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A B S T R A C T   

The growing demand of ecosystem services provided by forests increased the need for fast and accurate field 
survey. The recent technological innovations fostered the application of geomatic tools and processes to different 
fields of the forestry sector. In this study we compared the efficiency and the accuracy of Mobile Laser Scanner 
(MLS), combined with Simultaneous Localization and Mapping (SLAM) technology, and traditional field survey 
for the mensuration of main forest dendrometric variables like stem diameter at breast height (DBH), individual 
tree height (H), crown base height (CBH) and branch-free stem volume (VOL). With ground truth measurements 
taken from 50 felled trees, we tested the applicability of MLS technology for individual tree parameters esti-
mation in a conifer plantation in central Italy. Our results showed no bias of DBH estimates and the corre-
sponding RMSE was equal to 10.8% (2.7 cm). H and CBH measured with MLS were underestimated compared to 
the ground truth (bias of − 8.6% for H and − 13.3% for CBH). VOL values showed a bias and a RMSE of − 4.1% 
(− 0.01 m3) and 12.4% (0.04 m3) respectively. Tree height is not perfectly estimated due to laser obstruction by 
crowns layer, but the acquisition speed of this survey, joined with a suitable accuracy of parameters extraction, 
suggests sufficient suitability of the method for operational applications in simple forest structures (e.g. one- 
layered stands).   

1. Introduction 

The accurate measurement of forest stand features is not only a sci-
entific value per se but a fundamental step in silvicultural management 
and forest planning. There is an increasing need for accurate and fast 
forest field inventories, due also to the growing demand for the assess-
ment of the multiple ecosystem services (Müller et al., 2020). Besides the 
widespread use, in the last decades, of remote sensing techniques in 
forest inventories, the operational surveys still require manual mea-
surements of field plots (Hyyppä et al., 2020). Diameter at breast height 
(DBH), individual tree height (H) and crown base height (CBH) are the 
tree parameters most frequently measured in the field. Although tradi-
tional field measurements are as yet broadly practised, they present 
some bottlenecks being time consuming and limited in their spatial 

extent (Bauwens et al., 2016). 

1.1. Geomatic meets forestry: 3D data acquisition and processing 

Current forestry management practices, can benefit from different 
surveying approaches: Terrestrial Laser Scanning (TLS), Airborne Laser 
Scanning (ALS), Mobile Laser Scanning (MLS) and Personal Laser 
Scanning (PLS, a subcategory of MLS). DBH, H, CBH and other tree 
variables can be estimated using either the ALS system (Luo et al., 2018; 
Maguya et al., 2015; Sibona et al., 2017), the TLS survey (de Conto et al., 
2017; Liu et al., 2018a) or the MLS technology (Čerňava et al., 2017; 
Forsman et al., 2016). In this scenario, the increasing consciousness and 
the availability of technological innovations have made possible a 
stronger bond between geomatic and forestry disciplines. Forest 
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inventory at different scales and levels of detail plays a key role for the 
management choices and the geomatic techniques can increase the 
automation level during the field measurements (Pierzchała et al., 
2018). Indeed, over the last decades, technological development in data 
collection and computational processes have opened up new fields of 
research, also in forest data analysis, using remote and proximal sensing 
approaches (Tao et al., 2015). Then, the forestry point cloud data 
analysis and management can be conducted using different softwares, as 
argued by several studies in the literature: CloudCompare (Girardeau- 
Montaut, 2021), FUSION/LDT (Karna et al., 2019; Moe et al., 2020), 
LiDAR 360 (Chen et al., 2019; Luo et al., 2018), “3D Forest” (Trochta 
et al., 2017), Computree (Del Perugia et al., 2019), MATLAB (Itakura 
and Hosoi, 2020; Zhang et al., 2019), Python (Holmgren et al., 2019; 
Srinivasan et al., 2015), R packages such as “lidR” (Tompalski et al., 
2019; Zaforemska et al., 2019), “TreeLS” (Dalla Corte et al., 2020; Puliti 
et al., 2020) and “rLiDAR” (Mohan et al., 2017). 

1.2. The need for ground-based mobile proximal sensing 

The rapid development of acquisition systems able to collect 3D 
point clouds, allowed the automation of forest inventory procedures. 
Several platforms have been developed to reduce time and cost of 
traditional measurements held with optical or electronic instruments 
and to improve their precision and accuracy (Luoma et al., 2017; Wang 
et al., 2019). Light detection and ranging (LiDAR) techniques is boosting 
ecological and forest research, and researchers in various fields began to 
apply it for modelling analysis (Zhou et al., 2019). TLS is a ground based 
LiDAR scanning system able to offer data to analyze, improving signif-
icantly Above-Ground Biomass (AGB) estimation (Stovall et al., 2017). 
The 3D model derived by TLS application are treated as ground truth 
validation of forest biomass models (Momo Takoudjou et al., 2018; 
Brede et al., 2019). From these data is possible to extract and storing 
different metric data, such as DBH (Liu et al., 2018b; Dassot et al., 2012), 
H (Panagiotidis et al., 2016; Cabo et al., 2018), stem volume (Iizuka 
et al., 2020; Panagiotidis and Abdollahnejad, 2021a; Panagiotidis and 
Abdollahnejad, 2021b), AGB (Momo Takoudjou et al., 2018; Gonzalez 
de Tanago et al., 2018) and branch architecture (Lau et al., 2018). Un-
fortunately, due to the static nature of TLS, it requires multiple scanning 
stations to ensure the effective detection of the trees. This task is time- 
consuming and requires manpower (Kunz et al., 2019). The most sig-
nificant problems are the effects of the occlusion by trunks, crown and 
the understory vegetation (Bauwens et al., 2016; Gollob et al., 2020; 
Holopainen et al., 2013). The limitation listed on TLS have boosted re-
searchers to move up technologies able to produce 3D point clouds in a 
ready to use manner. 

