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Abstract 

The requirements for more accurate and up-to-date spatial data increases constantly due 
to changes occurring in the environment. In addition, there is a technical and economical 
need to map trees, tree ages and sizes, as well in wide forest areas as park areas in cities 
by modern scanning techniques. The aim of this thesis was to investigate different posi-
tioning methods for terrestrial laser scanned trees. The second aim was to examine dif-
ferent techniques to identify the species of the positioned trees. 
 
Laser scans from two separate relatively small woodlands were acquired for the thesis. 
These scans were utilised for tree locating and species identification. Tree positioning was 
based on the cylinder fitting method performed for tree stems provided by the scans. The 
results achieved by the positioning were analyzed based on the comparison to the manu-
ally measured reference values. To identify the tree species, the tree intensities and struc-
ture parameters extracted from the point clouds were used. 
 
According to the study results, the classification of some tree species was relatively well 
succeeded. However, the identification of some other species did not succeed as expected. 
The best classification correctness of 80 percent was achieved using the combination of 
tree intensities and the structure parameters, as well as by the structure parameters only. 
Classification using the intensities only provided considerably more unreliable results. 
Instead of that, one tree species (spruce) identification succeeded perfectly in each case. 
However, tree positioning succeeded obviously well, so the tree locations deviated slightly 
from the reference values. 
 
This examination indicated that a reliable evaluation of the tree classification results did 
not fully succeed with the relatively small tree sample size used in this thesis. To obtain 
more reliable estimate of success rate for the results provided by terrestrial laser scanning 
data, a larger sample size may be required. Furthermore, the laser scans for this work 
were performed in autumn when there were no leaves in the trees. This, of course, affected 
the intensity-based tree classification. However, modern tree positioning and classifica-
tion methods appear quite promising. The future use of these techniques require further 
development and examination work. 
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Tiivistelmä 

Yhä tarkemman ja ajantasaisen paikkatiedon tarve kasvaa jatkuvasti ympäristössä tapah-
tuvien nopeiden muutosten myötä. Tämä näkyy myös teknistaloudellisena tarpeena kar-
toittaa puulajeja, niiden ikää ja kokoa mm. erilaisilla nykyajan keilausmenetelmillä, niin 
laajoilla metsäalueilla kuin kaupunkien puistoalueilla. Tämän työn tavoitteena oli tutkia 
maastolaserkeilattujen puiden erilaisia paikannusmenetelmiä. Toisena tavoitteena oli 
tarkastella paikannettujen puiden lajitunnistusmenetelmiä. 
 
Työn toteuttamiseksi suoritettiin laserkeilauksia kahdella erillisellä pienehköllä metsä-
alueella. Näitä keilausaineistoja käytettiin puiden paikantamiseen ja lajitunnistukseen. 
Paikannus perustui keilausten tuloksena saaduille puun rungoille tehtyyn sylinterisovi-
tusmenetelmään. Laskennalla saatuja tuloksia analysoitiin vertaamalla niitä referenssiar-
voihin, jotka saatiin pistepilvistä manuaalisesti mittaamalla. Lajitunnistuksessa käytet-
tiin puista saatujen pistepilvien intensiteettejä ja rakenneparametreja.  
 
Suoritetun tarkastelun perusteella joidenkin puulajien tunnistaminen onnistui melko hy-
vin. Kaikkien puiden tunnistaminen ei kuitenkaan onnistunut odotetulla tavalla. Käyt-
täen pistepilvien intensiteettien ja pistepilvistä saatujen puiden rakenneparametrien yh-
distelmää, sekä pelkkiä rakenneparametreja, tulkittiin parhaimmillaankin noin 80 pro-
senttia tuloksista oikein. Pelkkiä intensiteettejä käyttäen saatiin huomattavasti epäluotet-
tavampi tulos. Sen sijaan yhden puulajin (kuusen) tunnistaminen onnistui kaikissa ta-
pauksissa täydellisesti. Toisaalta, suoritetussa tarkastelussa puiden paikantaminen on-
nistui kokonaisuudessaan hyvin, sillä laskennalla puille saadut sijainnit poikkesivat refe-
renssiarvoista kauttaaltaan varsin vähän. 
 
Tarkastelu osoitti, että maalaserkeilattujen puiden tunnistaminen tässä työssä käytetyllä 
suhteellisen pienellä otoskoolla ei täysin onnistunut. Tarkempi arvio maalaserkeilausai-
neistosta saatujen tulosten onnistumisprosentista olisi edellyttänyt suurempaa otosko-
koa. Lisäksi puiden laserkeilaukset tehtiin syksyllä, jolloin puissa ei ollut lehtiä. Tämä tie-
tenkin vaikutti puiden tunnistamiseen intensiteettien avulla. Nykyiset puiden tunnistus-
menetelmät vaikuttavat kuitenkin kokonaisuudessaan varsin lupaavilta. Menetelmien 
hyödyntäminen edellyttää yhä tutkimus- ja kehitystyötä. 
 

Avainsanat Maalaserkeilaus, puiden paikantaminen, puulajitunnistus 
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1 Introduction 
 

Throughout the years, forests have been highly important for Finland. The reasons for 

this are obvious: 73 percent of Finnish ground area is covered by forests, making it the 

most forest-covered country in Europe. Consequently, forests are a source of considerable 

income for the Finnish economy. In addition, forests are significant for recreational use 

and climate change mitigation. Thus, forests in Finland are utilised by many organizations 

from the wood industry to tourism businesses. (Luke 2018; Hetemäki & Hänninen 2013, 

204)  

 

To increase productivity, the forest industry needs more and more detailed information 

about the woodland they utilise. For instance, this information includes the location of 

individual trees and even their species. These data are fundamental part of updated data 

utilised for forest use planning. For example, a certain forest area can be defined by its 

productivity and the economical value. (Holopainen et al. 2011a, 128-129, 132, 135−137)  

 

Furthermore, to find the vendible trees, information about tree heights and age distribu-

tion are needed. Usually, the forests need to be thinned out after the trees are 12–15 metres 

in average height. The different tree species in turn become harvestable at different ages 

depending on growing environment and conditions. For instance, silver birches can be 

thinned already at the age of 20 years, whereas pines often should be several decades 

older. (Metsälehti 2019) Moreover the crucial parameters used in the evaluation of the 

woodlands and single trees are diameter at breast height (DBH), defining the basal area 

and wood volume. (Metsäkeskus 2019, 16-25) 

 

Forest inventorying is also needed for the classification of trees according to their grow-

ing environment. During the 20th century, nature-based tourism has increased dramati-

cally in Finland. This, in turn, has raised the status of the forests also from the viewpoint 

of traveling and spending free time. (Holopainen et al. 2011a, 128−129; Hetemäki & 

Hänninen 2013, 203−204).  

 

One example of forests used for recreation is conservation areas. These types of forests 

comprise natural woodlands (i.e., forests grown without human activities) and are pro-

tected by nature conservation law. Protected forests cover 2.7 million hectares, which 

corresponds to 12 percent of whole Finnish forest area. Based on Finnish law, even 2.4 

million hectares of this protected forest area are conserved. (Metsälehti 2019; Luke 2019) 

 

In Finland and all over the world, forests are constantly mentioned in headlines about 

climate change. The importance of forests is underlined due to their importance as carbon 

sinks and, thus, as climate change mitigators. The growth of the trees significantly absorbs 

carbon from the atmosphere. To affect the amount of different greenhouse gases in the 

atmosphere, more information about the composition and the density of forests is needed. 

Knowledge about the capability of different tree species to absorb carbon and other green-

house gas components is also essential. (Hiltunen et al. 2018, 5, 6, 8 and 10; Åkerblom et 

al. 2017, 1) 

 

Due to economical and environmental changes, the significance of the rapid and compre-

hensive forest information collection is increasingly emphasised in forest mapping. Dur-

ing the last decade, laser scanning methods have been developed and have become an 



2 

 

 

 

essential technique in forest mapping. Remote sensing technologies have enabled the 

mapping of wide forest areas. The spectral data collected by remote sensing methods 

provide information about woodland composition. However, single trees of the same spe-

cies may yield slightly different spectrums due to variations in crown shape. Conse-

quently, the identification of individual trees requires more exact methods providing 

knowledge about the lower part of the tree. This can be performed by terrestrial laser 

scanning, which enables defining specific geometrical tree parameters. This information 

can be used as reference data for the accurate estimating of remote sensing material. (Oth-

mani et al. 2013, 1; Lin & Herold 2016, 105−106,108−113) 

 

Laser scanning can be performed by aerial, terrestrial, mobile, and personal systems. Aer-

ial laser scanning refers to the surveying of the earth and the different ground targets from 

above. This can be performed by airplane, helicopter, or spacecraft. By contrast, terres-

trial laser scanning refers to the scanning of objects from fixed locations on the ground. 

Scanning on terrain can also be implemented by mobile systems such as a car or another 

corresponding vehicle. Recently, scanners have been developed also for personal use. 

These can be mounted, for instance, on a backpack. The most significant benefit of this 

scanning method is the independency of terrain conditions. (Cronvall et al. 2012, 13-16) 

 

The main advantage achieved by terrestrial laser scanning is a highly dense and explicit 

point cloud due to the short scanning range and the high angle resolution of the method. 

(Lin et al. 2010, 1867, 1872-1874; Kukko 2013, 18; Holopainen et al. 2011b, 5-6; 

Cronvall et al. 2012, 16) To guarantee reference data with as high accuracy as possible, 

this study was limited to terrestrial laser scanning. Thus, this work did not focus on the 

other sorts of laser scanning methods.  

 

Tree parameters calculated from terrestrial laser scanning data can be utilised for statisti-

cal interpretation. This can provide reliable results that can be combined with specific tree 

species. Furthermore, the extraction of different tree species from a point cloud produced 

by laser scanning can be completed by computational algorithms. However, deficiencies 

continue to exist concerning the methods discussed here. Consequently, the current accu-

racy and quality requirements could benefit from further development. (Othmani et al. 

2013, 1; Lin & Herold 2016, 105−106, 108−113; Åkerblom et al. 2017, 4−11)   

 

The first aim of this thesis was to examine different approaches to define single tree lo-

cations from terrestrial laser scanning data. The second aim was to study different meth-

ods to identify the species of the positioned trees. Furthermore, the objective of the thesis 

was to evaluate the reliability of these methods and the quality of the end results.  

  

The goal of the thesis was to answer the following questions:  

  

How can a tree be positioned from fixed stations by using terrestrial laser scanning data? 

  
How can tree species be identified from the point cloud data produced by terrestrial laser 

scanning? 
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2 Terrestrial laser scanning 

 
In contrast to the electromagnetic spectrum that consists of different wavelengths, laser 

radiation covers high energy waves of the same length. The high efficiency of the laser 

also enables this method to be used in long-range measurements. The purpose of model-

ling by laser scanning is to obtain information about the locations of different targets. 

Spatial data are defined based on the distance measurements between the target and the 

laser scanner. These distances can be determined by laser signal time-of-flight, which can 

be achieved by pulse-based or phase-based systems. (Wehr & Lohr 1999, 68-73; Holo-

painen et al. 2011a, 139-140; Fröhlich & Mettenleiter 2004, 8) 

 

In pulse-based scanning, time is registered directly by the receiver of the scanner. In 

phase-based scanning, the phase difference between the outgoing and returning signal is 

transferred to the time difference. The main components of the laser scanner are the laser 

transmitter, ranging unit, i.e., the laser reflecting mirror and the receiver. (Wehr & Lohr 

1999, 68-73; Holopainen et al. 2011a, 139-140; Fröhlich & Mettenleiter 2004, 8) Laser 

scanning can be accomplished by single- or multi-scan operation from the same area. 

