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Abstract 

Owing to the ever increasing information deluge, it is becoming increasingly diffi-

cult to locate relevant information through traditional term-based search methods. 

Event–based text mining provides a more promising approach, as it also takes into 

account the semantic relationships between terms.  

Typical event representations only focus on identifying the type of the event, its par-

ticipants and their types.  However, additional information, which is essential for 

correct interpretation of the event, is often present in the text. This includes infor-

mation about the polarity, certainty level, intensity/rate/frequency, type and source of 

the knowledge conveyed by the event. We refer to this additional information as me-

ta-knowledge.   

This thesis focusses on our work involving the enrichment of events with meta-

knowledge information. In this thesis we:  

 describe the annotation scheme designed specifically to capture meta-

knowledge information at the event level 

 report on the corpora that have been enriched through deployment of the meta-

knowledge annotation scheme 

 describe the work on automated identification of meta-knowledge including: 

 a broad-ranging study on analysis and identification of polarity of bio-

events using three different bio-event corpora 

 a detailed study on analysis and identification of knowledge source in 

bio-events found in abstracts as well as in full papers 

 a first study on analysis and identification of bio-event manner 

 describe the initial work on a new approach to discourse analysis based on me-

ta-knowledge annotations at the event level 
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Thesis Outline 

This thesis contains the following chapters:  

 Chapter 1 provides an introduction to the research project and describes the 

problem domain, motivation, aims and objectives of the research. 

 Chapter 2 provides a brief introduction to event-based biomedical text min-

ing. It starts with a description of bio-events, followed by discussions on bio-

event extraction systems and the key applications of such systems. The chap-

ter concludes with a discussion on the limitations of current bio-event repre-

sentations in terms of providing complete semantic interpretations. 

 Chapter 3 discusses the meta-knowledge annotation scheme in detail. It 

starts with a discussion on the need for meta-knowledge annotation at the 

level of bio-events. This is followed by a detailed description of the annota-

tion scheme with several examples.   

 Chapter 4 provides an overview of the application of the meta-knowledge 

annotation scheme to two bio-event corpora. The annotation results for both 

corpora are discussed in detail and a comparison is provided.  

 Chapter 5 describes the work on first detailed study on the analysis and 

identification of negated bio-events. The analysis is based on the negated 

events in three open access bio-event corpora. The chapter begins with a de-

tailed introduction to the task. This is followed by analyses of the types of 

negated bio-events and the three main aspects of the problem of automated 

identification of negated bio-events, i.e., negation cues, feature design and 
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choice of learning algorithm. Finally, the experiments and results are dis-

cussed. 

 Chapter 6 describes the work on the analysis and identification of bio-event 

manner. The chapter begins with an introduction to manner annotation for 

bio-events. This is followed by an analysis of manner cues, and a discussion 

on classifier design. Finally, the results of classification experiments are dis-

cussed.  

 Chapter 7 describes the work on the analysis and identification of 

knowledge source for bio-events. It starts with a detailed discussion on anno-

tation of knowledge source at different levels of granularity. This is followed 

by the analysis of events attributed to explicit external sources, and a discus-

sion on classifier design. Finally, the results of classification experiments are 

discussed.  

 Chapter 8 provides an overview of the initial work on discourse analysis 

based on meta-knowledge annotation at the event level. It focusses on two 

dimensions of meta-knowledge, i.e., Knowledge Type and Certainty Level. 

The analysis includes both local and global transition patterns observed in 

abstracts and full papers.  

 Chapter 9 provides an evaluation of the research work against the aims and 

objectives described in chapter 1. It concludes with a discussion on future 

work 
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Chapter 1: Introduction 

This chapter provides an introduction to the research project. It begins with an intro-

duction to the problem domain and the motivation for this research. This is followed 

by an outline of research aims and objectives. 

1.1 Problem Domain and Motivation 

Biomedical research literature is being published at an ever-increasing rate. 

MEDLINE
1
, which is the largest repository of biomedical research literature, already 

contains over 19 million citations and between 2,000 to 4,000 new entries are being 

added to it every day. This makes it highly important to provide researchers with 

automated, efficient and accurate means of locating the information they require, 

allowing them to keep abreast of developments within biomedicine [1-6]. However, 

searching using keywords alone will usually return far more documents than are rel-

evant to a query. For example, a researcher interested in finding which proteins are 

positively regulated by IL-2, would typically expect the following sentence answer-

ing his/her query:  

S1 These results suggest that p21ras proteins are activated by IL-2 in nor-

mal human T lymphocytes.  

Using the search terms IL-2 and activate on a typical search engine would return a 

long list of results. Although some documents containing information directly rele-

vant to the user’s query (e.g., the document containing S1) would be amongst the 

retrieved results, it is highly likely that many of the retrieved documents will not 

contain the required information. This is because a simple keyword query cannot 

                                                 
1
 http://www.nlm.nih.gov/databases/databases_medline.html 
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express the fact that the user requires there to be a particular semantic relationship 

between the two search terms, i.e. only documents in which IL-2 is expressed as the 

instigator of the positive regulation are of interest.  For the verb activate, the instiga-

tor corresponds to the grammatical subject. Generally, search engines view docu-

ments as “bags of words” that have no internal structure. Thus, there is no guarantee 

that in the returned documents, there will be any kind of relation between the search 

terms. Documents will still be returned even if the terms are entirely unrelated, but 

nonetheless exist somewhere in the text. 

Since most biomedical terms have variant forms, the above query is also likely to 

fail to return some relevant documents. For example, IL-2 is the short form for inter-

leukin-2, and both forms may appear in text either with or without the hyphen. 

Moreover, variants are not restricted to acronyms/full forms and minor orthographic 

variations, but may include synonymous terms that are completely unrelated. For 

example, T-cell growth factor is often used as a synonym of interleukin-2, and this 

term also has its own variant forms (e.g., TCGF). A further issue relating to the 

above query is that the user is interested specifically in retrieving information about 

biological reactions that correspond to positive regulations. The verb activate is a 

common means of describing such reactions in text. However, this is by no means 

the only way in which positive regulations can be described; there are also many 

possible variations in this respect, such as the use of other verbs, e.g., stimulate or 

affect, or using nouns that convey a similar meaning, e.g., activation, activator, ef-

fect, stimulation, etc. A typical search engine would not find all such variants auto-

matically. Although a query could be formulated to include some variants, this is 

cumbersome and time-consuming for the user, and it would be extremely difficult to 

enumerate all possible variants.  
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The above limitations of search engines can be alleviated through the integration of 

text mining methods [1, 5, 7]. In particular, the use of event extraction systems can 

facilitate the development of event-based search systems. Events are structured, se-

mantic representations of pieces of knowledge contained within a text. In the bio-

medical field, they may include various biological processes, such as regulation, 

expression and transcription, whilst examples from newswire include terrorist at-

tacks, company takeovers, personnel appointments, etc. In event-based search sys-

tems, searches take place over these structured events, rather than over unstructured 

text.  

Although event-based searching can retrieve many more relevant documents than is 

possible using traditional keyword searches, the typical event representations (and 

the event extraction systems based on such representations) do not take into account 

all available information pertaining to the interpretation of the event. For example, a 

particular event may represent generally accepted knowledge, experimental observa-

tions, hypotheses or analyses of experimental results. For the two latter types of 

event, the author may express varying degrees of certainty regarding the analysis 

performed. Similarly, other interpretative information about the event is also often 

available in the text. This includes: the information about the polarity of the event 

(i.e., whether the event is negated or not), the manner in which it takes place (i.e., 

the intensity, rate and frequency of the event), and the knowledge source to which 

the event can be attributed. We term these types of interpretative information collec-

tively as meta-knowledge [8].  

Without access to meta-knowledge, a large number of extracted bio-events will be 

treated identically by text mining systems, even though their intended interpretations 

may vary significantly [8, 9]. This poses a serious problem to users of the system 
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whose information requirements include the ability to distinguish between certain 

interpretations. For example, a biologist who wishes to update either an incomplete 

model of a biological process (e.g., a molecular pathway [10]) or a curated biologi-

cal database [11] would wish to locate only newly-reported, reliable experimental 

knowledge. Thus, he would be interested only in experimental observations or con-

fident analyses of results, but not in hypotheses or more tentative analyses. Similar-

ly, certain users may be interested specifically in negated interactions, whilst others 

may want to exclude them from their retrieved results. Further cases where interpre-

tation can be important include matching hypotheses with experimental observa-

tions/evidence, or detecting contradictions that occur in the literature [12].  

In this thesis, we report on the research carried out to evaluate the feasibility of iden-

tifying meta-knowledge information at the event level. We firstly present our annota-

tion scheme for enriching bio-events with meta-knowledge information, and report 

on the application of the scheme to existing corpora containing event annotations. 

Subsequently, we describe our efforts to train systems to recognise meta-knowledge 

information at the event level automatically. Finally, we report on a new approach to 

discourse analysis based on meta-knowledge annotations at the event level. 

1.2 Aims and Objectives 

A brief description of our project research aims, objectives, hypotheses and evalua-

tion measures is as follows:  

1.2.1 Research Aims 

We refer to the overall aim of our research as AO, and define it as follows: 
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AO 

To investigate the feasibility of an event-centred approach for meta-

knowledge annotation and extraction 

We refer to the specific aims of our research as ASn, and define them as follows: 

AS1 

To identify the necessary information required for correct interpreta-

tion of bio-events 

AS2 

To develop a methodology for recording the information required for 

correct interpretation of bio-events 

AS3 

To develop a methodology for extracting the information required for 

correct interpretation of bio-events 

1.2.2 Hypotheses 

The research effort is being driven by the following main hypotheses:  

H1 
Discrete information about event interpretation can be identified – 

Meta-knowledge annotation can be performed at the event level 

H2 
The above information can be automatically extracted – Meta-

knowledge can be extracted automatically 

1.2.3 Research Objectives 

The research objectives are as follows: 

O1 

To develop an annotation scheme for capturing the information nec-

essary for the correct interpretation of bio-events 

O2 

To develop manually annotated corpora of bio-events with the re-

quired interpretative information 
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O3 

To develop automated systems for enriching bio-events with the re-

quired interpretative information 

1.2.4 Research Evaluation 

Three traditional evaluation methodologies will be followed for assessing the quality 

of resources produced in the course of this research: 

E1 

The annotation schemes and their corresponding corpora will be 

evaluated using inter-annotator consistency and agreement rates.  

E2 

The automated systems will be evaluated using the traditional 

measures of precision, recall and F-mesaure. 

E3 

The methodologies will be evaluated based on the performance of 

their corresponding systems. 

1.3 Summary of Contributions 

The research presented in this thesis has made the following contributions: 

 Development of a meta-knowledge annotation scheme and annotation guide-

lines [8, 13-17] 

 Creation of two meta-knowledge enriched corpora of bio-events: GENIA-

MK [9] and FP-MK [18] 

 The first comprehensive study on the analysis and identification of negated 

bio-events [19] 

 Development of a system for automated identification of event manner [20] 

 Development of a system for automated identification of event knowledge 

source [21] 

 Initial work on meta-knowledge based discourse analysis [22] 
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Chapter 2: Event-based Biomedical Text Mining 

This chapter provides an introduction to event-based biomedical text mining. It 

starts with an introduction to bio-events, followed by discussions on bio-event ex-

traction systems and the key applications of such systems. The chapter concludes 

with a discussion on the limitations of current bio-event representations in terms of 

providing complete semantic interpretations. 

2.1 Introduction to Bio-events 

2.1.1 Textual Events  

In its most general form, a textual event can be described as an action, relation, pro-

cess or state expressed in the text [23]. More specifically, a textual event is a struc-

tured semantic representation of a certain piece of information contained within the 

text. Textual events are usually anchored to particular text fragments that are central 

to the description of the event. The most important of these text fragments is the 

event-trigger, which is usually a verb or a noun that indicates the occurrence of the 

event.  Events are often represented by a template-like structure with slots that are 

filled by the event participants. These event participants describe the different as-

pects of the event, e.g., what caused the event, what is affected by it, where it took 

place, etc. Based on its function, each participant can be assigned a semantic role 

within the event. The participants can correspond to entities, concepts or even other 

events. If an event contains one or more events amongst its participants, then it is 

called a complex event. Typically each event is also assigned a type/class from an 
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event taxonomy/ontology. Similarly, the entities participating in the event are also 

assigned types/classes from an entity taxonomy/ontology. 

As an example, consider Figure 1. It shows a sentence from general newswire text 

which contains an event relating to the founding of an organisation. The figure also 

shows the event representation (as per the ACE guidelines [24]).   The event is cen-

tred on the word founded (which has been identified as the event-trigger), and it has 

been an event type of Start_Org. Three participants have been identified for the 

event: Joseph Conrad Parkhurst (who has been assigned an entity type of Person) 

plays the role of Agent; Cycle World (which has been assigned an entity type of Or-

ganisation) plays the role of Org; and the year 1962 has been identified as the Time 

of the event.   

 

Figure 1. Example of textual event in newswire text 

The event representation of text allows a document to be viewed as a collection of 

nested events. We call this the event view of a document. This event-view has some 

similarity with the document view based on atomic propositions as defined by 

Akhmatova [25]: 
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An atomic proposition is a minimal declarative statement (or a small 

idea) that is either true (T) or false (F) and whose truth or falsity does 

not depend on the truth or falsity of any other proposition.  

Depending upon the granularity of events, the event-view can capture most of the 

atomic propositions. The event-view also has some similarity with the document 

view based on discourse commitments proposed by Hickl & Bensley [26]: 

Discourse commitments represent the set of propositions which can necessari-

ly be inferred to be true given a conventional reading of the text  

The discourse-commitment-view ascribes to a given text fragment even those propo-

sitions that are not explicitly mentioned, but which can be inferred from the text 

fragment, e.g., conventional implicatures and conversational implicatures, etc. The 

event-view, in contrast, can usually only capture the explicitly mentioned proposi-

tions. However, when used in conjunction with event and term ontologies, the event-

view can facilitate the extraction of inferred discourse commitments. 

Finally, it is important to note that although the general format of event templates 

can be comparable across different domains, the features of the events to be recog-

nised vary in several ways, i.e., both in terms of the event types to be extracted and 

the types/roles of participants to be recognised.  Therefore, different event represen-

tations are required for different domains. Furthermore, many subdomains can exist 

within a specific domain, and each of these subdomains can have its own sub-

language and informational structure [27]. Therefore, a generic analysis cannot cap-

ture the informational structure of a sublanguage [28], which demands richer rela-

tions expressing conditions, manner, destination, etc. Sublanguage-driven infor-

mation extraction systems rely on the notion that the informational structure of the 
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domain imposes constraints at all linguistic levels (lexical, syntactic, semantic, and 

discourse), which can be exploited to produce accurate systems. Therefore, differ-

ent event representations can be required for different subdomains within a domain.  

2.1.2 Bio-events 

A bio-event is a textual event specialised for the biomedical domain. Kim et al [29] 

define a bio-event as “a dynamic bio-relation involving one or more participants”. 

These participants can be bio-entities or (other) bio-events, and are each assigned a 

semantic role like theme and cause, etc. Each bio-event is typically assigned a 

type/class from a chosen bio-event taxonomy/ontology, e.g., the GENIA Event On-

tology [29]. Similarly, the bio-entities are also assigned types/classes from a chosen 

taxonomy/ontology, e.g., the Gene Ontology [30]. The template of a bio-event can 

also contain additional slots, e.g., to denote temporal and spatial attributes. 

As an example, consider the sentence S1: 

S1 These results suggest that p21ras proteins are activated by IL-2 in nor-

mal human T lymphocytes.  

This sentence contains a single bio-event, anchored to the verb activates. Figure 2 

shows a typical structured representation of this bio-event. The fact that the event is 

anchored to the word activates allows the event-type of Positive Regulation to be 

assigned. The event has two slots, i.e. theme and cause whose labels help to charac-

terise the contribution that the slot filler makes towards the meaning of the event. In 

this case, the slots are filled by the subject and object of the verb activate, both of 

which correspond to the same type of bio-entities (i.e., Protein).  



CHAPTER 2. EVENT-BASED BIOMEDICAL TEXT MINING 

 

 33 

 

Figure 2. Typical representation of the bio-event in sentence S1 

Figure 3 shows a simple hypothetical sentence with a more complex event structure. 

The event E1 is anchored to the word expression and has been assigned the event 

type of Gene Expression. It has a single participant, the arbitrary gene X, which acts 

as the theme of the event. E1 also has a location attribute, which has the arbitrary 

value of Z. The word activates has been identified as the event-trigger for the com-

plex event E2, which has been classed as a Positive Regulation event. It has two par-

ticipants: the arbitrary protein Y and the event E1, which act as the cause and the 

theme of the event, respectively. 

 

Figure 3. A simple hypothetical sentence with complex event structure 

TRIGGER:  activates  

TYPE:   POSITIVE REGULATION 

THEME:  p21ras proteins : PROTEIN 

CAUSE:  IL-2 : PROTEIN 

LOCATION:  normal human T lymphocytes : CELL 
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Relationship between Bio-events and Other Types of Bio-relations 

The above definition of bio-event has been used as the basis for various annotation 

and extraction tasks [29, 31-34]. However, it is important to note that this is a fairly 

general definition; i.e., it is much broader in scope than the other types of bio-

relations which have received significant attention in the past. The most notable of 

these bio-relations is Protein-Protein Interaction (PPI), which is generally defined as 

“an instance of the mention of an interaction between two proteins” [35, 36]. The 

structured representation of a PPI is simpler and coarser than that of a bio-event. 

More interestingly, a PPI can be viewed as a special case of bio-event, where the 

participants are restricted to proteins. Therefore, every instance of a PPI is a bio-

event, while the converse is not true. Similarly, other (more specific) types of bio-

relations can also be viewed as special cases of bio-events, for example, genotype-

phenotype associations [37, 38], disease-gene associations [39, 40], etc.   

Historically, different bioinformatics tasks have motivated the extraction of different 

types of bio-relations. For example, PPI extraction has been motivated by the need 

to populate interaction databases, such as MINT [41]. However, bio-event extraction 

aims to support the development of richer, more detailed and more structured data-

bases, like Pathguide [42] and Gene Ontology Annotation [43]. A detailed discussion 

of this topic can be found in  [29, 44].  

2.1.3 Bio-event Corpora 

Annotated bio-event corpora are a vital resource for the development of event-based 

text mining systems. These corpora provide direct evidence of how events manifest 

themselves in texts, and as such, they can be used in both the development and train-
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ing of event extraction systems, as well as in the evaluation of the performance of 

such systems, by acting as a “gold standard” [45].  

Recently, significant effort has been put into the creation of various bio-event corpo-

ra. Although each one of these corpora has been created with different aims and mo-

tivations, they all contain bio-events of varying levels of granularity [32, 44]. A brief 

description of some of these bio-event corpora is given below.  

GENIA Event  

The GENIA Event corpus [29] contains 1,000 MEDLINE abstracts in which 36,858 

bio-events have been identified. Each event belongs to one of the 36 event classes 

defined in the GENIA Event Ontology [29]. The event participants can be bio-

entities or other bio-events. Each bio-entity belongs to one of the 46 classes defined 

in the GENIA Term Ontology [29]. Other than the participants, an event may contain 

additional attributes including location, time and experimental context.   

BioInfer  

The BioInfer [31] corpus contains 1,100 sentences in which 2,662 bio-events have 

been identified. Each event belongs to one of the 60 event classes defined in the Bio-

Infer Relationship Ontology [31]. It is important to note that a more general defini-

tion of bio-event has been used in BioInfer, and static bio-relations [46] have also 

been marked as bio-events. 

BioNLP’09 ST  

The BioNLP’09 ST corpus [47] is a modified subset of the GENIA Event corpus, 

which was created for the BioNLP’09 shared task on event extraction (further details 

in section 2.2.1). It contains 950 MEDLINE abstracts, which are divided into two 
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subsets: the Development subset, comprising 150 abstracts and the Training subset 

comprising 800 abstracts. The corpus contains a total of 11,480 bio-events, and each 

bio-event belongs to one of 9 event classes from the GENIA Event Ontology.  

BioNLP’11 ST  

The BioNLP’11 ST corpus [48] is an extended version of the BioNLP’09 ST corpus, 

which was created for the BioNLP’11 shared task on event extraction (further details 

in section 2.2.1). It contains the entire BioNLP’09 ST corpus with various additional 

entity and event type annotations. It also contains a new subset of five full papers 

annotated with 3,150 bio-events. 

GREC  

The Gene Regulation Event Corpus (GREC) [49] contains 240 MEDLINE abstracts 

in which 3,067 bio-events have been identified. Each event has a set of arguments, 

which can include both the event participants and attributes like time, location and 

manner etc. The bio-events and their participating bio-entities have been assigned 

classes from the Gene Regulation Ontology [50].  

GeneReg 

The GeneReg [51] corpus contains 314 MEDLINE abstracts in which 1,770 bio-

events have been identified. Each event belongs to one of the 4 classes from the 

Gene Regulation Ontology [50]. 
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2.2 Bio-event Extraction 

2.2.1 Shared Tasks 

Shared tasks bring together different research teams to focus on a problem by 

providing standard datasets and a common evaluation framework. They focus the 

attention of the research community on timely issues and act as a driver for the spec-

ification of new tasks and challenges [44]. Within the domain of biomedical text 

mining, shared tasks have played a significant role in advancing the state-of-the-art 

in various types of systems [47, 52]. For example, the TREC Genomics track [53] 

focussed on information retrieval whilst the Joint Workshop on Natural Language 

Processing in Biomedicine and its Applications (JNLPBA) [54] targeted named enti-

ty recognition. In terms of relation extraction, the Learning Language in Logic 

(LLL) challenge [55] and the BioCreative challenges [52] have yielded significant 

progress. However, both LLL and BioCreative have focussed on simple representa-

tions of relations between bio-entities, i.e., protein-protein interactions. A step to-

wards recognition of more detailed and intricate representations of bio-relations (i.e., 

bio-events) has been the introduction of BioNLP shared tasks on event extraction 

[33].  

2.2.1.1 BioNLP’09 Shared Task on Event Extraction 

The first of the BioNLP shared tasks, i.e. BioNLP’09 [33], was based on a dataset 

that was largely derived from the GENIA Event corpus.  However, since this was the 

first shared task of its type, the bio-event data was simplified to ensure that the task 

remained tractable. Specifically, the BioNLP’09 ST corpus (section 2.1.3) contains 

around a third of the events in the GENIA Event corpus, and only 9 event types 
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(compared to 36 types in the GENIA Event corpus).  The core task involved locating 

bio-event triggers, assigning event types, and identifying the main event participants. 

The optional tasks included identification of additional information about the bio-

event including temporal and spatial information, and the negation and speculation 

status of the event. 

A total of 42 teams showed interest in the shared task and registered for participa-

tion, and 24 teams submitted final results. All 24 teams participated in the core task, 

while, six teams participated in each of the optional tasks. The complexity of the 

task was indicated by the composition of participating teams, which included com-

puter scientists, bioinformaticians, biologists and linguists.   

The evaluation of submitted systems showed a broad performance range. However, 

the results were both promising and encouraging for the future of bio-event extrac-

tion [47]. For simpler events (i.e., events with only one primary participant, e.g., 

Gene Expression, Transcription, Phosphorylation, etc.), the top-ranked systems 

achieved F-scores of around 70%. This was particularly encouraging, as systems 

with such performance levels could be further enhanced for practical applications. 

However, the evaluation results for more complex events (i.e., events with more than 

one primary participant, e.g., Binding, Regulation and its subcategories: Positive 

Regulation and Negative Regulation, etc.) were significantly lower with the top-

ranking systems achieving F-scores of 40-45%. This showed that the extraction of 

such events is much more challenging and requires further analysis.  
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2.2.1.2 BioNLP’11 Shared Task on Event Extraction 

In the second BioNLP shared task, i.e., BioNLP’11 [56-58], the number of tasks 

(and with it, the range of event annotated corpora made available) increased consid-

erably. Building on the success of the BioNLP’09 shared task, the main objective of 

the BioNLP’11 shared task was to extend the scope of bio-event extraction by diver-

sifying the text types, subject domains and event types under consideration. In terms 

of text types, the previous efforts at event extraction in the biomedical domain had 

been almost exclusively restricted to abstracts. The BioNLP’11 shared task intro-

duced the recognition of events in full papers. This is considered vitally important 

for scalable event extraction systems, given that, on average, less than 8% of the 

scientific claims of a complete paper occur in the abstract [59].  Regarding subject 

domains, the BioNLP’09 shared task focussed on a single subdomain of molecular 

biology (i.e., human transcription factor in blood cells). The BioNLP’11 shared task 

included event extraction from three additional subdomains (i.e., two-component 

systems, bacteria biology and bacillus subtilis). Similarly, the BioNLP’09 shared 

task only considered nine types of bio-events. The BioNLP’11 shared task includes 

five different tasks of event extraction with a total of 46 event types. A further focus 

of this shared task was to evaluate the performance of systems on their ability to car-

ry out supporting tasks that are considered essential to allow advances in the perfor-

mance of event extraction systems, for example, resolution of co-reference between 

entities. 

BioNLP’11 shared task received a total of 46 submissions from 24 teams. In com-

parison to the BioNLP’09 shared task, a 10% overall reduction in error rate was ob-

served, with a significant improvement in the ability of systems to recognise more 
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complex bio-events. The evaluation results also showed that generalisation to full 

papers is feasible, with a modest loss in performance compared to abstracts. Similar-

ly, it was noticed that the removal of subdomain specificity does not compromise 

extraction performance [34, 48].  

2.2.1.3 BioNLP’13 Shared Task on Event Extraction 

The third BioNLP shared task, i.e., BioNLP’13
2
, has recently been announced. 

While this shared task follows the general outline and goals of the previous tasks, it 

broadens the scope of biomedical text-mining applications by introducing new tasks 

on cancer genetics and pathway curation. Moreover, it takes a step further to include 

construction of knowledge bases by linking event extraction with semantic web, on-

tology population, and pathway construction technologies. 

2.2.2 State-of-the-Art Systems 

The successive BioNLP shared tasks on event extraction have resulted in the devel-

opment and improvement of various bio-event extraction systems. This has signifi-

cantly improved the state-of-the-art in this area. Brief descriptions of some of these 

systems are as follows: 

EventMine 

EventMine [60] is a state-of the-art event extraction system. It is similar to the types 

of systems that have appeared since the initiation of the BioNLP shared tasks on 

event extraction, i.e., it can extract semantically-oriented events that conform to the 

bio-event template introduced above (section 2.1). EventMine has been shown to be 

                                                 
2
 http:// 2013.bionlp-st.org/ 
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particularly strong in identifying events with extended sets of arguments, since it is 

able to outperform all systems that participated in the BioNLP’09 ST. Recently, the 

system has been further refined by employing domain adaptation and coreference 

resolution [61].  

Turku Event Extraction System (TEES) 

The Turku Event Extraction System (TEES) [62] is a versatile and scalable event 

extraction system. It achieved the best overall performance in the BioNLP’09 shared 

task on event extraction. An updated version of the system [63] was submitted for 

the BioNLP’11 shared task on event extraction. The generalisability of the system, 

in terms of its ability to extract bio-events from different subdomains with different 

event types, was demonstrated by its successful application to all tasks and subtasks 

(with top performance in several tasks) within the shared task. Recently, TEES has 

also been deployed to extract events from 18 million PubMed abstracts [64]. 

FAUST 

FAUST [65] is a state-of-the-art event extraction system, which achieved the best 

overall performance in three tasks in the BioNLP’11 shared task on event extraction. 

Compared to the other event extraction systems, FAUST has a unique architecture in 

the sense that instead of using a single (machine learning) model to produce its out-

put, it uses a combination of multiple models, where the output of one model is used 

as additional features in another model.  

2.3 Applications of Bio-event Extraction 

Automatic extraction of bio-events has a broad range of applications [44], from sup-

port for the creation and annotation of pathways [10, 66] to automatic population or 
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enrichment of databases [11]. However, the most apparent and broad ranging appli-

cation of bio-event extraction is in semantic information retrieval systems.  

2.3.1 Information Retrieval 

Text mining systems that are able to extract events automatically can allow much 

more precise and focused retrieval and extraction than the traditional keyword-based 

systems [17]. Event-based retrieval allows the user to specify one or more con-

straints on the events to be retrieved, which are not dependent on the precise word-

ing in the text. These constraints could be in terms of the type of the event, and/or 

the type of its participants, and/or the value of a participant in a particular role. An 

example of such a system is MEDIE  [67], which is a semantic search engine that 

facilitates structured, event-based searching over MEDLINE abstracts.  It is current-

ly configured for searching biomedical documents. However, the general architec-

ture could be adapted to other domains through substitution/adaptation of the various 

modules.  The modules include a deep syntactic analyser that is tuned to the biomed-

ical domain [68], an event expression recogniser and a named entity recogniser [69].  

Queries take the form of <subject, verb, object> to specify an event, where subject 

and object refer to grammatical relations with the verb.  Such relations often hold 

between the primary participants of events.  For example, in the biomedical event 

example in sentence S1 (section 2.1), the subject (i.e., IL-2) corresponds to the 

Cause, whilst the object (i.e., p21ras proteins) corresponds to the Theme.  One or 

more of the three “slots” in the query template can be left empty, in order to increase 

or decrease the specificity of the query.  For example, the query to find out which 

proteins are positively regulated by IL-2 would be encoded as follows: <IL-2, acti-

vate, ?>.  
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MEDIE addresses the issues of the simple keyword-based searching, at least to a 

certain extent:  

 Only documents in which the specified grammatical relations hold between 

the search terms are retrieved, thus eliminating many of the spurious results 

retrieved by a traditional search engine. In contrast, the use of deep parsing 

technology [70], allows MEDIE to retrieve even those documents that con-

tain grammatical variants of the specified query, e.g., active or passive voice 

constructions.     

 MEDIE detects named entities and event-trigger terms, which are then linked 

with databases and ontologies.  This allows the automatic expansion of 

searches to include variants of search terms that are listed in these resources. 

Named entities in the subject and object slots of the event template are linked 

with the Unified Medical Language System (UMLS) meta-thesaurus
3
, whilst 

variants of verbs are retrieved via linking with the Gene Ontology [30]. 

 Each sentence is automatically classified by MEDIE as title, objective, meth-

od, result or conclusion, and searches can specify which of these sentence 

types to consider when retrieving results. For example, events in result sen-

tences are likely to contain definite experimental results, whilst conclusion 

sentences will usually contain analyses or conclusions about experimental re-

sults. This allows some level of control over restricting the discourse or me-

ta-knowledge contexts in which retrieved events occur.  

                                                 
3
 http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/index.html 
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Despite its clear advantages over a traditional search engine, MEDIE still presents 

some limitations. Firstly, it only allows the specification of two event participants, 

i.e., the subject and object of the verb. Although these usually constitute the major 

participants of the event, there are frequently other participants, e.g., location and 

time. In biomedical texts in particular, information corresponding to time, environ-

mental conditions and manner is considered to be highly important to their correct 

interpretation [71]. It is thus useful to allow users to specify restrictions on a greater 

range of event participants.   

A further potential issue with MEDIE is that its search template is closely tied to the 

syntactic structure of the text. However, for several reasons, a search approach in 

which users specify restrictions in terms of semantic rather than grammatical roles is 

more desirable. For instance, the Cause and Theme semantic arguments do not con-

sistently correspond to the grammatical subject and object for all verbs. A semantic 

approach is even more desirable if additional participants (e.g., location, environ-

mental conditions, etc.) are taken into account and may be specified as part of the 

search criteria. Several of these participant types are specified through syntactically 

similar means, i.e., through the use of prepositional or adverbial phrases [72].  

A further restriction of MEDIE is that it can only retrieve events whose triggers are 

verbs.  Given the prevalence of nominalised forms in biomedical texts [73], e.g., 

activation rather than activate, many relevant events may be missed.  

MEDIE’s search strategy is largely based on syntactic analysis of text. Whilst this is 

a vast improvement over the usual bag-of-words approach, events are semantic ra-

ther than syntactic structures. Although analysing syntactic structure is a prerequisite 

for extracting semantic event structures, this step should preferably be kept “behind 
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the scenes” in event-based search systems. By allowing specification of search crite-

ria through an intuitive semantic template that is independent of the exact textual 

manifestation of events, users without linguistic expertise can be empowered to per-

form sophisticated semantic searches.   An ideal template would allow the specifica-

tion of the following types of search options:  

 Specification of event types (chosen from a fixed set) as an alternative to 

specifying specific event-trigger words or phrases. Use of hierarchically-

structured ontologies of event types can provide the user with control over 

the level of generality of the results returned by the query.  

 Use of semantic role types rather than grammatical relations when specifying 

restrictions on event participants. 

 A flexible way of specifying restrictions on the values of particular partici-

pants, in the form of either terms (e.g. NF-kappa B), term classes (e.g. Pro-

tein), or a combination of both. Again, hierarchically-structured sets of terms 

can give the user control over the specificity of the results returned by the 

query.  

 Specification of interpretation information about the event, e.g., should only 

facts be retrieved or are experimental analyses also acceptable? If so, are 

highly speculative analyses of interest, or only more definite analyses?  

The main challenges of producing a system that can extract events that will match 

such a template are as follows:  

1) Identification of event-triggers and their respective ontological types 

2) Identification of event participants (terms or other events), their semantic 

roles and their respective ontological types 
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3) Identification of the contextual information required for the correct interpre-

tation of the event 

State-of-the-art event extraction systems (section 2.2) address the first two challeng-

es by using a combination of sophisticated parsing technologies and event/entity 

ontologies. For example, EventMine uses the Enju parser [70], the GDep parser 

[74], the GENIA event ontology [29], and the GENIA term ontology [29]. However, 

the third challenge, i.e., the identification of contextual information necessary for the 

correct interpretation of the event, remains an understudied area. This issue is further 

discussed in sections 2.4 and 3.1. 

2.3.2 Linking Pathways to Literature 

Biochemical signalling and metabolomic pathways are becoming increasingly im-

portant for biomedical research because they represent collective interpretations of 

facts scattered throughout literature [75-78]. Owing to the very integrated nature of 

pathways, they require substantial human effort to construct, i.e., researchers have to 

read a large number of published papers, interpret them and construct a pathway 

[79]. The curation of a constructed pathway also requires monitoring of recent pub-

lications in order to maintain relevance. Furthermore, since different interpretations 

of the same set of facts are possible, researchers often want to read the original pa-

pers from which a pathway is constructed, to ensure it is carried out in a manner 

consistent with their interpretation [76, 80]. Therefore, researchers can benefit con-

siderably from the use of text mining tools, not only to support the maintenance of 

pathway models [81], but also to provide direct links from these pathways to the 

supporting evidence in relevant literature [82]. Furthermore, such tools can also help 
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in keeping existing pathway models up to date by revising them according to newly 

published articles. 

Linking pathways to literature evidence and aiding pathway construction and en-

richment are two of the most important applications of event recognition to systems 

biology [10]. Some previous studie involving text mining technology for pathway 

construction have focused on extracting binary interactions between proteins or 

genes [83-85]. Although the resultant networks seem to be pathways, they do not 

represent any coherent interpretations of the reported facts [10]. Mapping between 

the results of automatically constructed networks and pathways requires a deeper 

analysis that emulates the interpretations of biologists, including inferences based on 

biological background knowledge. Thus, providing evidence from the literature 

about pathway representations requires the extraction not only of events, but also of 

the relevant context around them [44]. 

PathText [66] is an event-based integrated environment for biological pathway visu-

alisation, which brings together the strengths of different text mining tools, including 

advanced searches based on event extraction. PathText links several text mining sys-

tems (including FACTA [86], KLEIO [87] and MEDIE  [67]) to provide a flexible 

interactive environment which allows a researcher to navigate from pathway visuali-

sation to text mining, to retrieve recently published articles which are potentially 

relevant, to browse them and to associate them with relevant parts of pathways.  