A solution is given by mobile laser scanner (MLS) (Mokroš et al., 
2021). These systems combine a laser scanner with an inertial mea-
surement unit (IMU), exploiting the so called SLAM (Simultaneous 
Localization and Mapping). The accuracy of measurements mainly de-
pends by the synchronization of these components. Moreover, thanks to 
the moving platform, the occlusion effect is reduced (Bauwens et al., 
2016). MLS applications are divided in two categories: handheld laser 
scanning (HMLS) and backpack personal laser scanning (BMLS). Early 
scientific publications with MLS date back 2013, and the first system 
prototype was large in size and weighed approximately 30 kg, which 
limited its operability and mobility (Kukko et al., 2012). More recent 
out-of-the-shelves products are lighter and more compact than more 
complex MLS systems, and can be easily held by a single operator even in 
challenging scenario. Several studies evaluate the accuracy of these 
different scanning systems in forestry settings. Comparative studies 
between TLS and MLS revealed that MLS got more accuracy than TLS 
rate (Gollob et al., 2020), and took less time to collect the data. The use 
of TLS requires multiple scanning bases to ensure the effective detection 
of the trees, and the most significant problems are the effects of shade or 
concealment by trees (Bauwens et al., 2016; Gollob et al., 2019). 
Conversely, some studies on the quality of the point cloud obtained by 

MLS report a problem in the model due to noise (Bauwens et al., 2016) 
or errors in fitting the geometric shapes (Nurunnabi et al., 2017). In 
order to achieve high accuracy, several factors must be taken into ac-
count, such as a small research plot, the best environmental conditions, 
the instrument used and visibility of the surrounding environment 
during real-time mapping (Van Brummelen et al., 2018). 

1.3. Paper contribution 

Given the above-mentioned aspects and in line with the recent 
literature, in this study we tested the applicability of MLS technology to 
measure individual tree parameters in a black pine (Pinus nigraArn.) 
plantation. Specifically, we first compared three methodologies of MLS 
point cloud processing to obtain DBH, H, CBH and brach-free stem VOL 
on standing trees and estimated their accuracy. Then, we compared the 
best MLS-derived and traditional manual-measured values with the 
ground truth data collected from selected felled trees. From the exper-
iments, we hypothesized that DBH estimation could be affected by less 
error than total height and crown base height, due to the limitation of 
crown shielding. 

2. Materials and methods 

2.1. Study area 

The study area is included in the “Cesane Regional Forest” (43◦42’N 
12◦45’E), a large forest area of approximately 1500 ha located on the 
homonymous mountain system in the norther part of the Marche region 
in Central Italy. The orographic system is ranging from 200 to 600 m a.s. 
l. featuring smooth hills and some steep slopes, with an extended top 
plateau. The forest became state owned a century ago to be restored with 
reafforestation after intensive agro-pastoral exploitation causing 
extended slope erosion. Forest plantation, often along man-made stone 
terraces, started in the early ‘900 but continued especially after World 
War II using mainly a very resilient conifer species such as Pinus nigra 
var. nigra, well adapted even to bare rocky soils. Pine is by far the 
dominant species (Fig. 1) with a mean stand density equal to 800 n/ha, 
but manna ash (Fraxinus ornus L.) was also frequently planted along the 
rows. In addition we found a very sporadic occurrence of downy oak 
(Quercus pubescens Willd., 1805), sycamore maple (Acer pseudoplatanus 
L., 1753) and European smoke tree (Cotinus coggygria Scop.) that have 
probably entered naturally in the forest area. 