(Liang et al. 2011, 38) 

 

 

 
Figure 1: Terrestrial laser scanner. (Wang et al. 2019a, 6) 

 

 

Terrestrial laser scanning refers to scanning acquired on the ground from fixed stations. 

The main components of the system are the scanning instrument, tribrach, tripod, and 

power supply (an accumulator or network power) (Figure 1). Terrestrial laser scanners 

can be equipped with or without internal memory. In case the internal memory does not 
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exist, a separate computer with memory is needed. The scanning is performed either from 

a single or several stations depending on the target of the mapping. The advantage of the 

single-station operation is the low amount of point cloud data and, thus, the rapid pro-

cessing of the information. (Cronvall et al. 2012, 16; Holopainen et al. 2011a, 139-140; 

Oveland et al. 2017, 1-3)  

 

However, the disadvantage of this method is that scanning from one point does not cover 

gap areas behind the trees. In addition, this method does not allow a dense point cloud to 

be established from targets lying dozens of metres away. Thus, the modelling of all indi-

vidual tree trunks may not be feasible. Consequently, specifying single tree locations and 

the DBH is challenging and may even be impossible. Therefore, the mapping of a forest 

area usually requires scanning from several stations. The scanning results are typically 

registered into a common point cloud. (Cronvall et al. 2012, 16; Holopainen et al. 2011a, 

139-140; Oveland et al. 2017, 1-3) 

  

The advantage of terrestrial laser scanning is the high density of the point cloud achieved 

by the technique. The cloud density may be as many as tens of thousands of points per 

square meter. The disadvantage of the method is cost inefficiency due to immobility. On 

the other hand, the density of the point cloud accomplished by terrestrial laser scanning 

depends on scanning distance. This range can vary from metres to hundreds of metres. 

Furthermore, the angle resolution,  the capability of the scanner to detect details, is a key 

factor when evaluating the scanning applicability. A more accurate angle resolution guar-

antees a higher point cloud density, and thus, also smaller objects are detectable from the 

point cloud. (Lin et al. 2010, 1867, 1872-1874; Kukko 2013, 18; Holopainen et al. 2011b, 

5-6; Cronvall et al. 2012, 16) 

 

 

2.1 Pulse-based laser scanning 

 
Pulse-based laser scanning is based on the laser time-of-flight. This time consists of laser 

delay from the laser scanner to the target and back to the scanner. The time-of-flight is 

registered by the receiver (Figure 2). Thus, the distance R between the scanner and object 

can be calculated according to Equation 1. (Wehr & Lohr 1999, 69-73) 

 

𝑹 =   𝟏/𝟐 ∗ 𝒄 ∗ 𝒕𝑳      (1) 

 

 

In this equation, symbol c is the speed of light and tL is the time-of-flight of the laser 

signal. Every laser scanning instrument has a time resolution ∆tL, which is the minimum 

time space registerable by the receiver of the scanner. Consequently, the range resolution 

∆R of the laser instrument is definable according to the Equation 2. (Wehr & Lohr 1999, 

69-73) 

 

∆𝑹 =   𝟏/𝟐 ∗ 𝒄 ∗ ∆𝒕𝑳     (2) 

 

 

Pulse-based laser scanners are usually applied in scanning operations extended with a 

range from a few metres to two kilometres. The largest bottleneck of pulse-based scan-
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ning operations is the time gap between the laser beams reflected to the scanner. Conse-

quently, the pulse-based scanning may be unprofitable in short-range measurements. 

(Holopainen et al. 2011a, 139-140; Fröhlich & Mettenleiter 2004, 3, 8; Cronvall et al. 

2012, 12; Alho et al. 2011, 3) 

 

However, the advantage of the pulse-based method compared to the alternative phase-

based ranging is the lower sensitiveness to noise. Thus, pulse-based scanning can also be 

applied in short distance measurements. (Liang et al. 2018, 155; Bartolo & Salvini 2019, 

5) Furthermore, the scanners have a maximum range. This distance can be calculated 

using Equation 3 applying the maximum time the scanner is able to register. (Wehr & 

Lohr 1999, 69-73; Cronvall et al. 2012, 12) 

 

𝑹𝒎𝒂𝒙 =  
𝟏

𝟐
∗ 𝒄 ∗ ∆𝒕𝒎𝒂𝒙           (3) 

 

 

The range depends on the effect of the send laser pulse and the highest time-of-flight 

defined by the repeating frequency of the measurement. (Wehr & Lohr 1999, 69-73; 

Cronvall et al. 2012, 12) However, Equation 3 is theoretical. In practice, the performance 

of the laser beam is sensitive to the circumstances. The foremost distractions affecting to 

the laser signal are signal noise and the reflection from the different targets. Consequently, 

the accuracy of the laser scanning can be defined by Equation 4.  

 

𝝈𝑹~
𝒄

𝟐
∗ 𝒕𝒓𝒊𝒔𝒆 ∗

𝟏

√(
𝑺

𝑵
)
                (4) 

 

In this equation, trise is the rising time of the signal, S is the signal power without the 

noise, and N is the power of thermal noise. (Wehr & Lohr 1999, 69-73) 

 

 

 

 
Figure 2: The principle of pulse-based laser scanning. (Wehr & Lohr 1999, 70) 
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2.2 Phase-based laser scanning 

 
Phase-based laser scanning comprises the solving of the phase difference between the 

outgoing and returning modulated signal (Figure 4). The laser beam is modulated by at 

least two different wavelengths onto one signal (Figure 3). In this signal, the longer mod-

ulation wave consists of shorter modulation waves. Thus, the longer wavelength can be 

defined as the function of shorter wavelengths. Consequently, millimetre-level accuracy 

can be achieved by phase-based scanning in longer range measurements. The signal trav-

eling time tL can be solved by applying Equation 5. Here, 𝜑 is the phase difference be-

tween the leaving and returning laser signal, T is the period length of the signal wave, and 

n is the integer amount of the periods in question. (Wehr & Lohr 1999, 69-73; Alho et al. 

2011, 3; Pfeifer & Briese 2007, 6-7) 

 

𝑡𝐿 =
𝜑

2∗𝜋
∗ 𝑇 + 𝑛 ∗ 𝑇                                   (5) 

 

 

 
Figure 3: The principle of amplitude modulation. (Pfeifer & Briese 2007, 6) 

 

 

As the frequency f is the inverse of the cycle duration, Equation 5 can be also written as 

Equation 6. This equation, in turn, can be substituted into Equation 1 when the phase 

difference is transformed to the signal time-of-flight. Thus, the range between scanner 

and target can be defined by Equation 7. (Wehr & Lohr 1999, 69-73; Alho et al. 2011, 3) 

 

𝑡𝐿 =
𝜑

2∗𝜋
∗

1

𝑓
     (6) 

 

 

𝑅 =  
1

4∗𝜋
∗

𝑐

𝑓
∗ 𝜑     (7) 

 

By utilising the different wavelengths covered by the laser beam, the shortest and the 

longest measurable distance of the scanner can be defined. In Equation 8, ∆𝜑 is the min-

imum and in Equation 9, 𝝀 is correspondingly the maximum available signal wavelength. 

(Wehr & Lohr 1999, 69-73; Alho et al. 2011, 3) 

 

 

∆𝑅 =  
1

4∗𝜋
∗

𝑐

𝑓
∗ ∆𝜑          (8) 
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𝑅𝑚𝑎𝑥 =  
1

4∗𝜋
∗

𝑐

𝑓
∗ 2 ∗ 𝜋 =  

𝝀

2 
               (9) 

 

 

 
Figure 4: Outgoing and returning laser beams, as well as their phase difference. (Wehr & 

Lohr 1999, 71)  

 

 

Phase-based laser scanners are applied in terrestrial and other short-range measurements 

that usually are under 100 metres. Due to its signal consistency, the technique is quite 

cost-effective. Thus, a signal without time gaps guarantees a dense point cloud. For ex-

ample, at the distance of 10 metres from the laser scanning instrument, even 25,000 points 

can exist per square meter. (Fröhlich & Mettenleiter 2004, 8; Holopainen et al. 2011a, 

139-140; Alho et al. 2011, 3) 

 

 

2.3 Laser scanning of a forest sample plot 

 
Single-scan terrestrial laser scanning refers to the mapping of a forest sample plot from 

one station (Figure 5(a)). A sample plot covering 3D-model can be achieved by this op-

eration. This method enables to define the locations and the DBHs of the trees covered 

by the plot. Typically, the scanner rotates 360 degrees in the horizontal direction, while 

the field of view in the vertical direction is 300 degrees. (Liang et al. 2011, 38, 46) The 

advantage of single scanning is the low amount of data. Consequently, also the time 

needed for data processing is relatively short. (Liang et al. 2016, 66) 

 

The sample area is well measurable within 20 minutes. This time conventionally covers 

the setting of the scanner and the performing of the scanning. The setting usually takes 

2–10 minutes, while the scanning takes 5–10 minutes. However, the disadvantage of the 

operation is its incompleteness. Easily over 40 percent of the tree stems covered by the 
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sample plot are occluded. Thus, the results achieved by the 3D-point cloud are not ex-

plicit. The percentage of the gap areas increases as the ranging distance increases. This 

issue is especially emphasised in dense forests. (Liang et al. 2016, 66) 

 

However, this type of laser scanning may be cost-efficient depending on the mapping 

environment. For instance, for forest plots only comprising single tree species, the single 

scanning can be quite profitable. Over 80 percent of trees located within the radius of tens 

of metres from the scanner can be detectable. Tree extraction and location are performable 

based on automatic algorithms. (Liang et al. 2011, 38-39, 45) 

  

 

 
 

Figure 5: (a) Scanning performed from a single location (single-scanning). (b) Scanning 

performed from several locations, wherein the laser point cloud is registered using the 

artificial targets (multi-scanning). (c) Scanning performed from several locations, 

wherein the laser point cloud is registered at the feature level using the tree stems (multi-

single-scanning). The black circles indicate the mapping area. The red rectangles locating 

on the circles and in the middle of them correspond to the scanning stations. The purple 

ellipses inside the circle symbolise trees to be mapped, and in Figure (b) the blue stars 

indicate artificial targets. (Retelled Liang et al. 2016, 66) 

 

 

Scanning performed by a single scanner can also be complemented by using several scan-

ning stations (Figure 5(c)). This surveying method is called multi-single-scanning. The 

procedure also enables modelling and positioning of the occluded trees. The scans are 

registered to a common coordinate system at the feature level displaying the single trees. 

To locate the trees from the sample plot, XYZ-coordinate system is defined for the point 

cloud. In this system, the position of the centre scanning station is selected as the origin. 