Although the incorporation of event extraction makes PathText one of the most so-

phisticated and versatile pathway construction tools available [44], the underlying 

event extraction technology suffers from the same limitations as those of MEDIE 

(section 2.3.1). Most particularly, the event extraction technology used in PathText 
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does not consider the necessary contextual information required for the correct in-

terpretation of bio-event. The task of pathway construction can be further helped by 

enhancing the underlying event extraction technology to automatically identify this 

contextual information. This would enable the system to automatically identify the 

subtle epistemic aspects of an event; for example, its polarity, certainty level, type 

and source of knowledge being conveyed. 

2.3.3 Other Applications 

Finding Implicit Associations between Entities 

FACTA [86] is an interactive text-mining system designed to help researchers find 

both explicit and implicit associations between biomedical concepts over the entire 

MEDLINE corpus. It is capable of producing ranked lists of important biomedical 

concepts, e.g. genes, diseases and chemical compounds, which are considered rele-

vant to the query according to their co-occurrence statistics. FACTA + [88] is an en-

hanced version of the original system, which incorporates additional features includ-

ing the use of bio-event extraction in the underlying search system. This allows the 

user to search for implicit/explicit associations in documents containing specified 

bio-entities and bio-events.  

Although this is a major improvement, the underlying event extraction only consid-

ers the occurrence of bio-events (i.e., it only identifies event-triggers) and ignores 

the event participants altogether. This is partly because FACTA+ only uses infor-

mation on high-level (more abstract) occurrences of concepts. Another limitation of 

the system is that it does not consider semantically important contextual infor-

mation, especially modality and negation information about the events. This has an 
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adverse effect on system performance, as many false-positive associations are re-

trieved.  As mentioned above, these limitations can be addressed by incorporation of 

relevant contextual information at the event level. 

Gene Ontology Term Annotation 

The Gene Ontology (GO) [30] provides structured, controlled vocabularies of terms 

describing gene and gene product characteristics. GO is one of the most commonly 

used referencing tools in biomedical text mining [2]. Although automated methods 

have been applied to the task [89], GO annotations of the highest relevance and 

quality are achieved through manual annotation, by curators reading full-text papers. 

However, the creation of manual GO annotations is highly expensive. To reduce 

these annotation costs, significant effort has been focused on the development of 

systems for automatic annotation and annotator support, and it has been shown that 

event annotation can assist in the automatic derivation of GO annotations [44]. 

2.4 Interpretation of Bio-events  

Although bio-event extraction has received significant attention in the last few years, 

identification of contextual information necessary for the correct interpretation of 

bio-events has been an understudied area. Furthermore, since the majority of re-

search in bio-event extraction has been focussed on the datasets provided by the Bi-

oNLP shared tasks, most efforts to recognise contextual interpretative information 

about events have also been mainly limited to the types of annotations provided in 

these corpora, i.e., those pertaining to negation and speculation.  Moreover, since the 

recognition of this information was optional in the BioNLP shared tasks, there are 
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only a fairly small number of event extraction systems that can recognise even these 

limited types of interpretative information.  

Although making such distinctions between events is undoubtedly important, re-

stricting information about event interpretation to these two dimensions (i.e., polari-

ty and certainty level) is often not sufficient to capture the many distinctions be-

tween the interpretations of events, which can be both subtle and significant.  For 

instance, the BioNLP shared tasks make a simple binary distinction between specu-

lated and non-speculated events. However, speculation can be expressed to varying 

degrees, and the ability to distinguish between these could be useful for certain 

tasks, e.g., slight hedging indicates that the authors are quite confident about the re-

sults of their analyses, but they may include a hedging device as a safeguard. In con-

trast, larger amounts of speculation can indicate that the event should be considered 

as a hypothesis.  

Events that do not have an explicit specification of speculation may nonetheless 

have different interpretations. An event may be presented as the subject of an inves-

tigation, a known fact, an experimental observation or as an outcome of analysing 

experimental results. A further potential distinction is between events that represent 

knowledge cited from a previously published paper and events that constitute part of 

the new knowledge contribution in the paper under consideration. Depending on the 

nature and criticality of the task being undertaken, some or all of the above distinc-

tions may be important when searching for events in text.  

For certain tasks and users, only events that are presented as being completely factu-

al and definite may be sufficient. In other cases, users may be interested specifically 

in locating events that constitute new experimental knowledge. Tasks where the lo-

cation of new knowledge is important include building and updating models of bio-
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logical processes, such as pathways and curation of biological databases.  Such re-

sources are updated by searching the literature for information that can help to en-

hance and build upon existing, but incomplete, models of a biological process [90]. 

In order to ensure that such resources are kept as reliable as possible, more tentative 

results or hypotheses should also be excluded.  In the case that the event is presented 

as an analytical conclusion, it may be important to find appropriate evidence that 

supports this claim [91] before allowing it to be added to the database. 

Other users may be interested in checking for inconsistencies or contradictions in the 

literature. As an example, consider a case in which two events with identical partici-

pants and ontological types appear in two different articles, but one is stated as being 

positive, whilst the other is negative. If the textual context of both events shows 

them to have been stated as facts, then this could constitute a serious contradiction. 

If, however, one of the events is marked as being a hypothesis, then the consequenc-

es are not so serious, since the hypothesis may have been later (within the article) 

reported as being disproved. These issues are further discussed in section 3.1. 
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Chapter 3: Meta-knowledge 

This chapter provides an overview of the design and development of the meta-

knowledge annotation scheme. The chapter begins with a discussion on why meta-

knowledge annotation is required for bio-events. This is followed by an analysis of 

related work. Subsequently, a detailed description of the annotation scheme along 

with a set of hypothetical annotation examples is provided. 

3.1 Need for Meta-knowledge Annotation  

As explained in chapter 2, recent research in bio-event annotation and extraction has 

allowed the creation of event-based information retrieval systems with increased 

power and more focussed searching. However, typical event annotations do not cap-

ture contextual information from the sentence, which can be vital for the correct in-

terpretation of the event [91]. Let us consider again sentence S1: 

S1 These results suggest that p21ras proteins are activated by IL-2 in nor-

mal human T lymphocytes.  

The phrase at the beginning of the sentence (i.e.,  The results suggest that…) allows 

us to determine the following about the event that follows:   

 It is based on an analysis of experimental results 

 It is stated with a certain amount of speculation (evidenced by the use of the 

verb suggest, rather than a more definite verb, such as demonstrate).  

Altering the words in the context of the event can affect its interpretation in both 

subtle and significant ways. Consider the hypothetical examples below. Note that 
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the event-triggers have been underlined and the words/phrases expressing interpre-

tative information have been emboldened: 

S3  It is known that the narL gene product activates the nitrate reductase 

operon 

S4 We examined whether the narL gene product activates the nitrate reduc-

tase operon 

S5 The narL gene product did not activate the nitrate reductase operon 

S6 These results suggest that the narL gene product might be activated by 

the nitrate reductase operon 

S7 The narL gene product partially activated the nitrate reductase operon 

S8 Previous studies have shown that the narL gene product activates the ni-

trate reductase operon 

If only the event type and participants are considered, then the events in all of the 

above sentences (S3-S8) are identical to the event in sentence S1.  Therefore, a typi-

cal event extraction system will interpret all of the above sentences in the same 

manner, i.e., it will extract the same Positive Regulation event from all of the above 

sentences. However, it is obvious that the knowledge being conveyed in each of the 

above sentences is significantly different from the others. In sentence S3, the word 

known tells us that the event is a generally accepted fact. However, in sentence S4, 

the interpretation is completely different. The word examined shows that the event is 

under investigation, and hence the truth value of the event is unknown. The presence 

of the word not in sentence S5 shows that the event is negated, i.e. it did not happen. 

In sentence S6, the presence of the word might (in addition to suggest) adds further 
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speculation regarding the truth of the event. The word partially in S7 does not chal-

lenge the truth of the event, but rather conveys the information that the strength or 

intensity of the event is less than what may be expected by default. The phrase pre-

vious studies in S8 shows that the event is based on information presented in previ-

ously published studies, rather than relating to new information from the current 

study.  

Therefore, it is important to consider the context in which the event occurs, since a 

wide range of different types of information may be expressed that relate directly to 

the interpretation of the event. We use the term meta-knowledge to collectively refer 

to the different types of interpretative information available in the above sentences.  

There are several tasks in which biologists have to search and review the literature 

that could benefit from the automatic recognition of meta-knowledge about events. 

These tasks include building and updating models of biological processes, such as 

pathways [10], and curation of biological databases [30, 92]. Central to both of these 

tasks is the identification of new knowledge that can enhance these resources, e.g., to 

build upon an existing, but incomplete model of a biological process [90] or to en-

sure that the database is kept up to date. New knowledge should correspond to ex-

perimental findings or conclusions that relate to the current study, which are stated 

with a high degree of confidence, rather than, e.g., more tentative hypotheses. In the 

case of an analytical conclusion,  it may be important to find appropriate evidence 

that supports this claim before allowing it to be added to the database [91].  

Other users may be interested in checking for inconsistencies or contradictions in the 

literature. The identification of meta-knowledge could also help to flag such infor-

mation. Consider, for example, the case where an event with the same ontological 
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type and identical participants is stated as being true in one article and false in an-

other. If the textual context of both events shows them to have been stated as facts, 

then this could constitute a serious contradiction. If, however, one of the events is 

marked as being a hypothesis, then the consequences are not so serious, since the 

hypothesis may have been later disproved. The automatic identification of meta-

knowledge about events can clearly be an asset in such scenarios, and can prevent 

users from spending time manually examining the textual context of each and every 

event that has been extracted from a large document collection in order to determine 

the intended interpretation.  

In response to the issues outlined above, we developed a new annotation scheme that 

is specifically tailored to enriching biomedical event corpora with meta-knowledge, 

in order to facilitate the training of more useful systems in the context of various 

information extraction tasks performed on biomedical literature. Our scheme has 

been designed to be as portable as possible, in that it is not tied to a particular event 

annotation scheme. This allows the scheme to be applied to a variety of existing 

event corpora, which generally employ different annotation schemes.   

As illustrated by the example sentences above, a number of different types of meta-

knowledge may be encoded in the context of an event, e.g., general information type 

(fact, experimental result, analysis of results), level of confidence/certainty towards 

the event, polarity of the event (positive or negative), etc. In order to account for 

this, our annotation scheme is multi-dimensional, with each dimension encoding a 

different type of information. Each of the 5 dimensions has a fixed set of possible 

values.  For each event, the annotation task consists of determining the most appro-
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priate value for each dimension. Textual cue expressions that are used to determine 

the values are also annotated, when they are present.  

3.2 Analysis of Related Work  

Although our approach to annotating multi-dimensional meta-knowledge infor-

mation at the level of events is novel, the more general study of how knowledge in 

biomedical texts can be classified to aid in its interpretation is a well-established 

research topic. Two main threads of research can be identified, i.e.: 

1) Construction of classified inventories of lexical markers (i.e., words or 

phrases) which can accompany statements to indicate their intended interpre-

tation.  

2) Production of corpora annotated with various different types of meta-

knowledge at differing levels of granularity.  

3.2.1 Lexical Markers of Meta-Knowledge  

The presence of specific cue words and phrases has been shown to be an important 

factor in classifying biomedical sentences automatically according to whether or not 

they express speculation [93, 94].  Corpus-based studies of hedging (i.e. speculative 

statements) in biological texts [95, 96] reinforce the above experimental findings, in 

that 85% of hedges were found to be conveyed lexically, i.e., through the use of par-

ticular words and phrases, rather than through more complex means, e.g., by using 

conditional clauses.  The lexical means of hedging in biological texts have also been 

found to be quite different to academic writing in general, with modal auxiliaries 

(e.g., may, could, would, etc.) playing a more minor role, and other verbs, adjectives 

and adverbs playing a more significant role [95].  It has also been shown that, in ad-
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dition to speculation, specific lexical markers can denote other types of information 

pertinent to meta-knowledge identification, e.g., markers of certainty  [97], as well 

as deductions or sensory (i.e. visual) evidence [95].   

Based on the above, we can conclude that lexical markers play an important role in 

distinguishing several different types of meta-knowledge, and also that there are a 

potentially wide range of different markers that can be used. For example,  [98] 

identified 190 hedging cues that are used in biomedical research articles. Previous 

work [99] on identifying and categorising lexical markers of meta-knowledge 

demonstrated that such markers are to some extent domain-dependent. In contrast to 

other studies, we took a multi-dimensional approach to the categorisation, acknowl-

edging that different types of meta-knowledge may be expressed through different 

words in the same sentence. As an example, consider sentence S9. 

S9 The DNA-binding properties of mutations at positions 849 and 668 may 

indicate that the catalytic role of these side chains is associated with 

their interaction with the DNA substrate. 

Firstly, the word indicate denotes that the statement following that is to be interpret-

ed as an analysis based on the evidence given at the beginning of the sentence (ra-

ther than, e.g., a well-known fact or a direct experimental observation). Secondly, 

the word may conveys the fact that the author only has a medium level of confidence 

regarding this analysis.   

Although such examples serve to demonstrate that a multi-dimensional approach 

recognising meta-knowledge information is necessary to correctly capture potential 

nuances of interpretation, it is important to note that taking a purely lexical approach 

to recognising meta-knowledge is not sufficient (i.e., simply looking for words from 
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these lists that co-occur in the same sentences as events of interest).  The reasons for 

this include: 

1) The presence of a particular marker does not guarantee that the “expected” 

interpretation can be assumed [100]. Some markers may have senses which 

vary according to their context. As noted in [101], “Every instance should ... 

be studied in its sentential context” (p.125).  

2) Although lexical markers are an important part of meta-knowledge recogni-

tion, there are other ways in which meta-knowledge can be expressed.  This 

has been demonstrated in a study involving the annotation of rhetorical zones 

in biology papers (e.g., background, method, result, implication, etc.) [102], 

based on a scheme originally proposed in [103].   An analysis of features 

used to determine different types of zone in the biology papers revealed that 

in addition to explicit lexical markers, features such as the main verb in the 

clause, tense, section, position of the sentence within the paragraph and pres-

ence of citations in the sentence can also be important.  

Thus, rather than assigning meta-knowledge based only on categorised list of cue 

words and expressions, there is a need to produce corpora annotated with meta-

knowledge, on which enhanced information extraction systems can be trained. By 

annotating meta-knowledge information for each relevant instance (e.g., an event), 

regardless of the presence of particular lexical markers, systems can be trained to 

use other types of features that can help to assign meta-knowledge values.  However, 

given that the importance of lexical markers in the recognition of meta-knowledge 

has been clearly illustrated, we believe that explicit annotation of such markers 

should be carried out as part of the annotation process, whenever they are present. 
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3.2.2 Existing Corpora with Meta-Knowledge Annotations 

There are several existing corpora with some degree of meta-knowledge annotation. 

These corpora vary in both the richness of the annotation added, and the type / size 

of the units at which the meta-knowledge annotation has been performed. Taking the 

unit of annotation into account, we can distinguish between annotations that apply to 

continuous text spans, and annotations that have been performed at the event level.  

3.2.2.1 Corpora with Meta-Knowledge Annotations at the Text Span Level 

Annotations applied to continuous text spans most often only cover a single aspect 

of meta-knowledge, and are most often carried out at the level of the sentence. The 

most common types of meta-knowledge annotated correspond to either specula-

tion/certainty level, e.g., [93, 94] or general information content/rhetorical intent, 

e.g., background, methods, results, insights, etc. This latter type of annotation has 

been attempted both on abstracts [104, 105] and full papers [102, 103, 106], using 

schemes of varying complexity, ranging from 4 categories for abstracts, up to 14 

categories for one of the full paper schemes. A few schemes annotate more than one 

aspect of meta-knowledge.  For example, [107] annotates both speculation and nega-

tion, together with their scopes. Uniquely amongst the corpora mentioned above, 

[107] also annotates the cue expressions (i.e., the negative and speculative key-

words) on which the annotations are based.  

Although sentences or larger zones of text [103] constitute straightforward and easi-

ly identifiable units of text on which to perform annotation, a problem is that a sin-

gle sentence may express several different pieces of information, as illustrated by 

sentence S10. 
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S10 Inhibition of the MAP kinase cascade with PD98059, a specific inhibitor 

of MAPK kinase 1, may prevent the rapid expression of the alpha2 integ-

rin subunit. 

This sentence contains at least 3 distinct pieces of information: 

 Description of an experimental method: Inhibition of the MAP kinase cas-

cade with PD98059 

 A general fact: PD98059 is a specific inhibitor of MAPK kinase 1.  

 A speculative analysis: Inhibition of the MAP kinase may prevent the  expres-

sion of the alpha2 integrin subunit 

The main verb in the sentence (i.e., prevent) is the trigger of the speculated event.  In 

a sentence-based annotation scheme, this is likely to be the only information that is 

encoded.  However, this means that other potentially important information in the 

sentence is disregarded.  Some annotation schemes have attempted to overcome 

such problems by annotating meta-knowledge below the sentence level, i.e.,  clauses 

[108, 109] or segments [110]. In the case of the latter scheme, a new segment is cre-

ated whenever there is a change in the meta-knowledge being expressed.  The 

scheme proposed for segments is more complex than the sentence-based schemes in 

that it covers multiple types of meta-knowledge, i.e., focus (content type), polarity, 

certainty, type of evidence and direction/trend (either increase or decrease in quanti-

ty/quality).   It has, however, been shown that training a system to automatically an-

notate along these different dimensions is highly feasible [111].  
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3.2.2.2 Corpora with Meta-Knowledge Annotations at the Event Level 

At the level of biomedical events, annotation of meta-knowledge is generally very 

basic, and is normally limited to negation, e.g., [112]. Negation is also the only at-

tribute annotated in the corpus described in [113], even though a more complex 

scheme involving certainty, manner and direction was also initially proposed.  To 

our knowledge, only the GENIA Event corpus [29] goes beyond negation annota-

tion, in that different levels of certainty (i.e. probable and doubtful) are also annotat-

ed.  

Despite this current paucity of meta-knowledge annotation for events, our earlier 

examples have demonstrated that further information can usefully be identified at 

this level, including at least the general information content of the event, e.g. fact, 

experimental observation, analysis, etc.  A possibility would be to “inherit” this in-

formation from a system trained to assign such information at the text span level 

(e.g. sentences or fragments), although this would not provide an optimal solution. 

The problem lies in the fact that text spans constitute continuous stretches of text, 

but events do not. The different constituents of an event annotation (i.e., trigger and 

participants) can be drawn from multiple, discontinuous parts of a sentence. There 

are almost always multiple events within a sentence, and different constituents of 

events may be drawn from multiple sentence fragments. This means that mapping 

between text span meta-knowledge to event-level meta-knowledge cannot be carried 

out in a straightforward manner.  Thus, for the purposes of training more sophisticat-

ed event-based information search systems, annotation of meta-knowledge directly 

at the event level can provide more precise and accurate information that relates di-

rectly to the event.   
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3.3 Meta-knowledge Annotation Scheme 

Based on the above analysis, we embarked upon the design of an event-based meta-

knowledge annotation scheme specifically tailored for biomedical events.  The aim 

of our meta-knowledge scheme was to capture as much useful information as possi-

ble that is specified about individual events in their textual context, in order to sup-

port users of event-based search systems in a number of tasks, including the discov-

ery of new knowledge and the detection of contradictions. In order to achieve this 

aim, our annotation scheme identifies 5 different dimensions of information for each 

event, taking inspiration from previous multi-dimensional schemes (e.g. [110, 113]). 

In addition to allowing several distinct types of information to be encoded about 

events, a multi-dimensional scheme is advantageous, in that the interplay between 

the different dimension values can be used to derive further useful information (hy-

per-dimensions) regarding the interpretation of the event.  

Each dimension of the meta-knowledge scheme consists of a set of complete and 

mutually-exclusive categories, i.e., any given bio-event belongs to exactly one cate-

gory in each dimension. The set of possible values for each dimension was deter-

mined through a detailed study of over 100 event-annotated biomedical abstracts. In 

order to minimise the annotation burden, the number of possible categories within 

each dimension has been kept as small as possible, whilst still respecting important 

distinctions in meta-knowledge that have been observed during our corpus study.  

Due to the demonstrated importance of lexical cues in the identification of certain 

meta-knowledge categories, the annotation task included identification of such cues, 

when they are present.   
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Figure 4. Meta-knowledge Annotation Scheme 

Figure 4 provides an overview of the annotation scheme. The boxes with the grey 

background correspond to information that is common to most bio-event annotation 

schemes, i.e., the participants in the event, together with an indication of the class or 

type of the event. The boxes with the dark green backgrounds correspond to our 

proposed meta-knowledge annotation dimensions and their possible values, whilst 

the light green box (with a dotted outline) shows the hyper-dimensions that can be 

derived by considering a combination of the annotated dimensions. Below, we pro-

vide a description of each annotation dimension. Further details and examples are 

provided in the comprehensive (65-page) annotation guidelines, which are provided 

as an appendix to this thesis.  

3.3.1 Knowledge Type 

This dimension is responsible for capturing the general information content of the 

event.  The type of information encoded is at a slightly different level to some of the 
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comparable sentence-based schemes, which have categories relating to structure or 

“zones” within a document, e.g. Background or Conclusion. Rather, our Knowledge 

Type dimension attempts to identify a small number of more general information 

types that can be used to characterise events, regardless of the zone in which they 

occur.  As such, our scheme can be seen as complementary to structure or zone-

based schemes, providing a finer-grained analysis of the different types of infor-

mation that can occur within a particular zone. Our annotation scheme identifies the 

following 6 categories for this dimension. 

3.3.1.1 Investigation 

This category is assigned to events indicating enquiries or investigations, which 

have either already been conducted or are planned for the future.  

Evidence 

Investigation events are always denoted through an explicit word or phrase in the 

same sentence as event. Typical types of evidence include: 

 Investigative verbs in finite form (i.e., showing tense), e.g., examine, investi-

gate, analyze/analyse, evaluate, study, test, compare, focus and explore etc. 

Examples S11-S14 (below) correspond to such cases. These Investigation 

cues normally precede the event-trigger, as in S11 - S13. However, in the 

case of passive sentences (e.g. S14), the cue appears after the event-trigger. 

 Nominalisations of the above verbs (e.g. investigation, examination, analy-

sis, etc.) can also indicate investigations, e.g., in S15.  

 Verbs in the infinitive form (i.e., preceded by to). These normally precede the 

event-trigger. The verbs that may be used include all of the above, along with 
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some others like define, ascertain, identify and elucidate, etc. An example is 

shown in S16. 

Typical Position in Text 

In abstracts, these events typically appear in the beginning of the text, and describe 

the main investigation(s) reported in the article.  

Example Sentences 

The following sentences show examples of Investigation events: 

S11  We have examined the effect of leukotriene B4 (LTB4) on the expression 

of the proto-oncogenes c-jun and c-fos. 

S12 We looked at the modulation of nuclear factors binding specifically to 

the AP-1 element after LTB4 stimulation. 

S13 To dissect the molecular basis for the unusual persistent expression of 

the IL-2 and IL-2-R alpha genes in these IARC 301 T cells, we have ana-

lyzed the interactions of constitutively expressed nuclear proteins with 

the 5' flanking regions of the IL-2 and IL-2-R alpha genes using both 

DNase I footprinting and gel retardation techniques. 

S14  Activation of expression of genes encoding transcription factors: c-fos 

and c-jun was investigated. 

S15  Analysis of the expression of human I kappa B alpha protein in stable 

transfectants of mouse 70Z/3 cells shows that …. 

S16  In order to define the roles of these two factors, which bind to the same 

kappa B enhancers, in transcription activation we have prepared somat-
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ic cell hybrids between IARC 301.5 and a murine myeloma. 

3.3.1.2 Observation 

This category is assigned to events indicating direct observations. 

Evidence 

Typical evidence for Observation events is: 

 An explicit cue in the same sentence. Typical cues are verbs like find, detect 

and observe, etc. (S17-S19) 

 If explicit cues are not present, the event-trigger verb may provide evidence 

for the assignment of the Observation category, if it is:  

o in the past tense (S20-S21) 

o in the present tense, and in an appropriate context (S22) 

 Events in document titles (S23) 

Typical Position in Text 

 Towards the middle of the abstract, following descriptions of background 

facts and knowledge, and descriptions of investigations to be carried out, but 

before analyses of results.  

 Titles tend to describe definite experimental outcomes and results, unless 

there is any suggestion to the contrary.  

Example sentences 

S17 It was found that lipopolysaccharide induced strongly both c-fos and c-

jun expression as well as AP1 formation. 
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S18 However, no loss of DNA binding activity is observed, presumably re-

flecting the unique C-terminal domain that is distinct from that present 

in NF-kappa B p65. 

S19 Constitutive DNA binding activity consisting of p50 homodimers was de-

tected in nuclear extracts from both cell types. 

S20 LTB4 increased the expression of the c-fos gene in a time- and concen-

tration-dependent manner. 

S21 Both messages rapidly declined thereafter. 

S22 U937 cells express both type I and type II IFN receptors. 

S23 Leukotriene B4 stimulates c-fos and c-jun gene transcription and AP-1 

binding activity in human monocytes. 

Discussion 

If the sentence is in the present tense and an explicit Observation cue is not present 

in the sentence, then the context of the sentence becomes more important in deter-

mining the Knowledge Type value of the event.  For example, consider the case in 

sentence S22: Taken in isolation, the Gene Expression event (centred on the word 

express) seems to be a general scientific fact.  However, when we consider that the 

sentence S24 (below) precedes S22, it transpires that the event in S22 is actually 

describing an observation.  

S24 We have found that ISG expression in the monocytic U937 cell line dif-

fers from most cell lines previously examined. 

Taking account of the position of the sentence within the text is often key to deter-

mining the correct Knowledge Type category. The following two points indicate gen-
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eral patterns. However, it is important to note that these are only indicative, and do 

not always occur.  

1) Events occurring in the present tense towards the beginning of an abstract are 

most likely to correspond to factual statements (i.e., Knowledge Type value 

of Fact), unless the context changes this interpretation. 

2) Some abstracts are written completely in the present tense. In this case, there 

is normally an explicit boundary between background knowledge and obser-

vations/results. This normally takes the form of a sentence containing an ex-

plicit Observation cue. The observation interpretation is then normally un-

derstood to be “projected” onto events in sentences that follow, that are oth-

erwise unmarked with Observation cues. For example, consider the sentence 

S24. The presence of the word found explicitly indicates that an observation 

is being described. Sentences that follow but are not explicitly marked with 

cues are highly likely also to describe observations.   

Finally, sentence S23 corresponds to an abstract title. Because of this, it can be as-

sumed that the event centred on the verb stimulates is describing new knowledge 

which has been discovered during the study reported in the paper, and hence the 

event is assigned the Observation category.  

3.3.1.3 Analysis 

This category is assigned to events describing inferences, interpretations, hypotheses 

or other types of cognitive analysis.  
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Evidence 

Analysis events are always identifiable through the presence of an explicit cue (word 

or phrase). Typical evidence includes: 

 Analysis verbs (finite forms) or their nominalisations preceding the event-

trigger, for example, show, demonstrate, believe, hypothesize, suggest, indi-

cate, appear, seem, conclude, evidence, assume, presume, identify, define, es-

tablish,  report and, reveal, etc. (S25-S28) 

 Conjunctions such as therefore and thus, etc. These words provide a link to 

the previous sentence, and imply that some kind of analysis of the results 

stated in the previous sentence has been carried out in order arrive at the stat-

ed event. (S29-S30)   

 Verbs or nominalisations serving as event-triggers, for example, correlate, 

associate, relate, due to, implicate, attribute, result, etc. (S31-S32) 

 Modal auxiliaries like may, might and could, as well as adverbs/adjectives 

like probably/probable, likely and perhaps. These indicate an uncertainty on 

the part of the author. As such, they also act as markers of the Certainty Lev-

el dimension (see section 3.3.2). As this uncertainty must have been reached 

through some kind of cognitive analysis, they can act as Analysis cues, but 

only when no other Analysis cues are present in the sentence, e.g., in S33-

S34.  

 Frequency indicators such as often, frequently, normally and occasionally 

(again, when no other Analysis cues are present in the sentence).  These de-
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note an analysis on the part of the author as to the perceived frequency of oc-

currence of the specified event.  (S36-S37) 

 Adjectives and adverbs (mostly non-finite verb forms) like is able to, is ca-

pable of, suggestive of, consistent with, judged by  and potential, etc. These 

again denote analyses on the part of the author.  (S38-39) 

Typical Position in Text 

Towards the end of the abstract, constituting analyses/interpretations of observations 

and results described previously. 

Example Sentences  

S25 These results indicate that LTB4 may regulate the production of different 

cytokines by modulating the yield and/or the function of transcription 

factors such as AP-1-binding proto-oncogene products. 

S26 The data suggest that differences in functional responses elicited in 

monocytes by all three factors may be dependent on different routes on 

nuclear signaling employed by the factors. 

S27 Unexpectedly, our in vivo studies also demonstrate that I kappa B/MAD-

3 binds directly to NF-kappa B p50. 

S28 We also present evidence that IL-6 kappa B binding factor II functions 

as a repressor specific for IL-6 kappa B-related kappa B motifs in lym-

phoid cells. 

S29 Therefore, an indirect interaction occurs between these two sites 

S30 Thus, both NF-kappa B-binding complexes are needed for optimal viral 
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transcription. 

S31 Together, this evidence strongly implicates BSAP in the regulation of the 

CD19 gene. 

S32 Moreover, in human T helper (Th) clones functionally characterized as 

being of the type 0, type 1 and type 2 (28%, < 1% und 93% CD30+, re-

spectively), the extent of CD30-mediated NF-kappa B activation corre-

lated with the proportion of CD30+ cells. 

S33 They bind to the kappa B motifs with different relative affinities that may 

reflect their different contribution in the expression of various promot-

ers.  

S34 The MAD-3 cDNA encodes an I kappa B-like protein that is likely to be 

involved in regulation of transcriptional responses to NF-kappa B, in-

cluding adhesion-dependent pathways of monocyte activation. 

S35 Taken together, these observations suggest that HIV gene expression 

may be activated in infected monocytes through interaction of the cells 

with complement-opsonized particles. 

S36 Our studies now demonstrate that HTLV-1 Tax activates the recently 

identified cellular kinases IkappaB kinase alpha (IKKalpha) and IKKbe-

ta, which normally phosphorylate IkappaB alpha on both of its N-

terminal regulatory serines in response to tumor necrosis factor alpha 

(TNF-alpha) and interleukin-1 (IL-1) stimulation. 

S37 The activation of transcriptional factor c-Fos/c-Jun AP-1 is essential for 

normal T cell responsiveness and is often impaired in T cells during ag-
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ing. 

S38 In addition, IL-2 is capable of increasing transcript levels of the p50 

gene coding for the p50 subunit of the NF-kappa B transcription factor, 

whereas mRNA levels of the p65 NF-kappa B gene remained unchanged. 

S39 This increase in p50 homodimers coincides with an increase in p105 

mRNA, suggestive of a transcriptional up-regulation of p50. 

3.3.1.4 Method  

This category is assigned to events that describe experimental methods.  

Evidence  

Typical evidence is in the form of event-triggers that describe experimental methods, 

e.g., words like stimulate, stimulation, addition, pretreated  and incubated, etc. (S40-

S41) 

Typical Position in Text 

These events are normally found in the middle part of abstracts, where experimental 

methods are described. 

Example Sentences 

S40 Deoxycholate treatment of the cytoplasmic extract prepared from cells 

stimulated by TNF-alpha in the presence of Cu2+ resulted in the release 

of NF kappa B from I kappa B alpha, indicating that Cu2+ interferes 

with the dissociation of the NF kappa B-I kappa B complex. 

S41 In addition, pretreatment of the cells with the proteasome inhibitor N-

Ac-Leu-Leu-norleucinal inhibits this ligand-induced degradation and, in 
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agreement with previous studies, stabilizes a hyperphosphorylated form 

of the human I kappa B alpha protein. 

3.3.1.5 Fact  

This category is assigned to events describing general facts and well established 

knowledge.  

Evidence 

 Events with triggers that describe biological processes in the present tense. 

(S42-S43) 

 Events contained within relative clauses (S43) 

 Explicit cues, such as known. (S44) 

Typical Position in the Text 

Events of this category normally appear towards the beginning of the text, describ-

ing background knowledge. 

Example Sentences 

S42 Leukotriene B4 stimulates c-fos and c-jun gene transcription and AP-1 

binding activity in human monocytes. 

S43 The c-jun mRNA, which is constitutively expressed in human peripheral-

blood monocytes at relatively high levels, was also slightly augmented 

by LTB4 

S44 Oxidants such as hydrogen peroxide are known to activate certain tran-

scription factors such as nuclear transcription factor kappa beta. 
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Discussion 

When the main event in a sentence or clause corresponds to an observation, Fact 

events can still occur, e.g. to give further factual information which is necessary to 

fully explain the event. For example, in S43 the main event of the sentence is cen-

tred on augmented and is an observation. However, the event centred on expressed is 

providing additional, factual information. 

3.3.1.6 Other   

This is the default category, which is assigned to events that either do not fit into one 

of the above categories, do not express complete information, or whose knowledge 

type is unclear or is assignable from the context. These are mostly non-propositional 

events, i.e., events which cannot be ascribed a truth value due to lack of available 

(contextual) information. 

Evidence  

 Secondary (i.e., non-propositional) events whose primary event has the 

Knowledge Type value of Analysis, Investigation or Fact. (S45-S46) 

 Secondary events whose primary event has been negated (i.e., Polarity = 

Negative). (S47) 

 Secondary events whose primary event has the Knowledge Type value of Ob-

servation, where the meaning of the trigger verb of the primary event con-

veys the fact that the secondary event did not take place. Examples of such 

cue words include inhibit and suppress, etc. (S48) 

 Events that describe properties of entities. (S49). 
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Typical Position in Text 

These events do not have a typical position within text and are usually scattered over 

the entire abstract. 

Example Sentences                            

S45 These results indicate that LTB4 may regulate the production of different 

cytokines. 

S46 The effects of prostaglandin E2 (PGE2) on cytokine production and pro-

liferation of the CD4+ human helper T cell clone SP-B21 were investi-

gated. 

S47 Integrin ligation with antibodies does not induce tyrosine phosphoryla-

tion of FAK. 

S48 In vitro translated MAD-3 protein was found to specifically inhibit the 

DNA-binding activity of the p50/p65 NF-kappa B complex 

S49 A Rel-related, mitogen-inducible, kappa B-binding protein has been 

cloned as an immediate-early activation gene of human peripheral blood 

T cells. 

Discussion of Examples 

In (S45) the primary event, whose trigger is regulate, is an Analysis event, according 

to the presence of the word indicate. However, there is a secondary event whose 

trigger is production. The analysis interpretation does not extend to this secondary 

event, i.e. the interpretation of this event is not that “production of different cyto-

kines may occur”. In fact, the secondary event does not have a specific interpreta-

tion, e.g. there is nothing providing information about whether it is a general fact or 
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under what circumstances it occurs. In other words, it has an incomplete interpreta-

tion when considered in isolation from the primary event. For this reason, it would 

be assigned the Knowledge Type value of Other. Sentence (S46) shows a similar 

case, where the primary event, whose trigger is effects, has the Knowledge Type val-

ue of Investigation. The secondary events whose triggers are production and prolif-

eration would thus be assigned the Knowledge Type value of Other. 

In (S47), the fact that the primary event (whose trigger is induce) is negated, means 

that the secondary event (with trigger phosphorylation) did not take place. The pri-

mary event is an Observation (according to the context in which it appears). Howev-

er, the secondary event was not observed, and hence it would be assigned a 

Knowledge Type value of Other. 

Sentence (S48) exhibits a similar behaviour. The primary event has the trigger inhib-

it. Although this is an Observation (based on the presence of the word found), the 

negative meaning of inhibit means that the secondary binding event did not take 

place. Therefore, the secondary event would be assigned the Knowledge Type value 

of Other.     

In (S49), the Positive Regulation event centred on inducible describes a property of 

the protein, namely that it is induced by mitogen. 