2.2. MLS survey 

The survey was conducted in early February 2020 to reduce the 
occlusion effect caused by deciduous species of the understory, with a 
Mobile Mapping System device Kaarta Stencil 2.1 This instrumentation 
is equipped with a LiDAR Velodyne VLP-16 sensor mounted on top of an 
aluminum platform, an IMU (Internal MEMS) and an internal processor 
(Intel-7) for real-time localization and mapping. This instrument scans 
the environment around the device, quickly and automatically, in 
’handheld’ mode. It is a light weight (1730 grams) device, with battery 
life of around 2 h and internal 1 Tb SSD memory. It provides a very dense 
point detection (300000 maximum number of points to read from the 
logged up to 10 Hz). The LiDAR has a beam (λ = 903 nm) with 16 laser 
profiles and a vertical field of view of +15◦ to − 15◦, while the horizontal 
view is 360◦. The scanning path was performed considering the 
following issues: i) avoiding occlusions among trees, maximizing the 
best coverage for the trees; ii) reducing the drift error, which may occur 
in repetitive environments where the alignment is harder; iii) avoiding 
the noise in the point cloud data. For the above-mentioned reasons, we 

1 ⧹https:/www.kaarta.com/products/stencil-2-for-rapid-long-range-mobil 
e-mapping. 
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adopted the following settings (Table 1). 
The scan survey covered approximately 0.5 ha of the forest stand and 

it was conducted walking through the forest plantation rows. The study 
area was surveyed in 75 min collecting 276 millions of points with a 
registration radius value of 100 meters (Fig. 2a). During the MLS survey, 
it also has been possible to view the operations carried out by the tracker 
camera on an external monitor. Concluded these steps, the system 
created and currently dated a folder with files describing the configu-
ration settings, 3D cloud characteristics and trajectory estimation. Since 
the Kaarta is not equipped with an internal GNSS, it has been necessary 
to manually perform the georeferencing post-process of the point cloud 
using CloudCompare tools (Kruček et al., 2020). We then collected the 
coordinates (x,y) of three Ground Control Points (GCPs) with a HiPer VR 
Topcon GNSS antenna2 in the centre of three reflective targets placed on 
the ground at a considerable distance, projected in the WGS 84-UTM33N 
coordinate reference system. 

2.3. Traditional field survey and ground truth assessment with felled trees 

Within the MLS scanned area, we selected 50 pines of representative 
tree diameter and height within the pine stand (Fig. 2b). We first 
traditionally measured the 50 standing trees: DBH with a dendrometric 
caliper, H and CBH (the height from the tree stem base up to the first 
living tree branch) with a Haglöf Hypsometer (Vertext III). We also 
registered the relative tree positions measuring with sub-metric preci-
sion their horizontal distance and azimuth with a TruPulse 360B ran-
gefinder (Laser Technology Inc.) from five GCP recorded with the HiPer 
VR Topcon GNSS receiver. The DBH of the selected trees ranged from 
13.5 to 37.0 cm, with a mean and median value of 24.9 cm and 25.3 cm 
respectively. 

In a second step, the selected 50 trees were cut down in September 
2020 after authorization from the regional authority. We measured the 
stems total length (equal to the tree height) of felled trees with a 
measuring tape and the length from the stem base to the first living 
branch (corresponding to CBH). Stem diameter was measured at the 
stem base, at 1.30 m (corresponding to DBH) and at the median line of 
every 1 m long virtual sections from the base to the tapering diameter of 
7 cm. The branch-free stem height was determined by visual interpre-
tation of the stem profile, until a mean cut off height of 8 m. The branch- 
free volume (VOL) of single felled stems was computed applying the 
Heyer’s formula (Eq. 1): 

V = S1 + S2 + S3 +⋯Sn− 1 + Sn (1)  

where V is the volume up to 8 meters above the ground and S1, S2, Sn− 1 
are the transversal surface areas of each 1 m long log. We assumed that 
collected measures on felled trees were error free and we used them as 
reference data for the comparison with traditional measurements and 
with remote sensed records. 

2.4. Point cloud processing 

For better comprehension we outlined the data processing workflow 
in Fig. 3. 

We analyzed the points cloud by developing a semi-automatic 
approach for the extraction of metric data. The first phase concerns 
importing and visualising the raw data in CloudCompare (Girardeau- 
Montaut, 2021); then, we filtered the raw cloud by removing unnec-
essary detected areas to make its management easier. After having 
delimited the test area, we performed data filtering using the “Statistical 
outlier remover” SOR function (Rusu and Cousins, 2011) which allows 
to discard outliers and noise points produced on the trunks surface 
during the acquisition phase. Then, we carried out the classification 
between the ground and above ground points, using the Cloth Simula-
tion Filter (CSF). CSF filters the terrain points, ensuring significant time 
savings and accurate reliability of the final data. The values adopted to 
set the parameters, optimized after several tests, were 0.3 m cloth res-
olution and 0.6 m distance threshold, with a maximum of 50 iterations 
for the analysed sample. Since some portions of the trunk were classified 
as ground points (Fig. 4) it required further filtering using the “Features 
Geometric” tool which classifies all point verticality concerning the 
nearest neighbours point, based on the local orientation and curvature of 
the stem point cloud (Hackel et al., 2016). For this project, “TreeLS” 
package (de Conto et al., 2017) was used to segment the whole point 
cloud forest and to get a point cloud for each individual tree, which 

Fig. 1. The location of the study area (left) and a view of the black pine plantation (right).  

Table 1 
Kaarta Stencil 2 parameters setting used for field survey.  