(Liang et al. 2016, 66-67) 

 

The advantage achieved by the method is the relatively short time required by the collec-

tion and the registration of comprehensive point cloud data. Furthermore, the effect of the 

weather conditions on the multi-single scan method is quite low. In windy weather, the 

swaying trees follow each other, and thus, the swaying does not influence on the explic-

itness of the registered data. However, the multi-single scanning process may not be ac-

curate enough to define non-spatial properties, such as species. Gaining information about 

these properties typically demands scanning procedures using artificial targets. (Liang et 

al. 2016, 66-67, 71; Dassot et al. 2012, 87) 
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This scanning is called a multi-scanning operation. Conventionally, surveying comes into 

question when a highly explicit and detailed point cloud is desired. The significance of 

the method is especially emphasised when knowledge about the tree species composition 

of a dense forest is needed. Surveying is performed from several scanning locations as in 

the multi-single-scanning operation. The most considerable difference compared to the 

previous method is the artificial targets applied for the registration of the point cloud 

(Figure 5 (b)). These reference targets are usually spherical objects placed to the plot at 

suitable distances referred to each other. (Liang et al. 2016, 66; Dassot et al. 2012, 87) 

 

The centre of the reference targets are approximated from the first point cloud (i.e., the 

scan at the plot centre). Next, the other scans are registered to the same coordinate system 

using the targets. The purpose of multi-scanning method is to accurately survey and 

model each tree in the sample plot to define the tree species. However, the multi-scanning 

operation takes considerably longer than previous methods. Compared with the multi-

single-scanning operation, another practical difference is the number of required equip-

ment. The previous method only requires one scanner and a tripod. (Liang et al. 2016, 66; 

Dassot et al. 2012, 87; Liang & Hyyppä 2013, 1627; Wang et al. 2019b, 135)  

 

Instead of that, multi-scanning surveying demands several tripods and reference spheres 

in addition to the single scanner. One registration sphere is mounted to each tripod, and 

the scanner is moved between the tripods to take each scan. The essential number of tri-

pods and spheres depends on the area and the tree composition of the sample plot. (Liang 

et al. 2016, 66; Dassot et al. 2012, 87; Liang & Hyyppä 2013, 1627; Wang et al. 2019b, 

135) 

 

The disadvantage of the multi-scanning survey is the high costs derived from time con-

sumed for equipment set up and registration, as well as the processing of the data. The 

registration and other manual operations may take significant time. A scanning operation 

consisting of the setting up the scanner and targets, as well as scanning from five stations, 

can easily require one hour. Moreover, completing the whole process demands a mini-

mum of two persons, whereas the multi-singe-scanning and single-scanning operations 

mentioned above require only one person. (Liang et al. 2016, 66-67; Liang & Hyyppä 

2013, 1627) 

 

Staff members are needed to speed up the procedure, such as carrying all tripods, refer-

ence targets, and scanners to the plot, as well as to setting up the scanning network. (Liang 

et al. 2016, 66-67; Liang & Hyyppä 2013, 1627) Furthermore, the weather conditions 

may set significant constrains for the multi-scanning method. For instance, wind causing 

wide sways to the tree crowns may disrupt the registration of the scans. (Liang et al. 2016, 

66-67) 

 

 

3 Tree location 

 

3.1 Simple point-based methods 

 
Oveland et al. (2017) reported in their article a mobile laser scanning process. In this 

technique, the tree positioning is based on the definition of the stem DBH and stem centre 
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location. The process is accomplished as illustrated in Figure 6. In this operation, the 

position and tilt of the angles of the laser scanner in X-, Y- and Z-coordinates are first 

determined using global navigation satellite system – inertial measurement unit (GNSS-

IMU). (Oveland et al. 2017, 5−9; Koska et al. 2018, 136) 

 

 
Figure 6: The definition of tree locations. (Oveland et al. 2017, 5) 

 

 
The heights of the points in the laser point cloud are derived from these data. These point 

heights are transformed from the local scanner coordinate system to the universal one. 

The next step is cloud classification. The cloud can be classified to tree stems, ground, or 

not classified points. The classification to the same object is based on the threshold de-

scribing the increase of the distance measured by the laser scanner. If the distance differ-

ence between neighbour points does not exceed the threshold, the points belong to the 

same object. Furthermore, point classification for tree stems requires that the maximum 

value is set to the DBH of the stem. (Oveland et al. 2017, 5−7) 

 

If the distance increases by subsequent rangings not exceeding the threshold and the hor-

izontal distance exceeds the maximum allowed DBH, the points are classified as the 

ground. The points will stay unclassified if the distance between two subsequent meas-

urements is exactly equal to the threshold. (Oveland et al. 2017, 5−7) 

 

After the classification, the DBH and the coordinates of stem centre are defined by ap-

plying the circle-fitting algorithm using the least squares method. The method fits a circle 

by undergoing coordinates of every point classified as tree stems and thus searching for 

a constant centre and radius of the stem. (Oveland et al. 2017, 5−7; Bucher 2004)  

 

The multi-layer scanner rotates not only in horizontal direction but also, to some extent, 

in vertical direction depending on the number of laser channels. There is always some 

known vertical angle between the subsequent channels. Consequently, there must be 

enough circles and their centres found by the fitting method also in vertical direction to 

classify them as tree stems. (Oveland et al. 2017, 5−7) 
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The next step is to enhance the registration of the point clouds measured from different 

locations by applying iterative closest point ICP-algorithm. Moreover, this method allows 

to improve the accuracy of the stem centre coordinates defined by circle fitting. The ICP- 

algorithm forms pairs from the consecutive point clouds. The second cloud of the pair is 

registered to the first cloud by fitting the points to each other by shifts and rotations. The 

current and original cloud form a new reference point cloud. The same registration pro-

cess is continued until all data is registered to the same coordinate system. (Oveland et al. 

2017, 5−7) 

 

As the GNSS-signal under the canopy cover is easily defective, the correction of data is 

required to define tree stem location in the common coordinate system. After the circle 

fitting, the correction of terrain and tree height data is accomplished. The correction is 

performed by registering the mobile laser scanning data to the airborne laser data col-

lected from same area. First, the height differences between the ground points of these 

data sets are considered. According to the comparison, the ground mobile laser scanning 

points are more accurate than upper mobile laser scanning points. Thus, the more reliable 

points are registered to the airborne laser scanning points comprising the GNSS-data. 

Consequently, the DBHs and the tree locations in the ground coordinate system are de-

finable. (Oveland et al. 2017, 5−9) 

  

The DBH is defined based on a model representing the stem diameter estimated from the 

mobile laser data as the function of stem height. According to this model, the stem diam-

eter can decrease, for example, one centimetre per meter from the root of tree. In the end, 

the average stem width and the centre position is derived by clustering the points within 

a particular maximum distance. (Oveland et al. 2017, 5−9) 

 

Koren et al. (2017) presented in their article other mathematical operators applicable to 

define the location and DBH of trees. The tree coordinates can be derived based on, for 

instance, the minimum bounding box method. With this method, the cross-section of the 

tree is bounded by a cuboid at breast height. The bounding is completed by the box cov-

ering only the minimums and the maximums of stem X- and Y-coordinates. Based on the 

average of these coordinates, the stem location can be determined. (Koren et al. 2017, 

124; Chernov & Lesort 2005, 239-240) 

 

Moreover, the tree position is definable from the average of X- and Y-coordinates of 

points corresponding to the stem cross section. Furthermore, the stem coordinates are 

derivable from the average of the outermost point locations. The next step is to calculate 

the DBH using the distances from the defined stem centre point to each cluster point. 

Thus, the DBH is achievable as the result of doubling the average of these distances. 

(Koren et al. 2017, 124; Chernov & Lesort 2005, 239-240) 

 

Using the methods mentioned above, the tree locations and DBH can be initialised. These 

values are improvable by the previously mentioned least square method and the Monte 

Carlo -method. This process is based on the random values achieved by the initial meth-

ods. A minimum number of points corresponding to the trunk cross-section is randomly 

chosen for the initial circle fitting. The centre coordinates and the radius of the fitted circle 

are determined. The squared errors between each trunk point and the fitted circle are 

sorted in the ascending order. Thereafter, n number of the points corresponding to n low-

est ordered residuals are selected for the circle approximation. The same initial procedure 

is repeated until a particular maximum limit is reached or the desired accuracy is 
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achieved. (Nurunnabi et al. 2018, 421-422; Koren et al. 2017, 124; Chernov & Lesort 

2005, 239-240) 

 

3.2 Voxel-based methods  

 
Tree location can also be defined based on voxelization methods. The procedures consist 

of terrain model estimation and tree height normalization, as well as tree stem voxeliza-

tion. Depending on the form of the ground, the terrain model can be estimated based on 

either the heights of the closest neighbours in the laser point cloud or the heights of each 

separate point. In the first estimation method, the terrain is divided into square cells in a 

horizontal direction. (Cabo et al. 2018, 165-167) 

 

Thereafter, the lowest point inside each cell and its eight nearest neighbours are exam-

ined. If the height difference between the lowest and neighbour points exceeds the thresh-

old describing the variety of the terrain model, this cell is updated as the lowest of the 

ground. In the alternative height-normalization method, the point cloud representing the 

forest plot is projected to a flat surface based on the height difference between the ground 

and non-ground points. After the height-normalization, the point cloud is vertically 

bounded into a slice covering the tree stems so that they are detectable (Figure 7). The 

stems must not be occluded by the branches or the undergrowth. (Cabo et al. 2018, 165-

167) 

 

 

 

 
Figure 7: The tree stems are separated in the interval in which they are not occluded. 

(Cabo et al. 2018, 167) 

 

 

The bounded point cloud is divided into voxels (i.e., small cuboids). There is always some 

points in the centre of the cuboid. The same cuboid can consist of several points. Conse-

quently, a randomly distributed point cloud can be modified as a homogenous and simple 

data set comprising as little redundant data as possible. Thereafter, the coordinates of the 

laser points are defined in the voxel system. These coordinates enable the determination 

of the DBHs and the coordinates of the stem centres. (Cabo et al. 2018, 165-167; Cabo et 

al. 2014, 48-50)  

 

Furthermore, the voxelization can be performed by using the octree algorithm. This algo-

rithm divides the original point cloud into cells. One point is randomly selected from each 

cell. The ground points are picked up by the morphological filtering method. This algo-

rithm uses a 1-dimensional line or 2-dimensional mask approximating the minimum 
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(Zmin) and maximum height (Zmax) in the XY-level. The operation is based on the dilation 

of the filtering mask. The mask is dilated until the height difference between the points 

inside the mask are high enough. Then, the lower points within the mask are classified to 

the ground. Thus, the observation of the trees from the terrain is possible. (Liang et al. 

2018, 173; Zhang et al. 2003, 873) 

 

The tree detection is based on the combination of the tree voxels in the horizontal and 

vertical directions. Each point is gone through and clustered in the voxel system by the 

octree-algorithm. The clustered voxel space enables to find the links from the tree in the 

vertical direction. More than one link from the neighbour voxels are searched. The search-

ing of the connections can be performed by traversing each voxel at each tree level from 

the ground level to the top or vice versa. Thereafter, the noise is filtered from the clusters. 

