134 research outputs found

    A machine-learning approach to negation and speculation detection for sentiment analysis

    Get PDF
    Recognizing negative and speculative information is highly relevant for sentiment analysis. This paper presents a machine-learning approach to automatically detect this kind of information in the review domain. The resulting system works in two steps: in the first pass, negation/speculation cues are identified, and in the second phase the full scope of these cues is determined. The system is trained and evaluated on the Simon Fraser University Review corpus, which is extensively used in opinion mining. The results show how the proposed method outstrips the baseline by as much as roughly 20% in the negation cue detection and around 13% in the scope recognition, both in terms of F1. In speculation, the performance obtained in the cue prediction phase is close to that obtained by a human rater carrying out the same task. In the scope detection, the results are also promising and represent a substantial improvement on the baseline (up by roughly 10%). A detailed error analysis is also provided. The extrinsic evaluation shows that the correct identification of cues and scopes is vital for the task of sentiment analysis.Maite Taboada from the Natural Sciences and Engineering Research Council of Canada (Discovery Grant 261104- 2008). This work was partly funded by the Spanish Ministry of Education and Science (TIN2009-14057-C03-03 Project) and the Andalusian Ministry of Economy, Innovation and Science (TIC 07629 and TIC 07684 Projects)

    Biomedical Event Extraction with Machine Learning

    Get PDF
    Biomedical natural language processing (BioNLP) is a subfield of natural language processing, an area of computational linguistics concerned with developing programs that work with natural language: written texts and speech. Biomedical relation extraction concerns the detection of semantic relations such as protein-protein interactions (PPI) from scientific texts. The aim is to enhance information retrieval by detecting relations between concepts, not just individual concepts as with a keyword search. In recent years, events have been proposed as a more detailed alternative for simple pairwise PPI relations. Events provide a systematic, structural representation for annotating the content of natural language texts. Events are characterized by annotated trigger words, directed and typed arguments and the ability to nest other events. For example, the sentence “Protein A causes protein B to bind protein C” can be annotated with the nested event structure CAUSE(A, BIND(B, C)). Converted to such formal representations, the information of natural language texts can be used by computational applications. Biomedical event annotations were introduced by the BioInfer and GENIA corpora, and event extraction was popularized by the BioNLP'09 Shared Task on Event Extraction. In this thesis we present a method for automated event extraction, implemented as the Turku Event Extraction System (TEES). A unified graph format is defined for representing event annotations and the problem of extracting complex event structures is decomposed into a number of independent classification tasks. These classification tasks are solved using SVM and RLS classifiers, utilizing rich feature representations built from full dependency parsing. Building on earlier work on pairwise relation extraction and using a generalized graph representation, the resulting TEES system is capable of detecting binary relations as well as complex event structures. We show that this event extraction system has good performance, reaching the first place in the BioNLP'09 Shared Task on Event Extraction. Subsequently, TEES has achieved several first ranks in the BioNLP'11 and BioNLP'13 Shared Tasks, as well as shown competitive performance in the binary relation Drug-Drug Interaction Extraction 2011 and 2013 shared tasks. The Turku Event Extraction System is published as a freely available open-source project, documenting the research in detail as well as making the method available for practical applications. In particular, in this thesis we describe the application of the event extraction method to PubMed-scale text mining, showing how the developed approach not only shows good performance, but is generalizable and applicable to large-scale real-world text mining projects. Finally, we discuss related literature, summarize the contributions of the work and present some thoughts on future directions for biomedical event extraction. This thesis includes and builds on six original research publications. The first of these introduces the analysis of dependency parses that leads to development of TEES. The entries in the three BioNLP Shared Tasks, as well as in the DDIExtraction 2011 task are covered in four publications, and the sixth one demonstrates the application of the system to PubMed-scale text mining.Siirretty Doriast

    The impact of pretrained language models on negation and speculation detection in cross-lingual medical text: Comparative study

