
3598 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 11, NO. 10, OCTOBER 2018

Quantitative Assessment of Scots Pine (Pinus
Sylvestris L.) Whorl Structure in a Forest

Environment Using Terrestrial Laser Scanning
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Abstract—State-of-the-art technology available at sawmills en-
ables measurements of whorl numbers and the maximum branch
diameter for individual logs, but such information is currently un-
available at the wood procurement planning phase. The first step
toward more detailed evaluation of standing timber is to intro-
duce a method that produces similar wood quality indicators in
standing forests as those currently used in sawmills. Our aim was
to develop a quantitative method to detect and model branches
from terrestrial laser scanning (TLS) point clouds data of trees in
a forest environment. The test data were obtained from 158 Scots
pines (Pinus sylvestris L.) in six mature forest stands. The method
was evaluated for the accuracy of the following branch parame-
ters: Number of whorls per tree and for every whorl, the maximum
branch diameter and the branch insertion angle associated with it.
The analysis concentrated on log-sections (stem diameter >15 cm)
where the branches most affect wood’s value added. The quanti-
tative whorl detection method had an accuracy of 69.9% and a
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1.9% false positive rate. The estimates of the maximum branch
diameters and the corresponding insertion angles for each whorl
were underestimated by 0.34 cm (11.1%) and 0.67° (1.0%), with
a root-mean-squared error of 1.42 cm (46.0%) and 17.2° (26.3%),
respectively. Distance from the scanner, occlusion, and wind were
the main external factors that affect the method’s functionality.
Thus, the completeness and point density of the data should be
addressed when applying TLS point cloud based tree models to
assess branch parameters.

Index Terms—Branch, forestry, LiDAR, modeling, wood pro-
curement, wood quality.

I. INTRODUCTION

THE wood quality of sawn goods determines the price ac-
quired for the sawn goods and the allowable costs of pro-

duction [1]. Wood quality is closely and inversely related to
knots in the wood, because knots have a direct adverse effect
on wood performance. For example, knots in sawn wood distort
the stem wood grain orientation, and decrease wood stiffness
and strength [2]. The numbers and the maximum knot size on a
piece of sawn wood are the two of the knot parameters that are
most often included in the grading of sawn goods [3], [4]. The
projection size of a knot’s cross section on a sawn board and
its effect on a board’s quality is dependent on both the diameter
and the angle in which the knot emerges from the pith [5]. Knots
are derived from branches, and log-specific branch parameters
such as the maximum branch diameter can be used as a part of
wood quality estimation and sawing optimization at sawmills
[4], [6]. Three-dimensional (3-D) imaging or X-ray scanning
can be used to assess the required branch and knot information
on logs, namely the number of whorls and the maximum branch
or knot size per whorl [7], [8]. However, sawmills plan their
sawn wood production prior to the harvesting of trees. Missing
information about wood quality of standing timber introduces
uncertainty into the planning, and can lead to additional costs
[9]. Foreknowledge of trees’ branch parameters would be valu-
able for the sawing industry.

Terrestrial laser scanning (TLS) is a technology that can pro-
vide a high detail 3-D point cloud of environment and it can be
used to measure wood quality indicators such as stem curve and
branch parameters on standing trees. A multiscan TLS survey
is usually performed from a few fixed positions, which limits
the data coverage [10]–[12]. However, there are at least two
approaches that can be used to overcome the spatial limitations.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0002-4045-6067
https://orcid.org/0000-0003-2730-8892
mailto:jiri.pyorala@nls.fi
mailto:global advance �reakcnt @ne penalty -@M xinlian.liang@nls.fi
mailto:global advance �reakcnt @ne penalty -@M xinlian.liang@nls.fi
mailto:yunsheng.wang@nls.fi
mailto:juha.hyyppa@nls.fi
mailto:mikko.vastaranta@global advance �reakcnt @ne penalty -@M helsinki.fi
mailto:mikko.vastaranta@global advance �reakcnt @ne penalty -@M helsinki.fi
mailto:ninni.saarinen@helsinki.fi
mailto:ville.kankare@helsinki.fi
mailto:markus.holopainen@helsinki.fi
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First, the current preharvest information is collected with the
use of remote sensing. The sample plot data required for build-
ing predicative models could be obtained using TLS, adding
the wood quality indicators to the suite of predicted inventory
attributes of a stand [13], [14]. Second, instead of static TLS,
detailed point clouds could be collected using a laser scan-
ner mounted on a moving platform, i.e., mobile laser scanning
(MLS) such as on a harvester [15].

