218 research outputs found

    Performance of terrestrial laser scanning to characterize managed Scots pine (Pinus sylvestris L.) stands is dependent on forest structural variation

    Get PDF
    There is a limited understanding of how forest structure affects the performance of methods based on terrestrial laser scanning (TLS) in characterizing trees and forest environments. We aim to improve this understanding by studying how different forest management activities that shape tree size distributions affect the TLS-based forest characterization accuracy in managed Scots pine (Pinus sylvestris L.) stands. For that purpose, we investigated 27 sample plots consisting of three different thinning types, two thinning intensities as well as control plots without any treatments. Multi-scan TLS point clouds were collected from the sample plots, and a point cloud processing algorithm was used to segment individual trees and classify the segmented point clouds into stem and crown points. The classified point clouds were further used to estimate tree and forest structural attributes. With the TLS-based forest characterization, almost 100% completeness in tree detection, 0.7 cm (3.4%) root-mean-square- error (RMSE) in diameter-at-breast-height measurements, 0.9–1.4 m (4.5–7.3%) RMSE in tree height measure-ments, and <6% relative RMSE in the estimates of forest structural attributes (i.e. mean basal area, number of trees per hectare, mean volume, basal area-weighted mean diameter and height) were obtained depending on the applied thinning type. Thinnings decreased variation in horizontal and vertical forest structure, which especially favoured the TLS-based tree detection and tree height measurements, enabling reliable estimates for forest structural attributes. A considerably lower performance was recorded for the control plots. Thinning intensity was noticed to affect more on the accuracy of TLS-based forest characterization than thinning type. The number of trees per hectare and the proportion of suppressed trees were recognized as the main factors affecting the accuracy of TLS-based forest characterization. The more variation there was in the tree size distribution, the more challenging it was for the TLS-based method to capture all the trees and derive the tree and forest structural attributes. In general, consistent accuracy and reliability in the estimates of tree and forest attributes can be expected when using TLS for characterizing managed boreal forests.Peer reviewe