3.3.2 Certainty Level 

This dimension aims to identify the level of certainty associated with the occurrence 

of the event, as ascribed by the authors. It comes into play whenever there is an ex-

plicit indication that there is less than complete confidence that the specified event 

will occur. This could be because:  
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 There is uncertainty regarding the general truth value ascribed to the event. 

 It is perceived that the event may not take place all of the time.  

Different degrees of uncertainty and frequency can be considered as points on a con-

tinuous scale, and there is an on-going discussion regarding whether it is possible to 

partition the epistemic scale into discrete categories [114]. However, the use of a 

number of distinct categories is undoubtedly easier for annotation purposes and has 

been proposed in a number of previous schemes. Although recent work has suggest-

ed the use of  four or more categories [99, 111, 114], our initial analysis of bio-event 

corpora showed that only three levels of certainty seem readily distinguishable for 

bio-events. This is in line with [115], whose analysis of general English showed that 

there are at least three articulated points on the epistemic scale.  

Like [110], we have chosen to use numerical values for the Certainty Level dimen-

sion, in order to reduce potential annotator confusions or biases that may be intro-

duced through the use of labels corresponding to particular lexical markers of each 

category, such as probable or possible. Such labels could in any case be misleading, 

given that frequency can also come into play in assigning the correct category.  Our 

chosen values of the Certainty Level dimension are defined as follows:  

3.3.2.1 L3 

This is the default category. No explicit expression that either:   

 there is uncertainty or speculation towards the event 

 the event does not occur all of the time  
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3.3.2.2 L2 

Explicit indication of either: 

 High (but not complete) confidence or slight speculation towards the event.  

 The event occurs frequently, but not all of the time.  

Evidence 

These events are always indicated through an explicit word or phrase in the same 

sentence as event. Typical cues are: 

 Words such as likely and probably (S50-S51). 

 Verbs that are also used as cues for the assignment of the Analysis category 

of Knowledge Type dimension, which convey the meaning of a somewhat 

tentative analysis, e.g. believe, hypothesize, suggest and indicate.(S52-S53) 

 Words such as normally, often, frequently, etc. (S54-S55). 

Example Sentences 

S50 The loss of conventional responsiveness is probably caused by altera-

tions at the level of signalling 

S51 The MAD-3 cDNA encodes an I kappa B-like protein that is likely to be 

involved in regulation of transcriptional responses to NF-kappa B, in-

cluding adhesion-dependent pathways of monocyte activation. 

S52 Recently, investigators have hypothesized that CD14-mediated signaling 

is effected through a receptor-associated tyrosine kinase (TK), suggest-

ing a multicomponent receptor model of LPS signaling. 

S53 During the course of serious bacterial infections, lipopolysaccharide 
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(LPS) is believed to interact with macrophage receptors, resulting in the 

generation of inflammatory mediators and systemic symptoms including 

hemodynamic instability and shock. 

S54 Expression of IL-1alpha by HTLV-I productively infected cells may be 

important in the hypercalcemia, osteolytic bone lesions, neutrophilia, el-

evation of C-reactive protein, and fever frequently seen in patients with 

HTLV-I-induced adult T-cell leukemia/lymphoma 

S55 HIV-1-infected myeloid cells are often diminished in their ability to par-

ticipate in chemotaxis, phagocytosis, and intracellular killing. 

3.3.2.3 L1 

Explicit indication of either: 

 Low confidence or considerable speculation towards the event.  

 The event occurs infrequently or only some of the time.  

Evidence 

These events are always indicated through an explicit word or phrase in the same 

sentence as event. Typical cues are: 

 Words such as  may, might and perhaps (S56-S57) 

 Verbs that are also used as cues for the assignment of the Analysis category 

of Knowledge Type dimension, which convey the meaning of a highly tenta-

tive analysis, e.g. speculate, suppose and suspect, etc. 

 Words such as sometimes, rarely, scarcely, etc. 
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Example Sentences 

S56 These results indicate that LTB4 may regulate the production of different 

cytokines by modulating the yield and/or the function of transcription 

factors such as AP-1-binding proto-oncogene products. 

S57 Perhaps murine thymocytes are denied this form of rescue because they 

shut off IL-2R beta chain expression at an earlier stage 

3.3.3 Polarity  

This dimension has been designed to capture the truth value of the assertion encap-

sulated by the event. We define a negated event as “an event which describes the 

absence or non-existence of an entity or a process”. That is to say, the event may 

describe that a process does not or did not happen, or that an entity is absent or does 

not exist. The recognition of such information is vital, as the interpretation of a ne-

gated event instance is completely opposite to the interpretation of a non-negated 

(positive) instance of the same event. Our scheme permits the following two values 

for this dimension:  

3.3.3.1 Positive 

No explicit negation of the event (default) 

3.3.3.2 Negative 

The event has been negated according to the description above.  

Evidence 

Negated events are always indicated through an explicit word or phrase in the same 

sentence as event. Typical indicators are: 
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 The most common means of expressing negation is through the use of the 

words not or no (S58-S59). 

 A number of other words can also be used to express the fact that an event 

did not take place, when occurring in certain contexts. Examples include fail, 

lack, and unable, exception, independent, without (S60-S62). 

Example Sentences:  

S58 CsA was found not to inhibit lck gene expression, nor the activity of the 

lck gene product. 

S59 Protein synthesis inhibitors and corticosteroids, which suppress arachi-

donate release and the synthesis of proinflammatory cytokines, had no 

effect on translocation of NF-kappa B in CHO/CD14 or RAW 264.7 

cells, demonstrating that NF-kappa B translocation is an early event. 

S60 In contrast, NF-kappa B p50 alone fails to stimulate kappa B-directed 

transcription, and based on prior in vitro studies, is not directly regulat-

ed by I kappa B. 

S61 The CD19 protein is expressed on the surface of all B-lymphoid cells 

with the exception of terminally differentiated plasma cells 

S62 Binding of type I interferon (IFN-alpha/beta) to specific receptors results 

in the rapid transcriptional activation, independent of protein synthesis, 

of IFN-alpha-stimulated genes (ISGs) in human fibroblasts and HeLa 

and Daudi cell lines. 
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Discussion of Examples:  

In sentence S61, there are 2 events that are centred on the verb expressed. In the first 

event, the CD19 protein is expressed on the surface of all B-lymphoid cells, and so 

the event is positive. In the second event, the presence of the word exception denotes 

the fact that CD19 protein is not expressed on terminally differentiated plasma cells, 

and hence this is a negated event.  

In example S62, the event centred on the word independent denotes an event of type 

Correlation (according to the GENIA Event annotation guidelines) and involves 

transcriptional activation and protein synthesis. The use of the word independent 

itself indicates that no correlation exists between them, because the transcriptional 

activation takes places independently of protein synthesis. Therefore, the correlation 

event is inherently negative. This example serves to illustrate the potential complexi-

ty in recognizing events with negative polarity. Sometimes, the meaning and type of 

the event have to be considered carefully in order to determine whether it is positive 

or negative. This issue is discussed in detail in Chapter 5.       

3.3.4 Manner 

This dimension identifies the rate, level, strength or intensity of the event (in biolog-

ical terms).  Such information has previously been shown to be relevant for biolo-

gists. This is evidenced in the event annotation scheme for the GREC corpus [116], 

which was designed in consultation with biologists, and identified expressions of 

manner as one of the semantic roles associated with the event.  The proposal for the 

annotation of protein-protein interactions suggested in [113] also lists manner as a 

potentially useful attribute to annotate.  Inspired by these works, we build upon the 
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types of manner annotation available in the GREC corpus by attempting a three-way 

categorisation of manner, as explained below: 

3.3.4.1 High  

This category is assigned to events with explicit indication that the event occurs at a 

high rate, level, strength or intensity.  

Evidence 

The events are always indicated through an explicit word or phrase in the same sen-

tence as the event. Typical cues are: 

 Adverbs: examples include strongly, rapidly and highly, etc. (S63-S65) 

 Adjectives: examples include high, rapid, profound, etc. (S66-S68) 

Example Sentences 

S63 Both messages rapidly declined thereafter. 

S64 It was found that lipopolysaccharide induced strongly both c-fos and c-

jun expression. 

S65 Although IFN-gamma alone does not induce ISG expression, IFN-

gamma pretreatment markedly increases and hastens ISG expression 

and transcriptional induction. 

S66 In particular, the c-Rel homodimer has a high affinity for interleukin-6 

(IL-6) and beta interferon kappa B sites. 

S67 However, the profound T cell deficit of nude mice indicates that the thy-

mus is by far the most potent site for inducing the expansion per se. 

S68 Binding of type I interferon (IFN-alpha/beta) to specific receptors results 
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in the rapid transcriptional activation. 

Discussion of Examples 

Sentence S64 shows a case where strongly indicates a high rate of induction. It is 

important to note that certain words like strongly only indicate a high manner when 

they are modifying verbs that describe biological processes. When used in conjunc-

tion with verbs denoting the Analysis category of the Knowledge Type dimension 

(e.g. strongly suggest), they indicate the Certainty Level (rather than the Manner) of 

the event. 

In example sentence S65, the manner adverb markedly applies both to the events 

centred on increases and hastens, to indicate a high level.  

3.3.4.2 Low 

This category is for events with explicit indication that the event occurs at a low 

rate, level, strength or intensity.   

Evidence 

These events are always indicated through an explicit word or phrase in the same 

sentence as event. Typical cues are: 

 Adverbs:  examples include slightly, partially. (S69-S70) 

 Adjectives: examples include little, small, slight. (S71-S72) 

 Phrases such as barely, scarcely (any), almost no. Although such phrases 

have negative connotations, they still convey the fact that the stated event 

took place, even though in a very insignificant way. Hence, the event should 

have a Polarity value of Positive, and a Manner value of Low. (S73-S74) 
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Example sentences 

S69 The c-jun mRNA was also slightly augmented by LTB4.  

S70 Alteration of the sequence at threonine 78 can partially restore function 

to a verb A protein rendered defective due to a mutation at position 61. 

S71 Moreover, kappa 1-kappa 3 can each be deleted from the TNF-alpha 

promoter with little effect on the gene's inducibility by PMA. 

S72 The oxLDL-induced NF-kappa B activation was accompanied by an ini-

tial depletion of I kappa B-alpha followed by a slight transient increase 

in the level of this inhibitor protein. 

S73 In contrast, the RelA(p65) subunit was barely detectable in monocytes, 

but its level increased markedly in MDMs. 

S74 Tumor necrosis factor induced slightly c-fos and had almost no effect on 

c-jun and AP1.   

3.3.4.3 Neutral 

This is the default category. Assigned when there is no explicit indication of either 

high of low manner, but also in the rare cases when neutral manner is explicitly indi-

cated, using cue words such as normal or medium, etc. For example, consider the 

example sentence S75. 

S75 The eukaryotic transcription factor NF-kappa B plays a central role in 

the induced expression of human immunodeficiency virus type 1 and in 

many aspects of the genetic program mediating normal T-cell activation 

and growth. 
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3.3.5 Knowledge Source 

This dimension aims to denote the source or origin of the knowledge being ex-

pressed by the event. Specifically, we distinguish between events that can be at-

tributed to the current study, and those that are attributed to other (previous) studies. 

Information about knowledge source has been demonstrated to be important accord-

ing to its annotation in both the Gene Ontology [30] and in the corpus presented in 

[110]. This dimension can help in distinguishing new experimental knowledge from 

previously reported knowledge. Two possible values are distinguished, as follows:  

3.3.5.1 Current 

This category is assigned to events that make an assertion that can be attributed to 

the current study. This is the default category, and is assigned in the absence of ex-

plicit lexical or contextual cues, although explicit cues such as the present study may 

be encountered.  

Evidence 

 Explicit evidence for this category is often not present. Sentences describing 

results that are unmarked for knowledge source normally correspond to Cur-

rent, although this is not exclusively the case, and context must be examined 

to determine whether the event refers to the current or a previous study. 

 When explicit evidence is present, the word we is often present in the sen-

tence. On its own, this is not enough to determine the value of Current, as the 

sentence could be referring to work carried out by the authors in a previous 

study (see sentence S79 in the discussion below).  

 Reliable indicators involving we include the following:  
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o We have + past participle, e.g. we have found that … . (S75) 

o The use of here in conjunction with we, e.g. we report here that … de-

noting that the event is relevant in the current study. (S76) 

o Phrases such as The present work, in this study, etc. (S77) 

Example Sentences: 

S75 We have examined the effect of leukotriene B4 (LTB4) on the expression 

of the proto-oncogenes c-jun and c-fos. 

S76 We report here that the second alteration, at threonine 78, also plays an 

important, although more indirect, role.  

S77 The present work has examined the effects of okadaic acid, an inhibitor 

of type 1 and 2A protein phosphatases, on the regulation of c-jun expres-

sion during monocytic differentiation of U-937 leukemia cells. 

Discussion of Examples 

Consider example S78, which demonstrates how the presence of the word we alone 

is not necessarily sufficient to determine a Source value of Current: 

S78 In addition, we looked at the modulation of nuclear factors binding spe-

cifically to the AP-1 element after LTB4 stimulation. 

In order to determine whether the event marked in S78 has a Knowledge Source val-

ue of Current, the context needs to be examined. In isolation, the use of the simple 

past tense (looked at) is ambiguous as regards the knowledge source, i.e. it may refer 

to a previous study undertaken by the authors, in which case the Knowledge Source 

value of Other would be assigned (see below). Equally, it may refer to the current 
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study, in which case the Knowledge Source value would be set to Current. However, 

S75 and S78 are drawn from the same abstract, where S75 immediately precedes 

S78. As sentence S75 contains sufficient evidence to link it to the current study, and 

as sentence S78 is explicitly linked to it through the use of In addition, it follows 

that sentence S78 must also refer to the current study, and hence has a Knowledge 

Source value of Current.  

Consider the example sentence S79, where no explicit marker of Knowledge Source 

is present in the sentence.    

S79 LTB4 increased the expression of the c-fos gene in a time- and concen-

tration-dependent manner.  

Although S79 is fairly clearly an experimental observation, it is only by examining 

the context that it can be discovered whether this is a result of the current study, or a 

previous one. At least for abstracts, if a sentence such as S75 occurs towards the be-

ginning of the abstract, then it will normally be the case that any subsequently re-

ported results should be interpreted as being attributable to the Current study, unless 

there is any explicit indication to the contrary. 

3.3.5.2 Other 

This category is assigned to events that are attributed to a previous study.  

Evidence 

These events are always indicated through an explicit word or phrase. Typical cues 

are: 

 Words and phrases like previous studies and previously, etc. (S80-S81). 
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 Citation of another paper (S82). 

 Events that are attributable to the current author, but which implicitly refer 

to a study other than the current one (S83). 

Example sentences 

S80 Although it has been previously shown that the IL-6 kappa B motif func-

tions as a potent IL-1/tumor necrosis factor-responsive element in non-

lymphoid cells, its activity was found to be repressed in lymphoid cells 

such as a Jurkat T-cell line. 

S81 Since previous studies have demonstrated that the c-jun gene is autoin-

duced by Jun/AP-1, we also studied transcription of c-jun promoter (po-

sitions -132/+170)-reporter gene constructs with and without a mutated 

AP-1 element. 

S82 A recent functional analysis by Miyatake et al. (S. Miyatake, M. Seiki, 

M. Yoshida, and K. Arai, Mol. Cell. Biol. 8:5581-5587, 1988) described 

a short promoter region in the GM-CSF gene that conferred strong in-

ducibility by T-cell-activating signals and tax1, but no NF-kappa B-

binding motifs were identified. 

S83 We have earlier found that in Jurkat cells activation of protein kinase C 

(PKC) enhances the cyclic adenosine monophosphate (cAMP) accumu-

lation induced by adenosine receptor stimulation or activation of Gs. 
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Discussion of Examples 

In S83, although the use of the present perfect we have would normally indicate that 

the reported event belongs to the current study, the presence of the word earlier 

shows that event centred on enhances is an observation from an earlier study.     

3.3.6 Hyper-Dimensions 

A defining feature of our annotation scheme is the fact that, in addition to the explic-

itly annotated dimensions, further information can be inferred by considering com-

binations of some of these dimensions. We refer to these additional types of infor-

mation as the hyper-dimensions of our scheme, of which we have identified two. 

3.3.6.1 New Knowledge 

The isolation of events describing new knowledge is, as we have described earlier, 

important for certain tasks undertaken by biologists. However, it is not possible to 

determine whether an event represents new knowledge by considering a single anno-

tation dimension. For example, events having been assigned Knowledge 

Type=Observation could correspond to new knowledge, but only if they represent 

observations from the current study, rather than observations cited from elsewhere. 

In a similar way, an Analysis drawn from experimental results in the current study 

could be treated as new knowledge, but generally only if it represents a straightfor-

ward interpretation of results, rather than something more speculative. Thus, we 

consider New Knowledge to be a hyper-dimension, whose value (either Yes or No) 

can be inferred by considering a combination of the value assignments for the 

Knowledge Type, Source and Certainty Level dimensions. 
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 Table 1 is an inference table that can be used to obtain the appropriate value for 

New Knowledge, based on the values assigned to the three dimensions mentioned 

above.  The symbol ‘X’ indicates a “don’t care condition”, meaning that this value 

does not have any impact on the result.  

Source 

(Annotated) 

Knowledge Type 

(Annotated) 

Certainty Level 

(Annotated) 

New Knowledge 

(Inferred) 

Other X X No 

X X L2 No 

X X L1 No 

Current Observation L3 Yes 

Current Analysis L3 Yes 

X Fact X No 

X Method X No 

X Other X No 

X Investigation X No 

Table 1. Inference Table for New Knowledge Hyper-Dimension 

3.3.6.2 Hypothesis 

The second hyper-dimension of our scheme is Hypothesis. The binary value of this 

hyper-dimension can be inferred by considering the values of Knowledge Type and 

Certainty Level. Events with a Knowledge Type value of Investigation can always be 

assumed to be a hypothesis. However, if the Knowledge Type value is Analysis, then 

only those events with a Certainty Level value of L1 or L2 (speculative inferences 

made on the basis of results) should be considered as hypothesis, to be matched with 
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more definite experimental evidence when available. A value of L3 in this instance 

would normally be classed as an instance of new knowledge, as indicated in Table 1.  

The cases in which an event can be assumed to be a hypothesis are summarised in 

Table 2.   

Knowledge Type 

(Annotated) 

Certainty Level 

(Annotated) 

Hypothesis 

(Inferred) 

Fact X No 

Method X No 

Other X No 

Observation X No 

Analysis L3 No 

Analysis L2 Yes 

Analysis L1 Yes 

Investigation X Yes 

Table 2. Inference Table for Hypothesis Hyper-Dimension 

3.4 Hypothetical Annotation Examples 

Having examined the different annotation dimensions of the scheme in some detail, 

we now re-examine the hypothetical sentences first introduced in section 3.1, and 

discuss the correct categories to assign to them for each meta-knowledge dimension: 

S3 It is known that the narL gene product activates the nitrate reductase oper-

on 

Knowledge Type: Fact. The word known indicates that this is a generally 

known fact. 
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Certainty Level: L3. There are no words or phrases to suggest uncertainty, 

so the default value of L3 is assigned. 

Polarity: Positive. There are no words or phrases expressing the negation of 

the event, so the default value of Positive is assigned. 

Manner: Neutral. There are no words or phrases expressing manner, hence 

the default value of Neutral is assigned 

Source: Current. There is no indication of a source other than the current 

text; hence the default value of Current is assigned. 

 

S4 We examined whether the narL gene product activates the nitrate reduc-

tase operon 

Knowledge Type: Investigation. The word examined indicates that the 

event describes an investigation. 

Certainty Level: L3. This dimension is not applicable to Investigation 

events, and so the default value is automatically assigned. 

Polarity: Positive. There are no words or phrases expressing the negation of 

the event, so the default value of Positive is assigned. 

Manner: Neutral. There are no words or phrases expressing manner, hence 

the default value of Neutral is assigned 

Source: Current. There is no indication of a source other than the current 

text; hence the default value of Current is assigned. 
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S5 The narL gene product did not activate the nitrate reductase operon 

Knowledge Type: Observation. The use of the past tense (along with the 

lack of any other Knowledge Type cues) indicates that this is an experi-

mental observation. 

Certainty Level: L3. There are no words or phrases to suggest uncertainty, 

so the default value of L3 is assigned. 

Polarity: Negative. The negation cue not modifies the event-trigger. This 

indicates that the event is negated.  

Manner: Neutral. There are no words or phrases expressing manner, hence 

the default value of Neutral is assigned 

Source: Current. There is no indication of a source other than the current 

text; hence the default value of Current is assigned. 

 

S6 These results suggest that the narL gene product might be activated by 

the nitrate reductase operon 

Knowledge Type: Analysis. The word suggest with the subject These re-

sults shows that the event corresponds to an analysis of the results. 

Certainty Level: L1. Although the default certainty level for suggest is L2, 

the presence of the word might lowers the certainty level to L1. 

Polarity: Positive. There are no words or phrases expressing the negation of 

the event, so the default value of Positive is assigned. 



CHAPTER 3. META-KNOWLEDGE 

 

 95 

Manner: Neutral. There are no words or phrases expressing manner, hence 

the default value of Neutral is assigned 

Source: Current. There is no indication of a source other than the current 

text; hence the default value of Current is assigned. 

 

S7 The narL gene product partially activated the nitrate reductase operon 

Knowledge Type: Observation. The use of the past tense (along with the 

lack of any other Knowledge Type cues) indicates that this is an experi-

mental observation. 

Certainty Level: L3. There are no words or phrases to suggest uncertainty, 

so the default value of L3 is assigned. 

Polarity: Positive. There are no words or phrases expressing the negation of 

the event, so the default value of Positive is assigned. 

Manner: Low. The use of the word partially indicates the amount of in-

crease is small, and so the value of Low is assigned. 

Source: Current. There is no indication of a source other than the current 

text; hence the default value of Current is assigned. 

 

S8 Previous studies have shown that the narL gene product activates the ni-

trate reductase operon 

Knowledge Type: Analysis. The word shown is present, indicating that 

some analysis about the event has been undertaken. 
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Certainty Level: L3. Although some analysis cue words convey an L2 cer-

tainty level, the verb shown does not convey any uncertainty in the analysis, 

and so a certainty level value of L3 is assigned. 

Polarity: Positive. There are no words or phrases expressing the negation of 

the event, so the default value of Positive is assigned. 

Manner: Neutral. There are no words or phrases expressing manner, hence 

the default value of Neutral is assigned 

Source: Other. The use of the phrase Previous studies explicitly shows that 

the event is attributable to another study. 
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Chapter 4: Meta-Knowledge Annotation  

This chapter provides an overview of the application of the meta-knowledge annota-

tion scheme to two bio-event corpora. It starts with brief descriptions of the evalua-

tion of the annotation scheme and the training of the annotators. This is followed by 

detailed discussions about the creation of the two bio-event corpora enriched with 

meta-knowledge annotations: GENIA-MK (abstracts) and FP-MK (full papers). Fi-

nally, a brief comparison between the annotation characteristics of the two corpora is 

provided. 

4.1 Evaluation of the Annotation Scheme 

Before embarking on a large scale annotation project, we conducted a small annota-

tion experiment to verify the feasibility and soundness of the meta-knowledge anno-

tation scheme [117]. Two annotators independently applied the annotation scheme to 

bio-events identified in 70 randomly selected abstracts from the GENIA Pathway 

corpus [118], using the annotation manual we had developed. The results were en-

couraging: high rates of inter-annotator agreement (between 0.89 and 0.95 Kappa) 

were achieved. The experiment helped to demonstrate the soundness of both the 

scheme itself and the guidelines. Furthermore, the fact that all categories within all 

dimensions were annotated, at least to a certain extent, suggested that none of the 

proposed categories was redundant.   

4.2 Annotators and Training 

In order to ensure the efficacy of the guidelines and the reproducibility of the anno-

tation task, we recruited 2 external annotators to carry out the annotation of a gold 
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standard corpus. An important consideration was the type of expertise required by 

the annotators. It has previously been found that at least negations and speculations 

in biomedical texts can be reliably detected by linguists [107]. The scope of our me-

ta-knowledge annotation is wider, involving some scientifically motivated aspects 

(i.e., Knowledge Type and Manner), but the assignment of certain dimension values 

is somewhat linguistically motivated, e.g., it is often the case that meta-knowledge 

cue expressions have a grammatical relationship to the event-triggers and partici-

pants. In order to verify the extent to which either domain-specific biological 

knowledge or linguistic knowledge is required to perform the annotation accurately, 

we recruited a biology expert and a linguistics expert to carry out the task. Both an-

notators had near-native competency of English, which we considered to be im-

portant to carry out the task accurately.  

The annotators undertook training prior to commencing the annotation of the gold 

standard corpus. This training began with initial introductory sessions, in which the 

annotation scheme and guidelines were explained, and the X-Conc annotation tool 

[119] was demonstrated.  Subsequently, the annotators carried out practice annota-

tion tasks. For this purpose, we used the same corpus of 70 abstracts from the 

GENIA Pathway corpus that was used to test the feasibility of the scheme, as de-

scribed above. Both annotators were given the same sets of abstracts to annotate, 

independently of each other.  This allowed us to detect a maximal number of poten-

tial annotation errors and discrepancies produced by the annotators, as we could 

conduct comparisons not only between the annotators themselves, but also against 

the gold standard annotations which had previously been created. The annotators 

returned a set of abstracts each week, in response to which we produced detailed 
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feedback reports highlighting annotation errors. These reports were thoroughly dis-

cussed with the annotators, in order to maximally enhance and accelerate the learn-

ing process. Sometimes, errors made by the annotators highlighted potential prob-

lems with the annotation guidelines, which were addressed by updating the guide-

lines accordingly.     

4.3 Annotation of Abstracts 

Following the completion of annotator training, the annotation scheme was applied 

to enrich the entire GENIA Event corpus [29] with meta-knowledge information. To 

our knowledge, the enriched corpus, which we refer to as the GENIA-MK corpus, 

represents a unique effort within the domain, in terms of the amount of meta-

knowledge information annotated at such a fine-grained level of granularity (i.e., 

events).  As the GENIA Event corpus is currently the largest biomedical corpus an-

notated with events, the enrichment of this entire corpus with meta-knowledge anno-

tation constitutes a valuable resource for training information extraction systems to 

recognise not only the core information about events and their participants, but also 

additional information to aid in their correct interpretation and to provide enhanced 

search facilities.  

4.3.1 General Corpus Characteristics 

In this section, we discuss the general distribution of the annotations amongst the 

different categories of each dimension, and also provide lists of the most commonly 

annotated cue expressions.  



CHAPTER 4. META-KNOWLEDGE ANNOTATION 

 

 100 

4.3.1.1 Knowledge Type 

Table 3 shows the number of instances of each category annotated for the 

Knowledge Type dimension. The most common category is Observation, constitut-

ing just over a third of the total number of events. This result is unsurprising, since 

abstracts would be expected to focus mainly on definite experimental observations 

and results, both of which fall into this category. The Other category is almost as 

common as Observation.  Such events are generally the participant events of Inves-

tigation, Analysis or Fact events which, out of the context of their parent event, have 

no specific Knowledge Type interpretation.  The total number of Other events is very 

similar to the combined total of Investigation, Analysis and Method events. This is to 

be expected, given the high proportion (44%) of complex events present in the cor-

pus.  

Category Frequency % of total events 

Observation 12821 34.7% 

Other 11537 31.3% 

Analysis 6578 17.8% 

Fact 2998 8.1% 

Investigation 1948 5.3% 

Method 976 2.6% 

Table 3. Distribution of annotated categories for Knowledge Type 

The proportion of Analysis events is much smaller but still quite significant, since 

most abstracts contain at least some analysis of the experimental results obtained.  

The usual inclusion of a small amount of background factual information to put the 

current study into context accounts for the average of 3 events per abstract (8% of all 
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events) that are assigned the Fact category. Even briefer are the descriptions of what 

is to be investigated, with an average of 2 Investigation events per abstract (5% of 

all events).  The scarcity of events describing methods (2.6% of events, or less than 

1 event per abstract) shows that providing details of experimental setup is very rare 

within abstracts.  

Analysis Investigation Observation 

Cue Freq Cue Freq Cue Freq 

suggest 408 examined 207 found 361 

show 353 investigated 205 observed 226 

demonstrate 335 analysed 119 detected 141 

demonstrated 332 studied 94 detectable 48 

showed 246 to determine 50 seen 32 

shown 244 tested 39 noted 17 

may 242 measured 25 find 11 

can 232 monitored 25 detect 11 

associated 215 to investigate 23 findings 11 

indicate 211 to examine 21 observations 9 

revealed 196 to study 21 finding 9 

suggesting 140 analysis 20 show 6 

report 114 studies 20 report 6 

identified 112 to identify 16 exhibit 5 

thus 108 investigate 15   

Table 4. Most common Knowledge Type cue expressions 
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Table 4 shows the 15 most commonly annotated cue expressions for the Knowledge 

Type categories of Analysis, Investigation and Observation together with their fre-

quencies.  Cues were also annotated for the Fact category, if they were present. 

However, only 139 of the 2998 Fact events (4.6%) have a cue expression annotated.  

Of these annotated cue expressions, 106 (76%) correspond to the word known. Cue 

expression annotation was also optional for the Observation category, in which only 

937 (7.3%) of the total number of events are accompanied by a cue. For the Investi-

gation and Analysis categories, all annotated events have a cue expression.  

For both Investigation and Observation, the top three most common cue expressions 

are past tense verbs, whilst the use of the present tense appears to be more dominant 

for describing Analysis events.  The use of infinitive forms (i.e. to investigate) as 

cues seems to be a specific feature of the Investigation category.  Whilst most cues 

are verbal forms, words with other parts of speech can sometimes constitute reliable 

cues (e.g. thus for Analysis, and detectable for Observation). 

4.3.1.2 Certainty Level 

The distribution of Certainty Level annotations is shown in Table 5.    

Category Frequency % of total events 

L3 (default) 33876 91.9% 

L2 2216 6.0% 

L1 766 2.1% 

Table 5. Distribution of annotated categories for Certainty Level 

Despite the relative scarcity of Certainty Level marking on events, it should be noted 

that this dimension is only applicable when the Knowledge Type value of Analysis is 
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assigned. Taking this into consideration, the need for this dimension becomes more 

apparent: whilst over half of Analysis events (54.7%) are stated with no uncertainty, 

this also means that almost a half of these events do express some kind of uncertain-

ty. In fact, approximately one third (33.7%) of all Analysis events are annotated as 

Certainty Level=L2, whilst 11.6% are reported with less certainty (i.e., Certainty 

Level=L1). The very nature of abstracts means that the high proportion of events 

with no uncertainty is to be expected. As authors aim to “sell” the most positive as-

pects of their work in abstracts, it makes sense that the majority of analyses should 

be presented in a confident manner.   

However, the marking of slight uncertainty is sometimes necessary.  The author’s 

analyses of experimental results may have produced important outcomes, but yet 

they are not confident that their analysis is completely reliable. As stated in [95], 

“Scientists gain credibility by stating the strongest claims they can for their evi-

dence, but they also need to insure against overstatement.” (p. 257). Such insurance 

can often be achieved by the use of slight hedging (i.e., Certainty Level=L2). Greater 

speculation (i.e., Certainty Level=L1) is less common, as such credibility is reduced 

in this case.  

As part of the original annotation in the GENIA Event corpus, Uncertainty was an-

notated as an event attribute.  The default value is Certain and the other two values 

are Probable and Doubtful.  In the GENIA event annotation guidelines, these attrib-

utes do not have clear definitions. However, Probable can be defined loosely as 

something that is hypothesized by the author, while Doubtful is something that is 

investigated.  As such, Probable has more in common with our Certainty Level di-

mension, while Doubtful is more closely linked to the Investigation category of our 
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Knowledge Type dimension. Therefore, the GENIA Uncertainty attribute does not 

distinguish between degrees of uncertainty in the same way as our meta-knowledge 

scheme.  Comparison of results confirms this – of the events annotated with Uncer-

tainty=Probable, there are comparable numbers of events that have been annotated 

with Certainty Level=L1 (530 events) and Certainty Level=L2 (665 events).  It is 

also worth noting that the total number of events identified with some degree of un-

certainty using our scheme (Certainty Level=L1 or Certainty Level=L2) is 2982.  

This is almost double the number of events annotated as Probable, showing that our 

more detailed guidelines for Certainty Level annotation have helped to identify a far 

greater number of events expressing some degree of speculation.  

Discrepancies can also be found regarding the Doubtful category. Whilst, as ex-

pected, the vast majority of these correspond to events that have been annotated as 

Knowledge Type=Investigation in our meta-knowledge scheme (1022 out of a total 

of 1349 Doubtful events), some Doubtful events also correspond to events with other 

Knowledge Type values (most notably Analysis with Certainty Level values of L3, 

L2 or L1, which can also occur within the Probable category). This provides evi-

dence that the boundary between Doubtful and Probable may not always have been 

clear to annotators.   In addition, our scheme identified 1948 events with Knowledge 

Type=Investigation, meaning that there were some 900 investigative events that 

were not identified during the original GENIA Event annotation. 

Table 6 shows the 10 most commonly annotated cue expressions for the L2 and L1 

values. For L2, the most common expression is can, which normally expresses abil-

ity rather than speculation (together with the cues ability and able). If an event has 

the ability to occur, then there is no guarantee that it will occur all of the time, and 



CHAPTER 4. META-KNOWLEDGE ANNOTATION 

 

 105 

hence it is sensible that the event should be annotated as having less than complete 

certainty.   

All of the other words in the L2 list express slight speculation or hedging, mostly 

corresponding to different forms of the verbs suggest and indicate. In Table 4, it was 

seen that these verbs also rank amongst the most common Analysis cues, showing 

that it is common for analysis and slight speculation to be simultaneously expressed 

using a single cue word.  For the indication of L1 certainty, modal auxiliary verbs 

are particularly common, with may accounting for 67.4% of all annotated L1 cues, 

and might and could constituting a significant proportion of the remainder.  The L1 

category has a very small number of distinct cue expressions (23), compared to 121 

distinct expressions for L2.        

L2 L1 

Cue Frequency Cue Frequency 

can 407 may 516 

suggest 285 might 75 

indicate 150 could 55 

suggesting 112 possible 32 

ability 108 potential 23 

indicated 99 possibility 10 

appears 88 possibly 10 

able 86 potentially 10 

indicating 72 perhaps 5 

likely 52 propose 4 

Table 6. Most common Certainty Level cue expressions 
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4.3.1.3 Polarity 

As can be seen in Table 7, only a small number of events are negated (6.1%). How-

ever, it is vital that such information is detected, as negation completely alters the 

meaning of the event.  

Polarity Frequency % of total events 

Positive (default) 34595 93.9% 

Negative 2263 6.1% 

Table 7. Distribution of annotated categories for Polarity 

In the GENIA Event corpus, negation is an aspect of meta-knowledge that was anno-

tated as part of the original annotation (via the assertion attribute).  There is almost, 

but not complete agreement, between Polarity=Negative and assertion=non-exist, 

with a total of 2262 events annotated with the former and 2351 in the latter case. The 

slightly fewer negative annotations produced by our annotation are mainly due to the 

fact that some events annotated as negative in the original GENIA annotation actual-

ly convey low levels of interaction (rather than no interaction).  An example is 

shown in sentence S84. As with previous example sentences, the event-trigger is 

underlined and the cue expression is emboldened. 

S84 AP-1 but not NF-IL-6 DNA binding activity was also detected in C5a-

stimulated PBMC; however, its delayed expression (maximal at 4 hours) 

suggested a less important role in the rapid production of IL-8. 

The event encodes the fact that the expression of AP-1 only has a minor role (but not 

no role) in the rapid production of IL-8. As the GENIA annotation had no special 

means to encode that an event has low intensity or impact, the original annotator 
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chose to annotate this as a negative event, even though this is not strictly correct.  