The quantitative measurement of branch parameters using
TLS entails a tree model at level of details (LoD) 3. The LoD
3 model includes stem and main branching structure, i.e., the
branch bases diverting from the stem must be reconstructed [10].
Modeling of individual tree at LoD 3 and beyond, including full
branches with twigs, has been demonstrated in previous stud-
ies, e.g., Cheng et al. [16], Gorte and Pfeifer [17], Bucksch and
Lindenbergh [18], Côté et al. [19] and Raumonen et al. [20],
to name just a few examples that represent different modeling
approaches. Cheng et al. [16] segmented sparse TLS range im-
ages into patches and extracted the tree skeleton by analyzing
the connections between the patches. Each patch was then mod-
eled as a cylinder. The study by Gorte and Pfeifer [17] used
a point cloud of a tree that was collapsed into voxels. Gorte
and Pfeifer [17] removed the empty voxels, and the remaining
voxels were reduced into a tree skeleton that was segmented
into stem and branches based on the internode neighborhood-
relations. In the study by Bucksch and Lindenbergh [18], a point
cloud was divided into an octree to extract the skeleton. Côté
et al. [19] combined a skeleton extraction method and a branch
growth model to produce realistic tree models despite the data
gaps in the point cloud. Raumonen et al. [20] on the other hand,
used a quantitative structure model (QSM) approach that di-
vided the point cloud into small spherical subsets of points.
The subsets were characterized by their eigenvectors, and fur-
ther skeletonized into a hierarchical structure that included tree
trunk, branches, and twigs. The point cloud was then segmented
using the skeletonized structure and each segment was modeled
using a cylinder fitting. For further reading, at least Boudon
et al. [21] and Bournez et al. [22] have carried out comparative
studies between existing tree modeling methods that include
individual branching parameters.

There has been a lack of studies that evaluate tree-modeling
at LoD 3 in a forest environment. Raumonen et al. [23] showed
that the QSM approach can be applied to forest plot conditions,
too, but the group did not report how occlusion, wind, or other
factors related to a forest environment affected the results. Côté
et al. [24] scanned six trees in a forest environment and reported
that also in the presence of occlusion and wind, the combined
use of TLS point cloud processing and branch growth models
reconstructed tree models with realistic branch distributions,
when compared to destructive field measurements. In addition,
only a few studies have tested branch measurements in forested
conditions using semiautomatic methods, e.g., [25], [26]. In
the first study, Dassot et al. [25] scanned 42 trees in a forest
environment. The stems and branches with diameters exceed-
ing 7 cm were then manually selected from the point clouds
and modeled using automated cylinder fitting. In the second
study, Eysn et al. [26] reconstructed comprehensive tree mod-
els semiautomatically utilizing the 2-D intensity maps of the

TABLE I
PLOT INFORMATION

point clouds comprising a 0.65 ha stand of old forest. Bayer
et al. [27] skeletonized manually 42 tree point clouds in a mixed
forest environment. All three groups reported that their method’s
accuracy was affected by the occlusion toward the tree top and
the effect of wind.

However, the accuracy in the acquisition of individual branch
parameters that would be required for wood quality estimations
in standing trees has not yet been comprehensively evaluated.
A method for stem recognition and modeling reported by Liang
et al. [28] was presented for TLS point clouds. The method used
in this present study was broadened to include the main branch-
ing structure of trees. It was applied to multiscan point clouds
of individual Scots pine (Pinus sylvestris L.) trees that were
selected from varying forest conditions in order to capture and
recognize the external factors that affect the method’s function-
ality. The analyses concentrated on the log sections (i.e., part of
a stem with diameter >15 cm), and the method was evaluated
using branch parameters currently available in the sawmilling
industry: The number of whorls and the maximum branch di-
ameter and the insertion angle of the corresponding branch of
each whorl. The evaluation was done by comparing the results
of the TLS against visually identified whorls and manually mea-
sured branch parameters of the largest branch in each whorl. In
addition, tree- and plot-specific factors affecting the method’s
functionality were analyzed. Thus, the aim of this study was to
introduce a TLS point cloud based method that could be used on
single trees in situ to detect branches and model their diameters
and insertion angles, i.e., to produce similar branch parameters
as produced by state-of-the-art wood quality estimation systems
currently used at sawmills.