Parameters Value [m] 

VoxelSize 0.4 
registrationRadius 100 
cornerVoxelSize 0.2 
surfVoxelSize 0.4 
surroundVoxelSize 0.6 
blindRadius 1.0  

2 https://www.topconpositioning.com/it/support/products/hiper-vr. 
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calculates the vertical area and enables visual detection of surfaces that 
extend perpendicularly to the ground. After normalizing the points 
cloud, we automatically extracted a set of metric data belonging to each 
of the 50 felled pines for statistical evaluation. We manually matched 
the coordinates of the extracted trees with those collected in the field 
with the laser rangefinder, both data were registered in the same 
reference system (WGS84-UTM33N). 

For this scope, we analysed several data extraction methodologies. 
More in deep, for the detection of forest metrics we exploited the “3D 
Forest” open source application (Trochta et al., 2017), “VoxR” package 
and the combination of “TreeLS-rLiDAR-lidr” packages inside R lan-
guage (R Core Team, 2021). Afterward, we compared these methods 
with ground truth data. The first method is “3D Forest” application, 
based on the C++ language and widely used to analyze points clouds 
from Terrestrial Laser Scanning. This is based on clustering points ac-
cording to their relative distance, minimum number, corner and dis-
tance between centroids of each cluster (Kruček et al., 2020). This 
application is suitable for processing trees with simple crown structure, 
reason why it has severely limited the extraction of further data. In fact, 
the irregular crown shape and dense foliage limited a correct investi-
gation, such as the segmentation and volume of branches, leading to 
discordant results. Therefore in this case we calculated DBH, H and 
branch-free stem VOL (Fig. 5a). The tool allows the extraction of two 
different DBH, the first Randomized Hough transformation (RHT) ac-
cording to the circle detected in the point analysis, whereas the second 
one, based on Least Square Regression, with an algebraic estimate of the 
geometry calculation of the detected circle (Chernov and Lesort, 2005). 
Next, we defined H as the calculation of the maximum distance between 
the two points along the Z axis. Finally, we computed the branch-free 
stem volume using the Convex hull algorithm. At the end of this pro-
cedure, a denoising operation was used to filter out those points not 
belonging to the trees. Noise reduction and cleaning operations are 
included in CloudCompare. The second test consisted on running the 
“VoxR” package (Lecigne et al., 2018), a library written with the R 
language (Team et al., 2013) which is based on a voxelization algorithm 
that has allowed the classification of points in a regular three- 
dimensional grid of voxels (Fernández-Sarría et al., 2013). The file, 
imported in.txt format, was subjected to metric analysis, using the 
“tree_metrics” function and setting the voxel size as 0.05 m; DBH, H and 
VOL values were extracted (cylinder), such as diameter, height, and 
volume (Fig. 5b). This function makes the metric data extraction easy 
and intuitive. The third method tested is a set of R-packages allowing the 
extraction of the whole metric data. TreeLS (de Conto et al., 2017) 
permits the users to customize the parameters according to the tree 

characteristics and the points clouds, using algorithms with various 
functions. The most important one allows the stem mapping through the 
automatic detection of individual trunk points. We carried out the cor-
rect identification of the trunk’s points, separating it from the branches 
and leaves by means of the Hough transformation and consequently 
exploiting the RANSAC algorithm (de Conto et al., 2017). The latter 
subdivides the cloud into several subsets, providing the inventory of 
each calculated geometric primitive (cylinder), such as diameter, height, 
and volume (Fig. 5c). The last step generates a series of geometric 
primitives of cylindrical shape along the vertical axis of the trunk. Before 
being reconstructed by using the geometrical primitive, in particular the 
circular cylinders (Markku et al., 2015), the stem point cloud tree was 
sliced into three subclasses.This necessary because of stem tapering as 
also addressed by Panagiotidis and Abdollahnejad (2021b). The slicing 
step has carried out along the z-axis from up to the maximum height of 8 
metres for each investigated tree. We calculated a cylinder primitive 
geometrical by Ransanc algorithm. It was filtered on vertical point cloud 
slice with high accuracy. Thus, the output a high details and accuracy 
concerning the metric data, such as DBH, H and branch-free stem 
volume. 

This choice derived from LiDAR data that provide an incomplete 
representation of the trunk surface, due to physical obstacles (fallen 
trees, shrubs or saplings) or shaded areas. In particular, denoising op-
erations tend to poorly filter out even heterogeneous or unshaded por-
tions of point clouds, compromising the correct data analysis. An 
interpolation of the two diameter values closest to the breast height 
(1.30 m) allowed to calculate each stem DBH. Furthermore, in this set, 
the barycentric coordinates of each point cloud tree and the DBH were 
extracted. Again, using the inventory data, we achieved the volumes of 
the cylinders, estimating them up to a height of 8 m above the ground. 
The maximum height was then extracted using the lidR package 
(Roussel et al., 2020). Finally, the “rLiDAR” package (Silva et al., 2016) 
was used for the calculation of the CBH. This package enables to find a 
set number classes of point clustered along the z-axis tree by “kmeans” 
algorithm. Thereby, for each subset was computed “Convex Hull” al-
gorithm which had facilitated the distinction of the crown from the 
trunk (Fig. 6). 

