of millions of OFDM waveform has been collected

with corresponding weather information, which could benefit the adapting of deep

learning models to the UWA communication research.

The temperature profile strongly affects the UWA communication performance since

it determines the refraction patterns of the acoustic waveform in the water. The

observed daily solar radiation and temperature changes can significantly affect the

temperature profile and UWA channel.

The precipitation rate affects both the surface condition and the temperature profile,

which leads to the UWA communication performance decreasing and varying in a

more extensive range.
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Chapter 4

A Deep Generative Model for

Underwater Acoustic Channel

Impulse Response

The stochastic CIR models have elusive mathematical descriptions which need in-

tractable assumptions with detailed environmental data. The parameters of such

models are difficult to estimate from the experiment observations due to the poorly

understanding of detailed underlying physics. The Deep generative models [48] can

learn from a target data distribution and generates new samples following a similar

distribution, but no prior knowledge about the stochastic distribution types is needed.
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The objective of modeling the UWA CIR with a deep generative model is to learn a

representation of the observed CIR distribution with a neural network. The CIR sam-

ples following a similar distribution to the experiment observation can be generated

by the deep generative model with samples drawn from standard random distribu-

tions. These generated CIR samples can be used for predicting the performances of

communication configuration options by the cognitive UWA communication system.

This chapter presents a conditional generative adversarial network model for mod-

eling the observed UWA CIR in the field experiments introduced in Chapter 3. A

Wasserstein loss is employed to relieve the mode collapse issue of the generator. To

evaluate the similarity of the generated CIR distribution to the experiment observa-

tions, the power weighted JSD is proposed to measure the overall performance of the

generative models for UWA CIR.

Part of this chapter was published at the 15th International Conference on Underwa-

ter Networks Systems (WUWNet21), November 2224, 2021, Shenzhen, Guangdong,

China [49] (https://doi.org/10.1145/3491315.3491330).
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4.1 Related Work

The UWA channel characteristics have been studied with both modeling and exper-

imentation methodologies for decades [50]. UWA channels have been represented as

mathematical models or simulation models. The mathematical models describe the

variations of an acoustic waveform when propagating through a UWA channel, which

play an important role in the design and analysis of UWA communication systems.

However, tractable mathematical descriptions of a UWA communication channel are

elusive due to the complexity that how environmental parameters affect sound prop-

agation, reflection, refraction, scattering, and reverberation. The simulation models

can generate UWA channel realizations based on mathematical models describing the

variation of acoustic waveforms [50], stochastic models describing the distributions of

UWA channel randomness [41], and/or replays of the measured channel condition in

experiments [51]. Most existing simulation systems can simulate certain aspects of

the UWA channel, but few systems have demonstrated the capability of simulating

the UWA channel which can match the data over a time scale that is appropriate for

UWA communications [13].

On the other hand, performance evaluation of practical UWA communication systems

still relies heavily on extensive field experiments due to the lack of well-categorized
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channel types and corresponding stochastic models. Although several field exper-

iment test-beds have been developed in past years, the field experiments are still

costly and have limited opportunity for repeating tests [28]. The re-usability of field

experiment data is limited since field experiments are usually tailored to a particular

communication scheme. Even for the same communication scheme, data obtained

at different experiment sites could be distinctive due to the geographic and hydro-

graphic differences of UWA channels. Thus, a UWA channel model with high validity

and re-usability is widely demanded due to the limitations of existing mathematical

models, simulation models, and field experiments.

Deep learning has been found in a wide range of applications in wireless communica-

tion systems in recent years. Several researchers have explored utilizing auto-encoder

based models for solving various wireless communication problems. The encoder and

decoder perform signal processing at the transmitter and the receiver, respectively.

Traditional digital signal processing modules, such as error correction coding, com-

ponents of the modulation and demodulation, and detection, are implemented as the

encoder at the transmitter and as the decoder at the receiver. The auto-encoder is

trained as parts of a communication system including a transmitter, a receiver, and

a channel model in between. Other signal processing modules at the transmitter and

receiver side are also included in the overall input-output of the auto-encoder, as

well as the distortions and noises added to the signal by the channel. Existing auto-

encoder based communication system design work has been reviewed in [52] and [53].
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However, most existing works suffer from the curse of dimensionality and can only

be evaluated with a simple additive white Gaussian noise (AWGN) channel model.