II. MATERIALS

A. Field Data

The study subject material consisted of data obtained from
158 Scots pines in six mature forest plots in southern Finland,
i.e., four plots in Evo (61.19 °N, 25.11 °E) and two plots in
Orimattila (60.80 °N, E 25.73 °E). The plots were mainly Scots
pine- dominated, except for plots 4 and 5 that were mixed Scots
pine and Norway spruce (Picea abies H. Karst.) forest. The sam-
ple plot forest inventory attributes are based on existing stand
forest inventory data for the year 2013, as presented in Table I.
The sample trees were selected in groups of three–six trees. The
sample tree information is presented in Table II. Sample tree di-
ameter at breast height (1.3 m, DBH) was measured by calipers.
Tree height (H) and the heights of the lowest dead branch
(Hdb ) and the live crown base (Hlc ) were measured using the
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TABLE II
SAMPLE TREE INFORMATION

Vertex III (Haglöf, Sweden). The data were collected in August
2014.

B. TLS Data Acquisition

TLS data were collected in the August–September period in
2014 using a Faro Focus3D X 330 phase-shift scanner (Faro,
USA). Each tree group was scanned from 5 to 10 positions.
The number of scanning positions was dependent on the vis-
ibility in the plot and the scanning positions were distributed
such that data coverage on all sides of all targeted trees was
obtained. The mean horizontal distance between a scanning
position and a tree was 9.6 m (see Table III). Six spheres were
used as reference targets for coregistering the scans. The spheres
were distributed to enable all six spheres to be visible in one
of the scans and at least three spheres were visible in all the
other scans. The sampling distance between two points with
these scanner settings was 6.3 mm at 10 m distance. The mean
point density was 17889pts/m2 atHdb , which was based on the
3-D distance between the scanner and the lowest dead branch
and the aforementioned point-to-point sampling distance: First,
we calculated the point-to-point sampling distance at Hdb by
dividing the aforementioned point-to-point sampling distance
(6.3 mm) by 10 m, and multiplying the result by the 3-D dis-
tance between the scanner and the lowest dead branch. Then,
we calculated how many points fit in a square-meter given the
point-to-point distance (see Table III).

Preprocessing of the TLS point clouds was carried out using
Faro Scene software (version 5.2.1). Individual scans were co-
registered, and dark and stray points were filtered out from the
point clouds. The overall mean registration error of the reference
target coordinates between the scans was 1.3 mm (see Table III).

Wind is known to have an effect on the quality of TLS data
[29]. The mean and maximum wind speeds (m/s) during each
plot scanning, as recorded by the nearest weather station of
Finnish Meteorological Institute, are given in Table III.

III. METHODS

A. Manual Reference Measurements of the Branch Parameters
Using the Point Clouds

Manual TLS point cloud measurements on the sample
trees were carried out using TerraScan software (TerraSolid,
Finland). Since the scope of this study was to evaluate a quanti-
tative branch detection and modeling method, we avoided other
processing steps that could have affected the results, including
tree segmentation and extraction methods that are separate is-
sues. Therefore, the sample trees were extracted from the point

cloud manually. The extraction included removing the ground
points, the stems, and the crowns of the surrounding trees. After
extraction, each whorl’s largest branch was identified visually.
The points belonging to the visually identified largest branch
in each whorl were extracted and the branch diameter was esti-
mated by the means of manual circle fitting. The MicroStation’s
“Draw circle”–tool was used to place a circle around the ex-
tracted points perpendicularly to the longitudinal axis of the
branch (see Fig. 1). The method did not account for stochastic
noise or elliptical branch shape: The circle was drawn around all
points that appeared to belong to the branch. Branch diameter
(bd ) was given by the circle diameter. The height of the branch
was defined as the difference between the circle center (bc ) z-
coordinate and the visually estimated root collar height. Branch
insertion angle bα was defined as the angle between a vertical
Z-axis nz = [0, 0, 1] and the normal e0 = [e1 , e2 , e3 ] of the
fitted circle similar to that described in the literature [5] (1).
Descriptive statistics of the manual measurements are presented
in Table IV

cos b∝ = nz · e0 . (1)

B. Quantitative Whorl Detection Method

The extracted trees were modeled quantitatively by identify-
ing points belonging to tree stems and fitting cylinders to them
using a weighted least-squares optimization to minimize the dis-
tance of the points to the cylinder surface. Details of the method
can be found in Liang et al. [28].