The filtering is based on the assumption that all point neighbourhoods follow the Gauss-

ian distribution with a known threshold. Finally, the DBH of the tree is defined by cylin-

der fitting in particular vertical intervals. The centre of the cylinder approximated by these 

vertical slices corresponds to the tree location. (Liang et al. 2018, 173) 

 

 

3.3 Extraction-based methods 

 
Tree positioning can also be performed by stem fitting. The first step before performing 

this method is tree extraction by eigenvalue decomposition. This technique is based on 

the point cloud coordinate transformation between the terrain and tree stem. The decom-

position determines the eigenvalues of the new (i.e., stem coordinate system). The aim of 

the decomposition is that the deviations from the X- and Y-axes in the transformed point 

cloud are minimised. The eigenvalues enable the calculation of flatness values to different 

objects. A low flatness value refers to lower objects, typically the terrain, and high value 

correspondingly to higher objects such as the trees. (Liang et al. 2012, 663-664) 

 

After tree extraction, the tree stems can be modelled. Stem modelling is completed by  

cylinder fitting to the stem points. The cylinder is fitted based on the normal of the stem 

surface achieved by the eigenvalue decomposition. The possible curve of the stem is con-

sidered in the fitting based on the stem radius and its direction. The final cylinder fitting 

is performed by minimizing the square sum of the residuals between the fitted cylinder 

surface and laser points. The standard deviation calculated by the minimal residuals ena-

bles Tukey’s estimator to be defined. This parameter reduces the weight of the error 

caused by larger outlier points from the cylinder. Consequently, the deviation of the tree 

from the vertical direction is better known. Thus, tree location can be also more accurately 

determined. (Liang et al. 2012, 663-666) 

 

In addition, tree extraction can be performed by Hough-transformation. This algorithm is 

based on circle detection by parameter transformation. The first step in the process is the 

generation of the elevation model using the ground points registered by terrestrial laser 

scanning. Two different raster sizes are used for the model generation. The larger rasters 

aim to cover the terrain, whereas the smaller rasters capture only the trees. After the ras-

terization, the heights of the points within the smaller rasters are interpolated using the 

heights of the points inside the larger rasters. (Olofsson et al. 2014, 4327-4328; Gonzalez 

& Woods 1992, 587-590) 
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The points are classified into the terrain or the trees according to the height threshold. If 

the interpolated value of the point exceeds the threshold, the point is classified as the tree. 

Correspondingly, if the value is under the threshold, the point is classified as the terrain. 

Tree location is performed in the raster field from one to two metres in the vertical direc-

tion. The ratio between the registered laser pulses and overall laser pulses inside the raster 

neighbourhood is determined. Value zero for the ratio refers to the nonexistent reflections 

from the breast height in the neighbourhood. Correspondingly, value one refers to the 

reflections of all laser pulses from breast height. Based on these values, the existing prob-

ability of a tree in each raster neighbourhood is definable. The tree location is the raster 

with the highest existing probability in the neighbourhood. (Olofsson et al. 2014, 4327-

4328) 

 

The point cloud representing the positioned tree is classified into the stem and the terrain. 

Classification to the stem is based on the bounding of the point set with a box consisting 

of the stem and a part of the crown. Thereafter the bounded point data is divided into the 

rasters with normalised intensity values from 0 to 255 according to the number of points. 

To reduce the noise, some threshold value is chosen from this space, and the values below 

the threshold are classified to zero. (Olofsson et al. 2014, 4329)  

 

The next step is the extraction of the tree stem radius based on the Hough-transformation. 

This algorithm examines each pixel belonging to the trunk and fits the initial circles to 

these pixels. The equations of the initial circles are transformed into the parameter space 

of the circle central angle, revealing potential circles. Next, the circle representing the 

stem is chosen according to the number of intersections between the found circle candi-

cates. The circle with most intersections with the other circles corresponds to the tree 

trunk (Figure 8). The process is started from the trunk height of one meter, and the radi-

uses are extracted until approaching the crown, which changes the results significantly. 

(Gonzalez & Woods 1992, 587-590; Olofsson et al. 2014, 4329-4330) 

 

 

 
Figure 8: Coloured circles corresponding to the tree stem according to the Hough-trans-

formation. The red circle intersecting with most of the other circles corresponds to the 

tree stem most closely. (Olofsson et al. 2014, 4330) 
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Classification into the crown with a random sample consensus (RANSAC) based method 

is performed by searching for the first pixel deviating from the value of the stem. The 

pixel is searched by following the stem in the vertical direction. Next, the points of the 

trees corresponding to the extracted radiuses are considered. This procedure is based on 

the default that the distance between the centres of the extracted trees and other points 

corresponds to the same trunk if the distance is below the product of 1.5 and the deter-

mined radius. The final result for the DBH is defined by the RANSAC-algorithm. This 

technique describes the number of repetitions providing a certain model representing the 

diameter of the tree stem by a particular probability. The DBH is approximated by an 

appropriate RANSAC-value, and finally, the stem location is determined in the common 

coordinated system by fixing it to the GNSS. (Olofsson et al. 2014, 4329-4335) 

 

In addition, calculational processes to detect stems can be used. The simplest cases, such 

as a point cloud representing a forest plot achieved by the single-scanning method, enable 

the extraction of the stems by computational methods in 2D space before filtering of the 

stems. Correspondingly, the extraction of the trees from a point cloud achieved by multi-

single scanning may be computationally more time- consuming. The models like this can 

be difficult to modify as enough whole data sets. Moreover, noise filtering or eliminating 

redundant data may destroy the point of cloud texture. However, the 2D-computation for 

the point data set achieved by a single-scanning method with the ranging distance of a 

few dozens of metres may be more effective compared to the 3D-computation. (Liang et 

al. 2011, 38, 41-45) 

 

The extraction of the trees is based on the continuity of the stems. Thus, the points close 

to each other in 2D- and 3D-point clouds are homogenously distributed especially in ob-

jects near the scanner. The distance between the subsequent points further from the scan-

ner is longer than the nearer points due to the decreasing resolution as the ranging distance 

increases. In addition, the 3D-form of objects influences the point distribution. Conse-

quently, the deviations of points close to each other can be considerable. Furthermore, the 

branches of the tree crown are easily occluded by each other, causing discontinuity to the 

2D-level. However, these factors can be eliminated by computational methods. (Liang et 

al. 2011, 41-42) 

 

The computational tree extraction method described above, can be based, for example, 

on the point cloud segmentation in horizontal and vertical directions in 2D-data. Each 

point is traversed in both directions, and the location and distance data of the points are 

combined. The point classification into the tree trunk is based on the combined point data. 

The points belong to the trunk if there is enough continuity in the point locations and in 

the ranging distance between the points (Figure 9). The segmented points are classified 

to the stem if the distance between the points is below the known threshold values in 

pixels and centimetres. Furthermore, the pixel size of the classifiable point data must usu-

ally have a particular lower limit. The points are not identified as stem points if the pixel 

size is under the threshold. (Liang et al. 2011, 42). 
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Figure 9: (A) The measured height as the function of ranging distance. (B) The measured 

height as the function of ranging distance corresponding to horizontal distance. (Liang et 

al. 2011, 42) 

 

 

Furthermore, the scannings performed in upward slope directions skew the results in hor-

izontal directions. These scans cause considerable variance to the vertical tree trunks. 

Consequently, the tree stem extraction from the points achieved by the upward slope 

scanning direction requires correction based on the cosine of the scanning angle. (Liang 

et al. 2011, 42-43) 

 

Thereafter, the filtering of the trees from the point cloud is possible. The filtering is based 

on the separating of subsequent points in the vertical direction because the points further 

from each other refer to the tree branches and the other parts of the crown. The points are 

classified into the trunk according to a particular vertical variance. (Liang et al. 2011, 42-

43) 

 

The point classification to the tree trunk may take place with following conditions. First, 

each laser points with vertical standard deviation at least double compared to the average 

distance between the points, are excluded. Second step is to determine the distance be-

tween each point in the vertical direction. These points are classified into the trunk ac-

cording to a particular threshold. If the distance between the points in the vertical direc-

tion exceeds the threshold, the stem is regarded as tilted. Thereafter, the trunk is fitted to 

the point cloud, and the points lying further from the trunk are excluded according to the 

known limitations (Figure 10). (Liang et al. 2011, 42-43) 
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Figure 10: The tree trunk filtering. (A) The tilt of the tree trunk fitted to the point cloud. 

(B) Appropriate tree trunk for the point cloud according to the distance of the points. 

(Liang et al. 2011, 43) 

 

 

After the tree stem is classified, stem is modelled based on two steps. First, the trunk fitted 

to the point cloud is divided into slices with a thickness of 20 centimetres each. The point 

sets corresponding to these slices are projected to the XY-level (i.e., horizontal direction). 

The circles are fitted to these point sets based on the least square fitting method. In other 

words, the perpendicular distances between the point sets and the circle fitted to them 

must be minimised. If some of the fitted circles and their centres do not match with the 

vertical/upward slope line corresponding to the centre of the fitted stem, the circles are 

excluded (Figure 11(E)). Thereafter, the stem position can be determined from the centre 

of the circle at the DBH. (Liang et al. 2011, 43) 
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Figure 11: Laser point cloud processing from the tree extraction to the stem positioning. 

(A) Tree extraction in the 3D-space based on the point distribution. (B) The trunk ex-

tracted from the point cloud. (C) Filtered trunk. (D) Fitted circles to the filtered trunk. (E) 

The fitted circles deviating considerably from each other are excluded. (Liang et al. 2011, 

44) 

 

 

3.4 Hybrid methods 

 
Tree stem positioning can be determined by several previously mentioned methods sim-

ultaneously. This techniques are called hydrid methods in general. One example of a hy-

brid method is the point-based triangulated irregular network (TIN) iteration. The trian-

gles are created from the lowest points of the cloud cell neighbourhood. (Liang et al. 

2018, 144) 

 

Thereafter, the height between the remaining points and the triangle above them are clas-

sified into the tree or the terrain. Half of the point cloud scale is used as the threshold. If 

the height of the point from the triangle is below the threshold, the point is classified to 

the ground. The next step is the tree reconstruction based on point cloud voxelization. 

The points representing the tree trunk are separated from the voxels. Then, the stem curve 

is estimated based on the circle-fitting algorithm and the Hough-transformation. The stem 

diameter is defined based on these methods at different heights of the stem and at the 

DBH, whereby the centre of the fitted circle corresponds to the tree position. (Liang et al. 

2018, 144) 
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4 Tree species identification methods 

 

4.1 Intensity-based methods 

 
Intensity-based methods require some preprocessing. Tree species identification from the 

laser point cloud can be based on, for example, the 3D-models representing the tree stems. 

These models can be smoothed by Laplacian transformation. This algorithm calculates 

the location of each laser point based on the weighted average. The process is iterative, 

meaning it is repeated as long as the point cloud model requires smoothing. (Othmani et 

al. 2013, 2145−2146) 

 

The next step in the method is to create a deviation map of the smoothed and original 

point clouds. The map is created based on the difference of each point between the orig-

inal and smoothed models. The deviation model is, in turn, projected as a 2D map with 

the intensity value of each pixel scaled from 0 to 255. (Othmani et al. 2013, 2145−2146) 

 

Thereafter, the deviation map is classified based on the wavelet transformation and curve 

extractions. The wavelet transformations are based on the filtering of laser point intensi-

ties. One of the wavelet transformations is the discrete wavelet transformation (DWT). 

This method is based on approximation by high- and low-pass filtering. Then, a wavelet 

function with vertical, horizontal, and diagonal coefficients using the time frequencies, is 

created. A more improved version of this method is the dual-tree complex wavelet trans-

formation (DT-CWT). This process enables the separation of tree species by the real and 

the imaginary parts, contrary to the previous procedure based on the real parts only. (Oth-

mani et al. 2013, 2145−2147)  

 

The previous wavelet transformation can also be performed in a 2D-layer (2D DT-CWT). 