Another type of the auto-encoder application for wireless communication is using an

auto-encoder to compress the downlink channel state information (CSI) of multiple-

input multiple-output (MIMO) wireless communication systems to reduce the CSI

feedback overhead. An optional channel model can also be involved in the train-

ing process of the auto-encoder to enhance the overall robustness of the compressed

MIMO CSI feedback. Related works for this application have been summarized in

[54]. An auto-encoder consisting of residual network blocks was employed in [55] to

reduce the dimensionality of CSI representations. Furthermore, an extended neural

network structure with a learning rate scheduling scheme was proposed in [56] to

enhance the MIMO CSI compression performances. Both works demonstrated prac-

tical scales and architectures of deep neural networks for representation learning of

CSI data, which have significant referential value for VAE design of CSI generative

models.

The RF MIMO CIR data set COST2100 [57] was used to train many deep learn-

ing models for wireless communication. In [58], a GAN model is employed to learn

the distribution of the COST2100 data set. There are also VAE based models, such

as CsiNet [55] and CRNet [56], learn a latent representation of the COST2100 CIR

sample to reduce the CSI feedback overhead, which can also be converted to gener-

ative models by sampling in the latent space. However, since there as no observable
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correlations between the COST2100 CIR samples and any temporal or environmen-

tal factors, the COST2100 data set was considered following a distribution without

conditional inputs in these works.

In [49], a VAE model trained with the KWAUG14 data set was proposed as the first

generative model for UWA CIRs. Due to the lack of training data set, the UWA

CIRs were also considered following a distribution without conditional inputs. The

generated UWA CIR samples can reflect some of the characteristics of the experiment

data. However, there was no performance metrics for measuring the similarity of the

generated distribution to the experiment data.

4.2 Wasserstein Conditional Generative Adversar-

ial Network for UWA CIR

A conditional generative adversarial network (CGAN) [59] consists of a generator

and a discriminator. The inputs of the generator include the conditional variable

and the random vector drawn from a prior standard distribution. The generator can

convert the input to a data sample that is similar to the target data set samples.

The inputs of the discriminator of the CGAN also consist of two components, namely

the conditional variable and the generated or target data sample. The discriminator

outputs the likelihood of the input data sample combined with the conditional variable
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is from the target data set.

The CGAN for the UWA CIR data set is shown in Figure 4.1. The values of the

100x1 random vector z are drawn from a standard Normal distribution. The con-

ditional variable vector θ consists of six values, including the timestamp of the CIR

sample and its real-time weather information. The timestamp consists of the date of

a year and the time of a day, which are normalized between 0 to 1. The real-time

weather information is the normalized latest weather station reading including the

air temperature, the solar radiation rate, the wind speed, and the precipitation rate.

Figure 4.1: Conditional generative model for UWA CIR

The generator and discriminator are multilayer perceptrons (MLP) consisting of 4

fully connected linear layers, as shown in Table 4.1 and 4.2. The first 3 linear layers

of the generator are followed by a leaky ReLU activation function (α = 0.2). The
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activation function of the last linear layer for the generator is the tanh function.

The first 3 linear layers of the discriminator are followed by a leaky ReLU activation

function (α = 0.3) and a dropout layer (p = 0.3). The last linear layer of the

discriminator is followed by a Sigmoid activation function.