Points within 50-cm distance from the modeled stem surface
were selected and divided into segments of 15 cm in height, in
5-cm intervals, i.e., consecutive segments had a vertical overlap
of 10 cm. Each segment was analyzed for the distribution of
point density and the mean distance of points from the stem
over a 360° rotation around the stem, as shown in Fig. 2. Two
distributions instead of one were used to separate branch points
from interfering noise points, such as from branch bumps or
other stem deformations that should not have a peak in the
mean distance histogram, as shown in Fig. 2.

To smooth these data, the point density and mean distance
distributions were convolved with a Gaussian window function
using the Fourier transform [30]. Fourier transform converts the
original data Xn in the spatial domain into Xk in the frequency
domain by computing a discrete Fourier transformation

Xk =
N−1∑

n=0

xne
−i2πkn/N (2)

where N is the periodic sequence of the data (360° around the
stem in this case) and xn is the function’s value at n degrees. The
complex sinusoidal component e−i2πkn/N determines the func-
tions’ amplitude and frequency, where i stands for the imaginary
unit

√− 1. Xk is multiplied with the Gaussian window func-
tion, and transformed back to the original domain. The result is
a convolution of the original function and the Gaussian window
function. (see Fig. 2(c) and (d)) The standard deviation (σ) of
the Gaussian distribution has an effect on the smoothing results,
as it affects the width of peaks in the resulting convolution. In
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TABLE III
TLS DATA COLLECTION STATISTICS

Fig. 1. Definition of the branch parameters used in this study: Branch diameter
bd , 3-D-location of a branch bc and branch insertion angle bα , i.e., the angle
between the vertical z-axis nz and the branch axis or eigenvector e0 .

TABLE IV
MANUAL BRANCH PARAMETER REFERENCE DATA STATISTICS

this study, σ was set to 5, based on the testing of the parameters
for two Scots pines that were not included in this study.

The resulting functions of point density and distance were
then analyzed utilizing the continuous wavelet transform
method (CWT) [31]. CWT is a robust signal-processing method
where a continuous wavelet is scaled and transformed into the
original function’s domain and iteratively compared to the orig-
inal function to find matching patterns. The result is a 2-D-array
Cwp of wavelet coefficients that, intuitively, reflect the good-
ness of a pattern matching between the original function and the
wavelet

Cwp =
1√
w

∫ −∞

∞
c (t)ψ

(
t− p

w

)
dt (3)

where c(t) is the original function and ψ(t) is a continuous
wavelet, with w being the wavelet width or a scaling parameter,
and p the position of the wavelet or a translation parameter.
The wavelet ψ(t) used in this study had a predefined width set
ranging from 5° to 45° for the point density function and from
20° to 75° for the mean distance function, based on the testing of

Fig. 2. Principle of branch detection. A whorl of four branches as seen from
(a) side and (b) top view. (c) Number of points per degrees around the stem at
the height of the whorl. (d) Mean distance of points from the stem surface per
degrees around the stem. The gray line in (c) and (d) represents the convolution
of a Gaussian window function and the original distribution that is used for peak
detection.

the parameters for two Scots pines that were not included in this
study. The peak locations were identified as positions of local
maxima inCwp . The positions that exhibited peaks that satisfied
the aforementioned conditions in both distributions were defined
as branch positions. Points falling within each peak were labeled
to belong to a single branch.

C. Branch Modeling Method

The points within a 2- to 12-cm distance from the stem that
belong to an identified branch were projected onto a 2-D plane
perpendicular to the branch’s longitudinal axis and modeled
as a circle using the RANSAC algorithm [32]. A local coor-
dinate system was established for the branch points and the
longitudinal axis direction was indicated by the eigenvector that
corresponded to the largest eigenvalue.

In RANSAC algorithm, the solution of a model is sought
iteratively. On each iteration round a random sample of three
points was selected to which a circle was initially fitted using
ordinary least squares approximation. Then, the ratio of points
lying within a 0.5-mm distance from the circle arc (inliers) was
calculated. The diameter of the circle fitted to the inliers from
the iteration round that had the highest number of inliers was
considered as the branch diameter estimate.

The branch insertion angle was calculated using the longitu-
dinal axis direction (1). Branches that had near vertical insertion
angles were filtered out of the data, such that 10◦ < bα < 170◦
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in the data. This was done to exclude any further possible false
positive detections caused by stem deformations and stochastic
noise.