This procedure filters the waves in six different directions. A further improved transfor-

mation is 2D-rotated complex wavelet filters (2D-RCWF). Compared with the previous 

method, this method has twice the number of filtering angles. The combination of these 

two procedures can be utilised to maximise classification accuracy. The contourlet trans-

formation (CT)-algorithm based on the Laplacian-operator is used for the smooth curve 

extractions from the natural images. The Laplacian-operator comprises a pyramid divid-

ing the original image to the filtered sub-images (Figure 12). (Othmani et al. 2013, 

2145−2148) 
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Figure 12: A figure representing the tree species identification based on intensity distri-

bution. (Othmani et al. 2013, 2149) 

 

 

The sub-images provide information about the reflection angles of the intensities. Tree 

classification based on the geometric features is performed according to the amount of 

energy coming through each channel. Furthermore, the weighted average and the standard 

deviation of the outcoming amount of energy is determined to classify the trees. The final 

classification results are achieved by the decision tree utilising the feature vectors. Two-

thirds of these vectors identify tree species and the last third defines the classification 

errors. (Othmani et al. 2013, 2145−2148) 

 

Tree classification into the different species can also be based on the laser intensity wave-

form. This waveform represents the vertical geometric form of the tree (Figure 13). The 

tree is vertically divided into a certain number of profiles. Tree classification is performed 

by a deep learning model, deep Boltzmann machines (DBM). The model is utilised to 

explore the proportion of the visible and hidden points to the entire number of points in 

each profile. (Guan et al. 2015, 867-869) 

 

 

 
Figure 13: Three examples of waveforms provided by mobile laser scanning representing 

three different tree species. (Retelled Guan et al. 2015, 867)  

 

 

The laser beams are scattered from the trees and other objects, distorting the intensity 

values registered by the receiver of the laser scanner. In addition, the geometric features 

of the scanned targets and the scanning distance affect the behaviour of the radiation. 

Consequently, the intensity must be calibrated. This calibration can be completed, for 

example, by considering the reflections from a white sphere and comparing them to the 

reflections from the other objects. In this method, the effect of the laser beam reflected in 

the angle from 0 to 90 degrees is considered in proportion to the effect of the outgoing 

laser beam. (Bretagne et al. 2018, 15-19) 
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In practice, this calibration is based on four assumptions. First, the laser points appearing 

on the surface of the calibration sphere are assumed to be very small and do not expand 

to a wide area. Thus, the intensity of the laser beams is not expected to be decreased when 

they hit the sphere. Second, the aperture of the laser scanner receiver is assumed to be 

circular. Thus, the energy registered by the receiver can be defined accurately. Third, each 

point appearing on the surface of the registration sphere corresponds to the laser beam hit 

onto the sphere. Fourth, the white sphere is assumed to reflect the entire incoming radi-

ance. This enables the comparison of the radiances reflected from the tree stems to those 

reflected from the white sphere. When these assumptions are true, the correction for the 

intensities of the trunks can be performed. (Bretagne et al. 2018, 15-19)  

 

Moreover, the visible colour corresponding to the laser wavelength can be utilised in the 

calibration. The intensity values of the laser points between 0 and 1 can be scaled to the 

values from 0 to 255. For example, the green-level values can provide information about 

the chlorophyll of different trees. The chlorophyll data can, in turn, be used in tree species 

recognition. The effect of the sunlight on the colour values of the laser points is eliminated 

based on the Illuminant D65 -standard. This standard defines the correlations between the 

sun illumination and the laser points in proportion to the average daylight illumination. 

The scaling of the colour values from 0 to 1 into the range of 0 to 255, in turn, is based 

on the correlation between the illumination and wavelength at a particular bandwidth. 

(Bretagne et al. 2018, 15-19)  

 

 

4.2 Methods based on tree structure parameters 

 
In addition to the intensity methods, tree species identification can be based on the explicit 

tree structure (ETS) parameters (Figure 14). The parameters utilised in these methods are 

tree height, DBH, branch angle, height of the highest branch within the crown lower sur-

face (HLS), and height of the lowest branch within the crown lower surface (LLS). Fur-

thermore, the measurements of parameters with disruptions appearing in the classification 

method are considered. These errors can consist of, for example, variations in tree stems 

and ages corresponding to the same species. The aim is to eliminate these errors by, for 

instance, using optimal parameter combinations to maximise the classification accuracy. 

(Lin & Herold 2016, 108-113) 
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Figure 14: (a) Vertical structural dimensions and (b) the maximum and the minimum 

radius of the tree crown utilised for tree species identification. (Lin & Herold 2016, 109) 

 

 

The combination of the parameters can consist of the radius length corresponding to the 

tree crown horizontal area (Figure 14(b)) and the variables defined by the earlier men-

tioned parameters. These quantities describe the tree structure comprising the stem, 

branches, crown, and leaves (Figure 15). The minor and major axes corresponding to the 

ellipsoid that approximates the tree crown (Figure 14(b)) is determined by a principal 

component analysis (PCA). This method bounds the tree crown to an area in which the 

deviation of the neighbour point data is minimal. The bounded point set is projected to 

the terrain. (Lin & Herold 2016, 109; Monnier et al. 2012, 246) 

 

 

 
Figure 15: Definitions and abbreviations for tree structure parameters. (Lin & Herold 

2016, 109) 

 

 

The radius of the circle with the same area as the ellipsoid can be defined. Thus, tree 

structure parameters such as crown length and height, branch angle, and heights of the 

lowest and the highest branch in the lower crown surface (Figure 14(a)) are definable. 
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These quantities can be determined by a segmentation method. This method bounds the 

point cloud representing the tree structure to the stems, branches, and crown (Figure 16). 

(Lin & Herold 2016, 109) 

 

 

 
Figure 16: The tree bounded to different structures by the cylinders. (Lin & Herold 2016, 

110) 

 

 

The tree species classification based on the structure parameters utilises the support vector 

machine (SVM). This procedure separates two tree species based on the tree parameter 

with the largest difference between the trees. Finally, the classification accuracy is eval-

uated by the leave-one-out-cross-validation (LOOCV) method. This procedure is com-

bined with the SVM. The LOOCV-SVM -algorithm defines the relation of the correctly 

classified tree species to the total number of the sampled trees and the number of all cor-

responding species. These error parameters are considered in the evaluation of classifica-

tion accuracy. (Lin & Herold 2016, 110) 

 

Moreover, the tree identification algorithms based on the structure parameters are k- near-

est neighbour (K-NN) and the multinomial regression methods. The former is based on 

the feature vectors consisting of the structure parameters that correspond to each tree spe-

cies. The trees are classified into certain species based on the structure parameters corre-

sponding to each known tree. K nearest neighbours corresponding to each parameter are 

searched, and the feature vectors are constructed from these neighbours. Each classifiable 

parameter is considered to belong to the majority class of the feature vector element. 

Thus, the structure parameters of each known tree can be used as reference data for tree 

classification. (Åkerblom et al. 2017, 4; Yu et al. 2001, 1-5) 

  

The existing probability that a feature appears in a certain tree species can also be defined 

by multinomial logistic regression and logistic regression values. Matlab function Mnrfit 

creates a regression model between each value of the structural parameter, and their ex-

isting probabilities corresponding to the same species. This regression works as a refer-

ence model for the regression created by Matlab function Mnrval and identifies the tree 

species from a wider area. (Åkerblom et al. 2017, 4; Mathworks 2019a; Mathworks 

2019b) 
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5 Experimental work for tree identification 

 

5.1 Materials 

 
The tests for the experimental work of this study were performed in the Otaniemi district 

of Espoo, Finland during autumn 2018. During this time, no leaves were in the trees. This 

issue affected the results of the experimental work. Figure 17 shows the Otaniemi district 

with the test area bordered with red line. 

 

 

 
Figure 17: Otaniemi district with the test area shown with red line.    

 

 

Inside the test area shown in Figure 17, five separate scan registrations were performed. 

Figure 18 shows these five different plot areas. Three sample plots were scanned without 

red green blue (RGB) values, plots 1–3, and two plots were scanned with RGB-values, 

plots 4–5. 
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Figure 18: Five sample plot areas identified with numbers 1–5 and bounded by the lines 

shown. 

 

 

Three plots were scanned without RGB-values (1–3), and two were RGB-assisted plots 

(4–5). The 3D-scanner type Faro Focus was used in the scanning of each plot area. The 

technical specifications of this scanner is reported in Table 1. 

 

 

Table 1: Technical specifications of the Faro Focus laser scanner. (Faro Laser Scanner 

Focus -Manual. 2011, 101) 
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5.2 Methods 

 
Referring to previous Chapter 5.1 and Figure 18, two forest areas (sample plots 1–3 and 

sample plots 4–5) near the Department of Built Environment at Aalto University were 

laser scanned. These scans were used as the material for evaluating and comparing tree 

identification methods tested in this study. All the five sample plots were modelled. These 

models are shown in Figures 19-23. Each of these models consists of several point clouds 

acquired from several scanning stations and registered to one single point cloud using 

Faro Scene software. To achieve a diverse, comprehensive, and yet a compact point cloud, 

the first three sample plots (plots 1–3) were scanned by laser scanning only, and the two 

last plots (plots 4–5) were scanned with a RGB-assisted method. 

 

5.2.1 Tree positioning 

 

 

The reference data for tree positioning was acquired manually based on the classification 

of each registered point cloud into the tree trunks at the DBH. The measurement of the 

stems was performed by the Terrascan program, a subprogram of MicroStation. In this 

program, the mouse arrow was focused on the centres of the point set representing the 

stem cross-section. A circle was manually fitted to the point set corresponding to the stem. 

Consequently, the tree coordinates and DBHs were able to be accurately measured and 

used as reference data for the tree locations and DBHs achieved by automatic cylinder 

fitting performed in Matlab. Thus, the accuracy and the reliability of the tree positioning 

based on the cylinder fitting could be evaluated. The tree species identification was based 

on the manually measured tree structure parameters. The reference data of tree species 

utilised in the classification was based on checking the species in the sample plots. 

 

 

 

 

 
Figure 19: Sample plot 1 visualised by intensities. 
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Figure 20: Sample plot 2 visualised by intensities. 

 

 

 
Figure 21: Sample plot 3 visualised by intensities. 
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Figure 22: Sample plot 4 visualised by RGB-values. 

 

 

 
Figure 23: Sample plot 5 visualised by RGB-values. 

 

 

The scans of the sample plots acquired by the scanners were imported in the Faro Scene 

program from the scanner memory in format e57. This format consists of the XYZ-coor-

dinates and the intensities of the point cloud points. The clouds were registered to the 

common coordinate system by Faro Scene. Thus, the unambiguous coordinates for the 
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trees were definable. The registered data sets were separately exported by Faro Scene in 

XYZ-coordinate format. These formats, in turn, were exported to las-format by the pro-

gram CloudCompare. Only one or two scans from each sample plot were imported in 

CloudCompare because the capability of the program to process the whole data set is 

limited. Las-formats were used by TerraScan for classifying the point clouds. 