Our annotation scheme, with its Manner dimension, allows the subtle difference be-

tween an event having a low impact or not happening at all to be encoded. Our 

scheme annotates low impact events such as the above as Polarity=Positive but 

Manner=Low.    

In Table 8, we examine the distribution of negated events amongst the different 

Knowledge Type categories. Although negated events occur within events belonging 

to all Knowledge Type categories, the distribution is quite uneven. Only observations 

and analyses are negated with any amount of regularity. Events belonging to the re-

maining Knowledge Type values are virtually always expressed with positive polari-

ty, with only around 3.5% of fact–bearing events being negative, and the other three 

categories (Investigation, Method and Other) only averaging one negative instance 

per hundred events.  

Knowledge Type Cate-

gory 
Negated events (% within category) 

Observation 1364 (10.6%) 

Analysis 577 (8.7%) 

Fact 105 (3.5%) 

Other 187 (1.6%) 

Method 10 (1.0%) 

Investigation 20 (1.0%) 

Table 8. Distribution of negated events among Knowledge Type categories 

The low occurrence of negative instances amongst events with Knowledge 

Type=Investigation events is quite intuitive - it is the norm to investigate 
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why/whether something does take place, although in some instances there can be 

investigation into why something does not take place, such as in response to a previ-

ous negative finding, such as in S85. 

S85 To determine why alveolar macrophages do not express AP-1 DNA 

binding activity, ... 

Also for methods, it is highly unusual to say that a particular method was not ap-

plied, unless in contrast to the case where the method was applied, as the case in 

S86. 

S86 For comparison, we recruited a control group consisting of 32 healthy 

males and females with similar age distribution and without a history of 

exposure to MTBE or benzene. 

Table 9 displays the most commonly annotated cue expressions for negated events. 

Although the number of events we have identified as negated is roughly similar to 

those originally annotated in the GENIA Event corpus, our annotation has the ad-

vantage of having identified a suitable cue expression for each negated event.  

Category Frequency 

not 1141 

no 199 

independent 113 

without 65 

failed 47 

nor 47 

absence 42 
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neither 38 

unaffected 28 

lack 23 

un 23 

unable 19 

independently 18 

resistant 15 

fails 13 

Table 9. Most common cue expressions for negative polarity 

The word not constitutes around half of all cue expressions for negation (50.4%), 

and is over 5 times more common than the next most common cue expression, no. 

Although most of the words in the list have an inherently negative meaning, the 

third most common word, i.e. independent (together with its associated adverb inde-

pendently), does not.  Closer examination shows that this negative meaning is quite 

context-dependent, in that it only denotes a negative meaning for events of type Cor-

relation and Regulation (together with its sub-type Positive Regulation).  For Regu-

lation, a typical example is shown in S87. 

S87 An alteration in the E2F-4 profile was independent of viral gene expres-

sion 

In S87, the word independent acts as both the event-trigger and the negative cue ex-

pression. The event denotes the fact that the alteration in the E2F-4 profile was not 

dependent on viral gene expression occurring. In other words, it is not the case that 

viral gene expression regulates the alteration in the E2F-4 profile.  Events of type 
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Correlation are annotated when there is some kind of association that holds between 

entities and/or other events.  Sentence S88 shows an example of both a positive Cor-

relation event and a negated Correlation event.  

S88 LPS-induced NF-kappaB activation is protein tyrosine kinase dependent 

and protein kinase C independent. 

There are three relevant events in S88. Firstly, the word induced is the trigger for the 

Positive Regulation event in which NF-kappaB activation is regulated by LPS. The 

word dependent is the trigger for the second event, which shows that there is some 

kind of correlation between this positive regulation event and the protein tyrosine 

kinase. In contrast, the third event, triggered by independent, shows that no such 

correlation holds between the positive regulation and the protein kinase C. Hence, 

this is a negated Correlation event.  

Some less commonly occurring negative cue expressions also only have negative 

meanings in very specific contexts.  Consider S89: 

S89 These cells are deficient in FasL expression and apoptosis induced upon 

TCR triggering, although their cytokine (IL-2 and IFN-gamma) produc-

tion is normal. 

In S89, the word deficient indicates a positive instance of a Negative Regulation 

event (i.e., the negative regulation does occur). However, the word normal indicates 

that no such negative regulation occurs in the case of IL-2 and IFN-gamma produc-

tion.  In the few instances where normal occurs as a negative polarity marker, it is 

used in similar contexts, i.e. to contrast with a previously stated Negative Regulation 
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event. The word silent appears to be usable in similar contexts to negate events of 

type Positive Regulation, in contrast to a positive occurrence of such an event.  

4.3.1.4 Manner 

As shown in Table 10, almost 5% of all events express a Manner value other than 

Neutral, which makes it only a slightly less commonly expressed phenomenon than 

negation.  In the previous section, it has already been illustrated that the Low manner 

value can help distinguish between truly negative events, and those that occur at a 

low level or with low intensity. However, instances of High manner are much more 

common, and account for 81% of events for which there is an explicit indication of 

Manner.    

Manner Frequency % of total events 

Neutral (default) 35143 95.3% 

High 1392 3.8% 

Low 323 0.8% 

Table 10. Distribution of annotated categories for Manner 

The distribution of events annotated with either high or low Manner according to the 

Knowledge Type value of the event is shown in Table 11.  

For the Observation category, explicit expression of Manner is observed in close to 

1 in 10 events, making its frequency similar to the expressions of negation within 

this category. Of all events annotated for Manner, 66.5% correspond to those with 

the Knowledge Type value of Observation. This makes it clear that the main usage of 

Manner marking is to refine the descriptions of experimental observations and re-

sults.  
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Knowledge Type 

Category 

Events with High or Low Manner annotated 

(% within category) 

Observation 1141 (8.9%) 

Analysis 276 (4.2%) 

Fact 120 (4.0%) 

Other 171 (1.5%) 

Investigation 5 (0.2%) 

Method 2 (0.2%) 

Table 11. Distribution of negated events among Knowledge Type categories 

Table 12 shows the 15 most common cue expressions for both the High and Low 

values of the Manner dimension. In both cases, most of the cue expressions consist 

of adjectives or adverbs, with a range of meanings referring to degree (e.g., com-

pletely), speed or rate (e.g., rapidly), strength or intensity (e.g., strongly) and level 

(e.g.  high). These differences in meaning of the manner expressions can be ex-

plained by the varying semantics of the biological processes that are described by 

events. In most cases, items in the High manner list have counterparts in the Low 

list, e.g., significant vs. little, high vs. low, strongly vs. weakly, completely vs. par-

tially.   It is notable that a counterpart of rapidly (e.g., slowly) appears to be missing 

from the list of Low cue expressions.   

In the High manner cue word list, a notable item is overexpression. Unlike the other 

cues in the list, which are independent of event type, this word is specific to events 

of type Gene Expression, as it combines the meaning of the event type with the ex-

pression of High manner. Comparable examples appear very rarely.  
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High Manner Low Manner 

Cue Frequency Cue Frequency 

significantly 140 little 22 

potent 84 low 15 

markedly 81 little or no 13 

rapidly 73 low levels 11 

strongly 72 weak 11 

rapid 65 limited 10 

significant 39 low level 9 

completely 36 weakly 9 

strong 30 minimal 8 

high 28 only a partial 8 

high levels 28 no significant 8 

over expression 26 partially 8 

highly 23 barely 7 

marked 23 to a lesser extent 6 

dramatically 22 not significant 6 

Table 12. Most common Manner cue expressions 

Some of the annotated cues for both High and Low manner contain numerical val-

ues, meaning that a pattern matching approach may be required when trying to rec-

ognise them in unseen texts. For example, the expression n-fold is often used to de-

note High manner (often preceding the word increase or decrease), where n may be 

any numeric value. Otherwise, by n% may follow one of these words. To indicate 

Low manner, the expressions n-fold less or n-fold lower are sometimes used.  



CHAPTER 4. META-KNOWLEDGE ANNOTATION 

 

 114 

4.3.1.5 Knowledge Source 

Regarding the Knowledge Source dimension, only 1.5% of events in total have any 

evidence that they come from a source other than the current study, as shown in Ta-

ble 13.  This low percentage may be expected, given that abstracts are meant to 

summarise the work carried out in the current study.  In addition, citations, which are 

a common way to denote previous work, are often not allowed within abstracts. It 

should be noted that a considerably greater proportion of events marked as 

Source=Other would be expected when applying the scheme to full papers, in which 

the Background section will normally contain a large number of references to and 

descriptions of previous work (section 4.4.5). Of the events annotated as 

Source=Other within abstracts, the vast majority (86%) have the Knowledge Type 

value of Analysis. 

Knowledge 

Source 
Frequency % of total events 

Current (default) 36313 98.5% 

Other 545 1.5% 

Table 13. Distribution of annotated categories for Manner 

Table 14 shows the 10 most commonly annotated cue expressions for Source=Other. 

Most of these consist of the words previous or recent, or phrases containing these 

words. The use of the passive voice with the present perfect tense (e.g. has been 

studied) is another common means to indicate that an event has previously been 

completed (e.g. in a previous study), but has relevance to the current study. This ex-

plains the relatively high occurrence of has been and have been as cues for 

Source=Other.  
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Cue Frequency 

previously 118 

has been 89 

recently 67 

have been 39 

previous studies 24 

recent studies 17 

recent 15 

previous 14 

our previous studies 10 

earlier 6 

Table 14. Most common cue expressions for Source=Other 

4.3.1.6 Hyper-dimensions 

Using the inference tables discussed earlier (section 3.3.6), we calculated the fre-

quencies for the two hyper-dimensions, which are shown in Table 15.  

Hyper-dimension Category Frequency % of total events 

New Knowledge 
Yes 15985 43.4% 

No 20873 56.6% 

Hypothesis 
Yes 4924 13.4% 

No 31934 86.6% 

Table 15. Distribution of categories for the two hyper-dimensions 

As a comparison to these figures, the annotation carried out in [120] included anno-

tating sentences containing descriptions of claims of new knowledge annotated in 
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chemistry and computational linguistics research articles. The results showed that 

the proportion of sentences containing new knowledge was 63% for the chemistry 

articles and 72% for the computational linguistics articles. It may be expected that 

the amount of new knowledge presented in biomedical research articles would be 

more similar to chemistry articles than computational linguistics ones. However, the 

proportion of events that represent new knowledge in our corpus is somewhat lower 

than the proportion of sentences that contain new knowledge in chemistry. This low-

er percentage can be explained in a number of ways. Firstly, unlike our scheme, 

[120] treat experimental methods as new knowledge, and these make up a significant 

proportion of the new knowledge in the chemistry articles. In any case, as has been 

reported above, abstracts have a different structure to articles, and experimental 

methods are rarely reported. In addition, our New Knowledge hyper-dimension takes 

certainty level into account, and excludes events which are highly speculative. How-

ever, certainty level is not taken into account in [120]. Finally, the granularity of the 

schemes is different. Whilst [120] annotates at sentence level, our annotation is at 

the event level, of which there are average of 3 to 4 per sentence. As some of these 

events represent non-propositional information, which cannot be treated as new 

knowledge, it makes sense that the proportion of events that represent new 

knowledge would be lower than the percentage of sentences that contain such in-

formation.   

4.3.2 Inter-Annotator Agreement 

In order to ensure the consistency and quality of the meta-knowledge annotation 

throughout the corpus, 104 randomly selected abstracts (10% of the entire corpus) 

were annotated by both annotators, allowing us to calculate their agreement rates. 
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For this purpose, the familiar measure of Cohen’s kappa [121] was used, which ad-

justs the observed agreement for what would be expected by chance. If Cohen’s 

kappa is represented by k, the proportion of observed agreement by p and the pro-

portion of expected agreement by pe, then the value of k can be calculated by the 

following formula: 

k =   (p – pe) / (1 – pe) 

The results for each dimension are reported in Table 16.  

Dimension Kappa Value 

Polarity 0.929 

Source 0.878 

Certainty Level 0.864 

Manner 0.864 

Knowledge Type 0.843 

Table 16. Inter-annotator agreement rates 

High levels of agreement were achieved in each dimension, with generally only very 

small differences between the agreement rates of different dimensions.  This pro-

vides strong evidence that consistent annotation of meta-knowledge is a task that can 

be reliably undertaken by following the annotation guidelines.  

The Polarity dimension has the highest rates of agreement. This could be because it 

is one of the two dimensions that have only two possible values (together with 

Knowledge Source, which has the second highest agreement rate). The two dimen-

sions with three possible values (i.e. Certainty Level and Manner) have virtually 

identical rates of agreement, while Knowledge Type has the lowest agreement rate 
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(albeit only by a small amount). This is, however, to be expected – Knowledge Type 

has 6 possible values and in many cases, contextual information other than cue ex-

pressions is required to determine the correct value. Therefore, it can be a more de-

manding task than the assignment of other dimensions.   

4.3.3 Annotation Discrepancies 

We have studied the cases where there is a discrepancy between the two annotators.  

Whilst a number of these discrepancies are simple annotation errors, in which a par-

ticular dimension value was mistakenly selected during the annotation task, other 

discrepancies occur when a dimension value is identified by means of a cue expres-

sion that is not present in the list of sample cue expressions provided in the guide-

lines. In some cases, one of the annotators would notice the new cue, and use it to 

assign an appropriate category, but the other annotator would miss it. In order to 

minimise the occurrence of such cases, annotators were asked to flag new cue ex-

pressions, so that the lists of cue expressions in the guidelines could be updated to be 

as comprehensive as possible, and so ease the task of accurate annotation.  

One of the largest areas of disagreement was between the Knowledge Type catego-

ries of Observation and Fact. For a number of reasons, distinguishing between these 

types can often be quite tricky, and sometimes there is no clear evidence to suggest 

which of the categories should be chosen.  Events of both types can occur in the pre-

sent tense, and explicit cue expressions are more frequently absent than present. Of-

ten, the extended context of the event (including possibly other sentences) has to be 

considered before a decision can be made.  In some cases, it appears that domain 

knowledge is required to make the correct decision.  
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In the remainder of this section, we look at some particular cases of annotation dis-

crepancies, some of which appear to be influenced by the expertise of the annotator.   

Long sentences seemed to prove more problematic for the biologist annotator, and 

meta-knowledge information was sometimes missed when there is a large gap be-

tween the cue expression and the event-trigger.  Consider sentence S90 (below), in 

which the word indicated should cause both the event with the trigger prevented and 

the one with the trigger activated to be annotated with Knowledge Type=Analysis.  

S90 Accordingly, electrophoretic mobility shift assays (EMSAs) indicated 

that pyrrolidine DTC (PDTC) prevented NF-kappaB, and NFAT DNA-

binding activity in T cells stimulated with either phorbol myristate ace-

tate plus ionophore or antibodies against the CD3-T-cell receptor com-

plex and simultaneously activated the binding of AP-1. 

Whilst it is straightforward to understand that indicated affects the interpretation of 

the event-triggered by prevented, it is less easy to spot the fact that it also applies to 

the event triggered by activated, due to the long description of the T cells, which 

precedes this trigger.  

It appears that having some linguistic expertise is an advantage in order to cope with 

such cases. The biologist would often fail to consider a cue word as potentially af-

fecting the interpretation of an event unless it occurred in close proximity to the 

event itself.  In contrast, the linguist would normally detect long distance dependen-

cies between cue expressions and triggers without difficulty.  This is to be expected, 

given that the linguist is familiar with grammatical rules. However, given the gener-

ally high levels of agreement, such complex cases appear to be reasonably rare.  
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Other annotation discrepancies reveal further differences in the approaches of the 

annotators. Whilst some grammatical knowledge appears to be advantageous, using 

a purely grammatical approach to the recognition of meta-knowledge is not always 

correct. The semantic viewpoint appears to be the one most naturally taken by the 

biologist annotator, as is evident in sentences such as S91:  

S91 This study demonstrates that GC act as a primary inducer of siaload-

hesin expression on rat macrophages, and that the response can be en-

hanced by IFN-beta, T cell-derived cytokines, or LPS. 

In S91, we focus on the events triggered by inducer and enhanced, which are of type 

Positive Regulation.  The word demonstrates is a cue expression for the Knowledge 

Type category Analysis. Taking a purely grammatical approach, the word demon-

strates affects the interpretation of the verbs act and enhanced. Accordingly, both 

annotators marked the event triggered by enhanced as Knowledge Type=Analysis. 

However, the biologist also annotated the inducer event with Knowledge 

Type=Analysis, also marking demonstrates as the cue expression. Considering se-

mantics, this is correct – the actual meaning of the first part of the sentence is that 

This study demonstrates that GC induces sialoadhesin expression on rat macro-

phages.   

Sentence S92 illustrates the need to carefully consider the meaning of words and 

phrases in the context of the event, as well as simply looking for relevant keywords.    

S92 Changes of any cysteine residue of the hRAR alpha-LBD had no signifi-

cant influence on the binding of all-trans RA or 9-cis RA. 
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One of the annotators had annotated the Regulation event with the trigger influence 

with Polarity=Negative (cue word: no) and Manner=High (cue word: significant).  

However, this is incorrect - it is the word significant that is negated, rather than the 

event itself. As significant would normally be a marker of High manner, negating it 

means that it should be treated as a Low manner marker. Accordingly, the other an-

notator correctly identified no significant as the cue phrase for Manner=Low, with 

the polarity of the event correctly remaining positive.   

The interplay between events in the GENIA event corpus can be complex, especially 

as events can occur that have no trigger phrase. The links between different events in 

a sentence often have to be understood before a decision can be made about which 

of the events a particular piece of meta-knowledge should apply to. In such cases, a 

detailed understanding of the domain could be considered to be an advantage. The 

following sentence fragment (S93) illustrates such a case, in which absence consti-

tutes a cue expression for Polarity=Negative for one of the events.   

S93 In the absence of TCR-mediated activation, Vpr induces apoptosis... 

Three events have been identified as part of the original GENIA Event annotation: 

1. A Positive Regulation event with the trigger mediated (i.e., positive regula-

tion of activation by TCR).  At first glance, it is to this event that the negative 

polarity appears to apply.  

2. A second Positive Regulation event, with the trigger induces (i.e. positive 

regulation of apoptosis by Vpr)  

3. A Correlation event with no trigger, providing a link between the first two 

events (1 and 2 above).  In fact, the negative polarity applies to this event. 
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The event conveys the fact that Vpr induces apoptosis even when there is no 

TRC-mediated activation, indicating that there is no correlation between 

these two events.  

The above examples demonstrate that accurate meta-knowledge annotation can be a 

complex task, which, according to the event in question, may have to take into ac-

count the structure and semantics of the sentence in which the event is contained, as 

well as the semantics of the event itself and possibly the interplay between events.  

Our inter-annotator agreement results suggest, however, that the task of meta-

knowledge annotation can be accurately undertaken, given appropriate guidelines 

and training. Furthermore, the results provide evidence that high quality meta-

knowledge annotations can be produced regardless of the expertise of the annotator. 

Although we have highlighted certain cases where either domain knowledge or lin-

guistic expertise appears to be a distinct advantage, neither seems to be a prerequi-

site. This is in agreement with [116], in which biologist annotators were trained to 

carry out linguistically-motivated annotation of biomedical events, with good levels 

of agreement.   

4.4 Annotation of Full Papers 

In order to investigate the scalability of our meta-knowledge scheme, we conducted 

a case study to investigate the feasibility of applying it to full papers. Although the 

design of our scheme was originally guided only by reference to abstracts, such 

scalability is important given that work on event extraction is gradually being scaled 

from abstracts to full papers, and also that the automatic recognition of meta-

knowledge about events can be highly useful for building more sophisticated infor-



CHAPTER 4. META-KNOWLEDGE ANNOTATION 

 

 123 

mation extraction systems. Our case study involved the annotation of 4 full papers 

using the same meta-knowledge annotation guidelines that were used to create the 

GENIA-MK corpus. We refer to the resulting (meta-knowledge enriched) corpus as 

FP-MK corpus. These full papers had already been annotated with bio-event infor-

mation using the GENIA Event annotation guidelines. The annotations were per-

formed by a single annotator with a strong computational linguistics background, 

who had previously been involved in the design and implementation of the meta-

knowledge annotation scheme. No specific difficulties were encountered in applying 

the scheme to events in full papers. Furthermore, the results strongly suggest that the 

existing meta-knowledge annotation scheme can be successfully applied to full pa-

pers, without any modifications. 

Table 17 summarises the distribution of the annotations in the FP-MK corpus 

amongst the different categories for each dimension, and Table 18 shows the most 

frequent cues for each category together with their relative frequencies, i.e., the per-

centage of events of the specified category in which the cue is annotated. In the re-

mainder of this section, we provide a brief discussion of these annotation results. 
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Dimension Category Frequency Relative Frequency  

Knowledge Type  

Analysis 381 22.3% 

Investigation 65 3.8% 

Observation 619 36.2% 

Fact 70 4.1% 

Method 100 5.8% 

Other 475 27.8% 

Certainty Level  

L1 39 2.3% 

L2 162 9.5% 

L3 1509 88.2% 

Polarity 
Negative 63 3.7% 

Positive 1647 96.3% 

Manner 

High 66 3.9% 

Low 15 0.9% 

Neutral 1629 95.3% 

Source 
Current 1369 80.1% 

Other 341 19.9% 

Hyper- 

Dimensions 

New Knowledge 489 28.6% 

Hypothesis 259 15.1% 

Table 17. Category distributions for all dimensions 
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Dimension Category Most Frequent Cues and their RF 

Knowledge 

Type 

Analysis 

show (16%), demonstrate (14%), indicate (9%), 

suggest (7%), reveal (5%), can (4%), thus (3%), 

may (3%) 

Investigation 

determine (19%), analyze (15%), elucidate (11%), 

evaluate (9%), detect (5%), indicate (5%), test 

(5%), examine (3%), investigate (3%) 

Observation 
observe (4%), find (3%), show (1%), document 

(1%), exhibit (1%) 

Fact 
known (6%), well established (3%), well known 

(2%), fact (2%) 

Certainty Level 

L1 
may (54%), can (15%), possibility (10%), not clear 

(5%), not understood (5%) 

L2 

indicate (22%), can (15%), suggest (11%), ability 

(6%), able (6%), potential (4%), hypothesize (3%), 

imply (3%), suspect (3%) 

Polarity Negative 
not (57%), no (18%), failure (10%), non (8%), fail 

(2%), inability (2%) 

Manner 

High 

significantly (17%), well (12%), much (11%), n-

fold (9%), strong (9%), strongly (6%), high (3%), 

higher (3%) 

Low 
minimal (13%), little (13%), weak (13%), weaker 

(13%), n% (7%), less (7%) 

Knowledge 

Source 
Other 

Citation (78%), has been (12%), previously (2%), 

recently (2%) 

Table 18. Most frequent cues for each category 
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4.4.1 Knowledge Type 

The most common annotated category is Observation, constituting just over a third 

of the total number of events. This is unsurprising, since a large part of most bio-

medical papers would be expected to report on definite experimental observations 

and results, both of which fall into this category.  

Considering individual sections within the full papers, Observation events are most 

prevalent in Background (42% of all events in this section category).  It may seem 

slightly surprising that the frequency of Observation events in Background is a 

greater than in Results sections. However, Observation events can refer to previous 

work as well as current work, and Background sections often refer to findings from a 

large number of related studies. In the Results sections, approximately 36% of 

events describe observations; while in the Discussion section, the frequency of such 

events is even lower (32%). This is to be expected, since greater proportion of this 

section type would normally be analytical in nature.   

Only in a small fraction (12%) of the Observation events is the Knowledge Type 

value determined by the presence of an explicit lexical cue (mostly sensory verbs).  

In most cases, the tense of the event-trigger and the context of the event (both local 

and global position within the paper) were found to be important factors.  

The second most prevalent category is Other. These events generally constitute par-

ticipants of other events whose Knowledge Type value is either Investigation, Analy-

sis or Fact.  Out of the context of their parent event, these participant events have no 

specific Knowledge Type interpretation.  No explicit lexical cues were annotated for 

this category.  



CHAPTER 4. META-KNOWLEDGE ANNOTATION 

 

 127 

A relatively large proportion of events (more than one fifth) belong to the Analysis 

category.  This makes sense, given that analytical elements are normally to be found 

to some extent in most section types in full papers. These include the Background 

section, where such events are most likely to provide overviews or interpretations of 

previous work, as well the Results, Discussion and Conclusions sections, where 

analyses, interpretations and conclusions regarding authors’ own work most com-

monly appear. As may be expected, the frequency of Analysis events is highest in 

Discussion/Conclusion sections, where they constitute over one quarter (27%) of all 

events.  

An explicit lexical cue was found for each Analysis event. The cues comprised 

verbs, modal auxiliaries and certain adverbs (such as, thus and therefore).   

Almost 6% of the events belong to the Method category. Although full papers gener-

ally include a fairly large Methods section, the small number of events falling into 

this category is largely a consequence of the fact that the GENIA Event annotation 

focusses on dynamic relations, i.e., cases where at least one of the biological entities 

in the relationship is affected, with respect to its properties or its location, in the re-

ported context. This means that descriptions of methods are often less relevant in the 

GENIA Event annotation than are events describing observations and analyses.  

Our case study suggests that only a small proportion of events in full papers (around 

4%) describe factual knowledge. Such events are not evenly distributed throughout 

papers, and occur most frequently in the Background section (7.5% of all events in 

this section type), in order to provide context for the new research described in the 

paper. They can also appear in the Discussion sections (4.5% of events), where they 

may be contrasted or compared with the outcomes of the current study. As may be 
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expected, factual knowledge is almost never referred to in the Results sections of 

papers. Similarly to the Observation category, most (85%) events from this category 

do not have an explicit lexical cue.  

The Investigation category is the least frequent Knowledge Type in full papers. The 

results of our annotation experiment suggest that Background sections will normally 

very briefly introduce the subject of investigation (2.5% of events in this section 

type). A slightly more detailed description of the investigation is then given in Re-

sults sections (5.4% of all events in this section type). It is also possible that the aim 

of the research will be very briefly reintroduced in the Discussion section of the pa-

per (an average of 1.8% of all events in this section type).  All Investigation events 

are accompanied by an explicit lexical cue.  

4.4.2 Certainty Level 

Almost 12% of all events in our full paper sample are expressed with some degree 

of uncertainty. All uncertain events belong to the Knowledge Type category Analysis. 

Furthermore, 43% of all Analysis events are annotated as having slight speculation 

(Certainty Level = L2), whilst 10% are reported with a larger degree of speculation 

(Certainty Level = L1). The marking of uncertainty is sometimes necessary in scien-

tific research literature.  The author’s analyses of experimental results may have 

produced important outcomes, but yet the authors are not confident that their analy-

sis is completely reliable. As previously mentioned (section 4.3.1.2), it has been 

shown [95] that authors tend to avoid higher levels of speculation (Certainty Level = 

L1) as this would reduce the credibility of their analyses. However, they insure 

against overstatement by using slight hedging (Certainty Level = L2).  
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Considering individual sections helps to confirm Hyland’s statement. Although the 

proportion of Analysis events that is assigned a Certainty Level value of L1 is fairly 

constant across the Background, Results and Discussion sections, the proportions of 

L2 events have more variation. The relative frequency of such events is lowest in the 

Background sections (36% of Analysis events). Since this section deals mainly with 

reporting the work of others, there is perhaps less need to hedge, as it is not the au-

thors’ own credibility at stake. In contrast, the relative frequency of slightly hedged 

Analysis events is noticeably higher in the Results and Discussion sections (46% and 

51%), respectively, where the authors’ own work is the main focus, and hence inter-

pretations and analyses of results are often stated more tentatively.  

In terms of cues for events with non-default Certainty Level values, modal auxilia-

ries account for most (70%) of the L1 events, while the cues for L2 include both 

verbs and modals. 

4.4.3 Polarity  

Just under 4% of all events in the FP-MK corpus are negated. Almost all of these 

events belong to the Knowledge Type categories of Observation or Analysis, which 

is fairly intuitive. One would not, for example, expect to encounter many cases 

where Investigation or Method events are negated, .  The distributions of negated 

events vary across different sections of the full papers. The proportions encountered 

in Background and Discussion sections are quite similar to each other (around 2% in 

each section), compared to around 6% of negated events in Results sections. Thus, it 

appears that it is very rare for anything other than positive results to be mentioned in 

the former 2 section types. In contrast, when reporting directly on one’s own exper-

imental results, negative results are mentioned more frequently.  
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Although several negation cues were annotated, the adverbial not accounts for over 

half of the negated events.  

4.4.4 Manner 

Almost 5% of all events in the full-paper sample are expressed with a Manner other 

than Neutral. This proportion is fairly constant throughout the Background, Results 

and Discussion sections of the full papers, showing that, although fairly rare, infor-

mation about the manner of events can be of relevance to the discussion in different 

parts of the paper. However, the expression of High manner is 4 times more frequent 

than that of Low manner. Similarly to negation, most Manner=High events belong to 

Knowledge Type categories of Observation or Analysis.  

Another similar pattern to the Polarity dimension is that instances of events with a 

Manner value of Low seem to appear with any regularity only in the Results sections 

of the papers, where they appear with just over half the frequency of events whose 

Manner value is High. In contrast, the Low value was never annotated in the Back-

ground sections of the papers, and was only annotated for less than 1% of events in 

the Discussion sections. This suggests that authors might ascribe more importance to 

High manner events, and may consider Low manner events to be less significant.  

This hypothesis is further strengthened by the fact that there is a degree of similarity 

between the Low manner events and the negated events, and historically, negated 

results have been considered less important [122]. However, this trend has been 

changing recently (see section 5.1). 

Most manner cues are adverbs or adjectives; however, similarly to abstracts, numer-

ical values (such as, n-fold and n%) are also used to express High manner.  
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4.4.5 Knowledge Source 

Nearly 20% of all events in the full papers belong to the Other category. The con-

centration of such events is highest in the Background sections of the papers, where 

over 40% of the events are attributed to other sources.  This is expected, since it is 

normally in the Background section where one encounters the highest concentration 

of descriptions of previous work.  The Discussion sections of the papers also have a 

high (over 25%) concentration of Other events, since in this section, it is common to 

compare and contrast the outcomes of the current work with those of previous, relat-

ed studies. The frequency of Other events in the remaining sections is considerably 

lower. For example, in the Results sections of the papers considered, less than 7% of 

events are annotated as Other. While citations accounted for most of the Other 

events, the use of past perfect tense and explicit markers (such as previously and 

recently) also serve as cues. 

4.4.6 Hyper-dimensions 

Using the annotations for Knowledge Type, Certainty Level and Source dimensions, 

we computed the values for the New Knowledge and Hypothesis dimensions. We 

found that nearly 29% of all events conveyed new knowledge, and over 15% of all 

events represented hypotheses. Events conveying new knowledge were predomi-

nantly found in the Results, Discussion and Conclusion sections, while hypotheses 

were also found in these sections, as well as in the Background section. The Methods 

section contained hardly any hypotheses or claims of new knowledge.  

4.5 Comparison of Abstracts and Full Papers 

In this section, we compare the distribution of meta-knowledge annotations obtained 
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from our case study of full papers with those obtained for abstracts. Table 19 shows 

the difference between the category distributions for full papers and abstracts. A 

brief discussion of the differences in each dimension is as follows: 

Dimension Category 

Difference in Rela-

tive Frequencies in 

Full Papers (FP) 

and Abstracts (A):  

RF(FP) – RF(A) 

% Change in Relative 

Frequency:  

 |RF(FP) – RF(A)| / 

min(RF(FP), RF(A)) 

Knowledge 

Type  

Analysis 4.4% 24.8% 

Investigation -1.5% 39.0% 

Observation 1.4% 4.1% 

Fact -4.0% 98.7% 

Method 3.2% 120.8% 

Other -3.5% 12.7% 

Certainty 

Level  

L1 0.2% 9.7% 

L2 3.5% 57.6% 

L3 -3.7% 4.2% 

Polarity 
Negative -2.5% 66.7% 

Positive 2.5% 2.6% 

Manner 

High 0.1% 2.2% 

Low 0.0% 0.0% 

Neutral -0.1% 0.1% 

Knowledge 

Source 

Current -18.5% 23.1% 

Other 18.5% 1248.6% 

Hyper- 

Dimen-

sions 

New Knowledge -14.8% 51.7% 

Hypothesis 1.8% 13.4% 

Table 19. Difference between the category distributions for full papers and abstracts  
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4.5.1 Knowledge Type 

The biggest difference is seen for the Method events, which are more than twice as 

abundant (in terms of relative frequency) in full papers as in abstracts. This is proba-

bly because abstracts tend to focus more on the results and their significance, rather 

than how these results were obtained.  However, owing to the previously explained 

“dynamic” nature of GENIA Events, the frequency of Method events is quite low 

even for full papers. 

A further feature of abstracts is that they tend to contain one or two sentences sum-

marising current knowledge (i.e., well known facts) in the relevant field.  Since the 

average size of abstracts in the GENIA Event corpus is  9 to 10 sentences [29],  the 

relative frequency of facts in abstracts is quite high (over 8%).  This proportion is 

comparable to the number of factual events in Background section of full papers 

(over 7% of all events in this section type), where the current state of knowledge is 

also discussed in some detail. However, events describing facts are far scarcer in the 

other sections of full papers and, given their overall length, the relative frequency of  

Fact events in full papers as a whole is only around half of the frequency  in ab-

stracts.  

Regarding Investigation events, their relative frequency in the Results sections of the 

full papers is comparable to their relative frequency in abstracts (around 5%). How-

ever, in the same way as the Fact category, the extremely rare appearance of  Inves-

tigation events in other sections of full papers means that overall relative frequency 

in full papers is again much lower than in abstracts.   

The relative frequency of Analysis events is around 25% higher in full papers than in 

abstracts. In contrast to Fact and Investigation events, Analysis events are found 
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with quite high frequency in several sections of full papers. For the Other and par-

ticularly the Observation categories, there is much less variation between the rela-

tive frequencies in full papers and abstracts. Thus, clear reporting of experimental 

observations is equally important throughout both full papers and abstracts,  

4.5.2 Certainty Level 

Owing to the very nature of abstracts, a high proportion of events with no uncertain-

ty is to be expected. As explained in section 4.2, authors aim to “sell” the most posi-

tive aspects of their work in abstracts. Therefore, it makes sense that the majority of 

analyses should be presented in a confident manner.  However, authors tend to be 

more cautious while detailing their results and findings in the main body of papers, 

in order to maintain credibility in case their results are later disproved.  The fact 

that the proportion of slightly hedged Analysis events is particularly high in the Re-

sults, Discussion and Conclusion sections of full papers (rising as high as 51% in the 

Discussion sections) helps to explain why L2 events are more than 50% more fre-

quent in full papers than in abstracts. The relative frequency of L1 events is also 

higher in full papers by about 10%.  

4.5.3 Polarity 

Interestingly, the relative frequency of negated events is significantly (67%) higher 

in abstracts than in full papers. This can partly be explained by the fact that  negative 

results are sometimes more significant than positive results [122], and are, therefore, 

highlighted in the abstracts. In addition, since negated events only appear with any 

regularity in the Results sections of full papers, this helps to explain their lower rela-

tive frequency than in abstracts when the complete paper is considered.   
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4.5.4 Manner 

The distribution of High and Neutral manner is very similar in abstracts and full pa-

pers, and the distribution of Low manner is exactly same. This follows the same 

trend described in section 4.4, where it was also noted that the proportions of events 

with explicit manner markings are also fairly similar across several individual sec-

tion types within full papers.  

4.5.5 Knowledge Source 

This is the dimension for which the largest difference in category distribution exists 

between abstracts and full papers. Full papers contain 12.5 times as many Other 

events as abstracts. This is mainly because abstracts are meant to summarise the 

work carried out in the current study.  Furthermore, citations, which are the most 

common way to denote previous work, are often not allowed within abstracts. In 

contrast, full papers normally mentioned related work quite extensively, most nota-

bly in Background and Discussion sections.  

