15 research outputs found

    Automatic polishing process of plastic injection molds on a 5-axis milling center

    Full text link
    The plastic injection mold manufacturing process includes polishing operations when surface roughness is critical or mirror effect is required to produce transparent parts. This polishing operation is mainly carried out manually by skilled workers of subcontractor companies. In this paper, we propose an automatic polishing technique on a 5-axis milling center in order to use the same means of production from machining to polishing and reduce the costs. We develop special algorithms to compute 5-axis cutter locations on free-form cavities in order to imitate the skills of the workers. These are based on both filling curves and trochoidal curves. The polishing force is ensured by the compliance of the passive tool itself and set-up by calibration between displacement and force based on a force sensor. The compliance of the tool helps to avoid kinematical error effects on the part during 5-axis tool movements. The effectiveness of the method in terms of the surface roughness quality and the simplicity of implementation is shown through experiments on a 5-axis machining center with a rotary and tilt table

    Spherical gearing with intermediate ball elements: parameter ranges with a high contact ratio

    Get PDF
    The paper presents analytical research of the geometry and kinematical parameters of spherical gearing with ball intermediate elements. The main attention is paid to the influence of the offset coefficient on the tooth geometry generation, the contact ratio and the motion transmission angle. Intermediate ball element racetracks on the gear are trochoidal curves on a spherical surface. Two areas for the offset coefficient values providing a high value of the contact ratio – basic trochoid (without offset) and prolate trochoid with abutting racetracks of adjacent ball elements ― were revealed. Analysis of the investigated parameters showed that for power transmission, it is preferable to use spherical gearing without an offset, and for kinematic transmission, it is possible to use profiles with a large offset. The present study allows making a rational choice of geometrical parameters depending on the transmission predestination

    Integration of Autonomous UAVs into Multi-agent Simulation

    Get PDF
    In recent years, Unmanned Aerial Vehicles (UAVs) have attracted much attention both in the research field and in the field of commercial deployment. Researchers recently started to study problems and opportunities connected with the usage, deployment and operation of teams of multiple autonomous UAVs. These multi-UAV scenarios are by their nature well suited to be modelled and simulated as multi-agent systems. In this paper we present solutions to the problems that we had to deal with in the process of integrating two hardware UAVs into an existing multi-agent simulation system with additional virtual UAVs, resulting in a mixed reality system where hardware UAVs and virtual UAVs can co-exist, coordinate their flight and cooperate on common tasks. Hardware UAVs are capable of on-board planning and reasoning, and can cooperate and coordinate their movement with one another, and also with virtual UAVs

    Investigation of Chip Thickness and Force Modelling of Trochoidal Milling

    Get PDF
    With the ever increasing pressure to reduce processing time and cost, researchers in machining have begun to develop a body of work centered around increasing the throughput of machining operations. While standard toolpaths exist, such as raster and zig-zag, alternative toolpaths have been developed to achieve beneficial kinematics and dynamics for the cutting tool to better achieve high-speed machining conditions. One such toolpath, trochoidal milling, has been identified to decrease machining process time and increase overall tool life. Understanding the undeformed chip thickness produced utilizing trochoidal milling is critical to developing advances in the field. This paper presents a novel approach to modelling the chip thickness of the process for low to medium range cutting speeds. It has been found that the tool path cannot be described as a purely circular path, instead requiring the model of a true trochoid, which is presented in this work. Utilizing efficient, numerical method, the instantaneous chip thickness is solved for and validated experimentally with cutting force measurement, using a semi-mechanistic force model, where the experimental cutting forces find good agreement with the simulated results

    Computer Simulation of Involute Tooth Generation

    Get PDF

    A review of gerotor technology in hydraulic machines

    Get PDF
    Over the years, numerous investigations have established the gerotor fundamentals. This work aims to provide a complete review of the literature from the last decade, focusing on the articles published in the past five years on gerotor technology in hydraulic machines. The report gives a catalogue of guidelines based on the trochoidal-envelope definition, a background analysis, the worldwide distribution of articles in each continent and country and the most frequently used keywords in the field. The paper identifies state-of-the-art research, and reports on current mainstream ideas. From the historical background, this literature review reports the current approaches in gerotor pumps (geometry and performance approaches, modeling and numerical simulations), orbital motors and new concepts. The report will serve as a guide and a directory for novel engineers working with gerotor technology in hydraulic machines. Another intention of this paper is to disseminate the works of the researchers who use this technology around the world, and to provide a scenario for future international collaboration. The paper gives an account of the disparity between academia and engineering applications. There is currently very little published literature on design and production methodologies for gerotor pumps and orbital motors. Hence, the future goal is to collect recommendations that combine academia and industry expertise to make better use of these extensive studies in the fieldPostprint (published version

    Photodetachment of hydride ion in perpendicular electric and magnetic fields

    Get PDF
    A simple analytic formula for the photodetachment cross section of H\sp{-} in perpendicular electric and magnetic fields is obtained. Oscillations in the spectrum are predicted by the formula, and these oscillations are correlated with closed classical orbits. We point out that the quantum mechanical derivation, using a stationary phase approximation, is in complete agreement with the three-dimensional semiclassical solution to the problem

    Internal Combustion Engines and Powertrain Systems for future Transport 2019

    Get PDF
    Internal Combustion Engines and Powertrain Systems for Future Transport 2019 provides a forum for IC engine, fuels and powertrain experts, and looks closely at developments in powertrain technology required to meet the demands of the low carbon economy and global competition in all sectors of the transportation, off-highway and stationary power industries

    Internal Combustion Engines and Powertrain Systems for future Transport 2019

    Get PDF
    Internal Combustion Engines and Powertrain Systems for Future Transport 2019 provides a forum for IC engine, fuels and powertrain experts, and looks closely at developments in powertrain technology required to meet the demands of the low carbon economy and global competition in all sectors of the transportation, off-highway and stationary power industries
    corecore