 

The extraction of the point set representing the stem cross-section was performed by clip-

ping each tree manually to a slice at the DBH. This was performed with the CloudCom-

pare program. Tree positioning was implemented by fitting a cylinder to the points form-

ing the extracted slice. The tree locations and DBHs determined by the cylinder fitting 

were compared with the manually measured reference position and DBH data provided 

by the Terrascan. 

 

In following, the tree identification process is described in more detail. In the registered 

point clouds, the tree stems were separated from the crowns and terrain surface by the 

classification algorithms used by TerraScan. Thus, the point clouds representing the stem 

cross sections were achieved. Terrascan was utilised to import and process all scans or 

only a part of the scans in las-format. Usually, Terrascan is not able to process very large 

data sets. Therefore, only a tenth of each sample plot cloud points was chosen for the 

processing. The first step performed on the point cloud imported to the Terrascan was the 

classification of the cloud points into terrain (Figures 23 and 24). 

 

 

 

 
Figure 23: Initial data including all laser points. 
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Figure 24: Initial data classified into the terrain surface as shown by orange-coloured 

points. 

 

 

 

Next, the stem cross-sections at breast height were separated by Terrascan from the orig-

inal point cloud. As the result, the cross-sections of the tree stems at breast height (1.29–

1.31 metres from the ground) were achieved (Figure 25). This figure representing a map 

in Terrascan, was needed to approximately measure the reference values for tree positions 

and DBHs. 

 

The point cloud represented by Figure 26 was, in turn, needed to identify each tree by 

pencil when visiting the sample plots. This point cloud had been bounded manually in 

vertical direction to the same cross-sections as shown in Figure 25. The clipping box tool 

from Faro Scene was used to bound the original point cloud representing the trunks from 

each sample plot. The clouds were vertically bounded to breast height, showing enough 

of same tree stems as in the map created by Terrascan (see Figures 25 and 26).  

 

The point cloud in Figure 26 was bounded from the original point cloud by Faro Scene to 

the stems and was printed. The tree identification numbers (ID) and tree species were 

signed to this print by pencil when visiting the sample plot. The trunk cross-sections were 

labelled as shown in the map achieved by Terrascan (Figure 26). Then, the clipping box 

tool in Faro Scene was utilised to vertically extend the point cloud to show the tree crowns 

(Figure 27). Thus, the correctness of the manually labelled trees could be checked. The 

reference tree location data determined by Terrascan (Figure 25) and the tree ID:s and 

species information signed to the prints (Figure 26) were combined and registered as 

shown in Tables 2–6. 
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Figure 25: An example of a map created by Terrascan showing stem cross-sections as 

green circles.  

 

 

 
Figure 26: Cross-sections of the tree stems achieved by the clipping box tool in Faro 

Scene. 
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Figure 27: Bounding of the point cloud by the clipping box tool in Faro Scene. 

 

 

The next step was to measure the tree positions by zooming the cursor approximately to 

the stem centre and registering the centre X- and Y-coordinates (Figure 28). Then, the 

visual circle fitting to the point set representing the trunk cross-section was performed 

(Figure 29). The circle was searched by iteration. In this procedure, the circle was visually 

placed to stem points so that the circle fits to the point set. The average DBH was calcu-

lated from two best-fitted circles. The DBHs for both circles were measured by placing a 

dashed line through the trunk centre (Figure 30). The reference data of the tree locations 

and DBHs measured from each sample plot were registered as shown in the Tables 2–6. 
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Figure 28: X- and Y-coordinates measured from the stem centre at the DBH. 

  

 

 

 
Figure 29: The circle fitting to the point set. 



34 

 

 

 

 
Figure 30: Measuring the DBH. 

 

 

The reference measurements from Sample Plot 1 are shown in Table 2. The table shows 

the IDs, positions, and DBHs of eight birches, three pines, and five spruces in Sample 

Plot 1. For Tree 3, the stem cross-section was so slightly visible in Terrascan that the 

circle fitting was unreliable, thus giving impossible results for the DBHs.  

 

 

Table 2: Tree locations and DBHs in Sample Plot 1. 
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The reference measurements from Sample Plot 2 are recorded in Table 3 showing the 

IDs, positions and DBHs of two birches and two spruces. 

 

 

Table 3: Tree locations and DBHs in Sample Plot 2. 

 
 

 

The reference measurements from Sample Plot 3 are recorded in Table 4 showing the 

IDs, positions and DBHs of six birches and four spruces. 

 

 

Table 4: Tree locations and DBHs in Sample Plot 3. 

 
 

 

The reference measurements from Sample Plot 4 are recorded in Table 5. The table shows 

the IDs, the positions and DBHs of eight birches, one spruce and two pines. 

 

 

Table 5: Tree locations and DBHs in Sample Plot 4. 
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The reference measurements from Sample Plot 5 are recorded in Table 6. The table shows 

the IDs, positions and DBHs of 10 birches, 1 spruce and 1 pine. 

 

 

Table 6: Tree locations and DBHs in Sample Plot 5. 

 
 

 

The accuracy and the reliability of the tree positions and the DBHs provided by the cyl-

inder fitting (Tables 7, 9, 11, and 13) were evaluated based on the comparison to the 

reference values in Tables 2–6. Automatic M-estimator sample consensus (MSAC) algo-

rithm based on the RANSAC-code (mentioned in Chapter 3.3) was used as the fitting 

method in Matlab R2019a. MSAC works by the same principle as RANSAC, searching 

enough iterations to provide a robust probability model. However, the MSAC-algorithm 

describes the reliability of the model based on the least squares method determined by the 

errors. (Mathworks 2019c, Sangappa & Ramakrishnan 2019, 72-73) 

 

The cylinder fitting was performed by Matlab to a tree stem slice, representing tree stem 

cross-section at breast height. The vertical thickness of the slice was approximately 10 

cm and was cut from the las-file exported by CloudCompare. This slice extended approx-

imately 5 cm upwards and downwards from the DBH (Figure 31). The breast height (1.3 

m) was visually measured from the terrain by the cutting tool. 

 

 

  
Figure 31: Tree stem bounded by the cutting tool in CloudCompare. 
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The cylinder fitting was performed separately for each tree by a Matlab-code. The first 

step in the code was to read the point set of the extracted slice from the tree stem by 

command las-data('Puu1.las', 'loadall'). Then, the algorithm accomplished the cylinder 

fitting by Matlab function pcfitcylinder(). This routine is based on the MSAC-algorithm 

fitting a cylinder to the point set by leaving the maximum distance of five millimetres 

between the points and the cylinder. (Mathworks 2019c) 

 

The fitting result was determined by the command pcfitcylinder (ptcloud,maxDis-

tance,referenceVector,'SampleIndices',sampleIndices). The routine in question also takes 

into account the angle of the gradient between the fitted circle and the horizontal plane of 

the point set. The orientation was set by the reference vector [0 0 1] in which the last 

element is the one-degree angle of the gradient. (Mathworks 2019c) 

 

The cylinder (Figure 32) fitted to the point set shown in Figure 31 enabled the X- and Y- 

coordinates of the extracted stem slice to be determined. The coordinates were defined in 

the scanner model coordinate system. The other output parameters provided by the cylin-

der fitting code were the tree DBH and the offset distances of the slice points from the 

fitted cylinder. 

 

 

  
Figure 32: Cylinder fitted to the point set representing the part of the tree stem at the 

DBH. 

 

 

5.2.2 Identification of tree species 

 

 

The next step was to identify the tree species based on the tree structure parameters (Fig-

ure 14 and 15) and the intensities. The identifiable trees comprised of three different tree 

species, with three trees representing each species. Thus, the sample consisted of three 

birches, three spruces, and three pines. Only nine trees were sampled to the classification. 
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It was difficult to measure the structure parameters of all trees because most of the tree 

crowns occluded each other. 

 

The sampled trees with reference DBHs were chosen from Tables 2–6. It was more reli-

able to utilise the earlier in Terrascan measured DBHs than to measure the DBHs sepa-

rately in CloudCompare. The other structure parameters (Figure 14) could be measured 

in CloudCompare by the cutting tool. To measure the tree parameters, the point cloud was 

bounded to a clearly distinguishable tree and its measurements. Each parameter was 

measured separately. Figure 33 shows the height of a pine measured with cutting tool. 

Correspondingly, the crown measurements were determined and read from the tool show-

ing crown widths in X- and Y-directions in metres (Figure 34). Also, the other structure 

parameters (Figure 14) were measured with the same method. The measured parameters 

were used to calculate the values defined in Figure 15. All measured and calculated struc-

ture parameters were registered to the Tables 18–20. 

 

 

 
Figure 33: The height of a pine bounded by the cutting tool. 
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Figure 34: The pine in Figure 33 with the diameters in X- and Y-directions as defined by 

the cutting tool. 

 

 

Next, the intensity data from the test tree stems and crowns were acquired. In addition to 

the tree structure parameters, these intensity data were used in feature vectors character-

izing the tree species. First, the scans of Sample Plots 1 and 2 recorded as e57- formats 

were registered by Faro Scene to the same coordinate system as a single e57-file. Thus, 

the trees were founded easily based on the comparison of the crowns in las- and e57-files.   

 

However, part of the trees from Plot 4 was sampled because the trees were clearly distin-

guishable and their structure parameters were relatively reliably measurable. Although 

the scans acquired from this plot comprised the intensities and the RBG-values, Faro 

Scene assumed only the colour values as the interests. Consequently, the scanning files 

with e57-formats were not enabled to register as a single file directly as mentioned above. 

The intensity values acquired from Plot 4 were achieved from fls-files that were registered 

by Faro Scene into the common coordinate system and exported as an e57-file. Thus, the 

intensities from Plot 4 were sighted and the test trees on the plot could be located. All 

sample plots were surveyed in the fall, so the deciduous trees lacked leaves. 

 

The next step was to extract the intensity data from test tree stems and foliages by cutting 

a point set from the stems and crowns (Figures 35 and 36). Each extracted point data set 

were saved in txt-format. Matlab could read the trunk and foliage intensity data covered 

by these files. 
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Figure 35: Extraction of the stem intensity data using the cutting tool. 

 

 

 
Figure 36: Extraction of the crown intensity data using the cutting tool. 
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The tree identification was based on the k-means -algorithm utilising the tree structure 

parameters. The algorithm was processed by Matlab. The k-means -method is based on 

the clustering of observations. The clusters refer to the desired number of groups (e.g., 

three different tree species). The algorithm separately considers the observation parame-

ters corresponding to the same feature of each tree. First, a desired given value was set 

for the average of these parameters. Next, each of these parameters was explored one by 

one, and was set to the cluster with the average value nearest to given value. The cluster-

ing was continued until each observation moved enough close to the average feature vec-

tors. Figure 37 represents an example of point clustering. (Mathworks 2019d) 

 

 

 
Figure 37: Example of point clustering based on data values. (Mathworks 2019d) 

   

 

The cluster labelling by tree species was performed manually. The considered factors 

utilised in the clustering are presented as structure parameters in Figure 14, ((Crown 

length)/(tree height), DBH/(tree height), FLBH/(tree height), Branch angle, (Crown 

length)/(crown diameter), (Tree height-LLS)/(tree height-HLS), LS/LCS, and (Mean 

height for all of the grids)/(tree height), Side gap fraction for all of the grids, Leaf area 

index for all of the grids,) and the stem and foliage intensities. A code based on the k-

means -algorithm was applied in Matlab (Appendix 1) to explore tree classification into 

the correct species. 