4.5.6 Hyper-Dimensions  

While the relative frequency of Hypothesis events is higher in full papers, the pro-

portion of New Knowledge events is significantly higher in abstracts. This is mainly 

because, in abstracts, authors typically include most of new discoveries and results, 

while only mentioning the main hypotheses.  

4.6 Conclusion 

We designed our meta-knowledge annotation scheme to enrich corpora of biomedi-

cal events with information about their characterisation or interpretation, based on 
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their textual context.  The scheme was designed to be portable, in order to allow in-

tegration with the various different schemes for event annotation that are currently in 

existence. In this chapter we have described the application of the meta-knowledge 

annotation scheme to two corpora of bio-events. As a first major annotation effort, 

the scheme was applied to the largest currently available corpus of biomedical 

events (i.e. the GENIA Event corpus) to create the meta-knowledge enriched 

GENIA-MK corpus. Inter-annotator agreement rates of between 0.84-0.93 Kappa 

(according to annotation dimension) show that high levels of annotation quality and 

consistency can be achieved by following the annotation guidelines. Furthermore, it 

appears that, subject to the provision of these guidelines and a suitable training pro-

gramme, meta-knowledge annotation can be performed to a high standard by anno-

tators without specific areas of expertise, as long as they have a good command of 

the English language.  

Further to the creation of the GENIA-MK corpus, we conducted a case study to in-

vestigate the feasibility of applying the annotation scheme to full papers. This is im-

portant, given that work on event extraction is gradually being scaled from abstracts 

to full papers. Our case study involved the creation of the FP-MK corpus through 

meta-knowledge enrichment of bio-events in 4 full papers, which had already been 

annotated with bio-event information using the GENIA event annotation guidelines. 

The results of the case study strongly suggest that the existing meta-knowledge an-

notation scheme can be successfully applied to full papers, without any modifica-

tions. 
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Chapter 5: Polarity of Bio-events 

In this chapter, we provide details of the first comprehensive study on the analysis 

and identification of negated bio-events. We begin with an introduction to the task of 

identifying negated bio-events. We present a typology of negated bio-events, which 

has been derived from a detailed analysis of the three open access bio-event corpora 

containing negation information i.e., GENIA Event, BioInfer and BioNLP’09 ST. 

We then analyse the key aspects of a machine learning solution to the problem. 

These include the selection of negation cues, feature engineering and the choice of 

learning algorithm. Our analysis has been informed by a series of experiments in-

volving four different lists of negation cues, four main sets of features and six learn-

ing algorithms. We used 10-fold cross validation for all experiments. Combining the 

best solutions for each aspect of the problem, we propose a novel framework for the 

identification of negated bio-events. We have evaluated our system on all three open 

access corpora of negated bio-events. It performs consistently on all corpora. It sig-

nificantly surpasses the previously reported best results on the BioNLP’09 ST cor-

pus, and achieves even better results on the GENIA Event and BioInfer corpora, 

both of which contain more varied and complex events.  

5.1 Introduction 

Negation is considered a universal property of all human languages [123]. However, 

the concept and manifestation of negation in natural languages is far more subtle and 

complex in force and scope than it is in formal logic [124-126]. Nonetheless, nega-

tion occurs frequently in scientific literature, especially in the domain of biomedi-
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cine. Vincze et al. [107] report that around 13% of sentences found in biomedical 

research articles are negated.  

Historically, in the field of biomedical text mining, the main motivation for the iden-

tification of negated events had been to ensure their exclusion from extracted lists of 

interactions. This was mainly because most biomedical research has been focused 

around the publication and analysis of positive results [122]. However, recently, 

there has been a growing interest in negative results, for example: 

 The Journal of Negative Results in Biomedicine [127] has been launched, 

which, as the name suggests, focuses specifically on negative results.  

 The Negatome database [128] has been released, which provides information 

about non-interacting  protein pairs. 

 Efforts have been made to incorporate negation into popular biomedical on-

tologies [129]. 

Recently, negation detection has been identified as the foremost challenge in bio-

medical relation extraction [130]. More specifically, it has been argued that the 

recognition of negated bio-events is of fundamental practical significance for re-

searchers in most biomedical disciplines [131].  

5.1.1 Negated Bio-events 

Vincze et al [107] define negation in the context of biomedical literature as “the im-

plication of the nonexistence of something”. Negated events have been identified in 

some bio-event corpora; although an explicit definition of a negated event has not 

been supplied, the implicit definition equates negation with non-existence. The indi-
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cation of non-existence could be explicit (e.g., the presence of a negation marker) or 

implicit (e.g., semantic inference).  

Of the bio-event corpora mentioned in section 2.1.3, only three contain information 

about event polarity; these are GENIA Event, BioInfer and BioNLP’09 ST. Negation 

cues have been explicitly identified only in BioInfer. Table 20 shows the relevant 

statistics for the three corpora. In terms of volume, the GENIA Event corpus is the 

largest, with almost 37,000 events, while BioInfer is the smallest with fewer than 

2,700 bio-events. In terms of event-types, BioInfer is the richest, with 60 event-types 

and BioNLP’09 ST is the simplest, with only 9 event-types. Interestingly, the distri-

bution of negated bio-events in all three corpora is fairly uniform, ranging between 

6.1% and 6.4%. 

Corpus 
Event  

Types 

Total  

Events 

Number of  

Negated  

Events 

Percentage of 

Negated 

Events 

GENIA Event 36 36,858 2,351 6.4% 

BioInfer 60 2,662 163 6.1% 

BioNLP’09 ST 9 11,480 722 6.3% 

Table 20. Statistics for bio-event corpora containing polarity information 

5.1.2 Identification of Negated Bio-events: Task Description and 

Analysis 

Following previous work [132-136], we treated the task of identifying negated bio-

events as an independent task in itself. That is, we assumed that the event annotation 

has already been performed, and aim to find automated means of classifying these 

events according to their polarity. 
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A related negation detection task, which has received significant attention recently, 

is the detection of negation scopes [137].  This involves the identification of the se-

quence of words in a sentence which is affected by a negation cue. Despite the ap-

parent similarities, identification of negated bio-events is essentially different from 

negation scope detection. While scope annotation focuses on linguistic properties of 

the text, the goal of bio-event annotation is to identify which kinds of biological in-

formation appear in which parts of the text and how they are related. Therefore, the 

expression of bio-events in text has two distinguishing characteristics [29, 31, 49]: 

1. Bio-event annotation is information-centred and depends entirely on the bi-

ologists’ conception of the relationship between an event, its participants 

and other events expressed in the text.  

2. The event-trigger and participants of an event are each mapped to a differ-

ent span of text. This means the description of an event is usually spread 

over several discontinuous spans in text, which could belong to different 

clauses within a sentence. 

In contrast to the above characteristics, the scopes of negation cues are continuous 

and relatively less ambiguous [107]. A few interesting consequences of this contrast 

are: 

 A sentence containing a negation cue may not contain any negated events at 

all.  

 At the other extreme, certain events may be negated even when a negation 

cue is not present in the sentence. This point is discussed further in section 

5.3.1. 



CHAPTER 5. POLARITY OF BIO-EVENTS 

 

 141 

 The event-triggers and/or the participants for many events may fall under 

the scope of a negation cue; however, it is highly unlikely that all of these 

events will be negated.  

Vincze et al. [138] conducted an in-depth comparison of a linguistically annotated 

corpus of negation scopes (BioScope) and a biologically annotated corpus of negat-

ed bio-events (GENIA Event). They found that only half (51%) of the bio-events 

with event-triggers inside the scope of a negation cue were actually negated. Con-

versely, 16% of the negated bio-events had event-triggers which were outside the 

scope of the negation cues present in the sentence. They concluded that negation 

scope detection is not sufficient for the identification of negated bio-events, as the 

latter is a more complex task.  

Based on the above discussion, we conclude that the identification of negated bio-

events requires a deeper and more complex analysis than other negation detection 

tasks like negated term detection, negated PPI detection and negation scope detec-

tion. 

5.2 Related Work  

Negation detection has been a neglected area in open-domain natural language pro-

cessing, and most research has been performed in the biomedical domain [139]. This 

section provides a brief overview of the previous work done on types of negation, 

negation cues, detection of negated terms and negation scopes, detection of negated 

PPIs and identification of negated bio-events. 
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5.2.1 Types of Negation 

One of the first attempts at classifying negation in natural language was made by 

Aristotle. He concluded that negations can be divided into four types, which he 

named as correlation (e.g., double vs. half), contrariety (e.g., good vs. bad), priva-

tion (e.g., blind vs. sighted) and contradiction (e.g., he sits vs. he does not sit) [125]. 

In terms of more recent work, Tottie [124] presented a taxonomy of clausal nega-

tions in English. She identified 6 top-level categories of clausal negation as: denials, 

rejections, imperatives, questions, supports and repetitions. Harabagiu et al. [140] 

identified two main classes of negation: directly licensed negations and indirectly 

licensed negations. The directly licensed negations include: overt negative markers 

(such as not), negative quantifiers (like no) and strong negative adverbs (like never). 

The indirectly licensed negations include: verbs or phrasal verbs (such as fail), prep-

ositions (such as without), weak quantifiers (such as few) and traditional negative 

polarity items (such as a red cent). Huang and Lowe [141] proposed a classification 

of negations found in medical reports. Their classification was based on the syntactic 

category of the negation signal and phrase patterns. They identified 4 syntactic cate-

gories of negation signals: adjective-like (such as no, absent and without), adverb 

(such as not), verb (such as deny) and noun (such as absence).  They also identified 

9 phrase patterns corresponding to the syntactic categories. 

Sanchez-Graillet and Poesio [113] analysed negated PPIs in 50 biomedical articles. 

They identified seven classes of negation for PPIs. This classification is based on 

lexical and syntactic patterns; however, it is specific for PPIs and cannot be trivially 

extended to all types of bio-events.  
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5.2.2 Negation Cues  

Chapman et al. [142] compiled a comprehensive list of 272 negation cues specific to 

medical discharge summaries. Mutalik et al. [126], despite identifying over 60 cues,  

report that only a small set of negation cues account for most of the negation in-

stances. In their corpus of 40 medical documents, only four negation cues accounted 

for almost 93% of all negation instances. These cues are no (49%), denies/denied 

(21%), not (13%) and without (10%). Similarly, Tolentino et al. [143] analysed ne-

gated biomedical concepts occurring in a corpus of 41 medical documents. They 

found that only 5 negation cues (no, neither/nor, ruled out, denies and without) ac-

count for 89% of all negated concepts found in the corpus. Elkin et al. [144] created 

an ontology of terms that start negation (e.g., no, denies and ruled out) and another 

set which stop the propagation of the assignment of negation (e.g., other than). Kili-

coglu and Bergler [132] created a list of 9 negation cues from the BioNLP’09 ST 

corpus. Morante [145] compiled a list of negation cues observed in the BioScope 

[146] corpus, identifying 8 ambiguous and 21 unambiguous negation cues. She also 

provided a description for the scope of each cue based on its syntactic context. 

Sarafraz and Nenadic [136] used previous studies on negation to derive a primary 

list of 14 negation cues. They further compiled a secondary list of 18 additional ne-

gation cues that were semi-automatically extracted from the BioNLP’09 ST corpus. 

Interestingly, their list contains the word inhibit, which is treated as an indicator of 

negative_regulation (and not negation) in the BioNLP’09 ST, GENIA Event and 

BioInfer corpora. 

In terms of automated approaches, Morante and Daelemans [139] proposed a ma-

chine learning system for the identification of negation cues. Their system achieved 
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an F-score of over 99% for both clinical notes and biomedical abstracts. However, 

their system treated 17 strings as unambiguous negation markers i.e., every occur-

rence of these strings was treated as a negation cue. These unambiguous cues ac-

counted for 95% of all instances of negations.  Agarwal and Yu [147] developed a 

system for the automatic identification of negation cues using Conditional Random 

Fields (CRF). Their system achieved an F-score of 98% for clinical notes and 97% 

for biomedical abstracts. 

5.2.3 Detection of Negated Terms and Negation Scopes 

The bulk of work on negation detection in the biomedical domain has been focused 

on the detection of negated terms in medical reports. This includes both rule-based 

and machine learning approaches. The key rule-based solutions include those pre-

sented by Chapman et al. [142], Mutalik et al. [126], Elkin et al. [144], Huang and 

Lowe [141] and Boytcheva et al. [148]. The key machine learning approaches in-

clude the systems presented by Averbuch et al. [149], Goldin and Chapman [150], 

Goryachev et al. [151], Rokach et al. [152] and Councill et al. [153]. 

Vincze et al. [146] developed BioScope, an open access corpus of biomedical text 

containing token level annotations for negation cues and their respective scopes. The 

BioScope corpus comprises three sub-corpora: (1) clinical reports containing 6,383 

sentences, (2) biomedical articles containing 2,670 sentences, (3) biomedical ab-

stracts containing 11,871 sentences. Morante and Daelemans [139] presented a ma-

chine learning approach for detecting the scope of negation cues, and tested their 

system on the BioScope corpus. Their system determined the full scope of negation 

cues with an accuracy of 66% for abstracts, 41% for papers and 71% for clinical 

notes. 
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5.2.4 Detection of Negated PPIs 

Sanchez-Graillet and Poesio [113] developed a set of heuristics for extracting negat-

ed PPIs from biomedical articles. They implemented their system using a Functional 

Dependency Grammar (FDG) parser. Their preliminary results range from 54% to 

63% F-score, depending on the method of protein name recognition. The system 

achieved 77% F-score when used with gold standard protein annotations. 

5.2.5 Detection of Negated Bio-events 

Identification of negated bio-events was an optional sub-task in the BioNLP’09 

Shared Task Challenge [154].  Six teams participated in this task and reported the 

first results on the identification of negated bio-events. Kilicoglu and Bergler [132] 

achieved the best results with their rule-based system. They achieved 14% recall, 

51% precision and 23% F-score. Van Landeghem et al. [135] obtained the second 

best results with 11% recall, 45% precision and 17% F-score. They also used a cus-

tomised rule-based system. MacKinlay et al. [134] used a machine-learning ap-

proach with complex deep parse features. Their system achieved the third best re-

sults with 5% recall, 34% precision and 9% F-score. It is important to note that these 

systems did not use gold standard event annotations as input. Instead, they per-

formed both event extraction and identification of negated events. The approximated 

F-scores for these systems if they were to detect negations on gold standard event 

annotations are 38%, 26% and 28%, respectively.  These values have been calculat-

ed using a linear extrapolation function and the maximum (100%) recall value for 

event extraction. 

Sarafraz and Nenadic [136] proposed a machine learning approach for the identifica-

tion of negated bio-events. They implemented an SVM classifier with a linear kernel 
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using features engineered from a sentence parse tree with lexical cues. They trained 

their classifier on the BioNLP’09 Training dataset and tested on the BioNLP’09 De-

velopment dataset. They achieved 38% precision, 76% recall and 51% F-score. In a 

further experiment, they split the data into smaller datasets according to event-types, 

and trained and tested the classifier separately for each smaller dataset. This way, 

they achieved a micro average of 49% precision, 88% recall and 63% F-score. 

5.3 A Typology of Negated Bio-Events 

The analysis presented in section 5.1.2 mandated further investigation into the caus-

es and types of negation in bio-events. We conducted an in-depth analysis of the 

manifestations of negation observed in the three open access bio-event corpora con-

taining negation information. We analysed a total of 1,000 randomly selected negat-

ed bio-events; of which, 600 negated bio-events were from the GENIA Event corpus 

(over 25% of all negated events in the corpus), 300 negated bio-events were from 

the BioNLP’09 Shared Task corpus (over 40% of all negated bio-events in the cor-

pus) and 100 negated bio-events were from the BioInfer corpus (over 60% of all the 

negated bio-events in the corpus). 

Our analysis revealed several causes and types of negation, which we have grouped 

together to formulate a typology of negated bio-events based on the relationships 

between negation cues and individual event constituents. Our typology consists of 

five classes, of which the first four classes are always expressed in the text through 

the use of an explicit negation cue, whereas the manifestations of the final class lack 

explicit negation cues.  
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5.3.1 Class Descriptions 

A brief description of the categories is as follows:  

5.3.1.1 Inherently Negative Bio-events  

This class constitutes negated bio-events in which the event-trigger is itself a nega-

tion cue, like independent, immobilization, unaffected, dysregulation, etc. As an ex-

ample, consider the sentence shown in Figure 5. The event E1 is triggered by the 

word infection and represents the initiation of viral infection of HIV-1. The event E2 

is triggered by the word dysregulation and expresses the non-existence of the regula-

tion of Cytokine caused by E1; therefore it has been annotated as a negated event. 

Similarly, the sentence in Figure 6 contains two inherently negated bio-events cen-

tred on the word independent. These events (E1 and E2) indicate that the pathway in 

epithelial cells is not regulated by ROI-LOX and 5-LOX respectively. However, 

since an explicit trigger for the Regulation event is not present, the word independ-

ent has been annotated as the event-trigger.  

 

Figure 5. Inherently negative bio-event – Example 1; Source = PMID: 9427533 
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Figure 6. Inherently Negative Bio-event – Example 2; Source = PMID: 10022882 

5.3.1.2 Negated Event-trigger  

This class comprises bio-events in which an explicit negation cue modifies the 

event-trigger. For example, consider the sentence shown in Figure 7. The event E1 

indicates the Positive Regulation of NF-KappaB by IL-1beta, where the events E2 

and E3 indicate the Regulation of E1 by the GTPases (protein molecules) Rac1 and 

Cdc42, respectively. Both E2 and E3 are negated, as they are both triggered by the 

word required, which is being modified by the explicit negation cue not. Interesting-

ly, the scope of the negation cue (not), according to the BioScope annotation guide-

lines, also includes the trigger for event E1 (which is not negated). Similarly, the 

explicit negation cue lacked modifies the event-trigger for E1 in the sentence shown 

in Figure 8. 
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Figure 7. Negated event-trigger – Example 1; Source = PMID: 10022882 

 

Figure 8. Negated event-trigger – Example 2; Source = PMID: 790554 

5.3.1.3 Negated Participant 

This class accounts for those bio-events which have at least one participant (theme 

or cause) being modified by an explicit negation cue. As an example, consider the 

sentence shown in Figure 9. Both events, E1 and E2, are triggered by the phrase 

synergistically induced; however, they have opposite polarities. Event E1 expresses 

the Positive Regulation of IRF-1 by IL-2 and IL-12, while E2 expresses the nonex-

istence of Positive Regulation of IRF-1 by IFN-alpha and IL-12. The explicit nega-

tion cue not modifies the two causes of E2, i.e., IFN-alpha and IL-12. 
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It is important to point out that with deeper syntactic analysis, this event (E2) can 

instead be identified as belonging to the Negated Event-trigger class. However, since 

our categorisation is based on simple relationships between negation cues and indi-

vidual event constituents, we have categorised such examples as instances of the 

Negated Participant class. 

 

Figure 9. Negated participant; Source = PMID: 10358173 

5.3.1.4 Negated Attribute  

This class covers those cases of negated bio-events where an explicit negation cue 

modifies an event attribute, such as the location of the event. An example of this 

type of negation is shown in Figure 10. The events E1, E2, E3, E4, E5 and E6 are all 

triggered by the word coexpressed. However, E1 and E4 represent the expression of 

the genes 5-LOX and FLAP (respectively) in lymphoid cells, while E2, E3, E5 and 

E6 represent the expression of these genes in monocytic and epithelial cells respec-

tively. The explicit negation cue not modifies the phrase in monocytic or epithelial 

cells. This phrase contains the location for E2, E3, E5 and E6, making these events 

negated.  
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Despite its relatively low frequency, this is an important class of negated bio-events. 

In a recent article on the biologists’ perspective of negation, Krallinger [131] identi-

fied events with negated locations as being of particular interest to biomedical prac-

titioners. 

 

Figure 10. Negated attribute; Source = PMID: 10022882 

5.3.1.5 Comparison and Contrast 

This class encompasses bio-events in which a negated bio-event is signalled via con-

trast or comparison, normally with another bio-event. Such negated events lack an 

explicit negation cue. However, the BioInfer corpus is unique in the sense that it an-

notates even contrast and comparison markers as negation cues. Figure 11 depicts an 

example sentence containing a comparison-triggered negation. Event E1 is anchored 

to the phrase reduced amounts, and it expresses the Negative Regulation of the pro-

tein TFIIH in XP-B cells. Event E2 is triggered by the phrase rate was normal, and it 

represents the nonexistence of the Negative Regulation ascribed to event E1. There 
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is no explicit negation cue in the sentence; instead, it is the fact that the growth rate 

was found to be “normal” that has been used to infer that a negated event is present.  

 

Figure 11. Comparison and contrast – Example 1; Source = PMID: 9427533 

 

Figure 12. Comparison and contrast – Example 2; Source = PMID: 10079106 

Figure 12 shows a more complex example. Event E1 is triggered by the word acti-

vate, and it expresses the Positive Regulation of p38 MAPk by MKK3 in LPS-treated 
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neutrophils. Events E2 and E3 are similar to E1, except that they are not caused by 

MKK3; instead they are caused by MKK4 and MKK6, respectively. Both E2 and E3 

are negated; this is despite the fact that the sentence lacks an explicit negation cue.  

5.3.2 Class Distribution 

Our analysis revealed that the instances of each of the five classes of negated bio-

events are present in the three corpora with varying frequencies. Table 21 shows the 

class distributions for the three corpora and the macro and micro averages for each 

class. 

The frequency of inherently negative bio-events ranges between 9% and 13%, with a 

micro average of 12%. This is the second most prevalent category in GENIA Event 

and the third most prevalent category in BioInfer and BioNL’09 ST. The frequency 

of negated trigger events ranges between 61% and 67% in the three corpora, with a 

micro average of 63%. This is the predominant category in all three corpora. The 

frequency of the negated participants category ranges between 10% and 17%, with a 

micro average of 11%. This is the second most prevalent category in BioNLP’09 ST 

and BioInfer and the third most prevalent category in GENIA. On average, 6% of 

negated events belong to the negated attribute category; however, the frequency 

within the different corpora ranges between 2% and 7%. We noted that the BioInfer 

corpus does not mark temporal or spatial attributes of bio-events. Instead, it incorpo-

rates specialised event-types for capturing this type of information. However, some 

other bio-event corpora, which lack polarity information e.g. GREC, do have explic-

it location information. Finally, the comparisons and contrasts category accounts for 

8% of negated bio-events. 
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5.3.2.1 Discussion  

Previous work on the identification of negated events has primarily been focused on 

the negated trigger class, i.e., the cases where a negation cue modifies the event-

trigger. However, our analysis shows that a significant proportion (37%) of negated 

events belongs to the other classes. Therefore, a system for effectively identifying 

negated bio-events should have the ability to recognise all classes of negated events.  

Class 
GENIA 

Event 
BioInfer 

BioNLP’09 

ST 

Macro 

Average 

Micro 

Average 

Inherently Negative 13% 11% 9% 11% 12% 

Negated Trigger 61% 62% 67% 63% 63% 

Negated Participant 10% 17% 12% 14% 11% 

Negated Attribute 7% 2% 6% 4% 6% 

Comparison and Contrast 9% 8% 6% 8% 8% 

Table 21. Corpus-wise class distribution of negated bio-events 

The most direct method of incorporating a particular class into a system for detect-

ing negated bio-events is to engineer features corresponding to that class, e.g., fea-

tures based on constituency or dependency relations between the negation cue and 

the event constituents (triggers, participants and attributes). However, features in-

volving negation cues can only be useful for the first four classes. Since the manifes-

tations of the comparison and contrast class usually lack an explicit negation cue, a 

different approach will be required for this class. One possibility would be to identi-
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fy the comparison and contrast patterns and engineer features based on these pat-

terns.  

5.4 Key Aspects of Negation Detection – Dimensions of  

Analysis 

Based on our analysis, we identified the key aspects of the problem of detecting ne-

gated bio-events. The intention was to use the identified aspects as dimensions of 

analysis for subsequent experiments, and measure the influence of each aspect on 

system performance.  

Two obvious factors influencing any machine learning approach are the choice of 

features and learning algorithms. Since a vast majority of negated bio-events (over 

92%) is triggered by an explicit negation cue, the choice of an appropriate list of 

negation cues is also very important. These negation cues can be used for subse-

quent feature engineering. The rest of this section discusses these three key aspects 

in more detail.  

5.4.1 Negation Cues 

Although the context and syntactic structure of the sentence play an important role 

in determining the negation status of a bio-event, the presence of a negation cue in 

the sentence is the most important factor to be considered. We define a negation cue 

as ‘a text fragment which causes an event to be negated’. Negation cues are usually 

words or phrases and they can either precede or follow the words they influ-

ence/modify [126].  
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5.4.1.1 Ambiguity of Negation Cues  

Negation cues can be ambiguous [155, 156], i.e., in some contexts they may not 

trigger negations. Wilson, Wiebe and Hoffmann [157] pointed out the difference 

between the lexical and contextual polarities of a word. The lexical polarity is the 

prior or fixed polarity ascribed to a word, based on its meaning and general use in 

the language. The contextual polarity of a word is more dynamic and depends on 

the context of the text fragment containing the word. The contextual polarity can be 

different from the lexical polarity, and this difference is the key source of ambiguity 

in determining the negation cue status of a word or phrase.  For example, consider 

the words lack and loss. Both of these words have a negative lexical polarity, as they 

convey the “state of not having something”. That is why they have been identified as 

negation cues in the BioScope corpus. Morante [155] also identified both of these 

words as unambiguous negation cues. However, from a biological perspective, these 

words have a positive polarity when used in the context of a negative_regulation 

event. Hence, a positive contextual polarity can be ascribed to these words in certain 

instances. Similarly, the words absent and absence may also be used to convey 

negative regulation, rather than negation.  

Previously, in Figure 8, we showed a case of the word lacked acting as a negation 

cue. This is a case of matching lexical and contextual polarities. However, Figure 13 

shows a case of conflicting lexical and contextual polarities. In the sentence shown, 

the event E1 is anchored to the word loss, and it expresses the negative_regulation 

of the protein molecule STAT1 in cells from patients treated with fludrabine in vivo. 

In this case the polarity of E1 is positive. 
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Figure 12. An instance of the word loss with positive contextual (biological) polari-

ty; Source = PMID: 10202937 

Our analysis of negated bio-events has led us to the conclusion that the ambiguity 

status of a negation cue is not universal. Instead, it is determined by the: 

 Nature of text under consideration 

 Annotation perspective (e.g., linguistic or biological) 

 Textual context and lexical polarity of the cue 

5.4.1.2 Indicators of Low Manner of Interaction 

Sometimes, the text containing a bio-event also contains a word or phrase which 

provides an indication of the rate, level, strength or intensity of the interaction. As 

explained in chapter 3, we refer to this indication as the manner of the event [8], and 

distinguish between three types of manner: high, neutral and low. The words indi-

cating a low manner include adjectives and adverbs like weak, weakly, slight, slight-

ly, slow, small, little, low, etc.  
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Figure 13. An instance of the low manner indicator little being treated as a negation 

cue; Source = PMID: 20562282 

Indicators of low manner have historically been treated as negation cues. In the field 

of sentiment analysis, the indicators of low manner have been considered a special 

class of negative polarity indicators. Wiegand et al. [156] refer to this class of cues 

as the diminishers, while Wilson, Wiebe and Hoffmann [157] labelled them as nega-

tive polarity shifters. Similarly, indicators of low manner have been treated as nega-

tion cues in the field of biomedical text mining. Examples include the three corpora 

of negated bio-events (i.e., GENIA Event, BioInfer and BioNLP’09 ST) and the Bi-

oScope corpus. Figure 14 shows an example sentence where the low manner indica-

tor little has been interpreted as a negation cue for the event E3. 

In our model of event interpretation [8], polarity and manner are treated as orthogo-

nal dimensions of event interpretation, i.e., the value of manner does not influence 
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the value of polarity and vice-versa. According to this approach, the event E3 in 

Figure 14 will have a low manner but a positive polarity. 

5.4.1.3 Deactivators of Negation Cues  

The capacity of some words to act as negation cues is affected by the constructions 

in which they are used. This means that a word that normally acts as a negation cue 

can cease to act in that way if it is preceded and/or followed by certain other words. 

We refer to these syntactic patterns as negation deactivation patterns. Here, we fo-

cus only on the two most common negation cues, i.e., no and not. 

Deactivators of Not  

The word not is the most frequent negation cue in the BioScope corpus, where it 

accounts for over 41% of the total negation instances. However, in almost 8% of 

cases, it does not indicate a negation, i.e., it ceases to act as a negation cue. In our 

analysis, we focused on a simple deactivation pattern: not <deactivatorOfNot>. The 

pattern indicates an occurrence of the word not immediately followed by one of its 

deactivators. We only considered the following five deactivators: clear, evident, 

known, necessarily and only.  

In our analysis of the GENIA Event corpus, we discovered a total of 261 events 

which belonged to the sentences containing the above pattern. Amongst these, 258 

events (99%) were positive and only 3 events (1%) were negated, suggesting that 

this is an effective pattern to identify the deactivated instances of the word not.  

Deactivators of No  

The word no is the second most frequent negation cue in the BioScope corpus and 

accounts for almost 30% of the total negation instances in the corpus. However, in 
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over 6% of cases, it does not indicate a negation. Morante [155] has identified some 

constructions which contain the word no, but do not trigger a negation. These con-

structions include: no sign of, no evidence of, no proof and no guarantee that, etc.  

 

Figure 14. An instance of negation triggered by the construction no evidence; Source 

= PMID: 10221643 

Our analysis of the GENIA Event corpus revealed that in some cases, these con-

structions do trigger negated events. For example, consider the sentence in Figure 

15, where the construction no evidence triggers the negation of event E2. Based on 

our analysis, we conclude that the deactivation patterns identified for linguistic 

(scope) annotation may not hold for biological (event) annotation.  

5.4.1.4 Relationship between Negation Cues and Event-types  

We investigated the relationship between negation cues and different types of bio-

events. Our analysis revealed two classes of negation cues with respect to event-

types. These are:  
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Type-independent Negation Cues  

This class includes the typical negation markers like no, not and fail, etc. Some in-

herently negative event-triggers which can be applied to various types of events are 

also included in this category. For example, event-triggers like unaffected and inde-

pendent can be used for various types of events including Positive Regulation, 

Negative Regulation and Correlation events. 

Type-dependent Negation Cues  

This class includes cues like immobilize, decoupling and dysregulation, which act as 

negation cues for specific event-types only: immobilize and decoupling for Localiza-

tion events only and dysregulation for Regulation events only.  

5.4.1.5 Corpus / Domain Idiosyncrasies  

Some cues which are unambiguous and/or frequent in one corpus can be ambiguous 

and/or scarce in another. For example, words like protected and abolish are treated 

as negation cues in BioInfer. However, they are mostly interpreted as indicators of 

Negative Regulation, rather than negation, in the GENIA Event and BioNLP’09 ST 

corpora.   

In contrast, the verb fail is frequent and mostly unambiguous in the GENIA Event 

and BioNLP’09 ST corpora. However, in the BioInfer corpus, it does not appear as a 

negation cue even once. 
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5.4.1.6 Compilation of Cue Lists  

Having identified negation cues as an important factor for the identification of ne-

gated bio-events, we conclude that it is important to: 

 determine the impact of the choice of cue lists on the overall task perfor-

mance 

 identify an optimum cue list for the task 

Based on the above analysis, we decided:  

1) not to create separate lists for ambiguous and unambiguous cues 

2) to treat the low manner indicators as negation cues 

We then compiled four separate lists of negation cues for comparison. Table 22 de-

picts the elements in each list. A brief description of each list is as follows: 

c40  

We formulated a list of 40 cue words by combining previously published lists and 

cues discovered during our own initial analysis of negated bio-events. We did not 

include any phrases in the list.  

cBioInfer  

We extracted the negation cues from the BioInfer corpus. This was a straightforward 

task, because the cues had already been annotated. We then selected the top 25 cue 

words (no phrases) to form the cBioInfer list. 

cBioScope  

This is the list of 28 negation cues, including both words and phrases, compiled by 

Morante [155] from the BioScope corpus. 
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Name Size Elements 

c40 40 

absence, absent, barely, cannot, deficiency, deficient, ex-

cept, exception, fail, failure, impair, inability, inactive, 

independent, independently, insensitive, instead, insuffi-

cient, lack (noun), lack (verb), limited, little, loss, lose, 

lost, low, negative, neither, never, no, none, nor, not, pre-

vent, resistance, resistant, unable, unaffected, unchanged, 

without 

cBioScope 28 

absence, absent, cannot, could not, either, except, ex-

clude, fail, failure, favor over, impossible, instead of, lack 

(noun), lack (verb), loss, miss, negative, neither, never, 

no, no longer, none, not, rather than, rule out, unable, 

with the exception of, without 

cBioInfer 25 

abolished, absence, cannot, defective, deficient, despite, 

differ, different, differential, distinct, failure, independent, 

independently, lack, negligible, neither, no, nor, not, pro-

tected, separately, simultaneously, unable, unlike, without 

cCore 19 

absence, fail, inability, independent, independently, in-

sensitive, insufficient, lack (noun), lack (verb), little, nei-

ther, no, nor, not, resistant, unable, unaffected, un-

changed, without 

Table 22. Cue lists 
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cCore  

As previously discussed in section 5.3, we analysed 1,000 randomly selected negat-

ed bio-events (600 from GENIA Event, 300 from BioNLP’09 ST and 100 from Bio-

Infer). We made a list of all negation cues observed in these bio-events, and con-

ducted a series of experiments to identify the smallest set of cues for optimum per-

formance. Based in these experiments, we compiled the cCore cue list which con-

tains only 19 cue words.  

5.4.2 Feature Design 

Feature engineering and selection is a vital part of any machine learning system. 

Various types of features have previously been used for different negation detection 

tasks, including lexical, syntactic, semantic and statistical (bag of words) features. 

However, most previous work on detection of negated bio-events has concentrated 

around event-triggers, whilst the other semantic aspects of the event (like location 

and participants) have been ignored. 

The aim of our investigation was to: 

 identify the optimum set of features for the task of identifying negated bio-

events 

 compare the performance of different feature sets by evaluating their indi-

vidual and combined impact on the overall performance of a system for de-

tecting negated bio-events 

In order to achieve the above aims, we used our analysis of negated bio-events to 

engineer various semantic, lexical and syntactic features. Using this preliminary set 

of features, we conducted a series of experiments to identify the minimum optimal 
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feature set required for the task of identifying negated bio-events. Table 23 shows 

the 17 features that form this optimum set according to our experiments. These fea-

tures have been grouped into four categories; we have labelled these sets as Seman-

tic, Lexical, Dependency and Command.  

Feature Set ID Value Function 

Semantic 

S1 isComplex(event) 

S2 eventType(event) 

Lexical 

L1 contains(sentence, negCue) 

L2 negCue() 

L3 isNextTo(negCue, deactivator) 

L4 minimum(distance(eventTrigger, negCue), distance(eventLocation, negCue)) 

L5 contains(eventTrigger, negCue) 

Dependency 

D1 relation(negCue, eventTrigger) || relation(negCue, eventLocation) 

D2 relation(negCue, eventTheme) || relation(negCue, eventCause) 

D3 relation(negCue, X) && (relation(X, eventTrigger)||relation(X, eventLocation)) 

D4 relation(negCue, X) && (relation(X, eventTheme)||relation(X, eventCause)) 

Command 

C1 sCommands(negCue, eventTrigger) || sCommands(negCue, eventLocation)  

C2 sCommands(negCue, eventTheme) || sCommands(negCue, eventCause) 

C3 vpCommands(negCue, eventTrigger) || vpCommands(negCue, eventLocation) 

C4 vpCommands(negCue, eventTheme) || vpCommands(negCue, eventCause) 

C5 npCommands(negCue, eventTrigger) || npCommands(negCue, eventLocation) 

C6 npCommands(negCue, eventTheme) || npCommands(negCue, eventCause) 

Table 23. Feature sets 
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5.4.2.1 Semantic Features  

The purely semantic features are constructed from the semantic information availa-

ble for the bio-event. This information includes the semantic type of the bio-event 

(e.g., gene_expression, localization, positive_regulation etc.), the semantic type of 

each participant (e.g., lipid, DNA molecule and protein complex etc.) and the role of 

each participant (e.g., theme and cause, etc.). Table 23 shows the two such features 

which were found to be useful. Feature S1 indicates whether a bio-event is complex 

i.e., whether it has one or more participants which are bio-events themselves. Fea-

ture S2 is the semantic type of the bio-event.  