D. Evaluation of the Method

The results of the quantitative branch detection were com-
pared to the manually identified reference, i.e., the largest branch
in each whorl. The quantitatively detected branches belonging
to the same whorl were matched together with a corresponding
reference branch based on their heights from the root collar.
The minimum difference in height was used as the matching
criteria, with a 15-cm threshold for the maximum difference
between branches within same whorl. In other words, all the
quantitatively detected branches that were within 15 cm of a
certain manually identified branch were labeled as belonging to
the same whorl. The 15-cm threshold was decided based on the
visual inspections of the data and the matching results.

The detection method was analyzed for the detection accu-
racy using all whorls and in each sample tree separately. Whorl
detection accuracy (%) was defined as follows:

Accuracy (%) =
na

nm + nf p
∗ 100 (4)

where na is the number of whorls detected correctly by the
quantitative method, nf p is the number of false positive detec-
tions made by the quantitative method, and nm is the number
of whorls identified visually. The whorl detection accuracy de-
scribes the methods ability to detect branches and to differentiate
branches from other structures present in the point cloud. Ad-
ditionally, the false positive rate was calculated as the ratio of
nf p to nm .

The functionality of the quantitative branch detection method
was assumed to be highly dependent of the point cloud density
and completeness. Both parameters are in general strongly af-
fected by the distance of the scanned object from the scanner.
Therefore, the performance of the detection method was also
compared against the whorl heights. Additionally, the lowest
and highest detected whorls were compared to crown section
limits Hdb and Hlc as measured in the field (see Table II). This
was done in order to reveal the possible self-occlusion caused
by the tree crowns.

Branch diameter and insertion angle estimates derived from
the RANSAC circle fitting method were compared to the refer-
ence measurements that included the branch diameters and in-
sertion angles of the largest branch in each whorl derived from
the manual circle fitting method. Using the matched whorls as
described above, the maximum branch diameter and the inser-
tion angle of that branch as measured by either method were
compared within each whorl. The accuracies of the maximum
branch diameter and the corresponding angle estimates in each
whorl were evaluated in terms of bias and root-mean-squared
error (RMSE)

bias =
∑n

t=1(dm t − da t)
n

(5)

RMSE =

√∑n
t=1 (dm t − da t)

2

n
(6)

TABLE V
TREE-SPECIFIC ACCURACY OF THE QUANTITATIVE WHORL

DETECTION METHOD

where t gives the order of each measurement, dm is the manu-
ally measured branch diameter or insertion angle of the largest
branch in a whorl, da is the corresponding estimate derived from
the quantitative method and n is na –nf p . Both bias and RMSE
were also calculated as percentages by dividing the results from
(5) and (6) by the mean values of the reference measurements.
The accuracy was inspected for the whole dataset and for each
tree separately.

The abovementioned accuracies of whorl detection and the
largest branch diameter and the corresponding branch angle
estimates encompass the possibility that the largest branch in a
whorl detected by the quantitative method is a different branch
than that identified by visual inspection. This may be due to
the quantitative method having not detected the same branch,
or the diameter estimation, which is consistent with another
branch in that whorl being larger. Therefore, we defined the
sensitivity of the evaluation for the choice of branch, i.e., how
much of the variation in the accuracy is due to the choice of
branch within a whorl and how much to the branch modeling
method. The largest branches identified manually were matched
with the closest quantitatively measured branch within a 5-cm
search radius in 3-D. The search radius was defined by the visual
inspections of the data to ensure that the matched observations
were from the same branch. The accuracy of the branch diameter
and insertion angle estimation was defined for these branches
as described above in (5) and (6).

IV. RESULTS

The quantitative whorl detection method detected correctly
2420 out of all 3403 (71.1%) manually identified whorls in
the log-sections of the 158 trees. Considering also the num-
ber of false positives (64), the whorl detection accuracy was
69.9%. The ratio of false positives to the number of reference
branches was 1.9%. The visual inspections indicated that the
false positives were caused by loose bark, points left from sur-
rounding tree crowns, stochastic noise, and a broken branch that
was detected twice. In principle, the false detection rate can be
understood as low. Three trees out of the 158 had no whorls de-
tected by either the quantitative or the visual method within the
log-section. Tree-specific accuracy statistics of the quantitative
whorl detection for each plot are shown in Table V. The highest
accuracy was achieved in plot 1, where the quantitative method
had a minimum of 50%, mean 87.8%, and a maximum of 100%
tree-specific whorl detection accuracy.
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TABLE VI
TREE-SPECIFIC BIAS AND RMSE STATISTICS OF THE BRANCH DIAMETER AND INSERTION ANGLE ESTIMATES

