4,432 research outputs found

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Time to be responsive in the process industry: a literature-based analysis of trends of change, solutions and challenges

    Get PDF
    The current uncertain and volatile business context is challenging firms worldwide, leading to the need to be responsive at a competitive cost. This trend is so substantial that it even affects industries traditionally competing in rather stable contexts, such as the process industry. Although the process industry includes multiple sectors with different technologies and processes, these share several aspects that make the industry as a whole distinctive to the discrete manufacturing industry. Based on a literature review, this study identifies and describes trends leading the process industry to the need for responsiveness, corresponding solutions to accommodate the need, and related challenges hindering the industrialization and diffusion of solutions in this industry. This study shows that trends, such as the uncertainty and volatility of market requirements, are challenging the process industry to develop reconfigurability solutions across multiple production levels. The development of reconfigurability solutions is hindered by modularity, integrability, co-ordination and collaboration challenges

    The evolution of molds in manufacturing: from rigid to flexible

    Get PDF
    Abstract Nowadays, dynamic products life cycles and increase in the number of product variants have led to reduction in demand per variant. This modern trend is in contrast with the high production volume of manufacturing processes such as injection molding, since they are commonly employed for mass production due to their long changeover time. Traditional rigid molds do not seem to be able to cope with the current industrial and market challenges. Flexible and reconfigurable molding processes, such as the discrete pin tooling systems and changeable molds, appear to be a promising choice for achieving manufacturing economic sustainability. They represent an effective way to save resources and reduce labor costs and setup times. This paper explores the evolution of molds used in manufacturing, from the old models to the current reconfigurable ones through a state-of-the-art analysis of academic research and solutions implemented by industry. Conclusions and insights are presented

    The pursuit of responsiveness in production environments: from flexibility to reconfigurability

    Get PDF
    Many production plants are pursuing responsiveness (i.e., timely purposeful change guided by external demands) as one of their main performance priorities and are looking for ways for their responsiveness to be improved. One of the ways that they are currently trying to do this is through the flexibility provided by production practices. On the other hand, other systems are also being now developed based on reconfigurability (such as reconfigurable manufacturing systems (RMSs)) which can enhance a company’s technological ability to respond to market requirements by reconfiguring its products and processes. This paper analyses how current production programmes can be a prior step to achieving reconfigurability. The analysis uses a holistic framework that considers a number of linkages or combinations of practices (technology, JIT, TQ, HR, TPM and production strategy) and how these enhance performance in terms of cost, quality and responsiveness. The framework is tested with data collected from a survey of 314 plants worldwide using a series of canonical correlation analyses. The results confirm not only the importance of practice linkages that do not only include technology as the launch pad for reconfigurability, but also that in their pursuit of responsiveness it is vital for plants to implement practices in the technology programme as well as to link them to organisational programmes. The framework presents a contribution to both theory and practice. It offers novel insights into the programme and production practices involved in transitioning from flexibility to reconfigurability in the pursuit of responsiveness and provides a basis for future research.Ministerio de Ciencia e Innovación DPI-2009-11148Junta de Andalucía P08-SEJ-0384

    Development of an Extended Product Lifecycle Management through Service Oriented Architecture.

    Get PDF
    Organised by: Cranfield UniversityThe aim of this work is to define new business opportunities through the concept of Extended Product Lifecycle Management (ExtPLM), analysing its potential implementation within a Service Oriented Architecture. ExtPLM merges the concepts of Extended Product, Avatar and PLM. It aims at allowing a closer interaction between enterprises and their customers, who are integrated in all phases of the life cycle, creating new technical functionalities and services, improving both the practical (e.g. improving usage, improving safety, allowing predictive maintenance) and the emotional side (e.g. extreme customization) of the product.Mori Seiki – The Machine Tool Company; BAE Systems; S4T – Support Service Solutions: Strategy and Transitio

    A multi-sensor based online tool condition monitoring system for milling process

    Get PDF
    Tool condition monitoring has been considered as one of the key enabling technologies for manufacturing optimization. Due to the high cost and limited system openness, the relevant developed systems have not been widely adopted by industries, especially Small and Medium-sized Enterprises. In this research, a cost-effective, wireless communication enabled, multi-sensor based tool condition monitoring system has been developed. Various sensor data, such as vibration, cutting force and power data, as well as actual machining parameters, have been collected to support efficient tool condition monitoring and life estimation. The effectiveness of the developed system has been validated via machining cases. The system can be extended to wide manufacturing applications
    • 

    corecore