 

The classification accuracy was evaluated separately by three groups of data: structure 

parameters only, simultaneously structure parameters and the intensities, and the intensi-

ties only. The given values of the classes were moved in these classification cases. The 

aim of the initial feature vectors for k-means was to ensure the unambiguity of the tree 

species classification. Due to the small size of the sample plot, the different starting values 

for initial feature vectors changed the results. 
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5.3 Results 

 
In this chapter, the results of this study are presented. First, the results concerning tree 

stem locations and DBHs are shown. Then, the tree species classification are described.  

 

5.3.1 Tree locations and DBHs 

 

This chapter represents the locations and DBHs of the test trees in Sample Plots 1–5 pro-

vided by the automatic cylinder fitting. The results achieved by automatic cylinder fitting 

are shown in Tables 7, 9, 11, and 13. 

 

The results in Tables 7, 9, 11, and 13 achieved by the automatic cylinder fitting method 

were compared with the manually measured results in Tables 2–6. The results of this 

comparison are shown in Tables 8, 10, 12, 14, 16, and 17. 

 

The results for different sample plots are shown below. 

 

 

Sample Plot 1: 

 

Table 7 shows the XY-coordinates, DBHs of trees 1 and 15, and the offset distances be-

tween the stem points and the fitted cylinder from Sample Plot 1. Table 8 shows the cor-

responding information with the comparison data. 

 

 

Table 7: Trees 1 and 15 and their data from Sample Plot 1 

 
 

 

Table 8: Sample Plot 1 comparison data 

 
 

 

 

Sample Plot 2: 

 

Table 9 shows the XY-coordinates, DBHs of trees 1–4, and the offset distances between 

the stem points and the fitted cylinder from Sample Plot 2. Table 10 shows the corre-

sponding information with the comparison data. 

 



43 

 

 

 

 

 

 

 

Table 9: Trees 1–4 and their data from Sample Plot 2 

 
 

 

 

Table 10: Sample Plot 2 comparison data 

 
 

 

Sample plot 3: 

 

 

Table 11 shows the XY-coordinates, DBHs of trees 2–4, and the offset distances between 

the stem points and the fitted cylinder from Sample Plot 3. Table 12 shows the corre-

sponding information with the comparison data. 

 

 

Table 11: Trees 2–4 and their data from Sample Plot 3 

 
 

 

Table 12: Sample Plot 3 comparison data 
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Sample plot 4: 

 

Table 13 shows the XY-coordinates, DBH:s of trees 1,6,7 and 12, and the offset distances 

between the stem points and the fitted cylinder from sample plot 4. Table 14 shows the 

corresponding information with comparison data. 

 

 

Table 13: Trees 1,6, 7 and 12, and their data from Sample plot 4 

 
 

 

Table 14: Sample plot 4 comparison data. 

 
 

 

Sample plot 5: 

 

Table 15 shows the XY-coordinates, DBH of tree 2, and the offset distances between the 

stem points and the fitted cylinder from Sample Plot 5. Table 16 shows the corresponding 

information with the comparison data. 

 

 

Table 15: Tree 2 and its data from Sample Plot 5 

 
 

 

Table 16: Sample plot 5 comparison data. 
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Table 17 shows the overall error data determined from each sampled tree. 

 

 

Table 17: Overall error data 

 
 

 

5.3.2 Tree species classification 

 

Tables 18–20 show the parameters utilised in tree identification. The classification pa-

rameters were branch angle and the five lowest parameters in the table LCHT, DSHT, 

LCDEA, LLLSLHLS, and LSLCS.  

 

Table 18 shows the structure parameters of three birches. The 10 uppermost parameters 

in the table were measured using CloudCompare. The five lowest parameters were deter-

mined utilising these 10 parameters. 

 

 

Table 18: Birch structure parameters 

 
 

 

The structure parameters of three spruces considered in Table 19 corresponded to those 

in the previous case. 
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Table 19: Spruce structure parameters 

 
 

 

The structure parameters of three pines were considered in Table 20 corresponded to those 

in the previous case.  

 

 

Table 20: Pine structure parameters 

 
 

 

In addition to the tree structure parameters, the median intensities determined separately 

from each tree trunk and foliage intensities were used in tree species classification (Tables 

21–23). 
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Table 21: Birch intensities           Table 22: Spruce intensities  

       
 

Table 23: Pine intensities 

 
 

 

The best classification result provided by Matlab-code based on k-means -algorithm was 

achieved by the procedure of simultaneously using the structure parameters (five bottom 

values in Tables 18–20) and the intensities (Tables 21–23). The same classification result 

was provided using the structure parameters only. According to these results, the three 

birches and three spruces were correctly classified. However, two of the three reference 

pines were incorrectly classified into birches. Thus, the following error matrix for both 

cases mentioned above was formed. 

 

 

            Birch  Spruce  Pine 

 

Birch      3          0          2                               

 

Spruce    0          3          0 

 

Pine        0      0          1 

 

 

Classification by only median intensity values of tree stems and foliages (see Tables 21-

23) correctly identified all spruces. However, only one of three birches was correctly 

classified. Two of the birches were misidentified as spruces. In addition, although two of 

the three pines were correctly classified and one pine was misidentified as a spruce. Thus, 

the following error matrix was formed.   

 

 

                Birch  Spruce  Pine 

 

Birch           1         0        0 

 

Spruce        2          3        1 

 

Pine            0          0        2 
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5.4 Analysis 

 

The results provided by the cylinder fitting and manual measurements were analysed us-

ing different error parameters. The evaluation was based on the overall errors of the X- 

and Y-coordinates, DBHs, and positions of the trees. Moreover, the mean errors, standard 

errors, and standard deviations of the same parameters were determined. The standard 

errors were calculated to show also the largest deviations. The standard deviations, in 

turn, indicate the average deviation from the expected value of the error. These factors 

were calculated separately for each sample plot and finally an overall value was calcu-

lated for all the sampled trees. 

 

Tables 8, 10, 12, 14, and 16 show the errors of X- and Y-coordinates, DBHs, and overall 

location determined for the trees sampled separately from Sample Plots 1–5. The error 

evaluation was performed separately for each sample plot also based on the mean errors, 

standard errors, and standard deviation of the corresponding parameters (Tables 8, 10, 12, 

14, and 16). 

 

Finally, the overall biases between the cylinder fitting and manually measured results 

were evaluated. Table 17 shows the overall mean errors, standard errors, and standard 

deviations of X- and Y-coordinates, DBHs, and location determined from all sampled 

trees. 

 

All parameters mentioned above refer to the maximum deviation in centimetres. Thus, 

the results appear to be credible. The only considerable biases appear in the X-coordinate 

and overall location of tree 6 from Sample Plot 4 exceeding one decimetre. Furthermore, 

the Y-coordinate and the position of tree 2 from Sample Plot 5 have a relatively large 

bias. These deviations may be explained by the relatively large tree angle of the gradient. 

 

Moreover, the ground elevation variates considerably. The point cloud was acquired from 

higher positions. Thus, the terrain surface and the tree stem were not covered so well by 

the registered point cloud. Consequently, discerning the boundary between the ground 

surface and the tree stem in CloudCompare may be challenging. Possibly, these issues 

also hampered the bounding and extraction of the sample slice from the DBH. Further-

more, due to the tree angle of gradient, a small difference in DBH already significantly 

affected the tree location. 

 

According to the parameters shown in Table 17, the overall positioning accuracy seems 

to be quite well succeeded. Even the largest overall deviations shown by the root-mean-

square error and the average deviations from the expected value shown by standard devi-

ations seem to be fairly low. 

 

However, the precision of the cylinder fitting and the results provided might be consider-

ably higher if all of the scans acquired from each sample plot were utilised. Unfortunately, 

the accuracy evaluation only included one or two scans due to the limited processing 

capacity of the computer. Each tree stem could not be covered with this number of scans. 

Consequently, the circle fitting performed for the stems may be relatively inaccurate. 

 

Furthermore, each tree with reference coordinates and DBHs measured in Terrascan did 

not appear in CloudCompare because some of the stems merged with the foliage. Thus, 
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the cylinder fitting was not performable for as many trees expected. This issue made for 

a relatively reduced evaluation of the cylinder fitting. 

 

Figures 38–43 describe the geometry of different tree species utilised for tree classifica-

tion. Only birches and pines are shown in the figures because they could not be classified 

by programming-based computation reliably. The computation mixed a part of the trees 

with each other. Instead of that, the classification of spruces proved to be reliable and 

occurred correctly. Spruces could be separated from other tree species. A more exact ex-

planation for the figures are described after the images. 

 

 

 

                                
Figure 38: Birch1          Figure 39: Birch 2            Figure 40: Birch 3 

 

 

                           
Figure 41: Pine 1           Figure 42: Pine 2           Figure 43: Pine 3 
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One of the most significant problems of the classification performed by k-means algo-

rithm was probably the tree crowns occluded each other. Consequently, the definition of 

the structure parameters was quite challenging. However, a few trees in the point clouds 

were apart. One reason for the classification errors was that the pine and birch structures 

(Figures 38-43) were more equal than expected when considering the extreme values of 

their parameters. This issue might be a considerable obstacle for achieving 100 percent 

classification correctness. The main challenge in the tree species classification seems to 

be the limited sample size by species. 

 

Moreover, the age of the sampled trees by species varied considerably. Thus, the geomet-

ric structures of the trees representing the same species differed. The correct identification 

of the pines did not succeed even when using intensities as the additional data. In this 

case, two of the three pines were classified as birches. This failure may be explained by 

the data acquisition time (autumn) when birches lacked leaves. 

 

The pines, in turn, do not drop the needles. Consequently, there seemed to appear more 

variation in the intensities of the pines than in the birches, thus hampering pine identifi-

cation. Furthermore, a confusing point was the difference in intensity between these two 

trees. For some reason, the intensities of the birch trunks were lower than the intensities 

of the pine trunks, even though light trunks were expected to reflect considerably more 

than dark ones. Moreover, the median intensities of the green spruce and pine foliage 

were lower than the corresponding intensities determined from their brown trunks, despite 

the expectation that it would be the opposite. 

 

One significant failure in the experimental work was missing out of the radiometric cali-

bration, which could have performed for instance by the method mentioned in Chapter 

4.1. A white sphere could have been utilised as the reference surface for the reflections. 

The intensities reflected in certain angles by the trunks and foliage representing different 

species could have been compared with the corresponding reflection angles and intensi-

ties of the sphere. These intensities could have been proportioned to the entire reflected 

intensity. Thus, the relative intensity values could have corresponded better with reality 

and the tree classification would have been more successful. 

 

Lin & Herold (2016) reported in their article a tree identification method based on tree 

structure parameters. Tree classification was performed for 9 spruces, 14 pines, 7 aspens, 

and 10 oaks. The classification accuracy was evaluated by using precision and recall (Ta-

ble 24). Precision refers to the ratio of trees classified into particular species and the real 

number of that species. Recall, in turn, refers to the ratio of trees classified into right 

species and number of trees classified into same species. (Lin & Herold 2016, 108-112) 

 

 

Table 24: Tree classification results (Retelled Lin & Herold 2016, 112) 
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Like in this thesis, Lin & Herold (2016) mentioned in their article same problems effect-

ing the classification accuracy: the geometric features and structure parameters for differ-

ent species are similar to each other. In spite of that, total accuracy of the classification 

reached in their study was 90 percent, considerably higher than achieved in this thesis. 