Fig. 3. White columns represent the distribution of the visually identified
whorls in all 158 trees with respect to the whorl height. The gray columns
represent the distribution of the quantitatively detected whorls with respect
to the whorl height. The dashed black line shows the ratio of false positives
to the number of manually detected whorls at given heights. The solid black
line displays the whorl detection accuracy of the quantitative method at given
heights.

The functionality of the quantitative whorl detection method
in respect to the heights of the detected whorls is visualized in
Figs. 3 and 4. The distribution of the visually identified reference
whorls along the length of the stem in Fig. 3 shows that the
numbers of whorls that were visible in the point clouds was small
in the lower parts of the trees, which was due to natural self-
pruning, i.e., shedding of branches of Scots pine. The amount
of manually identifiable whorls increased gradually and then
decreased again higher in the trees. As illustrated in Fig. 4,
the lowest quantitatively detected whorl’s height in each tree
correlated well with the Hdb measured in the field for each tree
(Pearson’s correlation coefficient r = 0.79). Fig. 4 also shows
that the highest quantitatively detected whorl tended to be lower

Fig. 4. Heights of the lowest whorls detected by the quantitative method
(triangles) and the heights of the highest quantitatively detected whorls (circles)
are plotted against the tree specific Hdb on the left-hand and Hlc on the right-
hand vertical-axes, respectively. The black diagonal line is the reference line.
The number of trees was 158.

thanHlc , which was due to the log limit (stem diameter>15 cm)
being lower thanHlc for most trees. The highest detected whorl
and Hlc showed correlation of r = 0.44.

In comparison to the manual reference measurements, the
mean estimates of the maximum branch diameters and their
insertion angle in the quantitatively detected whorls were un-
derestimated by 0.34 cm (11.1%) and 0.68° (1.0%), and had
RMSEs of 1.42 cm (46.0%) and 17.20° (26.3%), respectively.
Descriptive statistics of tree-specific bias and RMSE of branch
diameter and insertion angle estimates for each plot and in total
are presented in Table VI. The estimation errors of the maximum
branch diameter estimates and the corresponding insertion an-
gles in the quantitatively detected whorls were evenly distributed
with respect to the height from the root collar, i.e., the errors
were not height dependent, as shown in Fig. 5.
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Fig. 5. Estimation error of the branch diameter (left) and insertion angle (right)
of the largest branch in a whorl with respect to the height from the root collar
for all branches. The number of whorls was 3403.

Fig. 6. Factors that adversely affect the whorl detection and branch modeling.
(a) Branches at approximately 17-m height from the root collar, where the
branch point cloud is sparse due to the increasing distance to the scanner and
increasing self-occlusion effect. The branch shape is hardly represented in the
point cloud data. (b) The tree in the middle: A sample tree on plot 4 situated
amid heavily occlusive Norway spruces. (c) and (d): Wind distortion that causes
the stem and branches appear multiplied and distorts their shape.

The abovementioned results include cases where the largest
branch in a whorl detected by the quantitative method is a differ-
ent branch than that in the reference data. The bias and RMSE
of the branch diameter and insertion angle estimates were calcu-
lated separately for all branches that could be matched between
the both datasets to assess the accuracy of the branch mod-
eling procedure itself. The number of matched branches was
1658. The estimated diameter and insertion angles for matched
branches had biases of 0.41 cm (12.6%) and 0.05° (0.0%), and
RMSEs of 1.31 cm (40.4%) and 15.4° (23.4%), respectively.

Factors that affect the whorl detection and branch modeling
are illustrated in Fig. 6: 1) Point clouds tend to be sparser toward
the tree top, i.e., further from the scanner. Fig. 6(a) illustrates
an example of sparse point cloud data at 17 m above the root
collar. Under such a condition, the circular shape of the branch
is not fully recorded, which makes the modeling of the branch
extremely difficult, if not impossible. 2) The tree’s own crown
and that of the surrounding trees can cause considerable oc-
clusion especially toward the tree tops. A heavy occlusion by
surrounding Norway spruces is illustrated in Fig. 6(b). 3) Cer-
tain trees were heavily distorted due to the wind (see Table III),
especially toward the tree tops (see Fig. 6(c) and (d)).