2.5. Comparison analysis 

We evaluated the bias and root-mean-square error (RMSE) of 
selected variables (DBH, H) comparing first the results gained with the 
three different algorithms (“3D Forest”, “VoxR” and the combination of 
“TreeLS-lidr-rLiDAR” packages) with ground-truth measures on felled 

Fig. 2. a) an example of the tree point cloud view by Kaarta Stencil 2; b) distribution of the 50 selected trees (red dots) within the yellow boundary of the forest plot.  
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trees; then, comparing traditional field surveys and the best MLS method 
with ground truth (adding CBH). We used the following equations: 

bias =
∑N

i=1

xi − xi,ref

N
(2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(xi − xi,ref )
2

N

√
√
√
√ (3)  

where N is the number of felled trees, xi refers to the estimates achieved 
with the algorithms and with traditional survey, and xi,ref refers to the 

corresponding ground truth value. Additionally, we used the following 
definitions for the relative bias and RMSE: 

bias% =
bias
xref

× 100% (4)  

RMSE% =
RMSE

xref
× 100% (5)  

where xref is the mean of the reference values. For the comparison 
among the three MLS methods with ground truth measurement, we also 
evaluated the bias and RMSE for stem volume extraction up to 8 meters 
above the ground. We fitted regression lines of DBH and H values dis-

Fig. 3. Research Workflow (Diameter at breast heigh (DBH), individual tree height (H), crown base height (CBH), branch-free stem volume(VOL), barycentric 
coordinates (X,Y)). 
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tribution derived by laser survey, traditional field operation and ground 
truth assessment data. Finally, we plotted all parameters distribution 
using boxplot charts and tested the differences of means using paired 
two-sided t-test with 95% of confidence level (α = 0.05). 

3. Results 

3.1. Comparison of the three MLS methods for feature extraction 

Exploiting the object 3D reconstruction, we obtained the score with 
most accuracy, with the identification of the closest geometric primitive 
of its original shape. With this first analysis we wanted to discard the less 
accurate method for a better comparison in the following step. The best 
accuracy is reached with the “TreeLs-lidR-rLiDAR” packages combina-
tion (Table 2), through the Hough transformation. We then performed a 
stem modelling with the RANSAC algorithm, which allowed the more 

accurate estimation. The use of MLS has produced zones with low 
density and high noise point clouds (Fig. 7). 

3.2. Comparison of traditional and MLS methods with ground truth 

Bias and RMSE values of traditional field sampling compared to 
ground truth measurements are very low for DBH: 0.8% (0.2 cm) and <
5% (1.1 cm) respectively (see Table 3). Similar gaps occur in tree sub- 
samples with DBH below and above 25 cm (RMSE of 0.8 cm and 1.3 
cm respectively). Manual measured tree height was slightly under-
estimated compared to the ground truth (% bias = − 0.7 and % RMSE =
10.2) as well as in trees sub-sample with heights below 17.5 m (bias % =
− 1.3 and RMSE % = 11.2) (Table 3). Diversely, the RMSE of H estimates 
of trees higher than 17.5 m indicated a minor overestimation (1.6 m and 
8.9%) compared to the ground truth. CBH showed a bias of 0.1 m (0.6%) 
and a higher RMSE (15.8%) (Table 3). 

Comparing MLS values with ground truth measurements (Table 4), 
the bias of DBH estimates was equal to 0 for both absolute and percent 
values and the RMSE 10.8% (2.7 cm). For DBH sub-groups, we found 
opposite estimates: positive for DBH below 25 cm (0.8 cm and 4.1%) and 
negative for DBH above 25 cm (-0.8 cm and − 2.8%); % RMSE was equal 
for both classes (10.6%). H and CBH measured with MLS were under-
estimated compared to the ground truth (bias of − 8.6% for H and 
− 13.3% for CBH) but CBH estimate had the highest percent RMSE value 
(19.5%). Splitting the analysis by H classes (below and above 17.5 m), 
both SLAM measures confirmed an overall underestimation compared to 
the ground truth (bias % of − 7.6 for H below 17.5 m and − 9.8 for H 
above 17.5 m). Branch-free stem volume (up to 8 meters) values showed 
a bias and a RMSE of − 4.1% (− 0.01m3) and 12.4% (0.04 m3) 
respectively. 

Fig. 8a shows the overestimation of smaller DBH values and the 
underestimation of greater values (red line) using MLS. The comparison 
of tree height (Fig. 8b) reveals the same pattern of underestimation of 
MLS data for the heighest trees. We did not detect statistical differences 
in mean DBH (α = 0.05) between the two estimation methods (MLS and 
TRAD) compared to the direct measurement on felled trees (Fig. 9a), but 
we found them in mean H (MLS vs FELLED) both for the whole sample 
(15.6 m vs 17.1 m respectively) and splitting it by H classes (15.1 m vs 
16.3 m for H<17.5 m and 16.3 m vs 18.1 m for H >17.5 m) (Fig. 9b). We 
also detected significant statistical differences in comparison of mean 

Fig. 4. The individual output from Cloth Simulated Filter (CFS) algorithm. The 
ground points are red and off-ground points blue. 