    Get PDF
    Background: Negation and speculation are critical elements in natural language processing (NLP)-related tasks, such as information extraction, as these phenomena change the truth value of a proposition. In the clinical narrative that is informal, these linguistic facts are used extensively with the objective of indicating hypotheses, impressions, or negative findings. Previous state-of-the-art approaches addressed negation and speculation detection tasks using rule-based methods, but in the last few years, models based on machine learning and deep learning exploiting morphological, syntactic, and semantic features represented as spare and dense vectors have emerged. However, although such methods of named entity recognition (NER) employ a broad set of features, they are limited to existing pretrained models for a specific domain or language. Objective: As a fundamental subsystem of any information extraction pipeline, a system for cross-lingual and domain-independent negation and speculation detection was introduced with special focus on the biomedical scientific literature and clinical narrative. In this work, detection of negation and speculation was considered as a sequence-labeling task where cues and the scopes of both phenomena are recognized as a sequence of nested labels recognized in a single step. Methods: We proposed the following two approaches for negation and speculation detection: (1) bidirectional long short-term memory (Bi-LSTM) and conditional random field using character, word, and sense embeddings to deal with the extraction of semantic, syntactic, and contextual patterns and (2) bidirectional encoder representations for transformers (BERT) with fine tuning for NER. Results: The approach was evaluated for English and Spanish languages on biomedical and review text, particularly with the BioScope corpus, IULA corpus, and SFU Spanish Review corpus, with F-measures of 86.6%, 85.0%, and 88.1%, respectively, for NeuroNER and 86.4%, 80.8%, and 91.7%, respectively, for BERT. Conclusions: These results show that these architectures perform considerably better than the previous rule-based and conventional machine learning-based systems. Moreover, our analysis results show that pretrained word embedding and particularly contextualized embedding for biomedical corpora help to understand complexities inherent to biomedical text.This work was supported by the Research Program of the Ministry of Economy and Competitiveness, Government of Spain (DeepEMR Project TIN2017-87548-C2-1-R)

    Biomedical Event Extraction with Machine Learning

    Get PDF
    Biomedical natural language processing (BioNLP) is a subfield of natural language processing, an area of computational linguistics concerned with developing programs that work with natural language: written texts and speech. Biomedical relation extraction concerns the detection of semantic relations such as protein--protein interactions (PPI) from scientific texts. The aim is to enhance information retrieval by detecting relations between concepts, not just individual concepts as with a keyword search. In recent years, events have been proposed as a more detailed alternative for simple pairwise PPI relations. Events provide a systematic, structural representation for annotating the content of natural language texts. Events are characterized by annotated trigger words, directed and typed arguments and the ability to nest other events. For example, the sentence ``Protein A causes protein B to bind protein C&#39;&#39; can be annotated with the nested event structure CAUSE(A, BIND(B, C)). Converted to such formal representations, the information of natural language texts can be used by computational applications. Biomedical event annotations were introduced by the BioInfer and GENIA corpora, and event extraction was popularized by the BioNLP&#39;09 Shared Task on Event Extraction. In this thesis we present a method for automated event extraction, implemented as the Turku Event Extraction System (TEES). A unified graph format is defined for representing event annotations and the problem of extracting complex event structures is decomposed into a number of independent classification tasks. These classification tasks are solved using SVM and RLS classifiers, utilizing rich feature representations built from full dependency parsing.&nbsp; Building on earlier work on pairwise relation extraction and using a generalized graph representation, the resulting TEES system is capable of detecting binary relations as well as complex event structures. We show that this event extraction system has good performance, reaching the first place in the BioNLP&#39;09 Shared Task on Event Extraction. Subsequently, TEES has achieved several first ranks in the BioNLP&#39;11 and BioNLP&#39;13 Shared Tasks, as well as shown competitive performance in the binary relation Drug-Drug Interaction Extraction 2011 and 2013 shared tasks. The Turku Event Extraction System is published as a freely available open-source project, documenting the research in detail as well as making the method available for practical applications. In particular, in this thesis we describe the application of the event extraction method to PubMed-scale text mining, showing how the developed approach not only shows good performance, but is generalizable and applicable to large-scale real-world text mining projects. Finally, we discuss related literature, summarize the contributions of the work and present some thoughts on future directions for biomedical event extraction. This thesis includes and builds on six original research publications. The first of these introduces the analysis of dependency parses that leads to development of TEES. The entries in the three BioNLP Shared Tasks, as well as in the DDIExtraction 2011 task are covered in four publications, and the sixth one demonstrates the application of the system to PubMed-scale text mining.</p