Table 4.1

Summary of the WCGAN generator network

Layer type Input dim Output dim Parameters

Linear 100 + 6 256 27392
LeakyReLU (α = 0.2)
Linear 256 512 131584
LeakyReLU (α = 0.2)
Linear 512 1024 525312
LeakyReLU (α = 0.2)
Linear 1024 512 524800
Tanh
Total 1209088

Table 4.2

Summary of the WCGAN discriminator network

Layer type Input dim Output dim Parameters

Linear 256x2 + 6 1024 531456
LeakyReLU (α = 0.3)
Dropout (p = 0.3)
Linear 1024 512 524800
LeakyReLU (α = 0.3)
Dropout (p = 0.3)
Linear 512 256 131328
LeakyReLU (α = 0.3)
Dropout (p = 0.3)
Linear 256 1 257
Sigmoid
Total 1187841
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4.3 Training the WCGAN

The objective of the Wasserstein GAN [60] as shown in Equation 4.1 is employed

for training the proposed WCGAN. A gradient penalty term in [61] is employed for

training the discriminator.

min
G

max
D

E
x∼Px

[D(x, θ)]− E
z∼N(0,I)

[D(G(z, θ)), θ)] (4.1)

LG = E [−D(G(z, θ), θ)] (4.2)

LD = E [D(G(z, θ), θ)]− E [D(x, θ)] + λE
[

(‖▽D(G(z, θ), θ)‖2 − 1)2
]

(4.3)

The UWA CIR data are paired with its conditional variable θ vector and grouped

to data batches of 64 samples. For each data batch, the discriminator will first

be trained for 5 times with the loss function shown in Equation 4.3. The gradient

penalty coefficient λ is set to 10. Then, the θ vectors of this training data batch will

be shuffled and grouped with z vectors drawn from the standard Normal distribution

as the inputs of the generator. The generator weights will be trained for 1 time with

the loss function shown in Equation 4.2. The Adam optimizer [62] is employed to

train the weights, and the learning rate is set to 0.0001. The batch losses during a

training process is shown in Figure 4.2
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Figure 4.2: Batch losses during training

Figure 4.3 shows some examples of generated UWA CIR samples during the training

process. There are five different θ values are selected to demonstrate the generated

CIR samples. The odd columns are time domain amplitude of CIR samples, while

the even columns are its corresponding frequency domain amplitude. The first row of

Figure 4.3 are samples from the training data set, and the bottom three rows are three

generated CIR samples with the same θ value as printed on the top of each training

CIR sample. The generated samples show similarities to the training samples in both

time and frequency domain amplitude plots. However, variations can also be observed

among the three generated samples, which indicates the WCGAN has capabilities of

avoiding monotonousness of the stochastic replay of UWA CIR models.
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In Figure 4.4, the histograms of the 27-29th and 35-37th amplitude values of the

UWA CIR samples of a 15min time window are converted to their equivalent PMFs.

Besides the 29th value, the other histograms cannot be fitted to Rician, Log Normal,

or Nakagami distributions by their parameter estimation algorithms. The pink lines

with dot markers are the PMFs of generated CIR samples, which showed much better

fitting accuracy than any of the other parametric distribution fitting results.

Especially for the fitting results of the 29th value, the observed experiment data

histogram is a combination of multiple hill-shaped trends. Only the generated PMF

fitted this waving trend.

For the other single spike-shaped PMFs, the Rayleigh distribution cannot fit well due

to a large amount of values close to zero. This could be a result of the amplitude of

a specific path diluted to multiple pixels of the CIR vector due to the varying arrival

time of the path.
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4.4 Power weighted JSD

Since there are 256 values for a CIR sample, we can obtain 256 JSDs for histogram the

generated CIR samples within a time window. To compare the overall similarity of

the generated CIR distribution to the experiment observations, here we first calculate

the mean amplitude of the experiment observations at the 256 pixels as shown in the

right figure of Figure 4.5. Then, the JSD values at each pixel can be weighted by the

mean amplitude, and the power weighted JSD can be obtained by

Power Weighted JSD =
256
∑

i=1

JSD(|yi|, |xi|) · ¯|xi| (4.4)

where xi,yi is the ith value of the experimental observed and generated CIR samples,

respectively.