Fig. 5. DBH extraction phases: a) DBH and Tree Height data extracted by 3D Forest; b) Voxelization by “VoxR” package; c) Reconstruction of the geometrical 
primitives with RANSAC on the points classified as stem. 
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CBH (9.7 m for MLS vs 11.2 m for felled trees) and for stem volume (0.31 
m3for MLS vs 0.32 m3for felled trees) (Fig. 10). 

4. Discussion 

Forest structure and yield measurements are essential not only for 
computing timber productivity but also for calibrating any kind of multi- 
functional forest management (e.g. biodiversity conservation, carbon 
sequestration and other ecosystem services). Nonetheless, accurate 
forestry measurements are not straightforward due to forests complexity 
and to the characteristics of the traditional instruments used in forest 
field measurements (e.g., calipers and clinometers). They are easy to use 
but they require several operational steps, becoming time consuming, 
laborious and expensive when repeated in inventory survey (Shao et al., 
2020). MLS can provide very fast data collection of large areas, reducing 
the efforts for surface area and the measurement error. Holopainen et al. 
(2013) compared the accuracy and the efficiency of TLS, ALS and MLS 
systems on 438 trees in an urban forest area in Finland. The study proves 
that TLS and MLS outperform ALS for the parameters detection, as the 
canopy effect hampers the achievement of trustful results. Vatandaşlar 
and Zeybek (2021) evaluated the efficiency and reliable of Zeb-Revo 

Fig. 6. CBH estimated by Convex Hull function.  

Table 2 
Comparison of DBH (diameter at breast height), H (tree height) and VOL 
(branch-free stem volume up to 8 meters) measures collected from the 50 felled 
trees and parameters estimated by different algorithms. In brackets standard 
deviation is reported for felled trees measures and percentage values for bias and 
RMSE.   

DBH (σ) 
[cm]  

H (σ) [m]  VOL (σ) 
[m3]  

FELLED 24.7 
(5.2)  

17.1 
(1.2)  

11.2 
(1.5)  

Platform Bias 
(%) 

RMSE 
(%) 

Bias (%) RMSE 
(%) 

Bias (%) RMSE 
(%) 

3D Forest 0.9 
(3.8) 

4.1 
(16.3) 

− 2.4 
(− 14.4) 

3.1 
(18.3) 

0.0 
(− 11.5) 

0.1 
(31.7) 

VoxR 2.6 
(10.4) 

6.8 
(27.0) 

− 1.7 
(− 9.9) 

2.4 ) 
14.0) 

0.0 
(− 11.1) 

0.1 
(39.6) 

TreeLS- 
lidr- 
rLiDAR 

0.0 
(0.0) 

2.7 
(10.8) 

− 1.5 
(− 8.6) 

2.4 
(13.9) 

0.0 
(− 4.1) 

0.0 
(12.4)  

Fig. 7. DBH points extracted and plotted on a 2D graph. Red dots are the ones 
used to interpolate with a suitable circle, while blue dots are the discarded ones. 

Table 3 
Tree variables values reached with traditional manual measurements on 
standing trees (TRAD) and from cut down trees (FELLED). Abs: absolute values; 
%: percent values.  

Variable N Mean (σ) Bias RMSE 

TRAD FELLED Abs % Abs % 

DBH [cm] 50 24.9 (5.4) 24.7 (5.2) 0.2 0.8 1.1 4.5 
H [m] 50 17.0 (2.1) 17.1 (1.2) − 0.1 − 0.7 1.7 10.2 
CBH [m] 50 11.2 (1.4) 11.2 (1.5) 0.1 0.6 1.8 15.8 
DBH ⩽25 [cm] 25 20.7 (3.4) 20.6 (3.4) 0.1 0.4 0.8 4.1 
DBH >25 [cm] 25 29.2 (3.4) 28.9 (3.1) 0.3 1.1 1.3 4.6 
H ⩽17.5 [m] 28 16.1 (2.0) 16.3 (1.0) − 0.2 − 1.3 1.8 11.2 
H >17.5 [m] 22 18.1 (1.8) 18.1 (0.5) 0.0 0.0 1.6 8.9 
CBH ⩽17.5 [m] 28 11.2 (1.4) 11.1 (1.9) 0.1 0.7 1.9 17.5 
CBH >17.5 [m] 22 11.2 (1.3) 11.2 (1.0) 0.05 0.5 1.5 13.2  

Table 4 
Tree parameters values measured with SLAM (MLS) and on the ground 
(FELLED). Abs: absolute values; %: percent values.  