5.4.2.2 Lexical Features  

The purely lexical features are constructed from the sentence containing the bio-

event. Table 23 shows three features of this type: L1, L2 and L3. Feature L1 indi-

cates whether the sentence contains any of the negation cues from a specified list. 

Feature L2 is the negation cue itself; if the sentence does not contain a negation cue, 

then this feature is assigned a default value. Feature L3 indicates whether a specified 

negation deactivator is situated next to the negation cue in the sentence. This is a 

novel feature, which has not been used previously for negation detection tasks. 

The lexico-semantic features are constructed using a combination of the “textual” 

bio-event information and the sentence containing the bio-event. The textual bio-

event information includes the text fragment indicating the occurrence of the bio-

event (i.e., the event-trigger), the text fragments identifying the event participants 

and the text fragments indicating any event attributes like location, etc. Table 23 

shows the two lexico-semantic features which are included in the optimum set. Fea-

ture L4 is the minimum of the surface distances between the event-trigger and the 
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negation cue and the surface distance between the event-location and the negation 

cue. This is a novel feature, as none of the previous studies have considered event 

location. Feature L5 indicates whether a negation cue forms part of the event-trigger. 

This feature has been engineered to account for the class of inherently negative bio-

events.  

5.4.2.3 Dependency Features  

These are the lexico-syntactic features constructed using the textual bio-event in-

formation and the dependency relations found in the sentence. All of these features 

are novel, and they have been especially engineered to incorporate specific classes 

of negated bio-events discussed in section 5.3. Unlike certain previous studies [132, 

134], we have not based the features on specific dependency relations. Instead, the 

existence/non-existence of any dependency relation between specific text fragments 

has been used as the basis for these features.  

Table 23 shows four dependency features. Feature D1 indicates whether there is a 

dependency relation between the negation cue and the event-trigger, or between the 

negation and the event-location. Feature D2 indicates whether there is a dependency 

relation between the event-trigger and the event-theme, or between the event-trigger 

and the event-cause. Features D3 and D4 are more complex. D3 indicates whether 

there is an indirect (single hop) dependency relation between the negation cue and 

the event-trigger or the event-location. Similarly, D4 indicates whether an indirect 

relation exists between the event-trigger and event-theme or event-cause.  
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5.4.2.4 Command Features  

These are the lexico-syntactic features constructed from the textual bio-event infor-

mation and the command relations found in the constituency parse tree of the sen-

tence. The concept of a command relation was first introduced by Langacker [158] 

as a means for identifying the nodes affected by a given element in the constituency 

parse tree of a sentence. He defined a command relation as follows: ‘a node X com-

mands a node Y if neither X nor Y dominates the other and the S (sentence) node 

most immediately dominating X also dominates Y’. Reinhart [159] introduced the 

more general concept of constituent command which is often abbreviated as c-

command. She defined the c-command as follows: ‘node X c-commands node Y if 

neither X nor Y dominates the other and the first branching node that dominates X 

also dominates Y’. Baker and Pullum [160] relaxed the definition of a command re-

lation by eliminating the mutual non-dominance condition and relabelled it as the S-

command relation. Their definition of S-command is as follows: ‘a node X S-

commands a node Y if the S node immediately dominating X also dominates Y’.  

We have engineered three types of command features using the generic Q-command 

relation. We define the Q-command relation as follows: ‘a node X Q-commands 

node Y if the first dominant Q node of X also dominates Y’. We use three types of 

command relations (i.e., three values of Q): S-command, VP-command and NP-

command. 

Table 23 includes six novel command features, covering specific classes of negated 

bio-events discussed in section 5.3. Feature C1 indicates whether the negation cue S-

commands either the event-trigger or the event-location. C2 indicates whether the 

negation cue S-commands either the event-theme or the event-cause. Features C3 
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and C4 are similar to C1 and C2; however, they are based on the VP-command rela-

tion. Similarly, features C5 and C6 are based on the NP-command relation. 

5.4.3 Choice of Learning Algorithm 

The choice of learning algorithm can significantly influence the performance of a 

classification task. This has been demonstrated for various natural language pro-

cessing tasks including text categorization [161], word sense disambiguation [162] 

and the detection of negated terms [151]. In order to measure the impact of the 

choice of learning algorithm on the task of identifying negated bio-events, we decid-

ed to compare the performance of the most commonly used learning algorithms. We 

selected the following six algorithms for this task: 

5.4.3.1 Decision Trees  

Decision Tree algorithms learn rules which are expressed as “conjunctions of con-

straints on the attribute values of instances. Each path from the tree root to a leaf 

corresponds to a conjunction of attribute tests, and the tree itself to a disjunction of 

these conjunctions” [163]. Various Decision Tree algorithms have been proposed 

over the years. However, we concentrated on C4.5 [164], which is an enhanced ver-

sion of ID3 [165].  The C4.5 algorithm constructs the Decision Tree by choosing the 

attribute with the highest value of normalised information gain at each node, and 

creates new branches corresponding to the different values of this attribute. Once the 

initial tree has been created, the algorithm tries to identify and remove the least use-

ful branches. Decision trees have been extensively used for various problems in bio-

informatics [166]. They have also been used to detect negations in medical texts 

[150]. 
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5.4.3.2 Random Forest  

The Random Forest [167] algorithm develops an ensemble (i.e., a forest) of Deci-

sion Trees from randomly sampled subspaces of the input features. Once the forest 

has been created, new objects are classified using a two-step process:  

1) An individual classification is obtained from each tree in the forest. 

2) The final classification of the object is determined by majority votes among 

the classes obtained from individual trees.  

Despite being successfully used for various text mining and bioinformatics tasks 

[168, 169], the Random Forest algorithm has not been previously used for detecting 

negation scopes, negated concepts or negated events. 

5.4.3.3 Logistic Regression  

Logistic Regression classifiers try to predict the class probability of an object by 

fitting the training data to a logistic function. Logistic Regression classifiers have 

previously been used to identify negated bio-events [134]. 

5.4.3.4 Naive Bayes 

Naïve Bayes is one of the simplest probabilistic classification algorithms. It uses the 

Bayes probability model for predicting the class probabilities of inputs. The word 

naïve indicates that the algorithm assumes class conditional independence i.e., it 

assumes that the effect of a variable value on a given class is independent of the val-

ues of other variable. Despite its simplicity, the Naïve Bayes algorithm achieves 

good results for many complex classification problems [170]. It has also been used 

to detect negations in medical texts [150, 151].  
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5.4.3.5 SVM  

Support Vector Machines (SVM) [171] perform classification by constructing an N-

dimensional hyperplane that optimally separates the data into two categories. They 

use a kernel function to transform the data into a higher dimensional space, which 

paves the way for optimal separation. Many previous studies in negation detection 

have used SVM [136, 139, 151]. 

5.4.3.6 Instance-Based Algorithms  

The Instance-Based (also known as Memory-Based) learning algorithms do not de-

rive generalisations or abstractions from the complete training data. Instead, they 

keep all training data in memory, and generate classification predictions using only 

the most similar training instances. IB1 [172] is an instance-based learning algo-

rithm. It uses normalised Euclidean distance to find the training instance closest to 

the given test instance, and predicts the same class as this training instance. IB1 is 

similar to the nearest neighbour algorithm, except that it normalises its attributes' 

ranges, processes instances incrementally, and has a simple policy for tolerating 

missing values. Instance based learning algorithms have previously been used for 

detecting negation cues and their scopes [139]. 

5.5 Experimental Settings 

This section presents a brief description of the experimental set-up, including the 

datasets, parsers, classifiers and the evaluation metrics. 

5.5.1 Datasets  

We performed experiments using all three open access corpora of negated bio-

events. These corpora were discussed in section 5.1.1. 
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5.5.2 Parsing  

We used the Enju parser [173] to extract the POS tags, phrase structure trees and 

dependency relations. Enju is a deep parser which uses a Head-driven Phrase Struc-

ture Grammar (HPSG) extracted from the Penn Treebank and a maximum entropy 

model trained with an HPSG tree-bank derived from the Penn Treebank. It achieves 

a parsing accuracy of around 90% on both newswire articles and biomedical papers. 

Enju presents the parsing output in the form of a predicate-argument structure, 

which is a graph structure that represents syntactic/semantic relations among words. 

The Enju output also includes predicate-argument relations, which are the depend-

ency relations between pairs of words.  

5.5.3 Classifier Implementation  

We used the WEKA [174] library for constructing our classifiers. The implementa-

tion details for each algorithm are as follows: 

 The C4.5 implementation in WEKA is based on [164]. We used the follow-

ing optimisation settings: (1) apply sub-tree replacement, (2) apply sub-tree 

raising, (3) require a minimum of 2 instances per leaf, (4) set a confidence 

threshold for pruning of 0.25. 

 The Random Forest implementation in WEKA is based on [167]. Our opti-

misation settings included: (1) set the number of trees in the forest to 10, (2) 

set the number of features used to build individual trees to log(N+1), where 

N is the total number of features, (3) set no restrictions on the depth of indi-

vidual trees. 
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 The Logistic Regression implementation in WEKA is a slightly modified 

version of [175]. No optimisation settings were used. 

 The WEKA implementation of the Naïve Bayes algorithm uses a default pre-

cision of 0.1 for numeric attributes for cases of zero training instances. We 

used the default settings. 

 The SVM implementation in WEKA is based on the sequential minimal op-

timisation algorithm by Platt [176]. This implementation replaces all missing 

values, and converts the nominal attributes to binary attributes. It also nor-

malises all attributes by default. We used: (1) a polynomial kernel, (2) the de-

fault value of the complexity constant.  

 The WEKA implementation of the IB1 algorithm is based on [172]. We used 

the default settings. 

5.5.4 Evaluation Measures 

We used the standard metrics of precision, recall and F-measure for reporting and 

comparing results. Precision is the number of true positives divided by the sum of 

true positives and false positives; recall is the number of true positives divided by 

the sum of true positives and false negatives; and F-measure is the first harmonic 

mean of precision and recall. These metrics are regularly used to report results for 

various text mining tasks [2]. 

5.6 Results 

We ran a series of experiments for each dataset to systematically evaluate the impact 

of each of the four cue lists, the six learning algorithms and the four main feature 
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sets and their combinations. This section describes the results of our experiments. 

All results are based on 10-fold cross validation. 

5.6.1 Best Results for Each Dataset 

On the GENIA Event dataset, the best results were achieved using the Random For-

est classifier using all four feature sets engineered from the c40 cue list. The classifi-

er achieved 83% precision and 67% recall, leading to an F-score of 74%. The same 

classifier achieved the best results on the BioNLP’09 ST dataset, achieving approx-

imately 78% precision, 64% recall and 70% F-score. The best results on the BioInfer 

dataset were also achieved by a Random Forest classifier with all feature sets; how-

ever, the cBioInfer cue list was used to engineer the features. This classifier achieved 

86% precision, 85% recall and 85% F-score. Table 24 shows the best results 

achieved for each dataset. 

Dataset P R F Algorithm Cue List Features 

GENIA Event 83.1% 67.1% 74.2% Random Forest c40 All 

BioInfer 86.1% 84.5% 85.3% Random Forest cBioInfer All 

BioNLP’09 ST 77.6% 63.9% 70.1% Random Forest c40 All 

Table 24. Best results for each dataset 

5.6.2 Cue List Comparison 

In order to compare the performance of the four cue lists, we ran a series of experi-

ments using the Random Forest algorithm. We chose the Random Forest algorithm 

because it had consistently produced the best results for all datasets. For each da-

taset, we constructed a Random Forest classifier using all four feature sets. Howev-
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er, the cue list used to engineer the features was varied. Table 25 shows the perfor-

mance of the four cue lists for each of the datasets. The key results are as follows: 

 The c40 cue list performed well on all three datasets. It outperformed the 

other cue lists on GENIA Event and BioNLP’09 ST, and achieved the highest 

precision, recall and F-score on both datasets. However, on BioInfer it per-

formed worse than cBioInfer and cCore. 

 The cCore cue list performed consistently, and achieved the second best re-

sults (F-score) for all three datasets. Its results were very close to the top per-

forming cue list for GENIA Event and BioNLP’09 ST with margins of 0.5% 

and 1.8%, respectively. However, on BioInfer it was second by a significant 

margin of 7%. 

 The cBioInfer cue list lagged behind c40 and cCore by almost 5% and 8% on 

GENIA Event and BioNLP’09 ST. However, as expected, it achieved the 

best results on BioInfer by a fair margin (over 7%). 

 The cBioScope cue list achieved the lowest results for all three datasets by 

significant margins (ranging between 6% and 8%). 

Cue List 
GENIA Event BioInfer BioNLP’09 ST 

P R F P R F P R F 

c40 83.1% 67.1% 74.2% 84.4% 70.8% 77.0% 77.6% 63.9% 70.1% 

cCore 82.6% 66.7% 73.8% 87.0% 70.8% 78.1% 76.3% 61.6% 68.2% 

cBioInfer 81.4% 60.4% 69.3% 86.1% 84.5% 85.3% 75.3% 53.2% 62.3% 

cBioScope 80.7% 59.9% 68.8% 89.3% 67.7% 77.0% 75.4% 52.9% 62.2% 

Table 25. Cue list comparison 
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Figure 16 shows the micro-averaged results for each cue list. It shows that overall 

(in terms of F-score) c40 performed the best, followed by cCore (-0.7%), cBioInfer 

(-4.8%) and cBioScope (-5.7%), respectively.  

The difference between the best and the worse performance caused by the choice of 

cue list was 5% for GENIA Event, 7% for BioInfer and 8% for BioNLP’09 ST. This 

provides sufficient evidence in favour of the hypothesis that the choice of the nega-

tion cues used for engineering the feature set has a significant impact on perfor-

mance of a system designed for the identification of the negated bio-events. 

 

Figure 15. Cue list comparison: Micro-averaged results for the three datasets 

5.6.3 Feature Set Comparison 

Gain Ratio  

We computed the gain ratio, of both individual features and feature sets, on the three 

datasets.  The dependency features achieved the highest gain ratio, followed by the 
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command and lexical features, respectively. The semantic features achieved the low-

est gain ratios. In terms of individual features, D1 achieved the highest score, by a 

fair margin, for all three datasets. Features D4, C3 and L4 also achieved consistently 

high scores on all three datasets. 

Classification Results  

In order to compare the performance of the various features, we ran a series of ex-

periments on each dataset. In each experiment, we constructed a Random Forest 

classifier using a different combination of features, which were engineered from the 

cCore cue list. We chose the Random Forest algorithm and the cCore cue list be-

cause both had performed consistently on all three datasets. Table 26 shows the re-

sults for the four feature sets and some of their combinations. The key findings are 

as follows: 

 Using only the semantic features, the Random Forest algorithm could not 

find a model. This was mainly due to the small number of semantic features 

used and the relatively poor discriminative ability of these features, as evi-

denced by the low information gain scores. 

 The lexical features achieved the highest scores as an individual feature set 

on GENIA Event and BioNLP’09 ST, and the second highest score as an in-

dividual feature set on BioInfer. 

 The dependency features achieved the highest score as an individual feature 

set on BioInfer and the second highest scores on GENIA Event and Bi-

oNLP’09 ST.  
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 The command features scored significantly lower than the lexical and de-

pendency features. 

 The combination of lexical and dependency features outperformed the com-

bination of lexical and command features on all three corpora.  

 The combination of all four feature sets achieved the best overall results for 

all three datasets. 

Table 26. Feature set comparison 

Figure 17 shows the micro-averaged results for the four feature sets and their three 

combinations. Overall, in terms of individual feature sets, the lexical features per-

form slightly better than the dependency features, while the command and semantic 

features perform significantly worse. The combination of lexical and dependency 

features performs better than the combination of lexical and command features. 

However, the combination of all four feature sets achieves the highest scores.  

Cue List 

GENIA Event BioInfer BioNLP’09 ST 

P R F P R F P R F 

Sem No model found No model found No model found 

Lex 83.3% 54.9% 66.2% 69.4% 53.4% 60.4% 82.6% 48.2% 60.9% 

Dep 67.4% 59.0% 62.9% 74.1% 51.6% 60.8% 73.8% 46.8% 57.3% 

Com 53.9% 14.2% 22.5% 63.7% 36.0% 46.0% 68.5% 32.0% 43.6% 

Lex + Com 79.6% 57.7% 66.9% 78.8% 64.6% 71.0% 77.2% 54.3% 63.8% 

Lex + Dep 84.4% 61.8% 71.4% 83.1% 64.0% 72.3% 79.7% 57.1% 66.5% 

All 82.6% 66.7% 73.8% 87.0% 70.8% 78.1% 76.3% 61.6% 68.2% 



CHAPTER 5. POLARITY OF BIO-EVENTS 

 

 179 

 

Figure 16. Feature set comparison: Micro-averaged results for the three datasets 

5.6.4 Algorithm Comparison 

In order to compare the performance of the chosen learning algorithms for the task 

of identifying negated bio-events, we ran a series of experiments on each dataset. In 

each experiment, we constructed a classifier using the chosen algorithm and all fea-

ture sets. The features were engineered from the cCore cue list. We chose the cCore 

cue list because it had performed consistently on all three datasets. Table 27 shows 

the results for each dataset. The key findings are as follows: 

 C4.5 performed consistently on all three datasets. It outperformed the other 

algorithms on BioNLP’09 ST, scored second on GENIA Event and fourth on 

BioInfer.  

 Random Forest outperformed the other algorithms on GENIA Event and Bio-

Infer, and scored second on the BioNLP’09 ST by a narrow margin of 0.8%.  
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 Logistic Regression achieved the third best results on both GENIA Event and 

BioInfer. It scored fourth on BioNLP’09 ST. 

 Naive Bayes achieved the highest recall for all datasets. However, its preci-

sion was noticeably low (ranging between 32% and 42%), which led to the 

lowest F-scores for all datasets. 

 SVM scored fifth for all three datasets. Although it performed much better 

than Naive Bayes, it was significantly behind Random Forest and C4.5 

 IB1 gave the second best results for BioInfer and the fourth best results for 

both GENIA Event and BioNLP’09 ST. 

Algorithm 

GENIA Event BioInfer BioNLP'09 ST 

P R F P R F P R F 

C4.5 84.4% 62.4% 71.8% 82.1% 68.3% 74.6% 82.2% 56.5% 67.0% 

Random 

Forest 
82.6% 66.7% 73.8% 87.0% 70.8% 78.1% 76.3% 58.4% 66.2% 

Logistic 

Regression 
82.8% 58.7% 68.7% 79.3% 71.4% 75.1% 80.5% 53.1% 64.0% 

Naïve 

Bayes 
31.6% 83.0% 45.8% 42.2% 83.9% 56.2% 32.9% 82.3% 47.0% 

SVM 79.3% 53.7% 64.0% 79.0% 67.7% 72.9% 78.6% 46.7% 58.6% 

IB1 66.1% 66.7% 66.4% 85.8% 71.4% 77.9% 70.8% 59.5% 64.7% 

Table 27. Algorithm comparison 

Figure 18 shows the micro-averaged results for each algorithm. It shows that overall 

(in terms of F-score), Random Forest performed the best, followed by C4.5 (-1.5%), 

Logistic Regression (-4.3%), IB1 (-5.6%), SVM (-8.9%) and Naive Bayes (-25.7%). 
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Figure 17. Algorithm comparison: Micro-averaged results for the three datasets 

The difference between the best and the worst performing algorithms was 28% for 

GENIA Event, 22% for BioInfer and 20% for BioNLP’09 ST. Even if we exclude 

Naive Bayes, which performed significantly worse than the rest of the algorithms, 

the difference was still 10% for GENIA Event, 5% for BioInfer and 8% for Bi-

oNLP’09 ST. This provides sufficient evidence in favour of the hypothesis that the 

choice of learning algorithm has a significant impact on the performance of a (ma-

chine learning) system for identifying negated bio-events. 

5.7 Discussion 

This section provides a brief discussion on the key aspects of our results and find-

ings. 
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5.7.1 Comparison with Previous Results 

As mentioned earlier, the identification of negated bio-events is a new area of re-

search and only a few results have been reported previously. The previously best 

reported results for identification of negated bio-events were by Sarafraz and Nenad-

ic [136]. They used the Training subset of the BioNLP’09 ST dataset for training 

and the Development subset for testing. They achieved 38% precision, 76% recall 

and 51% F-score.  In comparison, our system achieved an F-score of above 70% 

with 10-fold cross validation on the entire BioNLP’09 ST dataset. In order to obtain 

a more direct comparison, we conducted further experiments with the same experi-

mental settings as those used by Sarafraz and Nenadic [136]. That is, we trained our 

Random Forest classifier on the Training subset of the BioNLP’09 ST data and test-

ed it on the Development subset. This method still achieved an F-score of just under 

70%, which is considerably better than the results achieved by Sarafraz and Nenadic 

[136]. 

Our system achieved even better results on the GENIA Event (74% F-score) and 

BioInfer (85% F-score) datasets. This is particularly encouraging, as these corpora 

contain more complex and varied bio-events than the BioNLP’09 ST corpus.  

Our results are also comparable to those obtained by Sanchez-Graillet and 

Poesio[113], who used a rule-based approach for detecting negated PPIs, and 

achieved an F-score of 77% with gold standard protein annotations. However, we 

argue that the identification of negated bio-events in general is a more challenging 

task, according to the reasons discussed in section 5.1.2.  
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5.7.2 Selection of Negation Cues 

Various lists of negation cues have previously been proposed for the different nega-

tion detection tasks. With respect to the task of identifying negated bio-events, the 

main questions about the nature, role and processing of negation cues are: 

Does a “universal” list of negation cues exist?  

Our analysis of negated bio-events confirmed that negation cues are ambiguous. 

Whether a word acts as a negation cue for a bio-event depends on the lexical as well 

as the contextual polarity of the word. While the lexical polarity of a word remains 

fixed, its contextual polarity depends on a number of factors including the na-

ture/domain of the text, the annotation perspective, the context and the syntactic 

structure of the sentence. Therefore, it is hard to compile a universal list of negation 

cues. However, domain specific lists might be useful. Our experiments provided fur-

ther evidence for this hypothesis. The c40 and cCore cue lists showed consistently 

good performance across the three bio-event corpora.  

What is the impact of the choice of a negation cue list on the overall system per-

formance?  

We designed experiments to measure the impact of the choice of a negation cue list 

on the overall system performance. We found that a significant variation (ranging 

between 5% and 8%, depending on the corpus) in the system performance resulted 

from the cue list used.  

Should negation cues be annotated in gold standard corpora?  

BioInfer is the only corpus of bio-events containing annotation of negation cues. We 

compiled a list of negation cues identified in the corpus, and labelled it cBioInfer. 
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This cue list did not achieve good results when applied to the other two datasets (i.e., 

GENIA Event and BioNLP’09 ST). However, it outperformed the other cue lists on 

the BioInfer dataset by a significant margin of 7%. While these results provide fur-

ther evidence for the domain specific nature of the negation cues, they also highlight 

the importance of annotating negation cues as well as the polarity of the event.  

These findings favour the wider argument for the annotation of the lexical cues indi-

cating the information necessary for the correct interpretation of an event.  

5.7.3 Feature Engineering and Selection 

We have used a novel approach for feature engineering, and have identified an opti-

mum feature set comprising only 17 features, all of which are discrete (14 binary, 1 

integer and 2 multi-valued). We have grouped these features into four sets: Seman-

tic, Lexical, Dependency and Command. In comparison to previous work, our fea-

ture engineering approach has the following unique aspects: 

 use of a combination of semantic, lexical, lexico-semantic and lexico-

syntactic features 

 use of all available textual fragments associated with the bio-event (including 

the trigger, participants and attributes of the event) 

 use of event hierarchy information (i.e., complexity status) 

 use of negation deactivators 

 basing the features on the general, rather than specific, dependency relations 

An important aspect of our investigation was to evaluate the performance of the in-

dividual feature sets as well as their combinations. We were particularly interested in 



CHAPTER 5. POLARITY OF BIO-EVENTS 

 

 185 

the comparison of the dependency and the command features, as both have previous-

ly been used for the task of identifying negated bio-events. Kilicoglu and Bergler 

[132] used a rule-based approach based on the dependency relations between the 

negation cues and the event-triggers, while MacKinlay, Martinez and Baldwin [134] 

used features derived from the dependency parse of the sentence containing the bio-

event. However, Sarafraz and Nenadic [136] used command features to achieve bet-

ter performance. 

The evaluation of the individual feature sets showed that dependency and lexical 

features achieved results more than twice as high as command features.  Similarly, 

the combination of lexical and dependency features achieves significantly better re-

sults than the combination of the lexical and command features. Based on these re-

sults, we conclude that, for the task of identifying negated bio-events, dependency 

features outperform command features by a significant margin. This is consistent 

with previously reported comparisons between the dependency and constituency 

features for the tasks of opinion mining [177, 178] and PPI extraction [70]. 

Aside from the features discussed above, we also experimented with other syntactic 

and semantic features. We observed that the features based on the POS tags of nega-

tion cues, event-triggers, event-themes and event-causes did not improve the per-

formance. Similarly, features based on the semantic types of the event-themes and 

event-causes did not influence the performance either. This suggests that the polarity 

status of a bio-event is influenced neither by the semantic types of its participants, 

nor by the POS tags of text fragments associated with the event. 
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5.7.4 Algorithm Selection 

We designed a series of experiments to evaluate and compare the performance of six 

learning algorithms with respect to the task of identifying negated bio-events. All of 

these algorithms, with the exception of Random Forest, had previously been used for 

different negation detection tasks, with varying degrees of success. Our results 

showed that, on average, the Random Forest algorithm performs the best; the Deci-

sion Trees (C4.5) algorithm scored second by a close margin (1.5%); the Logistic 

Regression, Instance-Based learning algorithms (IB1) and SVM scored third, fourth 

and fifth by significant margins of 4%, 6% and 9%, respectively. The Naive Bayes 

algorithm scored the least by a huge (26%) margin.  

Our results are consistent with Caruana and Niculescu-Mizil [179], who conducted a 

wide ranging study, comparing the performance of ten supervised learning methods.  

They measured the performance of each method on 11 different binary classification 

problems, and found that Random Forest outperformed the other algorithms. Our 

results are also consistent with Goryachev et al. [151], who compared the perfor-

mance of SVM and Naive Bayes for the task of detecting negations in medical texts. 

They found that SVM outperformed Naive Bayes by a significant margin (8%). In 

contrast, Goldin and Chapman [150] compared the performance of Naive Bayes and 

Decision Trees for the task of identifying negated terms in medical texts. They found 

that Naïve Bayes outperforms Decision Trees by a small (1%) margin. Similarly, for 

the task of identifying negation scopes in biomedical research literature, Morante 

and Daelemans [139] obtained analogous results for Instance-Based learning and 

SVM. In contrast to these results, we found that Naive Bayes performs significantly 

worse than Decision Trees, and Instance-Based learning outperforms SVM. This 
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contrast shows that the different learning algorithms do not perform consistently for 

different negation detection tasks. This leads us to the following conclusions: 

 Despite the apparent similarities, the task of identifying negated bio-events is 

inherently different from the other negation detection tasks like negated term 

detection and negation scope detection.  

 Since the Random Forest algorithm clearly outperforms the other learning 

algorithms for the task of identifying negated bio-events, its feasibility for 

the other negation detection tasks (sections 5.1 and 5.2) should be investigat-

ed. 

5.7.5 The Effect of Corpus Size 

We used all three open access corpora of negated bio-events in our experiments. Ta-

ble 20 (page 139) shows the statistics for these corpora. The GENIA Event corpus is 

the largest and contains bio-events of 36 different semantic types. The BioNLP’09 

ST corpus contains only 9 types of bio-events, and it is over three times smaller than 

the GENIA Event corpus. The best results (10-fold cross validation) achieved on the 

BioNLP’09 ST corpus were 4% less than the best results achieved on the GENIA 

Event corpus.  The BioInfer corpus is the smallest in size (almost 14 times smaller 

than GENIA Event) and the most complex with 60 different event types. Despite 

these factors, consistently better results were achieved on BioInfer, irrespective of 

the cue list used. This suggests that the corpus size does not have a significant effect 

on overall performance. We further tested this hypothesis by conducting an addition-

al experiment on the GENIA Event corpus. Instead of performing 10-fold cross vali-

dation, we trained the classifier using only half of the instances and tested on the 
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other half. We repeated this experiment ten times with randomly selected training 

and testing datasets, the average F-score was only slightly (0.5%) less than the F-

score achieved by the 10-fold cross validation. Therefore, we conclude that the cor-

pus size is not a significant performance factor. Instead, we believe that the amount 

of information available about the event, especially the text fragments associated 

with the event, is more important than the corpus size. The relatively poor perfor-

mance achieved on the BioNLP’09 ST corpus could also be explained by the fact 

that both GENIA Event and BioInfer contain more information about the location of 

the events than BioNLP’09 ST.  

5.7.6 Correlation between Event-Type and Polarity 

Our analysis of negated bio-events revealed that certain words act as negation cues 

only in the context of specific types of events. Apart from this, we did not find any 

evidence of “linguistic correlation” between the semantic type of an event and its 

polarity. However, we did find some “statistical correlation” between event-type and 

polarity. For example, in the BioNLP’09 ST corpus, 9% of the Regulation events are 

negated, whereas only 5% of the Binding events are negated. Based on this observa-

tion, we engineered two semantic features: one based on the event-type and the other 

on its complexity status (i.e., whether the event is simple or complex).  Both of these 

features scored low gain ratios on all three datasets. However, the addition of these 

features improved the overall performance by 0.5% to 1%, depending on the dataset. 

In order to further investigate the correlation between event-type and polarity, we 

designed two experiments: 
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Three-Way Splitting  

This experiment was similar to the one reported by Sarafraz and Nenadic [136]. The 

bio-events in the BioNLP’09 ST dataset were split into three classes according to 

their level of complexity. The simplest events with single participants, i.e., those of 

type Localization, Transcription, Protein Catabolism, Gene Expression and Phos-

phorylation, were grouped together as Class-1. The binding events were grouped as 

Class-2. These events have multiple participants, but they only have entities as par-

ticipants (and not other events). Finally, the most complex events, which allow other 

events to be participants, were grouped together as Class-3. These include both gen-

eral and specific regulation events, i.e., events of type Regulation, Positive Regula-

tion and Negative Regulation. The Random Forest classifier was trained and tested 

for each class, separately.  The micro averages for precision, recall and F-score were 

used to measure the overall performance. In comparison to the results achieved 

without data splitting, the three-way splitting model showed a considerable (21%) 

improvement in precision. However, the recall dropped significantly (15%), causing 

an F-score decrease of almost 2%. This is in contrast to Sarafraz and Nenadic [136], 

who achieved an increase in both recall and precision.  In terms of individual clas-

ses, Class-3 and Class-1 achieved results which were slightly higher and slightly 

lower than the single-class model, respectively. However, Class-2 scored significant-

ly (29%) worse. We experimented with various algorithms and cue-lists, but we 

were not able to improve the performance for Class-2 by more than 2%. 

The above results can be explained by considering the uneven distribution of events 

within the three classes. For example, in the BioNLP’09 ST corpus, 56% of events 

belong to Class-3, 33% to Class-1, and only 11% to Class-2. Similarly, the distribu-
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tion of negated events within each class also varies: 5% for Class-1, 4% for Class-2 

and 9% for Class-3. Therefore, better results would be expected for classes with 

higher numbers of training examples (e.g., Class-3) and vice-versa (e.g., Class-1).  

Two-Way Splitting  

In this experiment, we split the bio-events according to their complexity status, i.e., 

simple or complex. We performed the two-way splitting on the BioNLP’09 ST data, 

then trained and tested our Random Forest classifier separately for each class. The 

results were even worse than the three-way splitting model, and an overall (micro-

averaged) performance loss of 5% was observed. In order to test the concept further, 

we repeated the two-way splitting experiment with the GENIA Event corpus. Again, 

we observed a significant (4%) decrease in performance. In terms of individual clas-

ses, the complex class performed better than the simple class. We further experi-

mented with various algorithms and cue-lists, but we were not able to improve the 

performance on the simple class by more than 1%. We also observed that over 10% 

of complex events are negated, where only 4% of simple events are negated. There-

fore, a complex event is 2.5 times more likely to be negated than a simple event. 

These experiments show that splitting the datasets according to the event-type does 

not improve the overall system performance. The classification performance im-

proves for certain classes of bio-events (e.g., complex event and regulation events), 

and deteriorates for certain other classes (e.g., binding and simple events). This vari-

ation in performance is mainly due to an uneven distribution of negated bio-events 

across these classes. 
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5.8 Conclusion 

We have conducted a detailed analysis of the problem of identifying negated bio-

events given gold standard event annotations. We examined the manifestations of 

negation in the three open access corpora of negated bio-events (i.e., GENIA Event, 

BioInfer and BioNLP’09 ST), and proposed a typology of negated bio-events based 

on the lexico-semantic mechanisms affecting the polarity of an event. Our analysis 

showed that a significant proportion (37%) of negated bio-events cannot be detected 

by considering the event-trigger alone. It also revealed that identification of negated 

bio-events is a complex task that requires a deeper level of analysis than that re-

quired for tasks such as negated term detection and negation scope detection. Fol-

lowing this examination, we identified the three key aspects of a machine learning 

based solution to the problem of negated bio-event detection. These are:  the compi-

lation of a negation cue list, the design and selection of suitable features and the 

choice of a machine learning algorithm. In order to analyse these aspects, we con-

ducted a series of experiments on the three bio-event corpora. The results confirmed 

that each one of these aspects can have a significant impact on the overall system 

performance. Our analysis showed that the ability of a word/phrase to act as a nega-

tion cue depends not only on the context and domain of text, but also on the annota-

tion/information perspective (e.g., linguistic vs. biological perspective).  Therefore, 

there is a need for domain specific lists of negation cues. We compiled two such lists 

(c40 and cCore), both of which performed consistently in all experiments. In terms 

of feature selection, our results showed that lexical and dependency features are 

most important, while command and semantic features are less significant. Nonethe-

less, the best results were achieved by a combination of all four types of features. 
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We also discovered that, for this task, the Random Forest algorithm consistently 

outperforms the other learning algorithms. Combining the best solutions for each of 

the above aspects, we created a novel framework for the identification of negated 

bio-events. We evaluated our system on the three open access corpora of negated 

bio-events mentioned above. Our results on the BioNLP’09 ST corpus were signifi-

cantly higher than the previously reported best results.  We achieved even better re-

sults on the GENIA Event and BioInfer corpora, both of which contain more varied 

and complex events.  

As mentioned earlier, our system assumes that event annotation has already been 

performed. However, this system can be integrated with a state-of-the-art event ex-

traction system, e.g., EventMine (section 2.2.3). The resulting system will be able to 

extract bio-events of the specified polarity from plain text documents, and it will 

serve as the foundation for a more elaborate system for detecting textual contradic-

tions.  
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Chapter 6: Manner of Bio-events 

6.1 Introduction 

In this chapter, we describe the design and evaluation of a machine learning system 

that can automate the assignment of a further dimension of meta-knowledge to bio-

events, i.e. Manner. This is the most domain-specific dimension of our scheme, 

which encodes the rate, level, strength or intensity of the event (in biological terms). 