The total number of trees and the number of different tree species might effect the better 

classification result. Moreover, their study was performed early in autumn when the trees 

still had the leaves. Thus, the results in the article were not quite comparable to this work. 

 

6 Conclusions 
 

The purpose of this work was to investigate different techniques to identify trees from 

terrestrial laser scanning data. To accomplish this, the first aim of the thesis was to con-

sider different tree positioning methods. The second aim was to investigate different tree 

species classification techniques. 

 

The purpose was to examine the applicability of the procedures to answer the needs for 

more exact data about forest areas. Many automatic tree locating methods currently exist. 

The positioning can be based on, for instance, the laser points representing the tree trunk. 

The stem fitting and positioning may also be based on more demanding mathematical 

analysis and combinations of them. 

    

The focus of the experimental work was to analyse the cylinder fitting based on the least 

square method performed for the point set representing the tree trunk. The applicability 

of the technique for practical needs was evaluated. The accuracy of the cylinder fitting 

was estimated based on the comparison of the fitting results to the exact manual meas-

urements for the stem locations and DBHs. Moreover, the tree classification into the spe-

cies based on the k-means -algorithm was investigated. 

 

The cylinder fitting results for the tree positions and the DBHs appeared relatively suc-

cessful. Almost all of the error parameters were below 10 centimetres. However, a higher 

accuracy may have been achieved by a larger number of processed scans. The precision 

of the results may have also improved by the automatic extraction of the stem slice. The 

tree positions and the DBHs provided by the cylinder fitting were based on the manually 

performed bounding of the slice. 

 

The evaluation of the tree species identification reliability proved to be deficient. Even in 

the best case, two of nine sampled trees were classified into the wrong species. The esti-

mation of the classification results did not fully succeed, possibly due to the small sample 

size. Moreover, the scans were performed in autumn when there were no leaves in the 

trees. This has an effect on the measured intensities, thus affecting to the classification 

results. Consequently, k-means, as well as the other classification methods, probably 

would not provide any perfect outcomes. However, the classification of spruces suc-

ceeded even with a small sample size. 

 

The evaluation of the reliability and precision of tree identification demands possibly 

considerably larger sample sizes than utilised in this thesis. In addition, the sampled trees 

should be free from occlusions and other distortion factors. Furthermore, the manual 

measurements of the tree structure parameters might expose to errors. Moreover, tree 
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identification by intensities requires radiometric intensity calibration, which was not per-

formed in this work. 

 

Thus, more accurate and cost-effective methods for forests mapping would be possible to 

develop in the future. Anyway, the environmental monitoring requires increasingly more 

exact and up-to-date information for many purposes, not at least due to the changes caused 

by climate change. 

 

The modern tree mapping techniques appear fairly promising. As a whole, the results of 

the experimental work refer to encouraging possibilities for further developing tree iden-

tification methods to meet future requirements.  
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Appendix 1. Matlab-code for tree species classification 
 

 

clc 

  

BA = [55.64 76.70 79.04; 90.87  123 98.38; 67.46 54.51 61.14]; 

  

LCHT = [0.74 0.80 0.95; 0.93 0.99 0.99; 0.66 0.96 0.88]; 

  

DSHT = [0.0123 0.01923 0.0151; 0.0219 0.0195 0.0226; 0.02796 0.0186 0.0221]; 

  

LCDEA = [3.05 1.95 2.25; 4.40 3.61 3.33; 2.06 3.60 2.27]; 

  

LLLSLHLS = [1.06 1.32 1.06; 1.01 1.10 1.16; 1.21 1.04 1.37]; 

  

LSLCS = [0.80 0.82 0.95; 0.90 0.62 0.89; 1.00 0.80 0.57]; 

  

x = [BA(1,1) LCHT(1,1) DSHT(1,1) LCDEA(1,1) LLLSLHLS(1,1) LSLCS(1,1);  

    BA(1,2) LCHT(1,2) DSHT(1,2) LCDEA(1,2) LLLSLHLS(1,2) LSLCS(1,2); 

    BA(1,3) LCHT(1,3) DSHT(1,3) LCDEA(1,3) LLLSLHLS(1,3) LSLCS(1,3); 

    BA(2,1) LCHT(2,1) DSHT(2,1) LCDEA(2,1) LLLSLHLS(2,1) LSLCS(2,1); 

    BA(2,2) LCHT(2,2) DSHT(2,2) LCDEA(2,2) LLLSLHLS(2,2) LSLCS(2,2); 

    BA(2,3) LCHT(2,3) DSHT(2,3) LCDEA(2,3) LLLSLHLS(2,3) LSLCS(2,3); 

    BA(3,1) LCHT(3,1) DSHT(3,1) LCDEA(3,1) LLLSLHLS(3,1) LSLCS(3,1); 

    BA(3,2) LCHT(3,2) DSHT(3,2) LCDEA(3,2) LLLSLHLS(3,2) LSLCS(3,2); 

    BA(3,3) LCHT(3,3) DSHT(3,3) LCDEA(3,3) LLLSLHLS(3,3) LSLCS(3,3)] 

  

%Koivun intensiteetit 

  

koivu1_lehvasto = dlmread('koivu1_lehvästö.txt'); 

 

size(koivu1_lehvasto); 

  

median_koivu1_lehvasto = median(koivu1_lehvasto(:,4)); 

  

koivu1_runko = dlmread('koivu1_runko.txt'); 

  

median_koivu1_runko = median(koivu1_runko(:,4)); 

  

I_KO1 = [median_koivu1_lehvasto median_koivu1_runko] 

  

  

koivu2_lehvasto = dlmread('koivu2_lehvästö.txt'); 

 

size(koivu2_lehvasto); 

  

median_koivu2_lehvasto = median(koivu2_lehvasto(:,4)); 

  

koivu2_runko = dlmread('koivu2_runko.txt'); 
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median_koivu2_runko = median(koivu2_runko(:,4)); 

  

I_KO2 = [median_koivu2_lehvasto median_koivu2_runko] 

  

  

koivu3_lehvasto = dlmread('koivu3_lehvästö.txt'); 

size(koivu3_lehvasto); 

  

median_koivu3_lehvasto = median(koivu3_lehvasto(:,4)); 

  

koivu3_runko = dlmread('koivu3_runko.txt'); 

  

median_koivu3_runko = median(koivu3_runko(:,4)); 

  

I_KO3 = [median_koivu3_lehvasto median_koivu3_runko] 

  

  

%Kuusen intensiteetit 

  

kuusi1_lehvasto = dlmread('kuusi1_lehvästö.txt'); 

size(kuusi1_lehvasto); 

  

median_kuusi1_lehvasto = median(kuusi1_lehvasto(:,4)); 

  

kuusi1_runko = dlmread('kuusi1_runko.txt'); 

  

median_kuusi1_runko = median(kuusi1_runko(:,4)); 

  

I_KU1 = [median_kuusi1_lehvasto median_kuusi1_runko] 

  

  

kuusi2_lehvasto = dlmread('kuusi2_lehvästö.txt'); 

size(kuusi2_lehvasto); 

  

median_kuusi2_lehvasto = median(kuusi2_lehvasto(:,4)); 

  

kuusi2_runko = dlmread('kuusi2_runko.txt'); 

  

median_kuusi2_runko = median(kuusi2_runko(:,4)); 

  

I_KU2 = [median_kuusi2_lehvasto median_kuusi2_runko] 

  

  

kuusi3_lehvasto = dlmread('kuusi3_lehvästö.txt'); 

size(kuusi3_lehvasto); 

  

median_kuusi3_lehvasto = median(kuusi3_lehvasto(:,4)); 

  

kuusi3_runko = dlmread('kuusi3_runko.txt'); 

  

median_kuusi3_runko = median(kuusi3_runko(:,4)); 
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I_KU3 = [median_kuusi3_lehvasto median_kuusi3_runko] 

  

  

%Männyn intensiteetit 

  

manty1_lehvasto = dlmread('mänty1_lehvästö.txt'); 

size(manty1_lehvasto); 

  

median_manty1_lehvasto = median(manty1_lehvasto(:,4)); 

  

manty1_runko = dlmread('mänty1_runko.txt'); 

  

median_manty1_runko = median(manty1_runko(:,4)); 

  

I_M1 = [median_manty1_lehvasto median_manty1_runko] 

  

  

manty2_lehvasto = dlmread('mänty2_lehvästö.txt'); 

size(manty2_lehvasto); 

  

median_manty2_lehvasto = median(manty2_lehvasto(:,4)); 

  

manty2_runko = dlmread('mänty2_runko.txt'); 

  

median_manty2_runko = median(manty2_runko(:,4)); 

  

  

  

I_M2 = [median_manty2_lehvasto median_manty2_runko] 

  

  

manty3_lehvasto = dlmread('mänty3_lehvästö.txt'); 

size(manty3_lehvasto); 

  

median_manty3_lehvasto = median(manty3_lehvasto(:,4)); 

  

manty3_runko = dlmread('mänty3_runko.txt'); 

  

median_manty3_runko = median(manty3_runko(:,4)); 

  

I_M3 = [median_manty3_lehvasto median_manty3_runko] 

  

  

I = [I_KO1; I_KO2; I_KO3; I_KU1; I_KU2; I_KU3; I_M1; I_M2; I_M3] 

  

  

x_I = [x I] 

  

size(x_I) 
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%for i = 1:6; 

     

    %x(:,i) = x(:,i)./max(x(:,i)); 

     

%end 

  

%x; 

  

%[idx1, C1] = kmeans(x,3) 

  

  

  

for j = 1:8; 

     

    x_I(:,j) = x_I(:,j)./max(x_I(:,j)); 

  

end 

  

x_I 

  

%[idx2, C2] = kmeans(x_I,3) 

  

  

%for k = 1:2; 

     

    %I(:,k) = I(:,k)./max(I(:,k)); 

     

%end 

  

%I; 

  

%[idx3, C3] = kmeans(I,3) 

  

display('idx1:'); 

for s=1:20; %moves min and max towards mean 

    for r=1:10; %moves mean value a bit 

        seeds=[(1+s*0.02)*min(x_I(:,1:6));(-0.5+r*0.1)*mean(x_I(:,1:6));(1- 

s*0.02)*max(x_I(:,1:6))]; 

        [idx1, C1] = kmeans(x_I(:,1:6),3,'Start',seeds); 

        display(idx1'); 

    end 

end 

  

  

  

  

display('idx2:'); 

for s=1:20; %moves min and max towards mean 

    for r = 1:10; %moves mean value a bit 

    seeds=[(1+s*0.02)*min(x_I);(-0.5+r*0.1)*mean(x_I);(1-s*0.02)*max(x_I)]; 
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    [idx2, C2] = kmeans(x_I,3, 'Start',seeds); 

    display(idx2'); 

    end 

end 

  

  

  

display('idx3:') 

for s=1:20 %moves min and max towards mean 

    for r = 1:10 %moves mean value a bit 

        seeds=[(1+s*0.02)*min(x_I(:,7:8));(-0.5+r*0.1)*mean(x_I(:,7:8));(1-

s*0.02)*max(x_I(:,7:8))]; 

        [idx3, C3] = kmeans(x_I(:,7:8),3,'Start',seeds); 

        display(idx3') 

    end 

end 

  

   

  

  

  

  

 

 

 