    Puiden paikannus ja lajitunnistaminen maalaserkeilausaineistosta

    Get PDF
    The requirements for more accurate and up-to-date spatial data increases constantly due to changes occurring in the environment. In addition, there is a technical and economical need to map trees, tree ages and sizes, as well in wide forest areas as park areas in cities by modern scanning techniques. The aim of this thesis was to investigate different positioning methods for terrestrial laser scanned trees. The second aim was to examine different techniques to identify the species of the positioned trees. Laser scans from two separate relatively small woodlands were acquired for the thesis. These scans were utilised for tree locating and species identification. Tree positioning was based on the cylinder fitting method performed for tree stems provided by the scans. The results achieved by the positioning were analyzed based on the comparison to the manually measured reference values. To identify the tree species, the tree intensities and structure parameters extracted from the point clouds were used. According to the study results, the classification of some tree species was relatively well succeeded. However, the identification of some other species did not succeed as expected. The best classification correctness of 80 percent was achieved using the combination of tree intensities and the structure parameters, as well as by the structure parameters only. Classification using the intensities only provided considerably more unreliable results. Instead of that, one tree species (spruce) identification succeeded perfectly in each case. However, tree positioning succeeded obviously well, so the tree locations deviated slightly from the reference values. This examination indicated that a reliable evaluation of the tree classification results did not fully succeed with the relatively small tree sample size used in this thesis. To obtain more reliable estimate of success rate for the results provided by terrestrial laser scanning data, a larger sample size may be required. Furthermore, the laser scans for this work were performed in autumn when there were no leaves in the trees. This, of course, affected the intensity-based tree classification. However, modern tree positioning and classification methods appear quite promising. The future use of these techniques require further development and examination work.Yhä tarkemman ja ajantasaisen paikkatiedon tarve kasvaa jatkuvasti ympäristössä tapahtuvien nopeiden muutosten myötä. Tämä näkyy myös teknistaloudellisena tarpeena kartoittaa puulajeja, niiden ikää ja kokoa mm. erilaisilla nykyajan keilausmenetelmillä, niin laajoilla metsäalueilla kuin kaupunkien puistoalueilla. Tämän työn tavoitteena oli tutkia maastolaserkeilattujen puiden erilaisia paikannusmenetelmiä. Toisena tavoitteena oli tarkastella paikannettujen puiden lajitunnistusmenetelmiä. Työn toteuttamiseksi suoritettiin laserkeilauksia kahdella erillisellä pienehköllä metsäalueella. Näitä keilausaineistoja käytettiin puiden paikantamiseen ja lajitunnistukseen. Paikannus perustui keilausten tuloksena saaduille puun rungoille tehtyyn sylinterisovitusmenetelmään. Laskennalla saatuja tuloksia analysoitiin vertaamalla niitä referenssiarvoihin, jotka saatiin pistepilvistä manuaalisesti mittaamalla. Lajitunnistuksessa käytettiin puista saatujen pistepilvien intensiteettejä ja rakenneparametreja. Suoritetun tarkastelun perusteella joidenkin puulajien tunnistaminen onnistui melko hyvin. Kaikkien puiden tunnistaminen ei kuitenkaan onnistunut odotetulla tavalla. Käyttäen pistepilvien intensiteettien ja pistepilvistä saatujen puiden rakenneparametrien yhdistelmää, sekä pelkkiä rakenneparametreja, tulkittiin parhaimmillaankin noin 80 prosenttia tuloksista oikein. Pelkkiä intensiteettejä käyttäen saatiin huomattavasti epäluotettavampi tulos. Sen sijaan yhden puulajin (kuusen) tunnistaminen onnistui kaikissa tapauksissa täydellisesti. Toisaalta, suoritetussa tarkastelussa puiden paikantaminen onnistui kokonaisuudessaan hyvin, sillä laskennalla puille saadut sijainnit poikkesivat referenssiarvoista kauttaaltaan varsin vähän. Tarkastelu osoitti, että maalaserkeilattujen puiden tunnistaminen tässä työssä käytetyllä suhteellisen pienellä otoskoolla ei täysin onnistunut. Tarkempi arvio maalaserkeilausaineistosta saatujen tulosten onnistumisprosentista olisi edellyttänyt suurempaa otoskokoa. Lisäksi puiden laserkeilaukset tehtiin syksyllä, jolloin puissa ei ollut lehtiä. Tämä tietenkin vaikutti puiden tunnistamiseen intensiteettien avulla. Nykyiset puiden tunnistusmenetelmät vaikuttavat kuitenkin kokonaisuudessaan varsin lupaavilta. Menetelmien hyödyntäminen edellyttää yhä tutkimus- ja kehitystyötä

    Comparing Mobile Laser Scanner and manual measurements for dendrometric variables estimation in a black pine (Pinus nigra Arn.) plantation

    Get PDF
    The growing demand of ecosystem services provided by forests increased the need for fast and accurate field survey. The recent technological innovations fostered the application of geomatic tools and processes to different fields of the forestry sector. In this study we compared the efficiency and the accuracy of Mobile Laser Scanner (MLS), combined with Simultaneous Localization and Mapping (SLAM) technology, and traditional field survey for the mensuration of main forest dendrometric variables like stem diameter at breast height (DBH), individual tree height (H), crown base height (CBH) and branch-free stem volume (VOL). With ground truth measurements taken from 50 felled trees, we tested the applicability of MLS technology for individual tree parameters esti-mation in a conifer plantation in central Italy. Our results showed no bias of DBH estimates and the corre-sponding RMSE was equal to 10.8% (2.7 cm). H and CBH measured with MLS were underestimated compared to the ground truth (bias of-8.6% for H and-13.3% for CBH). VOL values showed a bias and a RMSE of-4.1% (-0.01 m(3)) and 12.4% (0.04 m3) respectively. Tree height is not perfectly estimated due to laser obstruction by crowns layer, but the acquisition speed of this survey, joined with a suitable accuracy of parameters extraction, suggests sufficient suitability of the method for operational applications in simple forest structures (e.g. one-layered stands)

    Quantitative Assessment of Scots Pine (Pinus Sylvestris L.) Whorl Structure in a Forest Environment Using Terrestrial Laser Scanning