Variable N Mean (σ) Bias RMSE 

MLS FELLED Abs % Abs % 

DBH [cm] 50 24.7 
(5.1) 

24.7 
(5.2) 

0.01 0.04 2.7 10.8 

H [m] 50 15.6 
(1.7) 

17.1 
(1.2) 

− 1.48 − 8.64 2.4 13.9 

CBH [m] 50 9.7 (1.1) 11.2 
(1.5) 

− 1.48 − 13.3 2.2 19.5 

VOL [m3] 50 0.31 
(0.1) 

0.32 
(0.1) 

− 0.01 − 4.1 0.04 12.4 

DBH ⩽25 
[cm] 

25 21.4 
(3.3) 

20.6 
(3.4) 

0.8 4.1 2.2 10.6 

DBH >25 
[cm] 

25 28.0 
(4.3) 

28.9 
(3.1) 

− 0.8 − 2.8 3.1 10.6 

H ⩽17.5 [m] 28 15.1 
(1.7) 

16.3 
(1.0) 

− 1.2 − 7.6 2.4 14.7 

H >17.5 [m] 22 16.3 
(1.6) 

18.1 
(0.5) 

− 1.8 − 9.8 2.3 12.9 

CBH ⩽17.5 
[m] 

28 9.4 (1.2) 11.1 
(1.9) 

− 1.7 − 15.5 2.5 22.4 

CBH >17.5 
[m] 

22 10.0 
(1.0) 

11.2 
(1.0) 

− 1.2 − 10.4 1.7 14.9  
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lidar (HMLS) by GeoSlam company compared to manual field mea-
surements, considered as ground truth, in a forest stand (79 ha) in 
Turkey. They reported that DBH RMSE was 2.41% and bias 0.56%, while 
the timber volume showed a high deviation (21,5%), compared with 
allometric values. Bauwens et al. (2016) compared TLS with a handheld 
MLS. These two different systems, compared with the traditional field 
DBH measurements, provided similar results with a bias < − 0.2 cm and 
a RSME < 1.5 cm. The DBH detection was determined with an accuracy 
of <3 cm scoring 96% for the TLS and 98% for the MLS. These rates 
decreased, respectively, to 78% and 73% with < 1 cm accuracy. This 
confirms that TLS e MLS produce comparable results in terms of accu-
racy, while the latter may result convenient as it reduces the time spent 
for performing the survey and the post processing phase of point cloud 
registration. Our results showed that data collected with MLS survey in 
an dense even-aged black pine plantation, provides acceptable DBH 
estimations, featuring a 10.8% RMSE respect to ground truth (4.5% 
RMSE with traditional measurements). The accuracy of DBH estimation 
with MLS remains sufficiently high at all size classes. The error slightly 
increases with height measurements, ranging from 13.9% for H and 
19.5% for CBH, where traditional hypsometer survey produced 10.2% 
and 15.8% respectively. It is worth to note that our study confirms the 
most recent findings in the literature; the accuracy of H estimations 
decreases when the tree height increases, highlighting some limitation 
of the proposed approach. Consistently, the RMSE increases from the 
ground to the top of the tree for two reasons: i) the crown, being more 
dense, generally occlude the light beam by LiDAR; ii) the distance from 
the scanner to the stem decreases both measurement accuracy and 
points resolution. Both of these effects result in a smaller number of good 
quality arcs (Hyyppä et al., 2020). The values achieved in this work are 
not very different from those recorded in a Finland Boreal forest 
(Hyyppä et al., 2020) where the RMSE for total tree height estimation, 

Fig. 8. Regression analysis between DBH (a) and H (b) values derived by laser 
survey (MLS, red dots), traditional field operation (TRAD, green dots) and 
ground truth assessment data (FELLED). 

Fig. 9. Boxplots of the DBH distribution (a) and tree height H (b) from MLS (L - 
red), TRADitional (T - green) and FELLED trees measurement (F - blue) for the 
whole sample (All) and sub-samples (DBH below/above 25 cm and H below/ 
above 17.5 m). Horizontal bold lines are medians, blue dots are the means. 
Whiskers are minimum and maximum values and circles are outliers. Signifi-
cance of differences in DBH and H between MLS, TRAD and FELLED are marked 
by “ns” (not significant, p-value > 0.1) or “***” (p-value < 0.001) tested with 
paired two-sided Student’s t-Test. 