V. DISCUSSION

Our study presented a quantitative branch detection and mod-
eling method for multiscan TLS point clouds of individual Scots
pine trees, including the first comprehensive evaluation of quan-
titatively derived branch parameters in a forest environment
plot-, tree-, whorl-, and branch-specifically. The main motiva-
tion for the evaluation of the method was that the comparable
state-of-the-art wood quality estimation systems currently used
at sawmills that rely on X-ray scanning, provide information on
whorl quantity and the maximum knot size within each whorl
[8]. In the absence of X-ray equipment, the grading of logs is
based on even sparser data on the knottiness, such as the size of
the largest branch on a log surface [6]. Such grading approaches
have been supported by Björklund and Petersson [33] who con-
cluded in their study that the maximum knot diameter in a Scots
pine saw-log is often a robust indicator of the overall knottiness
of the log. The accuracy of similar wood quality indicators as
currently used at sawmills’ production and wood procurement
was considered as a solid reference in assessing how useful and
efficient quantitative TLS point cloud based branch structure
data are for the estimation of wood quality in standing timber.

The stem detection and modeling method used in this study
was originally introduced for stem detection and mapping in a
forest environment [28]. However, in this study we extracted
the sample trees manually in order to avoid the results of the
quantitative branch detection and modeling being affected by
the accuracy of tree extraction. Tree segmentation and extrac-
tion are separate topics that have been further treated in other
studies, e.g., Zhong et al. [34], Raumonen et al. [23], and Xia
et al. [35]. Such methods are thus readily available to separate
the individual trees for further analyses, including the current
study. All the stem and branch detection and modeling parts
of the quantitative method presented in this study are point-
processing techniques that utilize 3-D-coordinates of individual
points, and require no further information such as intensity val-
ues. However, should multi- or hyperspectral TLS or any other
more advanced point-cloud-producing techniques become more
commonly available in the future, implementing additional in-
formation could further improve the proposed method. Such
improvements could include distinguishing between dead and
live branches, which is of high importance in the grading of
sawn goods [3].

The quantitative method found the majority of the whorls in
most trees (see Table V) compared to the actual number found
by manual identification. As the functionality of the method was
dependent mainly on the density and completeness of the point
cloud and the spatial accuracy of the points, three factors preva-
lent in the forest environment of the present study were found
to affect the whorl detection accuracy, namely: Distance from
the scanner, occlusion, and wind. First, Fig. 3 illustrates a rapid
decrease in the number of visually detectable whorls as the dis-
tance from the scanner increases. More importantly, the share
of quantitatively detected whorls decreases even more rapidly.
Second, the scanning setup was carefully planned beforehand
in order to minimize the occlusion, but the occlusion effect can-
not completely be avoided (see Fig. 6(b)). The growing stock
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volume in plot 4 was 400 m3 / ha (see Table I) and is likely to
have affected the detection accuracy on that plot (see Table V).
Self-occlusion caused by tree’s own crown is also difficult to
overcome, as it requires balancing between visibility and dis-
tance from the scanner. The scope of this study was limited to
the log section and Hlc was in many trees above the log sec-
tion (see Fig. 4), e.g., on plots 4 and 5 (see Table II); thus, the
self-occlusion effect on these plots may not have been a major
source of inaccuracy in branch detection. Third, the time for
data collection was limited due to the harvesting schedule. For
that reason, the data were collected regardless of the presence
or absence of windy conditions on certain dates. However, this
situation mirrors what can be expected under practical work-
ing conditions. Plot 2 had the lowest whorl detection accuracy
among the six plots studied (see Table V), which was at least
partly due to a combination of high Hdb (see Table II) in the
sample trees and the consequently low point density on branches
(see Table III), and the strong wind (see Table III).

The factors that were found to affect the method’s function-
ality are supported by previous findings, which reported that
TLS-based modeling of the tree structure is sensitive to sur-
rounding conditions [10], [25], [26]. How increasing the point
cloud density or decreasing the distance of the scanning po-
sitions to targeted trees would affect the whorl detection and
branch modeling accuracy should further be tested. However, it
is also worth noting that the TLS point cloud data used in this
study represent the best terrestrial point cloud quality in terms
of point density currently available for forest conditions. The
scanning setup in this study, i.e., five to ten scans for every three
to six trees already resulted in high point densities that are most
likely not achievable for practical applications with reasonable
cost efficiency. On the other hand, it is also possible to achieve
a similar point density as that obtained in this study using MLS
[15], which would involve a scanner mounted on a harvester.
Data acquisition with MLS has been reported to be faster than
with TLS [10].