The detection of manner information can be useful for several tasks, e.g., in compar-

ing results obtained by different authors, or to help to detect possible contradictions 

or inconsistencies in the results reported in different papers.  The identification of 

such information is considered to be highly important for the correct interpretation 

of biomedical events [180]. To our knowledge, our system is the first that is able to 

automatically identify and classify information about manner in biomedical text, 

through the assignment of three possible values to events, i.e., High, Low and Neu-

tral, with the latter being the default value.  Given that non-default manner values 

are assigned to around 5% of events in the GENIA-MK corpus [9], a majority class 

baseline system would achieve an accuracy of 95%. Through the employment of a 

combination of several different feature types, i.e., syntactic, semantic, lexical, lexi-

co-semantic and lexico-syntactic, our system is able to perform considerably better 

than the baseline, with an overall accuracy of 99.4% and micro averaged F-scores of 

98.3%. 
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6.1.1 Manner of Bio-Events 

The term “manner” could correspond to any information about how an event occurs, 

and so is not in itself domain-specific. Indeed, manner is annotated as a general ad-

junct-like argument type in the PropBank corpus, [181], which provides a semantic 

annotation of general language verbs that appear in the Penn Treebank [182]. How-

ever, since adjuncts are considered to be general phrases that are not closely associ-

ated with any particular verb, they are not normally specified in semantic frame re-

sources that are developed for general language.  

In contrast, manner is considered to be highly important for the correct interpretation 

of biomedical relations and events [180]. Accordingly, in the GREC corpus [32], 

Manner was annotated as one of 13 fixed semantic roles that can characterise the 

semantic arguments of verbs and nominalisations in biomedical texts. The annota-

tions were extracted as semantic frames and linked with syntactic frames in the Bio-

Lexicon [183], thus allowing the identification of verbs that are particularly likely to 

specify manner information in biomedical texts.  

In the GREC corpus and the BioLexicon, the characterisation of manner arguments 

can be quite wide-ranging. They can correspond to the intensity of an event.  How-

ever, they can also correspond to a process or method that is employed by the agent 

to bring about the event (normally a noun phrase following the preposition by), an 

adverb relating to a process that describes how the event is carried out, information 

about the direction of an event, etc.     

As has been explained earlier, each dimension of event meta-knowledge comprises a 

fixed set of values, e.g., there are 2 possible values for Polarity, and 3 for Certainty 

Level. Thus, while the BioLexicon can help to identify diverse phrases that are relat-
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ed to the manner of an event, the Manner dimension in our meta-knowledge scheme 

aims to provide a useful classification of events according to the type of manner that 

they express.  Given the wide range of information that can come under the general 

heading of manner, our meta-knowledge scheme focusses on a restricted view of the 

manner of biological processes, which lends itself to a reasonably straightforward 

division into a set of distinct categories, and which are feasible to recognise auto-

matically.  

We took as our starting point the relatively narrow definition of manner proposed in 

[113] for a specific type of bio-event, i.e., Protein-Protein Interactions (PPI). Ac-

cording to them, manner may reveal levels of interaction or certainty of the reported 

interaction, and is indicated by manner cues (adjectives or adverbs) that affect the 

PPI trigger (the word or phrase indicating the presence of a PPI). Based on our anal-

ysis of bio-events, our definition of manner is a slightly modified version of the one 

provided in [113].   Firstly, we did not include aspects of certainty, since we treat 

Certainty Level as a separate meta-knowledge dimension. Secondly, we extended the 

other part of the definition slightly, to cover information concerned with the rate, 

strength or intensity of the event, as well as the level. This expanded interpretation is 

needed, given that our meta-knowledge annotation scheme is intended to be applica-

ble to a wider range of events than only PPIs, whose varying semantics mean that 

expressions of manner can have subtly different interpretations according to the type 

of event they modify. Based on a manual examination of over 100 abstracts in the 

GENIA Event corpus, we found that events can normally be ascribed to one of the 

following three categories of manner (see section 3.3.5 for further details and exam-

ples of these categories): 
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 High: The event has explicit indication of higher than default rate, level, 

strength or intensity. Cue expressions are typically adjectives or adverbs 

such as high, strongly, rapidly, potent, etc.  

 Low: The event expresses lower than default rate, level, strength or intensi-

ty.  Cue expressions are typically adjectives and adverbs such as slightly, 

partially, small, etc. 

 Neutral: The default category, for events with no explicit indication of ei-

ther High or Low manner. In rare cases, Neutral manner is explicitly indi-

cated, using cue words such as normal or medium, etc.  

When combined with polarity, annotation of event manner can help to capture subtle 

variations between the interpretations of different events. That is to say, a distinction 

can be made between “low interaction” and “no interaction”.  Historically, certain 

cues of Low manner (like low, little, small, etc.) have been treated as negation indi-

cators. In the field of sentiment analysis, these cues have been considered as a spe-

cial class of negative polarity indicators, which have been referred to as both dimin-

ishers [156] and negative polarity shifters [157]. The same types of cues have been 

treated as negation triggers in the field of biomedical text mining [29, 31]. However, 

in the context of bio-events, there is a clear and important distinction between a Low 

manner event and a negated (i.e., non-existent) event. This view has been confirmed 

by biologists who were consulted and involved in the creation of the GENIA-MK 

corpus.  
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6.1.2 Annotation of Manner in the Enriched GENIA Event Corpus 

As discussed in chapter 4, our analysis of the meta-knowledge annotations in the 

GENIA-MK corpus revealed that 1,392 events (4%) are expressed with High man-

ner, 323 events (1%) are expressed with Low manner, and the remaining 35,143 

events (95%) were found to be of Neutral manner. Amongst events with an explicit 

indication of manner, High manner marking is much more common, accounting for 

81% of cases.  However, the significance of identifying instances of Low manner 

cannot be overlooked, since, as described above, it can help to distinguish between 

truly negative events and those that occur at a low level or with low intensity. Inter-

estingly, the overall frequency of events expressed with a non-default manner is only 

1% less than the frequency of negated events [9]. While negation detection has re-

ceived significant attention in the literature [184], manner identification in biomedi-

cal text remains an understudied area of research. 

6.2 Automated Identification of Event Manner  

Since manner is considered an important part of biomedical event descriptions, it 

follows that training a system to classify events according to the type of manner they 

express is an important task. To our knowledge, the automatic classification of man-

ner-related information has not previously been attempted in biomedical text, either 

at the level of events or for larger units of text. 

6.2.1 Analysis of Manner Cues 

The textual context of an event and the syntactic structure of the sentence in which 

the event is contained can both play important roles in determining the most appro-

priate manner value to assign to an event. Accordingly, these are both taken into ac-
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count by the set of features used by our classifier, as explained in the next section. 

However, the single most important factor is the presence of an explicit cue expres-

sion in a sentence. Thus, we carried out a detailed analysis of the manner cues iden-

tified in the GENIA-MK corpus. Some of the key findings are as follows: 

6.2.1.1 Cue Frequency 

While a total of 273 High and 103 Low manner cues have been identified, most of 

these cues (72%) appear just once or twice, and only a handful (9%) appear 10 or 

more times. Moreover, this small set of the most frequent cues occur in the textual 

context of the majority (61%) of events that are expressed with a non-default man-

ner. These statistics demonstrate that although a relatively small set of cues accounts 

for a majority of High/Low events, much larger cue sets need to be considered in 

order to achieve optimum results for automated manner identification. 

6.2.1.2 Cue Variation 

While most cues for non-default manner consist of particular words and phrases, 

others constitute patterns, in which different numerical values may be substituted. 

An example is the expression n-fold, in which n represents a number.  This expres-

sion accounts for 111 (over 8%) of the High events. However, a particular challenge 

lies in the fact that the exact form of expression can vary. Indeed, in the GENIA-MK 

corpus, 13 different variants of this numerical expression have been annotated as 

High cues. Some examples include 2-fold, 4-6 fold, 5- to 7-fold, etc. Moreover, four 

non-numeric variants (two-fold, threefold, two to threefold and two-three fold) have 

also been annotated as High cues. These non-numeric variants account for a further 
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14 High events. Similarly, several variants of the numeric expression n% have also 

been annotated as both High and Low manner cues.  

6.2.1.3 Cue Ambiguity 

The presence of a High/Low cue in a sentence is not sufficient to assign a High/Low 

value to all events in the sentence. While a sentence contains, on average, four bio-

events, the majority of manner cues affect only one event in the sentence. Therefore, 

the syntactic structure of the sentence needs to be considered to determine which, if 

any, events are being affected by the cue. The semantic context also plays an im-

portant role in determining the identity of some cue expressions. For example, de-

pending on the context, numerical expressions (like n-fold and n%) may indicate a 

High manner, a Low manner or neither.   

6.2.1.4 Combined Event-Triggers / Manner Cues 

Whilst most manner cues are independent of event type, certain words can act simul-

taneously as both event-triggers (which denote the type of the event) and manner 

cues.  For example, the word overexpression is an event-trigger that introduces an 

event of type Gene Expression. Furthermore, the word tells us that the event oc-

curred with High manner.  

6.2.1.5 Effect of Negation 

An expression of negation inverts the polarity of a manner cue. For example, the 

word significant acts as a High cue, but its negated form (no/not significant) is a 

Low cue. 
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6.2.2 Classifier Design 

In this section, we explain the various different types of features that are used by our 

classifier, together with an explanation of the learning algorithm that was employed.  

6.2.2.1 Features 

We used a combination of syntactic, semantic, lexical, lexico-semantic and lexico-

syntactic features. The Enju parser [173] was used to obtain the lexical and syntactic 

information required to construct  these features.  We also compiled master cue lists 

for the High and Low categories by extracting all High/Low cues identified in the 

GENIA-MK corpus. These cue lists were also used in the generation of features. A 

brief explanation of each feature set is as follows: 

Syntactic Features  

Syntactic features include the POS of the event-trigger, event-participants and the 

High/Low cues found in the sentence. 

Semantic Features  

These are constructed from the semantic information that is annotated for the bio-

event. They include the semantic type of the bio-event (e.g., Gene Expression, Posi-

tive Regulation, etc.), the semantic type of each participant (e.g., lipid, DNA mole-

cule, etc.) and the role of each participant (e.g., theme and cause, etc.). We have also 

used a complexity feature, which indicates whether a bio-event is simple or complex. 

The latter value means that the event has one or more participants which are bio-

events themselves. 
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Lexical Features  

These include the presence of a High/Low cue in the sentence, the cue itself, the 

presence of a negation indicator and its relative position with respect to the 

High/Low cue, etc. We used regular expressions to identify numeric cues, such as n-

fold and n%.  

Lexico-Semantic Features  

These are constructed using a combination of the “textual” bio-event information 

and information from the sentence containing the bio-event. The textual bio-event 

information includes the text fragment indicating the occurrence of the bio-event 

(i.e., the event-trigger), the text fragments identifying the event participants and the 

text fragments indicating any event attributes like location, etc. The features used 

include the surface distances between the High/Low cue and the event-trigger, par-

ticipants and event-location, whether the High/Low cue is part of the event-trigger, 

and whether the High/Low cue precedes or follows the event-trigger, etc. 

Dependency (Lexico-Syntactic) Features  

These are constructed using the textual bio-event information and the dependency 

relations in the sentence identified by the Enju parser. These features include the 

presence of direct and indirect dependency relations between the High/Low cue pre-

sent in the sentence and the event-trigger and/or event-location, the types of the de-

pendencies and the lengths of the dependency paths. 

Constituency (Lexico-Syntactic) Features  

These are based around the command [158] and scope relations, which are derived 

from the constituency parse tree. We used several command features including the 
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existence of S-, VP- and NP-command relations between the High/Low cue and the 

event-trigger, and/or event-participants. The scope features consider whether the 

event-trigger falls under the syntactic scope of the High/Low cue.  

6.2.2.2 Learning Algorithm 

Given its superior performance in the task of identifying event polarity (chapter 5), 

we decided to build the classifier using the Random Forest [167] algorithm. As pre-

viously explained, this algorithm develops an ensemble/forest of Decision Trees 

from randomly sampled subspaces of the input features. Once the forest has been 

created, new objects are classified by first obtaining individual classifications from 

each tree and then using a majority vote to attain the final classification. The Ran-

dom Forest algorithm has been successfully used for various text mining and bioin-

formatics tasks [168, 169]. We used the WEKA [174] implementation of the Ran-

dom Forest algorithm, which is based on [167]. Our optimisation settings included: 

(1) setting the number of trees in the forest to 10, (2) setting the number of features 

used to build individual trees to log(N+1), where N is the total number of features, 

(3) setting no restrictions on the depth of individual trees. 

6.3 Results and Discussion 

We conducted a series of experiments using different cue lists and feature combina-

tions. All results were 10-fold cross validated. The best results, as shown in Table 

28, were achieved using all feature sets (mentioned in section 6.2), the 50 most fre-

quent High cues and the 25 most frequent Low cues.  

Although reasonable results (71% F-score) were achieved for the Low category, the 

results for the High category were significantly better.  This is partly because the 
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number of training examples available for the High category is 4 times higher than 

those available for the Low category. Moreover, the Low cues are more diverse and 

scattered than the High cues. The best results were achieved for the Neutral catego-

ry. However, this is to be expected, given that the vast majority of training examples 

belong to this category. In order to evaluate the overall classifier performance, we 

calculated the macro and micro averages.  The micro averaged results were signifi-

cantly higher than the macro averaged results. This is because the best classified 

category (Neutral) is also the most abundant by a significant margin.  

Category Precision Recall F-Score 

High 85.1% 77.7% 81.2% 

Low 78.7% 65.4% 71.4% 

Neutral 99.1% 99.4% 99.2% 

Macro Avg 87.6% 80.8% 83.9% 

Micro Avg 98.4% 98.3% 98.3% 

Table 28. Classification Results (10-fold CV) 

As mentioned above, since 95% of all events belong to the Neutral category, a clas-

sifier which assigns the Neutral category to all instances will achieve an accuracy of 

95%. Therefore, this figure provides a natural baseline for measuring the overall 

accuracy of the classification system.  Our classification system achieved an overall 

accuracy of 99.4%, which is significantly higher than the baseline.  

For the High category, the recall is 7% lower than precision. This difference is al-

most double (13%) for the Low category. An error analysis revealed that, for both 

categories, the main factor contributing towards reduced recall was the inability of 
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the system to identify the High/Low cues present in the sentence. As mentioned 

above, cues are mainly identified via High/Low cue lists. Given the ambiguous na-

ture of High/Low cues, the size of these lists introduces a precision-recall trade-off, 

i.e., larger cue lists improve recall at the expense of precision. Thus, the optimum 

results (as shown in Table 1) were achieved using cut-down versions of the master 

cue lists.  The use of shorter cue lists (i.e., the 50 most frequent High cues and the 25 

most frequent Low cues) enhanced the classification performance (F-score) by 5% 

for the High category and by 7% for the Low category. However, it imposed implicit 

upper-limits of 91% and 79% on the recall for the High and Low categories, respec-

tively.  

A significant proportion (23%) of misclassified events belonged to sentences with 

complex syntactic structures, e.g., where the event-trigger and the High/Low cue 

belonged to different clauses. These misclassifications can be partly attributed to 

parsing limitations, especially in terms of identifying complex dependency relations.  

6.4 Conclusion 

We have analysed the problem of the identification of manner in bio-events and have 

presented a machine learning based solution to this problem. We have shown that the 

manner of bio-events can be automatically identified with a high degree of accuracy. 

Our classification system achieves an overall accuracy of over 99% and macro and 

micro averaged F-scores of 84% and 98% respectively. Given the level of accuracy 

achieved by our system, it can be applied to enrich other bio-event corpora with 

manner information automatically. The manner identification system can be inte-

grated with an event extraction system (section 2.2.2). The resulting system will be 

able to extract bio-events with the specified manner type from textual sources. 
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Chapter 7: Knowledge Source of Bio-events 

7.1 Introduction 

In recent years, several annotation schemes, e.g., [102, 103, 110, 185] have been 

developed to identify and classify textual zones (i.e. continuous spans of text, such 

as sentences and clauses) in scientific papers, according to their rhetorical status or 

general information content. In most cases, these corpora have subsequently been 

used as a basis for training systems to recognize this information automatically, e.g. 

[111, 186, 187]. Common to all of these systems is the ability to identify information 

about knowledge source.  That is, whether the text zone refers to new work being 

described in the paper, or refers to work that has already been described elsewhere. 

Such systems can be instrumental in helping users to search for text zones that con-

tain new experimental knowledge. The identification of such information is im-

portant for several tasks in which biologists have to search and review the literature. 

One such example is the maintenance of models of biological processes, such as 

pathways [29]. As new reactions or new evidence for reactions become available in 

the literature, these should be added to the corresponding pathway(s). Another area 

where this information is useful is in the curation of biomedical databases. One of 

the tasks involved in keeping such databases up to date is to search for new evidence 

for a particular interaction (e.g., gene regulation) within the literature [92]. 

In the types of task outlined above, the biologist is likely to be looking for specific 

types of biological processes or reactions, and specific types of information about 

them, e.g., what caused the reaction to occur, where the reaction took place, etc. Text 
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zone classification systems cannot help with this kind of task. However, event ex-

traction systems can be extremely useful in this situation.  

As explained in section 2.3, event extraction systems can facilitate the development 

of sophisticated semantic search systems, e.g., [67], which allow researchers to per-

form structured searches over events extracted from a large body of text [188]. Alt-

hough search constraints can typically be specified in terms of event type (i.e., the 

process or reaction of interest) and/or the types of named entities participating in the 

event, the ability to specify knowledge source as a constraint is not available. Bio-

events are typically contained within a single sentence, and text zone identification 

systems would normally be able to determine knowledge source at the sentence lev-

el. However, events are not the same as text zones. Whilst text zones constitute con-

tinuous spans of text, events usually consist of several discontinuous text spans, con-

sisting of components identifying the event [29]. There are also (usually) several 

events contained within a single sentence. This means that just because a sentence or 

clause may be identifiable as having a particular knowledge source, it does not fol-

low that the events contained within that text zone will all have the same knowledge 

source; each event may have its own interpretation, and determining which events 

are affected by particular textual cues can be complex.  

In the remainder of this chapter, we describe our work on the analysis and automated 

identification of knowledge source information about bio-events, using the GENIA-

MK (abstracts) and FP-MK (full papers) corpora for training and testing. In both 

corpora, each event is ascribed one of two knowledge source values, i.e., Current, 

for events relating to work described in the current paper (default value), or Other, 

for events relating to work originally described elsewhere. Although our previous 
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analysis [18] revealed that there are significant differences in the distributions of the 

different knowledge source values in abstracts and full papers, and that the textual 

means of denoting Other events also varies between abstracts and full papers, our 

system is able to perform to an almost identical level of accuracy on both text types, 

i.e., 99.6% and 99.4%, for abstracts and full papers, respectively.  

7.1.1 Knowledge Source 

As mentioned above, information about knowledge source is an integral part of a 

number of schemes for annotating text zones and their functions. The argumentative 

zoning (AZ) scheme, first introduced in [103], distinguishes sentences that mention 

OWN work presented in the current paper and OTHER specific work presented in 

another paper. Later extensions based on this scheme [102, 189] recognised that dif-

ferent types of information about OWN work can usefully be distinguished, such as 

OWN_METHD (methods) and OWN_RES (results) or OWN_CONC (conclusions). 

Multi-dimensional schemes allow several pieces of information to be associated 

with a given text span, and thus provide more flexibility regarding the types of in-

formation that can be encoded. Several such schemes encode information about 

knowledge source as a separate dimension, e.g., the scheme of [187] includes a nov-

elty attribute (New or Old) that is distinct from their knowledge type attribute (Back-

ground, Method, Conclusion, etc.).  The scheme of [110] identified five dimensions 

of information that could reliably be identified about text fragments (mostly clauses 

or sentences). Their evidence dimension includes information about the source of 

knowledge expressed in the text fragment. It has four possible values, which have 

similarities with some of the evidence codes used during the annotation for the Gene 

Ontology [30]. These values are: E0: no indication of evidence; E1: mention of evi-
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dence with no explicit reference; E2: explicit reference is made to other papers to 

support the assertion; E3: experimental evidence is provided directly in the text. 

In our model of event interpretation [8], information about the knowledge source of 

the event is encoded using the Knowledge Source dimension, which has two possible 

values. The Other value is assigned when the event can be attributed to a previous 

study.  This value is normally determined through the presence of explicit cues, e.g., 

previously, recent studies, etc., or cited papers, in the vicinity of the event.  The 

Current value is assigned when the event makes an assertion that can be attributed 

to the current study. This is the default category, and is assigned in the absence of 

explicit lexical or contextual cues, although explicit cues such as the present study 

may be encountered. Further details and examples can be found in section 3.3.5. 

7.1.2 Annotation of Knowledge Source in GENIA-MK and FP-MK 

Corpora 

As discussed in chapter 4, the GENIA-MK corpus consists of 1,000 MEDLINE ab-

stracts, containing 36,858 events, each of which has been annotated according to our 

meta-knowledge scheme [18]. In this corpus, only 1.5% of all events are assigned a 

Source value of Other. This is not surprising: abstracts are meant to provide a sum-

mary of the work carried out in a given paper and (given the very limited space) 

there is little opportunity to discuss previous work. Indeed, the use of citations is 

often prohibited in abstracts.   

The FP-MK corpus consists of 4 full papers, in which 1,710 events have been anno-

tated according to the same meta-knowledge scheme. In contrast to the GENIA-MK 

corpus, nearly 20% of all events in the FP-MK corpus belong to the Other category.  



CHAPTER 7. KNOWLEDGE SOURCE OF BIO-EVENTS 

 

 209 

Our analysis [18] showed that by far the highest concentration of Other events is in 

the Background sections of the papers, where over 40% of the events are attributed 

to other sources.  This is expected, since it is normally in the Background section 

where one encounters the highest concentration of descriptions of previous work.  

The Discussion sections of the papers also have a high (over 25%) concentration of 

Other events, since it is common to compare and contrast the outcomes of the cur-

rent work with those of previous related studies as part of the discussion. The fre-

quency of Other events in the remaining sections is considerably lower. For exam-

ple, in the Results sections of the papers, less than 7% of events are annotated as 

Other. Further details and a comparison of knowledge source annotation in the 

GENIA-MK and GENIA-FP corpora can be found in chapter 4. 

7.2 Analysis of Other Events 

7.2.1 Cue Frequency 

Table 29 shows the most commonly annotated cue expressions for Source=Other in 

the GENIA-MK (abstracts) and FP-MK (full papers) corpora respectively. For ab-

stracts, cue expressions contain the adverbs previously or recently, or their adjectival 

equivalents. The phrases have been and has been have also been annotated as cues 

with reasonably high frequency, the reason being that the use of the passive voice 

with the present perfect tense (e.g., has been studied) is a common means to indicate 

that an event has previously been completed (e.g., in a previous study), but yet has 

relevance to the current study. 

In contrast to abstracts, the vast majority of cue expressions in full papers corre-

spond to citations. However, similarly to abstracts, the use of past perfect tense is 
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also quite common. Other explicit markers (such as previously and recently) consti-

tute less than 10% of the cue expressions.  

GENIA-MK (abstracts) FP-MK (full papers) 

Cue Freq % Cue Freq % 

previously 118 21.7%  Citation 267 78.3% 

has been 89 16.3%  has been 41 12.0% 

recently 67 12.3%  previously 6 1.8% 

have been 39 7.2%  recently 6 1.8% 

previous 38 7.0%  latter example 4 1.2% 

recent 32 5.9% 
 studies have 

shown 
4 1.2% 

earlier 6 1.1%  we and others 4 1.2% 

Table 29. Most frequently annotated Other cues in GENIA-MK and FP-MK corpora 

7.2.2 Cue Ambiguity 

Similarly to the other meta-knowledge cues, the presence of an Other cue in a sen-

tence is not in itself sufficient evidence for assigning the knowledge source value of 

Other to all events in the sentence. While a sentence contains, on average, 4 bio-

events, the majority of Other cues affect only one event in the sentence, i.e., the 

knowledge source value for the remaining events in the sentence is Current (not 

Other).  Therefore, it is highly important that the syntactic/semantic structure of the 

sentence is considered, in order to determine which, if any, events are being affected 

by the cue. For example, the existence/type of dependency/constituency relations 

between the event participants and any Other cue(s) present in the sentence can be 

considered. 
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Furthermore, some of the Other cues (e.g., the tense of the sentence) are inherently 

ambiguous, and only indicate an Other event in certain contexts. For example, the 

cue expression has/have been is a significant cue for Other events – it accounts for 

over 23% of all Other events in abstracts and 12% of all Other events in full papers. 

However, an analysis of events from the sentences containing the phrase has/have 

been in the GENIA-MK corpus reveals that only 8% of these events are of type Oth-

er. This proportion is even lower (7%) for full papers.  

7.2.3 Event Complexity 

We examined the distribution of events assigned the value Source=Other amongst 

simple and complex events. As explained earlier, by simple event, we mean an 

event whose participants are all entities, whilst a complex event is one with at least 

one participant which is itself an event.  In abstracts, 67% of  Other events are com-

plex. Conversely, 2.26% of complex events are of type Other, while only 0.88% of 

simple events are of type Other. This means that an arbitrary complex event is 2.6 

times more likely than an arbitrary simple event to have knowledge source value of 

Other. 

In full papers, an even greater proportion of Other events (i.e., 72%) is complex. A 

total of 3.32% of complex events are of type Other, while only 0.73% of simple 

events belong to this type. Therefore, in full papers, an arbitrary complex event is 

4.5 times more likely than an arbitrary simple event to have knowledge source value 

of Other.  



CHAPTER 7. KNOWLEDGE SOURCE OF BIO-EVENTS 

 

 212 

7.2.4 Relative Position within Text 

In abstracts, 74% of Other events appear in the 2nd, 3rd or 4th sentence. Further-

more, over 80% of the Other events appear in the first half of the abstract. 

In full papers, the section to which the sentence containing the event belongs is more 

significant than the relative position of the sentence within the paper or even within 

a section. For example, over 60% of all Other events found in full papers occur in 

the Background section.  

7.3 Classifier Design 

Based on the analysis of Other events, we engineered 7 feature sets. We used the 

Enju parser [173] to obtain the lexical and syntactic information required to con-

struct these features. A brief explanation of each feature set is as follows: 

 Syntactic features include the tense of the sentence, the POS tag of the event-

trigger, and the POS tag(s) of Other cue(s) found in the sentence. 

 Semantic features include the type of the bio-event and the type and role of 

each participant. 

 Lexical features include the presence of an Other cue in the sentence and the 

cue itself. We used a combination of cue lists extracted from the two corpora 

and regular expressions to identify Other cues. 

 Lexico-semantic features include the surface distances between the Other cue 

and the event components (event-trigger, event-participants and event-location), 

whether the Other cue precedes or follows the event-trigger, etc. 

 Dependency (lexico-syntactic) features are based around the presence of direct 

and indirect dependency relations between the Other cue present in the sentence 
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and the event-trigger, and the length of these dependency paths. 

 Constituency (lexico-syntactic) features are based around the command [158] 

and scope relations, which are derived from the constituency parse tree. The 

command features consider the existence of S-, VP- and NP-command relations 

between the Other cue and the event-trigger. The scope features consider 

whether the event-trigger falls under the syntactic scope of the Other cue, i.e., 

whether (on the syntactic parse tree) the node representing the event-trigger is a 

descendant of the node representing the Other cue.   

 Positional features include the section in which the sentence containing the 

event appears (for abstracts all events have the same value and this feature be-

comes redundant), and the relative position of the sentence containing the event 

within the entire text and within the section.  

Given its consistent performance in identification of other meta-knowledge dimen-

sions, we used the WEKA [174] implementation of Random Forest [167] algorithm, 

which is based on  [167]. We used the same optimisation settings as for manner de-

tection: (1) setting the number of trees in the forest to 10, (2) setting the number of 

features used to build individual trees to log(N+1), where N is the total number of 

features, (3) setting no restrictions on the depth of individual trees. 

7.4 Results and Discussion 

We conducted a series of experiments using different cue lists and feature set com-

binations. All results were 10-fold cross validated. The best results for abstracts and 

full papers are shown in Table 30. In both cases, the best results were achieved by 

using the 7 most frequent cues and all feature sets. 
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Category 
GENIA-MK (abstracts) FP-MK (full papers) 

Precision Recall F-score Precision Recall F-score 

Current 99.6% 99.8% 99.7% 99.5% 99.2% 99.3% 

Other 83.3% 70.8% 75.6% 81.3% 70.1% 75.3% 

Macro-Average 91.5% 85.3% 88.1% 90.4% 84.7% 87.3% 

Micro-Average 99.4% 99.4% 99.4% 95.9% 93.4% 94.6% 

Table 30. Best results for GENIA-MK and FP-MK 

7.4.1 Abstracts 

In abstracts, only 2% of all events are of type Other; therefore, the baseline accuracy 

(through majority-class allocation) is 98%. Our system achieves an overall accuracy 

of 99.6%, which is considerably higher than this baseline. Recall for the Other cate-

gory is significantly lower than the precision (over 10%). This is mainly due to the 

difficulty in identifying and disambiguating Other cues.  The overall system preci-

sion and recall are both 99.4%.   

7.4.2 Full Papers 

The proportion of Other events in full papers is almost 10 times greater than in ab-

stracts, with just under 20% of all events belonging to the Other category. The base-

line classification accuracy for full papers is thus 80%. Therefore, statistically, iden-

tification of knowledge source in full papers is a harder task than in abstracts. How-

ever, our system achieves a very high overall accuracy of 99.4%. The main differ-

ence between the Other events in abstracts and full papers is the occurrence of ex-

plicit citations as clues. Since our system also includes citation related features, it is 

able to perform equally well on both corpora. 
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Similarly to the results for abstracts, precision for full papers is significantly higher 

than recall. Again, this is mainly due to the difficulty in identifying/disambiguating 

Other clues. This is also reflected in overall system performance as well, where pre-

cision is 2.5% higher than recall. 

7.4.3 Discussion 

These results are the first that concern the detection of knowledge source at the 

event level. However, some comparisons can be drawn with similar previous work at 

the clause, sentence, and zone level. The zone classification system of [186] 

achieved a precision/recall of 51%/30% for their OTHER category and a preci-

sion/recall of 85%/86% for the OWN category at the text zone level. [190] achieved 

an overall F-score of 70% for automatic zone classification, including 

BACKGROUND and OWN zones. The clause classification system reported by 

[111] performed with F-scores of 89%, 57%, 94% and 91% for the E0, E1, E2, and 

E3 classes respectively. [187], whose classification is performed at the sentence lev-

el, achieved an F-score of 64% for their BACKGROUND class; however, they did 

not try to identify the novelty attributes separately. Although we identify knowledge 

source at the event level, which is more challenging than similar tasks at the 

clause/sentence/zone level, our results are significantly higher. This is partly because 

we have cast the problem as a binary classification rather than a multi-category clas-

sification.  

In our system, the most common reason for misclassification was the inability of the 

system to identify Other cues. This accounted for over 52% of the misclassified 

events. A significant proportion (23%) of misclassified events belonged to sentences 

with complex syntactic structures, e.g., where the event-trigger and the Other cue 
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belonged to different clauses. These misclassifications can be partly attributed to 

parsing limitations, especially in terms of identifying complex dependency relations.  

7.5 Conclusion 

The isolation of new experimental knowledge in large volumes of text is important 

for several tasks undertaken by biologists. Although the ability to search for events 

of interest can significantly reduce the biologist’s workload in finding relevant in-

formation, even more time could be saved if it was possible to identify only events 

pertaining to reliable new experimental knowledge. This goal can be achieved 

through the automatic recognition of event meta-knowledge. One of the most crucial 

aspects of identifying new experimental knowledge is to determine the knowledge 

source of the event. We analysed the event-level knowledge source annotations in 

the GENIA-MK corpus (abstracts) and the FP-MK corpus (full papers). This analy-

sis was used to inform the process of designing a system to recognize this infor-

mation automatically. We have shown that the knowledge source of events can be 

recognized to a high degree of accuracy. In abstracts, the overall accuracy is 99.6%, 

with macro and micro averaged F-scores of 88.1% and 99.4%, respectively. The 

baseline accuracy for abstracts is already extremely high (98%), given that there are 

few events in abstracts that refer to previous work. However, a more significant re-

sult is that the performance of the classifier on full papers is almost as high as for 

abstracts, even though the baseline accuracy for full papers (80%) is considerably 

lower than for abstracts. On full papers, the classifier performs with an overall accu-

racy of 99.4%, with macro and micro averaged F-scores of 87.3% and 94.6%, re-

spectively. These results provide encouraging evidence that the knowledge source of 

biomedical events can be predicted very reliably, regardless of text type.   
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Chapter 8: Meta-knowledge based Discourse  

Analysis 

Annotating biomedical text with discourse-level information is a well-studied topic. 

Several research efforts have annotated textual zones (normally sentences or claus-

es) with information about their rhetorical status, whilst other efforts have linked and 

classified sets of text spans according to the type of discourse relation holding be-

tween them. We have investigated a new approach to discourse analysis, which in-

volves annotating both rhetorical intent and other types of information (such as cer-

tainty level and knowledge source) at the level of bio-events. In this chapter, we re-

port on the examination and comparison of transitions and patterns of event meta-

knowledge values that occur in both abstracts and full papers. Our analysis high-

lights a number of specific characteristics of event-level discourse patterns, as well 

as several noticeable differences between the types of patterns that occur in abstracts 

and full papers. 

8.1 Introduction 

The identification of information about the structure of scientific texts has been stud-

ied from several perspectives. One line of previous research has been to classify tex-

tual zones (e.g., sentences or clauses) according to their function in the discourse, 

such as background knowledge, hypotheses, experimental observations, analyses, 

conclusions, etc.  The automatic identification of such information can help in tasks 

such as isolating new knowledge claims in a research paper [191]. Several annota-

tion schemes, e.g., Teufel et al.[186]; Mizuta et al. [102]; Wilbur et al.[110]; de 
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Waard & Pander Maat [192]; Liakata et al. [185], have been developed to classify 

textual zones (i.e., continuous spans of text, such as sentences and clauses) accord-

ing to their rhetorical status or general information content.  Sentences and clauses 

in text are usually not understood in isolation, but rather in relation to other sentenc-

es and clauses [193].  Therefore, for certain tasks, such as automatic summarisation, 

it is important to gain a fuller understanding of how the different types of infor-

mation conveyed in the text are arranged to form a coherent discourse.  This can 

involve analysing the arrangement or progression of different types of textual zones 

within a document. For example, Swales [194] defined a model that describes the 

structure of the introductions to scientific articles, consisting of 3 different fixed 

moves, with a total of 11 possible steps, each of which normally corresponds to a 

sentence or clause. Teufel [186] examined patterns of argumentative zones that oc-

cur in scientific abstracts. 

A further approach to discourse analysis has been to identify sentences and clauses 

that are linked together, in terms of discourse, and to determine how these 

links/relations should be characterised. Several efforts to produce annotated corpora 

or systems to detect discourse structure automatically have been based around the 

Penn TreeBank corpus of open domain news articles [182]. Carlson et al. [195] en-

riched the Penn TreeBank corpus with hierarchically structured discourse trees, 

based on Rhetorical Structure Theory (RST) [196], which uses 78 different discourse 

relations types, falling under categories such as Background, Cause and Compari-

son. Marcu & Echihabi [193] created a system to predict certain classes of discourse 

relations automatically. The Penn Discourse TreeBank (PDTB) [197] added dis-

course relations to the Penn TreeBank, both implicit and explicit, that hold between 
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pairs of text spans. The relations are assigned senses from a hierarchical scheme, 

such as Cause and Condition. The Biomedical Discourse Relation Bank (BioDRB) 

[198] annotates the same types of relations as the PDTB in biomedical research arti-

cles. Discourse analysis approaches based on dependency relations have not been 

restricted to the English language only. Dependency tree banks have also been creat-

ed for several languages including Arabic [199], Chinese [200], and Czech [201]. 

All of the studies above considered sentences or clauses as the units of annotation. In 

contrast, our work is concerned with discourse information at the level of events, 

which are structured representations of pieces of knowledge.  Since there are nor-

mally multiple events in a sentence, the identification of discourse information at the 

event level can allow for a more detailed analysis of discourse elements than is pos-

sible when considering larger units of text, and can allow such constraints to be 

specified as search criteria in event extraction systems.  