    Get PDF
    State-of-the-art technology available at sawmills enables measurements of whorl numbers and the maximum branch diameter for individual logs, but such information is currently unavailable at the wood procurement planning phase. The first step toward more detailed evaluation of standing timber is to introduce a method that produces similar wood quality indicators in standing forests as those currently used in sawmills. Our aim was to develop a quantitative method to detect and model branches from terrestrial laser scanning (TLS) point clouds data of trees in a forest environment. The test data were obtained from 158 Scots pines (Pinus sylvestris L.) in six mature forest stands. The method was evaluated for the accuracy of the following branch parameters: Number of whorls per tree and for every whorl, the maximum branch diameter and the branch insertion angle associated with it. The analysis concentrated on log-sections (stem diameter > 15 cm) where the branches most affect wood's value added. The quantitative whorl detection method had an accuracy of 69.9% and a 1.9% false positive rate. The estimates of the maximum branch diameters and the corresponding insertion angles for each whorl were underestimated by 0.34 cm (11.1%) and 0.67 degrees (1.0%), with a root-mean-squared error of 1.42 cm (46.0%) and 17.2 degrees (26.3%), respectively. Distance from the scanner, occlusion, and wind were the main external factors that affect the method's functionality. Thus, the completeness and point density of the data should be addressed when applying TLS point cloud based tree models to assess branch parameters.Peer reviewe

    Forest structure from terrestrial laser scanning – in support of remote sensing calibration/validation and operational inventory

    Get PDF
    Forests are an important part of the natural ecosystem, providing resources such as timber and fuel, performing services such as energy exchange and carbon storage, and presenting risks, such as fire damage and invasive species impacts. Improved characterization of forest structural attributes is desirable, as it could improve our understanding and management of these natural resources. However, the traditional, systematic collection of forest information – dubbed “forest inventory” – is time-consuming, expensive, and coarse when compared to novel 3-D measurement technologies. Remote sensing estimates, on the other hand, provide synoptic coverage, but often fail to capture the fine- scale structural variation of the forest environment. Terrestrial laser scanning (TLS) has demonstrated a potential to address these limitations, but its operational use has remained limited due to unsatisfactory performance characteristics vs. budgetary constraints of many end-users. To address this gap, my dissertation advanced affordable mobile laser scanning capabilities for operational forest structure assessment. We developed geometric reconstruction of forest structure from rapid-scan, low-resolution point cloud data, providing for automatic extraction of standard forest inventory metrics. To augment these results over larger areas, we designed a view-invariant feature descriptor to enable marker-free registration of TLS data pairs, without knowledge of the initial sensor pose. Finally, a graph-theory framework was integrated to perform multi-view registration between a network of disconnected scans, which provided improved assessment of forest inventory variables. This work addresses a major limitation related to the inability of TLS to assess forest structure at an operational scale, and may facilitate improved understanding of the phenomenology of airborne sensing systems, by providing fine-scale reference data with which to interpret the active or passive electromagnetic radiation interactions with forest structure. Outputs are being utilized to provide antecedent science data for NASA’s HyspIRI mission and to support the National Ecological Observatory Network’s (NEON) long-term environmental monitoring initiatives

    Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM

    Get PDF
    Enabling automated 3D mapping in forests is an important component of the future development of forest technology, and has been garnering interest in the scientific community, as can be seen from the many recent publications. Accordingly, the authors of the present paper propose the use of a Simultaneous Localisation and Mapping algorithm, called graph-SLAM, to generate local maps of forests. In their study, the 3D data required for the mapping process were collected using a custom-made, mobile platform equipped with a number of sensors, including Velodyne VLP-16 LiDAR, a stereo camera, an IMU, and a GPS. The 3D map was generated solely from laser scans, first by relying on laser odometry and then by improving it with robust graph optimisation after loop closures, which is the core of the graph-SLAM algorithm. The resulting map, in the form of a 3D point cloud, was then evaluated in terms of its accuracy and precision. Specifically, the accuracy of the fitted diameter at breast height (DBH) and the relative distance between the trees were evaluated. The results show that the DBH estimates using the Pratt circle fit method could enable a mean estimation error of approximately 2 cm (7–12%) and an RMSE of 2.38 cm (9%), whereas for tree positioning accuracy, the mean error was 0.0476 m. The authors conclude that robust SLAM algorithms can support the development of forestry by providing cost-effective and acceptable quality methods for forest mapping. Moreover, such maps open up the possibility for precision localisation for forestry vehicles.publishedVersio
    corecore