The training data set consists of 858 15-minute time windows. The mean power

weighted JSD for the WCGAN generated samples of all time windows is 0.2679,

while for Rayleigh distribution fitting is 0.5228. A comparison of the histograms of

power weighted JSDs of 858 time windows for Rayleigh distribution fitting, WCGAN,

and CGAN is shown in 4.6. The mode collapse prevention design is necessary since

the vanilla CGAN performance is even worse than the Rayleigh distribution fitting.
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Table 4.3

Mean power-weighted JSD of the WCGAN, CGAN, and Rayleigh fitting

WCGAN CGAN Rayleigh

0.2679 0.5063 0.5228
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4.5 Tuning the conditional variable for generating

By tuning one of the six values in the θ vector, we can obtain generated CIR samples

shown in Figure 4.7 to 4.9. It seems that each θ vector has different sensitivities

on these six values. All three examples show high sensitivities on the two values

corresponding to the time stamp and the temperature. However, the generated CIR

based on the θ vector in Figure 4.7 is not sensitive to variations in solar radiation,

wind speed, and precipitation rate. While, the generated CIR based on the θ vector

in Figure 4.8 is sensitive to solar radiation and wind speed, but not to precipitation

rate. The generated CIR based on the θ vector in Figure 4.9 is sensitive to all 6 values,

but its variations in amplitude are not as significant as the other two examples.

Figure 4.7: Generated CIR samples by varying each Θ value Example 1

64



Figure 4.8: Generated CIR samples by varying each Θ value Example 2

Figure 4.9: Generated CIR samples by varying each Θ value Example 3

Thus, predicting CIR distributions by interpolating conditional variables θ values is

not appropriate based on current training results.
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4.6 Summary of the WCGAN

A WCGAN is proposed to learn the distributions of field experiment UWA CIR

samples. A power-weighted JSD measurement is proposed to evaluate the overall

similarity of a generated CIR distribution to the field experiment data distribution.

The WCGAN outperforms the conventional stochastic distribution fitting methods

from the mean power-weighted JSD perspective.

The performance comparison between the WCGAN and a vanilla CGAN showed that

the mode collapse prevention designs, such as the Wasserstein loss, are essential for

modeling UWA CIR distributions with deep generative models.
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Chapter 5

Prediction of the CIR distribution

As results shown in Section 4.5, predictions of CIR distribution cannot be accom-

plished by simply interpolating conditional inputs of WCGAN.

From the observations discussed in Section 3.4, on summer sunny days, the water

temperature distribution can be significantly affected by the solar radiation rate and

air temperature. As a cumulative result of the solar radiation and air temperature,

the large temperature differences at different depths will lead to a harsh UWA com-

munication channel condition. For energy efficiency concerns, a smart UWA com-

munication system should be able to learn to avoid UWA transmissions under such

predictable channel conditions. The prediction of these harsh channel conditions

should be achievable by deep learning models based on historical weather conditions.
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The objective of CIR distribution prediction is ultimately for predicting the perfor-

mances of different communication configuration options for a UWA cognitive commu-

nication system. In a communication scenario, the sender and the receiver can have

a few rounds of brief information exchange at the beginning stage of a data transfer

task, such as the handshaking to establish a link or several trials of data transfer at

the beginning. Hence, a few CIR samples can be obtained before the communication

configuration is determined for the following data transfer activities. Thus, the pre-

diction of the CIR distribution can be focused only predict the near-future channel

states based on a recent CIR observation and the future weather information forecast

from others.

This chapter presents a CGAN based prediction model for UWA CIR. The prediction

results are also evaluated from the power-weighted JSD perspective.

5.1 Related Work

The study of UWA channel characteristics plays an important role in the design,

analysis, and performance evaluation processes of these novel UWA communication

schemes. Therefore, a UWA channel model with high validity and re-usability is

widely demanded. Such an effective model is expected to have several layers of com-

plexity that can reflect the deterministic characteristics of acoustic propagation in a
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certain geographical environment, as well as the stochastic characteristics caused by

large-scale and small-scale uncertainties [4].