The scope of this study allowed the method to be evaluated
for the accuracy of the maximum branch diameter in each whorl,
regardless of which exact branch was in question. The results
showed that even though the branch diameter and insertion an-
gle estimation errors had variation, there was little bias and the
errors were not height dependent (see Fig. 5 and Table VI). How-
ever, erroneous branch parameter estimates may cause over- or
underestimation of the internal knot size and, consequently, the
expected wood quality. Therefore, we also tested the accuracy
of the branch modeling method itself by evaluating the accu-
racy of the branch diameter and insertion angle using individual
branches that were matched based on their 3-D location. The
results showed only a slightly better RMSE in comparison to the
whorl-specific accuracies, and a slightly larger bias. The results
imply that the choice of branch within a whorl may not play
any major role in the estimation of the whorl-specific branch
parameters.

The accuracy of TLS point cloud based tree models for esti-
mating individual branch diameters using circle fitting has not
been evaluated until now. Despite the lack of directly compara-
ble branch modeling studies, it is worth noting that fitting circles

to branches is similar to fitting circles to stems in a single-scan
mode as only a half of a circular object is visible. Olofsson
et al. [36] used a similar RANSAC circle fitting approach as
that used in this study and they applied this to give a DBH es-
timation in a single-scan point cloud. They reported RMSEs in
the range of 2.6−5.9 cm (9.6−21.4%) in the DBH estimation,
the errors increased as the distance from the scanner increased.
Additionally, Koreň et al. [37] compared several different circle
fitting methods for their DBH estimation, and reported RMSEs
of 1.71−12.49 cm when using the single-scan setup. In the cur-
rent study, the RMSEs of branch diameters were similar in terms
of absolute values (see Table VI). However, the relative errors
(RMSE-%) were clearly higher due to branches being smaller
than the stems. Similar to that reported by Olofsson et al. [36],
this present study found the errors increased further from the
scanner, i.e., toward the tree tops (see Fig. 5).

The matching errors in coregistering of the multiple scans
presented in Table III might also have had a small effect on
the accuracy of the branch detection and branch parameter es-
timates. The effect of wind and the registration errors could at
least partly be overcome by processing the point clouds sepa-
rately, instead of as a merged multiscan point cloud [11], [26],
[38]. Moreover, an approach such as presented by Côté et al. [24]
that would combine TLS point cloud based tree models with a
branch growth model, could allow estimation of the branching
structure and branch parameters also in the occluded parts of
the tree.

Pyörälä et al. [39] used TLS point cloud based manual branch
measurements and compared them to whorl data obtained by X-
ray scanning. In that study, 55% of the whorl structure within
the log sections that was detected by the X-ray method was
also detected using the TLS method. The manual branch diam-
eter measurements obtained from the TLS point clouds were
for the most part found to be inconsistent with internal knot
diameters measured by means of X-ray scanning. However, the
difference between the tree-specific maximum knot and branch
diameters was not statistically significant. The results of the
previous and the current study indicate that it is possible that
some relationship between the TLS point cloud based quantita-
tive branch diameter estimates and the expected wood quality
could be established, if the largest knot in a log was considered
to be a sufficient indicator of wood quality as was reported by
Björklund and Petersson [33]. In addition, the lowest quantita-
tively detected whorl correlated well with Hdb (see Fig. 4), a
variable that has been previously used for wood quality estima-
tions [40], [41].

VI. CONCLUSION

A TLS point cloud based method to model the main branch-
ing structure of a tree, i.e., branch bases that divert from the
stem method was tested on 158 mature Scots pine trees that had
grown on 6 forest plots and the whorls were quantitatively de-
tected with an accuracy of 69.9%. The whorl detection accuracy
decreased toward the tree tops, which demonstrated the effect
of the point density on the method’s functionality. The results
suggest that when developing the use of TLS-based compre-
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hensive tree models and quantitative methods for measurement
of wood quality indicators, the quality and point density of
the point cloud data can affect the results. These factors should
therefore be addressed in the studies in addition to the algorithm
development.
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