    Negation and Speculation in NLP: A Survey, Corpora, Methods, and Applications

    Get PDF
    Negation and speculation are universal linguistic phenomena that affect the performance of Natural Language Processing (NLP) applications, such as those for opinion mining and information retrieval, especially in biomedical data. In this article, we review the corpora annotated with negation and speculation in various natural languages and domains. Furthermore, we discuss the ongoing research into recent rule-based, supervised, and transfer learning techniques for the detection of negating and speculative content. Many English corpora for various domains are now annotated with negation and speculation; moreover, the availability of annotated corpora in other languages has started to increase. However, this growth is insufficient to address these important phenomena in languages with limited resources. The use of cross-lingual models and translation of the well-known languages are acceptable alternatives. We also highlight the lack of consistent annotation guidelines and the shortcomings of the existing techniques, and suggest alternatives that may speed up progress in this research direction. Adding more syntactic features may alleviate the limitations of the existing techniques, such as cue ambiguity and detecting the discontinuous scopes. In some NLP applications, inclusion of a system that is negation- and speculation-aware improves performance, yet this aspect is still not addressed or considered an essential step

    Event based text mining for integrated network construction

    Get PDF
    The scientific literature is a rich and challenging data source for research in systems biology, providing numerous interactions between biological entities. Text mining techniques have been increasingly useful to extract such information from the literature in an automatic way, but up to now the main focus of text mining in the systems biology field has been restricted mostly to the discovery of protein-protein interactions. Here, we take this approach one step further, and use machine learning techniques combined with text mining to extract a much wider variety of interactions between biological entities. Each particular interaction type gives rise to a separate network, represented as a graph, all of which can be subsequently combined to yield a so-called integrated network representation. This provides a much broader view on the biological system as a whole, which can then be used in further investigations to analyse specific properties of the networ

    Text and Network Mining for Literature-Based Scientific Discovery in Biomedicine.

    Full text link
    Most of the new and important findings in biomedicine are only available in the text of the published scientific articles. The first goal of this thesis is to design methods based on natural language processing and machine learning to extract information about genes, proteins, and their interactions from text. We introduce a dependency tree kernel based relation extraction method to identify the interacting protein pairs in a sentence. We propose two kernel functions based on cosine similarity and edit distance among the dependency tree paths connecting the protein names. Using these kernel functions with supervised and semi-supervised machine learning methods, we report significant improvement (59.96% F-Measure performance over the AIMED data set) compared to the previous results in the literature. We also address the problem of distinguishing factual information from speculative information. Unlike previous methods that formulate the problem as a sentence classification task, we propose a two-step method to identify the speculative fragments of sentences. First, we use supervised classification to identify the speculation keywords using a diverse set of linguistic features that represent their contexts. Next, we use the syntactic structures of the sentences to resolve their linguistic scopes. Our results show that the method is effective in identifying speculative portions of sentences. The speculation keyword identification results are close to the upper bound of human inter-annotator agreement. The second goal of this thesis is to generate new scientific hypotheses using the literature-mined protein/gene interactions. We propose a literature-based discovery approach, where we start with a set of genes known to be related to a given concept and integrate text mining with network centrality analysis to predict novel concept-related genes. We present the application of the proposed approach to two different problems, namely predicting gene-disease associations and predicting genes that are important for vaccine development. Our results provide new insights and hypotheses worth future investigations in these domains and show the effectiveness of the proposed approach for literature-based discovery.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/78956/1/ozgur_1.pd
    corecore