Fig. 10. Boxplots showing the CBH distribution (a) the volume distribution (b) 
of the tree stems from SLAM laser technology (L - red), traditional (T - green) 
and field direct measurement of felled trees (F - blue), across the whole sample 
(n = 50). Horizontal bold lines are medians, blue dots are means. Whiskers are 
minimum and maximum values and circles are outliers. * = p value < 0.05, ** 
= p value < 0.01, *** = p value < 0.001; ns, not significant (paired and “two- 
sided” Student’s t-Test for laser and traditional measures with the 
ground truth). 
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using a backpack mobile laser scanner, was 8.7%. From the statistical 
analysis, the authors reported a RMSE of stem Volume computed in two 
sample plots, ranging from 0.053 m3 e 0.002 m3. The tree density in 
Boreal forests is usually much lower than in scarcely thinned mountain 
conifer plantations where the standing trees treetops are often hardly 
detectable. Considering our case with similar characteristics, the RMSE 
value compared with felled trees is 0.004 m3. A detection accuracy of 
90.9% was reached for the DBH detection from a MLS based point cloud 
compared with traditional ground data (Chen et al., 2019). This is 
confirmed even in the article by Cabo et al. (2018), where TLS e ZEB 
REVO are compared in Pinus pinea and Platanus hispanica plantations. In 
those sites, DBH RMSE is 0.011 m e 0.009 m respectively and H RMSE of 
1.340 m and 9.440 m. Our approach produces comparable results with 
those already described in the reviewed literature, despite the authors 
tested the methodology with trees higher that 15 meters and in sunny 
conditions that reduce the MLS accuracy. Kaarta Stencil 2 proved to be 
versatile and featuring higher mobility if compared with TLS. The data 
processing method proposed in our study provides the most robust 
denoising method was the Hough transformation, since it maintains 
stem features up to the tree crown, allowing a better accuracy on the 
stem modelling phase. It worked out in good combination with the 
cylinder fit Ransac algorithm for stem modelling. The proposed work-
flow is linear and replicable to further studies as well the sample used. 
Dealing with the CBH, the proposed method (Convex Hull) provides a 
3D graph showing the differences between the crown and the remaining 
stem, enabling the CBH visualization. A more efficient approach could 
be the combination of airborne collected data, for a more realistic 
detection of the crown shape from the forest canopy top (Luo et al., 
2018). Finally, an important aspect that needs further studies is the ef-
fect of diameter size (Ryding et al., 2020). In our study we have limited 
the detection to the dominant and regularly shaped species, the black 
pine, providing more homogeneous target and facilitating the data 
processing. The results obtained are encouraging but need to be vali-
dated in more heterogeneous structures with mixed species and multi- 
layer stands. 

5. Conclusions 

This study demonstrates the applicability of the hand held MLS with 
SLAM algorithm for the estimation of metric parameters of individual 
trees in a black pine (Pinus nigra Arn. plantation). The advantages of the 
MLS-SLAM application transcend the automatic registration of the scans 
and the low weight of the device, which favoured a high rate of reli-
ability in retrieving the 3D structure and forest monitoring. Statistical 
analysis between LiDAR and ground truth data shows an accuracy of 
about 10% of relative RMSE. The forest environment investigated had 
very dense and overlapping crowns, and the presence of a consistent 
number of branches from 8 m height hindered the laser beam in 
acquiring objects at this height; this limitation reduces the estimate of 
the maximum tree height and total stem volume calculation. Our 
method exploited a semi-automatic procedure for the branch-free stem 
volume estimation, even if few thresholding operations are needed in 
the loop. Our research paves the way for future experiments, by high-
lighting limitations that deserve further investigation. Firstly, the sam-
ple stand is homogeneous both in terms of tree species and morphology; 
the same approach should be tested in a more complex contexts. Sec-
ondly, the lack of literature benchmarks in the definition of CBH. 
Indeed, the comparison with ground truth data is left to the operator’s 
subjectivity; a more objective method of CBH extraction should be 
proposed in future research. Finally, the estimation of H cannot be 
sufficiently accurate, and integration with aerial data is still mandatory 
to guarantee a complete mapping of the surveyed area. Nonetheless, 
remote sensing data will provide new and accurate field data to improve 
measuring and estimation forest parameters, such as basal area or stand 
volume. 
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Kukko, A., Kaartinen, H., Hyyppä, J., Chen, Y., 2012. Multiplatform mobile laser 
scanning: Usability and performance. Sensors 12, 11712–11733. 
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Hyyppä, J., 2017. Assessing precision in conventional field measurements of 
individual tree attributes. Forests 8, 38. https://doi.org/10.3390/f8020038. 

Maguya, A.S., Tegel, K., Junttila, V., Kauranne, T., Korhonen, M., Burns, J., Leppanen, V., 
Sanz, B., 2015. Moving voxel method for estimating canopy base height from 
airborne laser scanner data. Remote Sens. 7, 8950–8972. https://doi.org/10.3390/ 
rs70708950. 

Markku, Å., Raumonen, P., Kaasalainen, M., Casella, E., 2015. Analysis of geometric 
primitives in quantitative structure models of tree stems. Remote Sens. 7, 
4581–4603. 

Moe, K.T., Owari, T., Furuya, N., Hiroshima, T., 2020. Comparing individual tree height 
information derived from field surveys, lidar and uav-dap for high-value timber 
species in northern japan. Forests 11, 223. https://doi.org/10.3390/f11020223. 

Mohan, M., Silva, C.A., Klauberg, C., Jat, P., Catts, G., Cardil, A., Hudak, A.T., Dia, M., 
2017. Individual tree detection from unmanned aerial vehicle (uav) derived canopy 
height model in an open canopy mixed conifer forest. Forests 8, 340. https://doi. 
org/10.3390/f8090340. 
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Vatandaşlar, C., Zeybek, M., 2021. Extraction of forest inventory parameters using 
handheld mobile laser scanning: A case study from trabzon, turkey. Measurement 
177, 109328. 
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