From a communication perspective, all the spatial-temporal variations of UWA chan-

nels can be distinguished as two types based on their duration, namely large-scale and

small-scale variations [41]. The large-scale variations, which span multiple communi-

cation transactions, were considered caused by uncertainties that affect the acoustic

link geometry [41]. The large-scale variations were modeled as random variables that

lead to variations in the gains and delays of propagation paths, which influence the

SNR through its local average over a period of time [41]. On the other hand, the small-

scale variations, which occur over a single communication transaction, are considered

a consequence of scattering and instantaneous motion [41]. The small-scale varia-

tions were modeled as random variables that affect the instantaneous UWA channel

response conditioned on a particular large-scale realization [41]. Studying the small-

scale variations is meaningful for the analysis of signal processing algorithms and

network protocol designs, while studying the large-scale variations can benefit the

analysis of strategic system configurations, such as the transmitting power level con-

figuration, as well as the assessment of outage probabilities and statistical coverage

for using a particular modulation mode and network protocol configuration.

The prediction of CIR by deep learning has been studied from various perspectives

[63]. In [64], the CsiNet proposed in [55] was employed to learn a latent representation
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of the CIR to reduce the CSI feedback overhead. Then, a LSTM model was used to

learn each single CIR sample as a short time sequence. By integrating the LSTM

modem proposed in [64] with the CsiNet, the recovery accuracy of the CSI coded in

the latent space was enhanced. With the narrow band assumption of the RF channel,

a CIR can be considered as a single complex value in the frequency domain. The

temporal variation process of the CIR was considered as time sequence and modeled

with deep learning models for sequence data. For example, a recurrent neural network

(RNN) model is proposed for predicting real-world non-stationary channels in [65].

The long short term memory (LSTM) neural network is employed to model and

predict the CIR in [66, 67, 68]. A LSTM based model was proposed in [69] for

learning the CIRs as a time sequence. In [70], the CIR of a wide band channel was

modeled as a vector of complex values, and a convolutional LSTM was employed to

learn the joint spatial-spectral-temporal dependencies observed in spectrum usage. A

shared characteristic of this type of works is that deep learning models are employed

to predict samples in a time sequence, not the temporal variation of a distribution.

Few such models can be converted to generative models that can generate predicted

CIR samples with random samples drawn from a known prior.

Due to the lack of appropriate training data set and the inhered difficulties of training

a GAN, it is rather challenging to use GAN based models to generate a time sequence

[71]. The Time Series GAN (TSGAN) proposed in [72] employed two WGANs for

generating time series data. The first WGAN generates single samples of the target
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time series from random samples drawn from known prior, and the second WGAN

generates the time series using the output of the first WGAN. However, GAN based

time series modeling is widely used for other applications, including data augmenta-

tion [73, 74] and anomaly detection [75, 76].

5.2 CGAN based prediction model for UWA CIR

The CGAN for the UWA CIR prediction is shown in Figure 5.1. The values of

the 100x1 random vector z are drawn from a standard Normal distribution. The

conditional inputs of the CGAN used for prediction consist of two parts. The first

part is a recently observed CIR sample xob, which consists of the real and imaginary

parts of the 256 complex values of a CIR sample, namely 512 input values. The

second part of the conditional input is a sequence of 25 weather information samples

θ during a 2-hour time window. A weather information sample consists of 4 values,

namely the normalized air temperature, the solar radiation rate, the wind speed,

and precipitation rate. The time interval between two samples of the sequence is 5

minutes. Based on different prediction demands, the weather information samples

can be the reading from the weather station or the predicted values from the weather

forecast, or a combination of both.

The generator and discriminator are multilayer perceptrons (MLP) consisting of 4
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Figure 5.1: Conditional generative model for UWA CIR prediction

and 5 fully connected linear layers, respectively, as shown in Table 5.1 and 5.2. The

first 3 linear layers of the generator are followed by a leaky ReLU activation function

(α = 0.2). The activation function of the last linear layer for the generator is the

tanh function. The first 4 linear layers of the discriminator are followed by a leaky

ReLU activation function (α = 0.3) and a dropout layer (p = 0.3). The last linear

layer of the discriminator is followed by a Sigmoid activation function. Considering

the correlations between the observed CIR xob and the CIR samples to be generated,

the generator can employ the residual network topology as shown in the right figure

in Figure 5.2. Instead of the distribution of the training CIR samples, the MLP part

of this residual network design is supposed to learn the distribution of differences

between the observation xob and the training CIR samples.
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Figure 5.2: Left: original MLP fully connected generator. Right: generator
with residual network structure