As discussed in chapters 3 and 4, our work on annotating discourse at the level of 

events involved defining a customised annotation scheme [8] that encodes various 

aspects of knowledge that can be relevant to discourse. This meta-knowledge anno-

tation scheme has been used to enrich the GENIA event corpus of 1,000 biomedical 

abstracts with 36,858 events [29] to create the GENIA-MK corpus [9] and a corpus 

of 4 full papers pre-annotated with 1,710 GENIA events to create the FP-MK corpus 

[18]. The meta-knowledge annotation scheme can, in some respects, be compared 

roughly to the sentence-based classification schemes introduced above, in that it in-

cludes encoding of specific rhetorical functions. However, it differs in a number of 

ways.  Firstly, the types of rhetorical functions encoded (referred to as Knowledge 

Type) in the meta-knowledge annotation scheme, e.g., fact, observation, analysis, 
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etc., are of a more abstract or high level nature than most of those used at the sen-

tence level, which are often quite strongly tied to structural aspects of the article, 

with labels such as background, experiment, conclusion, etc.  Secondly, further types 

of information that can be relevant to discourse analysis, e.g., certainty level, are 

also annotated for each event. As discussed in chapters 5-7, automatic recognition of 

different types of meta-knowledge for events has been demonstrated to be highly 

feasible [19-21]. 

Since the annotation of information about discourse function at the level of events 

has been shown to be complementary to sentence-based classification schemes [15], 

it is also likely that the same types of information could help to enrich previous ef-

forts to annotate and recognise information about discourse structure and relations 

that use coarser-grained textual units (i.e., sentences and clauses). For example, con-

sidering patterns of discourse information at the event level could provide a more 

detailed account of the types of rhetorical moves that are made in text. In addition, 

considering the types of events that occur within the arguments of different types of 

discourse relations, or indeed annotating discourse relations between events, could 

complement previous efforts. 

In this chapter, we describe our preliminary work on analysing the discourse struc-

ture of biomedical abstracts and full papers at the level of events. To our knowledge, 

this is a novel approach to event-level discourse analysis.  Specifically, we look at 

patterns of transitions between events, in terms of knowledge type and certainty lev-

el, based on the event-level meta-knowledge annotations that are already present in 

the GENIA-MK and FP-MK corpora. Both types of information are relevant to un-

derstanding the structure or flow of discourse within documents. At the sen-
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tence/clause level, it has been found previously that it is not possible to apply a fixed 

model of discourse structure consistently to all scientific texts [186, 202], and hence 

we also do not attempt to apply a fixed model at the level of events. Rather, we ex-

amine patterns of Knowledge Type and Certainty Level values that are assigned to 

sequences of events of various lengths. Firstly, we look at pairs of adjacent events, 

which facilitates an analysis of the local discourse contexts in which events appear. 

Secondly, for the GENIA-MK corpus, we examine the most common transition 

paths in abstracts, i.e., longer patterns of Knowledge Type/Certainty Level values 

that occur when extended chains of events are considered.  

Due to the complexity of analysing the transitions between the values of all 5 meta-

knowledge dimensions, and since not all of the dimensions are directly related to 

discourse structure (e.g., Manner encodes biologically-specific information), we 

consider only the two dimensions of the scheme that appear most relevant to the 

analysis of discourse structure, i.e. Knowledge Type and Certainty Level. Detailed 

descriptions of the meta-knowledge dimensions can be found in chapter 3. However, 

we provide below a brief summary/reminder of the Knowledge Type and Certainty 

Level dimensions:  

Knowledge Type 

This dimension captures the general information content of the event. Each event is 

classified into one of the following six categories: 

 Investigation: Enquiries or investigations, which have either already been con-

ducted or are planned for the future, typically marked by lexical cues like exam-

ined, investigated and studied, etc. 
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 Observation: Direct observations, often represented by lexical cues like found 

and observed, etc. Simple past tense sentences typically also describe observa-

tions. 

 Analysis: Inferences, interpretations, speculations or other types of cognitive 

analysis, typically expressed by lexical cues like suggest, indicate, therefore and 

conclude, etc. 

 Fact: General facts and well established knowledge, typically denoted by pre-

sent tense event-triggers that describe biological processes, and are sometimes 

accompanied by the lexical cue known. 

 Method: Events that describe experimental methods. 

 Other: The default category, assigned to events that either do not fit into one of 

the above categories or do not express complete information. 

Certainty Level 

This dimension is only applicable to events whose Knowledge Type corresponds to 

Analysis. It encodes confidence in the truth of the event. Possible values are as fol-

lows:  

 L3: No expression of uncertainty or speculation (default category). 

 L2: High confidence or slight speculation. Typical markers include suggest and 

indicate.  

 L1: Low confidence or considerable speculation; expressed using markers such 

as may, might and perhaps. 

It is interesting to note that several of the lexical markers listed above have been 

used in psycholinguistic analysis of texts [203, 204]. However, in this case, lexical 
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items are grouped according to different psychological processes, e.g. SENSES 

(sense-related) and SOCIAL (social interaction). Guerini et al. [204] carried out a 

psycholinguistic analysis of scientific articles, and found that several lexical markers 

provided above can be used to determine the “virality” of scientific articles, i.e., how 

the language used within them affects how likely they are to be downloaded or 

bookmarked. The psycholinguistic classification of lexical items is different from 

the meta-knowledge classification shown above. For example, the psycholinguistic 

SENSES category contains verbs that denote different Knowledge Type categories, 

i.e., Observation and Analysis. Thus, the exact choice of certain lexical items in a 

paper may be motivated both in order to convey the right type of meta-knowledge 

and to ensure that the paper is as “viral” as possible.  

The remainder of this chapter is structured as follows. In section 8.2, we look at the 

different types of transitions, both pairwise and paths, that occur in the abstracts of 

GENIA-MK corpus. In section 8.3, we examine the pairwise transitions in the full 

papers of the FP-MK corpus. Since there are sometimes significant differences in the 

distributions of meta-knowledge that occur in the different sections of full papers 

[18], the analysis of transitions in full papers is carried out in a section-wise manner.     

  

8.2 Analysis of Meta-Knowledge Transitions in Abstracts 

In this section we present a brief analysis of the meta-knowledge transitions ob-

served in the GENIA-MK corpus of biomedical abstracts. We begin by examining 

patterns of individual, pair-wise transitions and then move on to look at transition 

paths (i.e., abstract level transition patterns). 
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8.2.1 Knowledge Type 

8.2.1.1 Pair-wise Transitions 

Figures 19-23 provide a summary of the pair-wise transitions from and to adjacent 

events in the GENIA-MK corpus, according to Knowledge Type categories. The blue 

lines represent the transitions from the category in focus (i.e., the category in the 

centre of the diagram), while the red lines indicate the transitions to that category. 

Similarly, the light blue boxes show the relative frequencies of each type of transi-

tion from the category, while the light red boxes show the relative frequencies of 

each type of transition to the category.  The dotted lines represent reflexive transi-

tions, i.e., cases where the Knowledge Type category of the adjacent event is the 

same as the event in focus. Transitions between all adjacent pairs of events are taken 

into account, i.e., not only those occurring within the boundaries of a sentence.  

 

Figure 18. Transitions from / to Knowledge Type category Observation for Abstracts 

(Abs), Full Papers (FP), and the different sections within full papers, i.e., Back-

ground (Back), Results (Res), and Discussion (Disc) 
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Figure 19. Transitions from / to Knowledge Type category Analysis for Abstracts 

(Abs), Full Papers (FP), and the different sections within full papers, i.e., Back-

ground (Back), Results (Res), and Discussion (Disc) 

 

Figure 20. Transitions from / to Knowledge Type category Investigation for Abstracts 

(Abs), Full Papers (FP), and the different sections within full papers, i.e., Back-

ground (Back), Results (Res), and Discussion (Disc) 
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Figure 21. Transitions from / to Knowledge Type category Fact for Abstracts (Abs), 

Full Papers (FP), and the different sections within full papers, i.e., Background 

(Back), Results (Res), and Discussion (Disc) 

 

Figure 22. Transitions from / to Knowledge Type category Method for Abstracts 

(Abs), Full Papers (FP), and the different sections within full papers, i.e., Back-

ground (Back), Results (Res), and Discussion (Disc) 
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Observation 

This is a highly reflexive category, with 80% of the transitions from Observation 

events leading to another Observation event; similarly 83% of all transitions to an 

Observation event originate from another Observation event. In terms of non-

reflexive transitions, 12% of transitions originating from Observation events lead to 

Analysis events. This is because observations are often used as premises for analyti-

cal and hypothetical conclusions. Conversely, most of the non-reflexive transitions 

leading to Observation events start from Analysis events. This is probably because 

arguments presented in an abstract are often linked, i.e., the conclusion of an argu-

ment can be used as the premise of the next argument. A small but noticeable pro-

portion (5%) of transitions starting from Observation events lead to Investigation 

events. However, in most cases, these observations are attributed to previous studies 

(as determined by the Source dimension of the meta-knowledge annotation scheme). 

That is, in these cases, a previous observation has been used as a premise for a new 

investigation. 

Analysis 

This is also a highly reflexive category, with 70% of the transitions from Analysis 

events leading to another Analysis event and 62% of transitions to Analysis events 

originating from other Analysis events. In terms of non-reflexive transitions, 18% of 

transitions from Analysis events lead to Observation events (possible reasons have 

been discussed above). Similarly, a significant proportion (23%) of transitions that 

lead to Analysis events start from Observation events. Transitions from Analysis 

events to events describing facts are very infrequent (1%). Conversely, 9% of all 

transitions leading to Analysis events originate from Fact events. This is because the 
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current state-of-the-art knowledge is sometimes analysed in order to situate or justify 

the study that is reported in a paper. Further evidence for this type of pattern is that a 

similar proportion (8%) of transitions starting from Analysis events lead to events 

describing investigations, i.e., in cases where background knowledge is stated and 

then analysed, it is usual that the next step is to use the results of the analysis as a 

basis for introducing the investigation to be carried out during the current study.   

Investigation 

This is a relatively less reflexive category, with only 50% of transitions from Inves-

tigation events leading to other Investigation events, and 62% of all transitions to 

Investigation events originating from other Investigation events. This is probably 

because the structure of abstracts is often such that only the main investigation is 

discussed at the beginning of the abstract, followed by observations and analyses. 

This argument is further supported by the fact that a significant number of transi-

tions from Investigation events lead to either Observation (26%) or Analysis (15%) 

events.  

Fact 

This is also a less reflexive category: 63% of all transitions from Fact events lead to 

other Fact events, and vice versa. Events describing facts are often followed by 

events describing analyses (19%), mainly due to the reasons described in the Analy-

sis section above. In some cases, facts serve as direct premises for investigations 

(10%). Less frequently, facts are directly followed by observations (6%).     
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Method 

Only 33% of transitions from/to method events are reflexive. This is mainly be-

cause, in abstracts, authors tend to mention the methods used in their work only 

briefly (if at all). Since it is a natural progression for authors to move from the de-

scription of methods to the description of experimental results achieved according to 

the application of these methods, this explains why the highest proportion of transi-

tions from Method events (44%) lead to Observation events. However, since the re-

porting of experimental outcomes or conclusions is of vital importance in abstracts, 

it is sometimes the case that observations themselves will be omitted, and authors 

will move straight from describing methods to analysing their findings. This goes 

towards explaining why 15% of Method events are directly followed by Analysis 

events. Most of the non-reflexive transitions that lead to Method events originate 

from Observation (36%). This can be explained by the fact that authors frequently 

present findings from previous studies in order to set the scene for introducing their 

own experimental methods. A significant percentage of transitions to Method events 

are from Analysis events (16%). There are a number of possible reasons for this. In 

some cases, an analysis of previous findings may be necessary in order to correctly 

justify the author’s own methods. In other cases, authors may complete their discus-

sion of one set of experiments and then move on to introducing a further set of 

methods.  

Expected Values for Random Transitions 

Considering the distribution of Knowledge Type categories in the GENIA-MK cor-

pus (section 4.3), there is a 35% probability that the destination of a random transi-

tion will be an event with the Knowledge Type category of Observation. The next 
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most likely destination is an Analysis event. However, the probability of this transi-

tion is only 18%. Similarly, the probabilities of random transitions to the remaining 

Knowledge Type categories are even lower: 8% for Fact, 5% for Investigation and 

3% for Method. These values indicate that the reflexivity of all Knowledge Type cat-

egories is much higher than what would be expected by chance. Therefore, there is a 

strong likelihood that two contiguous events will belong to the same Knowledge 

Type category. This information could be potentially useful for automatic identifica-

tion of Knowledge Type categories.  

The frequencies of observed transitions from Observation to Fact and from Analysis 

to Fact are significantly lower than what would be expected by chance. The fre-

quencies of transitions from Investigation to Fact and from Method to Fact are also 

slightly less than the expected frequencies. This is mainly because the Fact events 

are almost eight times more reflexive than what would be expected by chance. 

Moreover, a majority of abstracts start with a Fact event. This is further explained in 

the following section.  

8.2.1.2 Abstract Level Patterns 

We examined the Knowledge Type values of the first and last event in each abstract 

in the GENIA-MK corpus.  The results of this analysis are summarised in Table 31. 

In the majority of cases, authors begin by stating known facts as a scene-setting de-

vice for introducing their own work. The use of Knowledge Type categories other 

than Fact at the start of abstracts is considerably less frequent, with Analysis and 

Observation being the next most common categories. Analysis of the Source dimen-

sion of these event types reveals that they often pertain to previous studies, indicat-

ing that a discussion of previous findings is a common way to start the abstract. 
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Sometimes, scene-setting steps are missed out altogether, and the abstract launches 

directly into an explanation of the investigation to be undertaken. In very rare cases, 

even subject of investigation is missing, and the abstract gets straight down to the 

business of explaining the experimental setup and methodology.  

Knowledge Type  

Category 

Abstracts Starting 

With 

Abstracts Ending 

With 

Observation 10% 15% 

Analysis 23% 78% 

Investigation 9% 4% 

Fact 54% 1% 

Method 4% 2% 

Table 31. Relative frequencies of abstracts starting and ending with events of each 

Knowledge Type category 

 

Transition Pattern %  in Abstracts  

Fact → Analysis → Observation → … → Analysis 14% 

Fact → Investigation → Observation → … → Analysis 10% 

Fact → Observation → … → Analysis 8% 

Analysis → Observation → … → Analysis 7% 

Analysis → Fact → Observation → … → Analysis 6% 

Analysis → Investigation → Observation → … → Analysis 4% 

Table 32. Key transition patterns for Knowledge Type values in abstracts and their 

frequencies 
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In the vast majority of cases, authors end their abstracts with an Analysis event, pre-

senting a summary or interpretation of the most important findings of the experi-

ments undertaken. However, there is a significant proportion of cases (15%) in 

which the abstract ends with an Observation event. This can happen when a signifi-

cant experimental observation has occurred during the current study. Very occasion-

ally, the abstracts end by presenting an investigative topic or method that the authors 

have identified for further exploration. 

Although extended transition patterns of Knowledge Type values vary significantly 

in biomedical abstracts, we were able to identify several general patterns that occur 

with noticeable frequencies.  Table 32 shows some of these transition patterns, along 

with the percentage of abstracts in which these patterns manifest themselves. Almost 

a quarter of all abstracts start with known facts, followed by analyses of previous 

work or a description of the investigation to be carried out in the current study; this 

is in turn followed by a description of experimental observations, and the abstract 

ends with an analysis of these observations. Interestingly, over 8% of the abstracts 

exhibit a simplified variant of this pattern, where the second transition to Analysis or 

Investigation is omitted and a direct link is made between the previously known 

facts and the (new) observations made by the authors. A possible explanation of this 

could be the need for brevity resulting from the fact that abstract size constraints 

vary between biomedical journals. A significant number of abstracts follow a slight-

ly different Knowledge Type transition pattern. They start with an analysis of previ-

ous studies, followed by observations from the current study, and end with an analy-

sis of findings. Variants of this pattern, which include a transition to a Fact, to help 
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to contextualise the analyses of previous studies, or present an Investigation between 

the first Analysis and Observation events, are also found in 10% of abstracts.   

The above patterns suggest that while most biomedical abstracts loosely follow the 

Creating A Research Space (CARS) model proposed by Swales [194], a significant 

proportion of abstracts skip the first step  of “establishing a territory”, and assume 

that the reader is already familiar with the context. This could be partly due to the 

specialised nature of many biomedical journals.  

8.2.2 Certainty Level  

8.2.2.1 Pair-wise Transitions 

Figures 24-26 summarise the pair-wise transitions from and to adjacent events in 

the GENIA-MK corpus, according to the Certainty Level category assigned to them. 

Similarly to figures above, the blue lines represent the transitions from the category 

in focus (i.e., the category in the centre of the diagram), while the red lines indicate 

the transitions to that category. 

L3 

This is a highly reflexive category, partly due to its high frequency of occurrence –

92% of events in the GENIA-MK corpus are expressed with the highest/default cer-

tainty level. In terms of non-reflexive transitions, 6% of transitions from L3 events 

lead to L2 events, and only 1% to L1 events. As explained earlier, most abstracts 

start with a brief mention of previous knowledge (observations, analyses or facts), 

followed by a summary of investigations and the resulting observations, and con-

clude with analyses of experimental findings, which are often hedged. 
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Figure 23. Transitions from / to Certainty Level category L3 for Abstracts (Abs), 

Full Papers (FP), and the different sections within full papers, i.e., Background 

(Back), Results (Res), and Discussion (Disc) 

 

Figure 24. Transitions from / to Certainty Level category L2 for Abstracts (Abs), 

Full Papers (FP), and the different sections within full papers, i.e., Background 

(Back), Results (Res), and Discussion (Disc) 
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Figure 25. Transitions from / to Certainty Level category L1 for Abstracts (Abs), 

Full Papers (FP), and the different sections within full papers, i.e., Background 

(Back), Results (Res), and Discussion (Disc) 

L2 

This is the least reflexive category, partly due to the fairly small number of L2 

events in the corpus as a whole. Also, since authors do not want to throw too much 

doubt on their findings, they are likely to avoid long chains of speculated events. 

This would also explain why a significant proportion (40%) of transitions from L2 

events leads back to L3 events. This pattern occurs mostly in cases where, having 

described a set of observations (mostly L3 events) and the corresponding analyses 

(probably L2 events), the authors proceed to describe a different set of observations. 

Interestingly, 6% of transitions from L2 events lead to L1 events. These are mostly 

the cases where slightly hedged analyses are followed by bolder (highly speculative) 

extensions and corollaries.   
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L1 

For similar reasons to L2, this is also a less reflexive category. Although a significant 

proportion of transitions from L1 events lead to L3 (34%) and L2 (6%) events, the 

volumes of L1 events are so small (less than 1% of all events) that they only account 

for around 1% of all transitions to L3 and L2. 

Expected Values for Random Transitions 

The probability of a random transition to an L3 event is 92%. The similar probabili-

ties for L2 and L1 events are 6% and 2%, respectively. This indicates that the reflex-

ivity values of L2 and L1 are many magnitudes higher than the corresponding ex-

pected values. Furthermore, the frequency of observed transitions from L2 to L1 is 

three times higher than the expected value. Similarly, the frequency of observed 

transitions from L1 to L2 is twice the expected value. This shows that the likelihood 

of an event being speculative significantly increases if the previous event is also 

speculative. This information is potentially very useful for automated identification 

of speculated events.  

8.2.2.2 Abstract Level Patterns 

We examined the Certainty Level values of the first and last event in each abstract in 

the GENIA-MK corpus.  The results of this analysis are summarised in Table 33. As 

mentioned earlier, almost all abstracts start with either known facts, or previous ob-

servations, analyses, or investigations, i.e., events expressed with absolute certainty 

of occurrence (L3). However, although most abstracts end with analyses, authors 

will usually aim to have as much impact as possible at the end of abstract, so that 

readers are encouraged to look further into the main body of the text. Thus, if the 
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authors are sufficiently confident about the conclusions they have drawn about their 

experimental results, they will be stated without any degree of hedging. Due to the 

desire of authors not to hedge more than necessary (especially in abstracts), most 

hedged events that occur at the end of abstracts are only slightly hedged. A smaller, 

but still important percentage of terminal events are marked as highly speculative, as 

sometimes authors want to make a large impact by presenting possible analyses 

which, while highly speculative, are also highly innovative or controversial.  

Certainty Level 

Category 

Abstracts Start-

ing With 

Abstracts End-

ing With 

L1 0% 19% 

L2 1% 36% 

L3 99% 45% 

Table 33. Relative frequencies of abstracts starting and ending with events of each 

Certainty Level category 

We observed that 28% of abstracts contain no speculated events, which reinforces 

the claim that authors will only introduce uncertainty into abstracts where absolutely 

necessary.  Of the remaining abstracts, a significant majority (58%) include the fol-

lowing transition pattern: L3 → L2. These are the cases where authors deploy slight 

hedging on the analyses of their findings. Sometimes, this pattern is repeated 2 or 3 

times, mostly when abstracts report on multiple sets of observations, each followed 

by its corresponding analysis. We also observed that a small proportion of abstracts 

(5%) contain the following transition pattern: L3 → L2 → L1. As mentioned earlier, 

these are the cases where slightly hedged analyses are followed by bolder analyses, 

predictions or hypotheses, which can be a useful tool in helping to pique the reader’s 
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curiosity.  Interestingly, we also discovered that a significant proportion of abstracts 

(14%) contain the following transition pattern: L3 → L1, i.e., observations and con-

fident analyses are followed directly by highly speculated analyses or hypotheses. 

8.3 Analysis of Meta-Knowledge Transitions in Full Papers 

In this section we present a brief analysis of the meta-knowledge transitions ob-

served in the FP-MK corpus.  We have analysed the transitions from one Knowledge 

Type/Certainty Level category to another in each of three main sections: Back-

ground, Results, and Discussion.  

8.3.1 Knowledge Type 

Figures 19-23 (above) show the summary of pair-wise transitions from and to adja-

cent events in the FP-MK corpus, according to Knowledge Type categories. They 

include separate statistics for each of the main sections in full papers (i.e., Back-

ground, Results, and Discussion), as well as for the papers as a whole. 

Observation 

Overall distributions of transitions from and to Observation events in full papers are 

similar to those in abstracts. However, the reflexivity of Observation events is slight-

ly less in full papers than in abstracts. This is partly because of the greater numbers 

of links between observations and analyses in full papers. The proportion of transi-

tions from Observation events to Analysis events is significantly higher in full pa-

pers than in abstracts. This is because full papers contain many more observations, 

most of which are subsequently further analysed. This kind of linking between ob-

servations and analyses is particularly frequent in the Results and Discussion sec-

tions of full papers. Full papers contain slightly fewer transitions from Observation 
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to Investigation. This is mainly because the relative frequency of Investigation 

events is considerably lower in full papers than in abstracts.  

Analysis 

Full papers contain significantly more transitions from Analysis to Fact events, es-

pecially in Background and Discussion sections. This is because the stringent size 

constraints imposed for abstracts are relaxed for the body of full papers, and thus 

authors have greater opportunity to relate their work to the state-of-the-art in their 

domain. The overall reflexivity of Analysis events is slightly less in full papers than 

in abstracts. This is despite the fact that the overall relative frequency of Analysis 

events in full papers is higher than in abstracts. This can be explained by the more 

complex interweaving of analytical statements with observations or facts that is of-

ten found in full papers.  The transitions from Analysis to Observation are much 

higher in full papers than in abstracts. This can again be explained by the more com-

plex patterns of discourse shifts that occur in full papers, where multiple observa-

tions are introduced and analysed, in order to guide and convince the reader of the 

final conclusions that are drawn. Such patterns have particularly high frequency in 

the Results and Discussion sections of papers. Finally, full papers contain signifi-

cantly fewer transitions from Analysis to Investigation. This is mainly because In-

vestigation events rarely occur in some sections of full papers, whereas many ab-

stracts contain a small number of Investigation events. 

Investigation 

Overall reflexivity of Investigation events in full papers is significantly less than in 

abstracts. As mentioned earlier, this is due to a lower relative frequency of Investiga-

tion events in full papers. Full papers contain significantly higher numbers of transi-
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tions from Investigation events to Method events. Interestingly, almost all of these 

transitions are in the Results sections. This is probably due to the need to explain 

how particular aspects of the investigation were carried out by applying particular 

experimental methods. A similar percentage of transitions can be observed between 

Method and Observation events in the Results sections, showing that the next step is 

often to describe how the use of the method led to particular experimental observa-

tions. Full papers contain fewer transitions from Investigation events to Fact events 

than abstracts, once again due to the lower relative frequency of Investigation events 

in full papers. Full papers also contain slightly more transitions from Investigation 

events to Analysis events, especially in Discussion sections, where a direct link is 

made between the investigations undertaken and the findings resulting from them. 

Fact 

Overall distributions are similar to abstracts, with one minor difference: full papers 

contain more transitions from Fact to Method, especially in Background and Discus-

sion sections. This is mainly because sometimes, authors make a direct link between 

background facts and the experimental methods used, omitting the intermediary link 

to investigations. This is especially the case when authors have already mentioned 

the investigations earlier in the text. 

Method 

We found no significant differences in the distribution of Method events in full pa-

pers and abstracts. This is partly due to the scarcity of Method events (in both 

GENIA-MK and FP-MK corpora) caused by the definition of bio-event used to an-

notate these corpora. As mentioned earlier, according to this definition, bio-events 
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are “dynamic bio-relations”. Most mentions of experimental methods do not consti-

tute dynamic relations, and hence are not annotated as events in these corpora.   

8.3.2 Certainty Level  

Figures 24-26 (above) show the summary of pair-wise transitions from and to adja-

cent events in the FP-MK corpus, according to Certainty Level categories. They in-

clude separate statistics for each of the main sections in full papers (i.e., Back-

ground, Results, and Discussion), as well as for the papers as a whole. 

L3 

The distributions of transitions from/to L3 events in full papers are similar to those 

in abstracts, except for one main difference: Full papers contain slightly more transi-

tions from L3 to L2 events. This is probably due to the more detailed analytical dis-

cussion often found in full papers. Moreover, in the longer text of the body of the 

paper, authors tend to express more speculation than in abstracts. This is because, 

unlike in abstracts, where the main aim of authors is to try to sell the results of their 

research, the body of the paper provides much greater opportunity for analysis and 

discussion. Indeed, it would seem highly unusual if authors did not specify any un-

certainty whilst analysing their results. The percentage of L3 to L2 transitions is 

highest in the Results sections of the full papers. Authors may thus be confident 

about some of their results, but not so confident about others. The percentage of 

these transitions drops in the Discussion section, suggesting that authors take a more 

confident tone in analysing their most definite results, in order to convince the read-

er of the reliability of their conclusions.  
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L2 

Full papers contain slightly more transitions from L2 to L3 events. This is mainly 

due to the more frequent occurrence of contiguous observation-analysis transitions. 

Full papers contain significantly fewer transitions from L2 to L1 events. As men-

tioned above, such transitions are often made in abstracts for increased effect or im-

pact, in order to grab the attention of the reader. It thus seems reasonable that fewer 

such transitions would occur in the body of the paper. If too many bold or controver-

sial statements are made, readers may question the integrity of the study.  

L1 

Overall reflexivity of L1 events is much lower in full papers than in abstracts. Alt-

hough the relative frequency of L1 events is higher in full papers than in abstracts, 

they are more thinly spread out in full papers. The greater the number of highly 

speculative events that occur in sequence, the more wary the reader is likely to be-

come. Thus, L1 events occur sporadically and are usually interspersed with more 

confident events to lessen their potentially negative impact.  According to the previ-

ous observation, full papers contain a greater number of transitions from L1 events 

to L2 and L3 events than abstracts. 

8.4 Conclusion 

We have investigated discourse patterns that occur in biomedical abstracts and full 

papers. In contrast to previous work on discourse structure, our analysis was con-

ducted at the level of bio-events. Additionally, we have considered not only dis-

course/rhetorical functions (i.e., Knowledge Type) but also the certainty level. We 

used the GENIA-MK corpus of abstracts and the FP-MK corpus of full papers, both 
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containing meta-knowledge enriched event annotations, as the source of our anal-

yses. We examined a number of different types of discourse patterns. For both ab-

stracts and full papers, we considered patterns of pairwise transitions between 

events, considering Knowledge Type and Certainty Level separately. We explained 

probable reasons for our findings, and compared the results obtained for abstracts 

and full papers, revealing that there are a number of subtle and significant differ-

ences in the patterns of local discourse-level shifts that are observed within them. 

For abstracts, we additionally considered the complete transition paths (from the 

beginning of an abstract to its end) for Knowledge Type and Certainty Level values. 

This analysis showed that whilst there are some clear patterns of Knowledge Type 

and Certainty Level transitions in abstracts, these are by no means standard. Fur-

thermore, we discovered that while most biomedical abstracts follow a generic mod-

el of rhetoric/information moves, authors often skip certain moves, assuming that the 

reader is already familiar with the context.  
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Chapter 9: Conclusion 

In this chapter, we evaluate the progress against research objectives and hypotheses 

established at the beginning of the project. We also discuss the main areas of future 

work. 

9.1 Evaluation of Research Objectives and Hypotheses 

As discussed in section 1.2, four specific research objectives were established at the 

beginning of the project. The end-of-project evaluation of these objectives and hy-

potheses is as follows: 

9.1.1 Objective # 1 

O1 To develop an annotation scheme for capturing the information neces-

sary for the correct interpretation of bio-events 

Evaluation 

We achieved this objective by developing the event-level meta-knowledge annota-

tion scheme for capturing the necessary information required for the correct interpre-

tation of bio-events. We also developed detailed annotation guidelines.  

Peer Review and Verification 

The initial proposal for the annotation scheme was presented at the Seventh Interna-

tional Conference on Language Resources and Evaluation (LREC 2010) [8].  We 

made minor modifications to the annotation scheme based on further analysis and 

feedback from reviewers and peers. The updated annotation scheme was evaluated 

through a case study. The results were presented at the ACL Workshop on Negation 
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and Speculation in Natural Language Processing (NeSp-NLP 2010) [13]. The final 

version of the annotation scheme was presented at the CLARIN/DARIAH Workshop 

on Automated Motif Discovery in Cultural Heritage and Scientific Communication 

Texts (AMICUS 2010) [14, 17].  

9.1.2 Objective # 2 

O2 To develop manually annotated corpora of bio-events with the required 

interpretative information 

Evaluation 

We achieved this objective by developing two manually annotated corpora of bio-

events enriched with meta-knowledge information, i.e., the GENIA-MK and FP-MK 

corpora. We trained two independent annotators from different backgrounds (one 

biology expert and one linguistics expert) to perform meta-knowledge annotations. 

The GENIA-MK corpus was created by adding meta-knowledge annotations to bio-

events in the GENIA Event corpus, which comprises 1,000 biomedical abstracts 

containing 36,858 bio-events. The FP-MK corpus was created by adding meta-

knowledge annotations to the bio-events in 4 full papers from the BioNLP’11 ST 

corpus, which contains 1,710 bio-events.  

Peer Review and Verification 

The results of the annotation project to enrich the GENIA Event corpus with meta-

knowledge information (i.e., the creation of GENIA-MK corpus) were published in 

the journal BMC Bioinformatics [9]. The results of the annotation project to create 

the FP-MK corpus and the comparison of meta-knowledge annotations in abstracts 
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and full papers were presented at the Third LREC Workshop on Building and Evalu-

ating Resources for Biomedical Text Mining  (BioTxtM 2012) [18]. 

9.1.3 Objective # 3 

O3 To develop automated systems for enriching bio-events with the required 

interpretative information 

Evaluation 

We achieved this objective by developing automated systems for identification of 

three meta-knowledge dimensions, i.e., polarity, manner and knowledge source.  All 

three systems achieved high precision, recall and F-scores.  

Peer Review and Verification 

The results of our research work on the analysis and identification of bio-event po-

larity were published in the journal BMC Bioinformatics [19]. The automated sys-

tem for the identification of event manner was presented at the Eighth International 

Conference on Language Resources and Evaluation (LREC 2012) [20]. The results 

of our work on the analysis and identification on knowledge source in bio-events 

were presented at the 14th International Conference on Intelligent Text Processing 

and Computational Linguistics (CICLing 2013) [21].  

9.1.4 Evaluation of Research Hypotheses 

As stated in section 1.2, this research project had two main hypotheses: 

H1 Discrete information about event interpretation can be identified – Meta-

knowledge annotation can be performed at the event level 
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H2 The above information can be automatically extracted – Meta-

knowledge can be extracted automatically 

Evaluation 

Through successful completion of the research objectives (above), we have proved 

that both of the above hypotheses are true. 

9.2 Future Work 

The main avenues of future work are as follows: 

9.2.1 Meta-knowledge Annotation for Other Domains 

The identification and extraction of events can be important in many different do-

mains of academic and business analysis. However, the exact nature and definition 

of the events to be recognised will be specific to the domain. For most types of texts, 

the recognition of meta-knowledge will be a relevant sub-task of the event extraction 

process, since the textual context of events will always affect their interpretation, no 

matter what domain is being considered.  Although we designed our meta-

knowledge annotation scheme with a particular focus on the biomedical domain, the 

scheme is general enough to be suitable for application to other domains with some 

modifications.  

Fellow researchers at the National Centre for Text Mining (NaCTeM) are currently 

investigating the feasibility of applying our meta-knowledge annotation scheme in 

the ISHER project
4
, which aims to enhance search over digitised social history re-

sources, through text mining-based rich semantic metadata extraction for collection 

                                                 
4
 http://www.nactem.ac.uk/DID-ISHER/ 
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indexing, clustering and classification, thus supporting semantic search. This seman-

tic metadata includes both named entities and events. The Automatic Content Evalu-

ation (ACE) 2005 corpus [24] is being used as part of the training data. This corpus 

contains socio-political events, such as Conflict (indicated by verbs like attack, 

demonstrate, etc.) and Justice (indicated by verbs like arrest, jail, sentence, fine, 

etc.).  

The research work will involve enriching relevant events in the corpus with meta-

knowledge annotation. Preliminary results have shown that three of the original me-

ta-knowledge dimensions are directly applicable to ACE i.e., Polarity, Source and 

Certainty Level, as these dimensions and their values represent general characteris-

tics of all text types. Manner is not relevant to the social history domain but 

Knowledge Type is, although a different set of values may be required for each dif-

ferent domain, given that our current set of values are based on the types of infor-

mation present in scientific research papers. 

9.2.2 Meta-knowledge Extraction 

As mentioned earlier, meta-knowledge extraction modules can be added to the state-

of-the-art event extraction systems. This will allow the creation of more sophisticat-

ed systems that will be able to retrieve events with specified values of meta-

knowledge. Such systems will allow researchers to carry out much more focussed 

searches over large bodies of text. The users of such systems will be able to retrieve 

documents containing events of a specified type, with specified participants, and 

also with specified values of meta-knowledge.  For example, a user will be able to 

formulate a query to retrieve all documents containing negated (polarity) instances 
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of intense (manner) Positive Regulation (event type) of p21ras proteins (theme) by 

IL-2 (cause) mentioned as a tentative (certainty level) analysis (knowledge type). 

9.2.3 Discourse Analysis 

The initial results (chapter 8) from investigations into event-based discourse analysis 

of scientific texts are encouraging. The scope of this investigation can be broadened 

by incorporating more varied types of bio-events and the remaining meta-knowledge 

dimensions (i.e., Polarity, Knowledge Source and Manner). The meta-knowledge 

transition patterns within each section of full papers should also be investigated. Fur-

thermore, with the help of the BioDRB corpus, an investigation can be launched into 

whether there are correlations between particular types of discourse relations and the 

meta-knowledge values of the events that occur within the argument text spans of 

these relations. This could provide additional features to improve the accuracy of 

systems designed to recognise discourse relations automatically.  Finally, a further 

line of enquiry is the investigation of event-level discourse analysis in other 

knowledge / research domains, such as social history. 
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