Table 5.1

Summary of the prediction CGAN generator network

Layer type Input dim Output dim Parameters

Linear 100 + 256x2 + 25x4 1024 730112
LeakyReLU (α = 0.2)
Linear 1024 512 524800
LeakyReLU (α = 0.2)
Linear 512 1024 525312
LeakyReLU (α = 0.2)
Linear 1024 512 524800
Tanh
Total 2305024
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Table 5.2

Summary of the prediction CGAN discriminator network

Layer type Input dim Output dim Parameters

Linear 256x2x2 + 25x4 2048 2304000
LeakyReLU (α = 0.3)
Dropout (p = 0.3)
Linear 2048 1024 2098176
LeakyReLU (α = 0.3)
Dropout (p = 0.3)
Linear 1024 512 524800
LeakyReLU (α = 0.3)
Dropout (p = 0.3)
Linear 512 256 131328
LeakyReLU (α = 0.3)
Dropout (p = 0.3)
Linear 256 1 257
Sigmoid
Total 5058561

5.3 Training the prediction CGAN

The objective of the prediction CGAN is the vanilla CGAN loss objective as shown

in Equation 5.1.

Out of the total 858 15-minute time windows, 697 time windows are selected to

construct the training data set, and the rest 161 time windows are reserved as the

test data set. The training data sample consists of three parts, namely the real CIR

sample x, an observed CIR sample xob, and the sequence of weather information θ.

The observed CIR sample xob for each training CIR sample x is selected by randomly
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picking another training CIR sample within the same 15min time window. The

UWA CIR data with its corresponding CIR observation xob are combined with its

conditional variable θ vector sequence and grouped into batches of 16 samples.

For each data batch, the discriminator will first be trained 5 times with the loss

function shown in Equation 5.3, where the Hb(∗) is the binary cross entropy loss

function as shown in Equation 5.4. Then, the paired CIR observation xob and θ vector

sequence of this training data batch will be shuffled and grouped with z vectors drawn

from the standard Normal distribution as the inputs of the generator. The generated

CIRs then will be mixed with the training data batch to train the generator weights

for 1 time with the loss function shown in Equation 5.2. The Adam optimizer [62]

is employed to train the weights, and the learning rate is set to 0.0001. The batch

losses during a training process are shown in Figure 5.3.

min
G

max
D

E
x∼Px

[log(D(x,xob, θ))]− E
z∼N(0,I)

[log(1−D(G(z,xob, θ)),xob, θ))] (5.1)

LG = Hb(D(G(z,xob, θ),xob, θ), 1) (5.2)

LD = Hb(D(G(z,xob, θ),xob, θ), 0) +Hb(D(x,xob, θ),xob, 1) (5.3)

Hb(p, q) = −q · log2(p)− (1− p) · log2(1− q) (5.4)

Figure 5.4 shows some examples of generated UWA CIR samples during the training
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Figure 5.3: Batch losses during training

process. There are four different θ sequences are selected to demonstrate the generated

CIR samples. The last θ vector of the sequence is printed on top of its corresponding

CIR sample. The odd columns are the time domain amplitude of CIR samples,

while the even columns are its corresponding frequency domain amplitude. The first

row of Figure 5.4 are samples from the training data set. The second row is the

corresponding CIR observations xob in the training data set. The bottom three rows

are three generated CIR samples with the same θ sequence and its corresponding CIR

observations xob. The generated samples show similarities to the training samples in

both time and frequency domain amplitude plots. However, variations can also be
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observed among the three generated samples, which indicates the prediction CGAN

has the capabilities of avoiding the monotonousness of the stochastic replay of UWA

CIR models.
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5.4 The prediction test results

The test data set consists of 161 time windows in three continuous time sections for

the three cases discussed in Case Study 3.1 as shown in Figure 3.7. For the summer

sunny days case, a series of 78 time windows for a continuous 24-hour period is selected

as part of the test data set. There are also 36 time windows of a continuous 9-hour

period for the summer cloudy case in the test data set, as well as 48 time windows of

a continuous 12-hour period for the winter case.
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Figure 5.5: Power-weighted JSD of predictions in sunny day time windows

The θ sequence for the prediction test are generated in the same way as that of the

training data set. However, the CIR observation xob for all generated CIR samples
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Figure 5.6: Power-weighted JSD of predictions in cloudy day time windows
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Figure 5.7: Power-weighted JSD of predictions in winter day time windows
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within a time window is set as the first CIR sample of each test time window. The

power-weighted JSDs of generated predictions for each test time window are compared

with its Rayleigh fitting results in Figure 5.5 to 5.7. Especially for the summer sunny

day case shown in Figure 5.5, the JSDs of Rayleigh fitting rapidly escalate after 12:00

due to the increasing water temperature variations at different depth, while the CGAN

trained with other sunny day case data can still predict the CIR distributions with

low JSDs that is similar to other time windows. The mean power-weighted JSDs of

generated CIR distributions for different cases are shown in Table 5.3. The ResCGAN

row refers to the generator with the residual network design as shown in the right

figure of Figure 5.2, while the PredCGAN row refers to the pure MLP generator

design as shown in the left figure of Figure 5.2. In Figure 5.8, the histograms of all

JSDs in the 858 time windows are compared. Although the power-weighted JSDs

of generated prediction results are not as small as the WCGAN cases, the proposed

prediction CGAN also significantly outperforms the Rayleigh fitting results.

Table 5.3

Mean power-weighted JSDs of the predictions for different cases

Case Type Training Sunny Cloudy Winter Mean

Rayleigh 0.4584 1.2767 0.2729 0.4259 0.5228
WCGAN 0.2636 0.3391 0.2036 0.2674 0.2679
ResCGAN 0.3160 0.5465 0.2298 0.2975 0.3322
PredCGAN 0.2780 0.3869 0.1848 0.2743 0.2835
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Figure 5.8: Histogram of power-weighted JSDs of the predictions, WCGAN
generated, and fitted Rayleigh distribution

5.5 Summary of the prediction model

A CGAN model using a sequence of weather data and a recent CIR observation as

the conditional inputs is proposed to perform the prediction of near-future UWA

CIR distributions. The prediction results outperform the conventional stochastic

distribution fitting method from the power-weighted JSD perspective.
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Chapter 6

Conclusions and Future works

A low-cost field experiment system has been developed to conduct acoustic commu-

nication experiments and collect environmental data at a minute-level sampling rate.

The proposed test-bed system can facilitate future field experiments to obtain more

UWA data for deep learning research.

An ensemble of millions of OFDM waveform blocks has been collected with corre-

sponding weather information in a series of field experiments. As discussed in the

case studies, several observed phenomena show significant correlations between the

UWA channel states and the environmental conditions. The obtained data set is a

pioneer work for adapting deep learning models to solve UWA communication prob-

lems, and it can be proliferated with the help of the proposed test-bed system. The
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minimum total amount and the minimum sampling rate of CIR samples for prop-

erly training a deep learning model can be explored and to modify the future field

experiment designs.

A WCGAN model is proposed to learn the distribution of UWA CIR samples obtained

in the field experiment. A power-weighted JSD measurement is proposed to evaluate

the similarity of generated CIR distribution to the field experiment data distribution.

The WCGAN outperforms conventional stochastic distribution fitting methods from

the power-weighted JSD perspective.

The CIR distribution prediction for the cognitive UWA communication system is

formulated as learning the CIR distribution conditioned on historical and future en-

vironmental data. A CGAN-based prediction model is proposed to generate CIR

samples in a 15min near future based on a sequence of weather information and a

recent CIR observation. The proposed CGAN prediction model performed better

than classic stochastic distribution fitting methods on the test data set.

More advanced deep neural network architectures, such as the convolutional neural

network, residual network, and attention mechanism, can be introduced to implement

the WCGAN and the prediction models. Training techniques such as early stopping

and learning rate decay can also be introduced to improve the performances of pro-

posed deep learning models. The proposed generative models can be integrated with

previous reinforcement learning models [77, 78] for adaptive UWA communications.
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