79 research outputs found

    Statistical strategies for pruning all the uninteresting association rules

    Get PDF
    We propose a general framework to describe formally the problem of capturing the intensity of implication for association rules through statistical metrics. In this framework we present properties that influence the interestingness of a rule, analyze the conditions that lead a measure to perform a perfect prune at a time, and define a final proper order to sort the surviving rules. We will discuss why none of the currently employed measures can capture objective interestingness, and just the combination of some of them, in a multi-step fashion, can be reliable. In contrast, we propose a new simple modification of the Pearson coefficient that will meet all the necessary requirements. We statistically infer the convenient cut-off threshold for this new metric by empirically describing its distribution function through simulation. Final experiments serve to show the ability of our proposal.Postprint (published version

    Pattern mining under different conditions

    Get PDF
    New requirements and demands on pattern mining arise in modern applications, which cannot be fulfilled using conventional methods. For example, in scientific research, scientists are more interested in unknown knowledge, which usually hides in significant but not frequent patterns. However, existing itemset mining algorithms are designed for very frequent patterns. Furthermore, scientists need to repeat an experiment many times to ensure reproducibility. A series of datasets are generated at once, waiting for clustering, which can contain an unknown number of clusters with various densities and shapes. Using existing clustering algorithms is time-consuming because parameter tuning is necessary for each dataset. Many scientific datasets are extremely noisy. They contain considerably more noises than in-cluster data points. Most existing clustering algorithms can only handle noises up to a moderate level. Temporal pattern mining is also important in scientific research. Existing temporal pattern mining algorithms only consider pointbased events. However, most activities in the real-world are interval-based with a starting and an ending timestamp. This thesis developed novel pattern mining algorithms for various data mining tasks under different conditions. The first part of this thesis investigates the problem of mining less frequent itemsets in transactional datasets. In contrast to existing frequent itemset mining algorithms, this part focus on itemsets that occurred not that frequent. Algorithms NIIMiner, RaCloMiner, and LSCMiner are proposed to identify such kind of itemsets efficiently. NIIMiner utilizes the negative itemset tree to extract all patterns that occurred less than a given support threshold in a top-down depth-first manner. RaCloMiner combines existing bottom-up frequent itemset mining algorithms with a top-down itemset mining algorithm to achieve a better performance in mining less frequent patterns. LSCMiner investigates the problem of mining less frequent closed patterns. The second part of this thesis studied the problem of interval-based temporal pattern mining in the stream environment. Interval-based temporal patterns are sequential patterns in which each event is aligned with a starting and ending temporal information. The ability to handle interval-based events and stream data is lacking in existing approaches. A novel intervalbased temporal pattern mining algorithm for stream data is described in this part. The last part of this thesis studies new problems in clustering on numeric datasets. The first problem tackled in this part is shape alternation adaptivity in clustering. In applications such as scientific data analysis, scientists need to deal with a series of datasets generated from one experiment. Cluster sizes and shapes are different in those datasets. A kNN density-based clustering algorithm, kadaClus, is proposed to provide the shape alternation adaptability so that users do not need to tune parameters for each dataset. The second problem studied in this part is clustering in an extremely noisy dataset. Many real-world datasets contain considerably more noises than in-cluster data points. A novel clustering algorithm, kenClus, is proposed to identify clusters in arbitrary shapes from extremely noisy datasets. Both clustering algorithms are kNN-based, which only require one parameter k. In each part, the efficiency and effectiveness of the presented techniques are thoroughly analyzed. Intensive experiments on synthetic and real-world datasets are conducted to show the benefits of the proposed algorithms over conventional approaches

    An experiment with association rules and classification: post-bagging and conviction

    Get PDF
    In this paper we study a new technique we call post-bagging, which consists in resampling parts of a classification model rather then the data. We do this with a particular kind of model: large sets of classification association rules, and in combination with ordinary best rule and weighted voting approaches. We empirically evaluate the effects of the technique in terms of classification accuracy. We also discuss the predictive power of different metrics used for association rule mining, such as confidence, lift, conviction and X². We conclude that, for the described experimental conditions, post-bagging improves classification results and that the best metric is conviction.Programa de Financiamento Plurianual de Unidades de I & D.Comunidade Europeia (CE). Fundo Europeu de Desenvolvimento Regional (FEDER).Fundação para a Ciência e a Tecnologia (FCT) - POSI/SRI/39630/2001/Class Project

    Profiling relational data: a survey

    Get PDF
    Profiling data to determine metadata about a given dataset is an important and frequent activity of any IT professional and researcher and is necessary for various use-cases. It encompasses a vast array of methods to examine datasets and produce metadata. Among the simpler results are statistics, such as the number of null values and distinct values in a column, its data type, or the most frequent patterns of its data values. Metadata that are more difficult to compute involve multiple columns, namely correlations, unique column combinations, functional dependencies, and inclusion dependencies. Further techniques detect conditional properties of the dataset at hand. This survey provides a classification of data profiling tasks and comprehensively reviews the state of the art for each class. In addition, we review data profiling tools and systems from research and industry. We conclude with an outlook on the future of data profiling beyond traditional profiling tasks and beyond relational databases

    A Safety Support System for Children\u27s Antiloss

    Get PDF
    In the recent past, crimes against children and the number of the missing children have been stayed at high. It is a tragic disaster for a family if their child is missing. Feeling safe about their children is very important for the parents. Therefore, there is an urgent requirement for safety support systems to prevent crimes against children and for anti-loss, particularly when the children are on their own, such as on the ways to and from schools. Thanks to the highly development of telecommunication and mobile technologies, preventive devices such as child ID kits, family trackers have come to light. However, they haven\u27t been impressive solutions yet as they only track current positions of the children and lack of intimations for the parents when their children are under potential dangers. In this thesis, a data mining framework is introduced, in which secure areas and secure paths of the children are learned based on their location histories. When the system predicts the children to be potentially unsafe (e.g., in a strange area or on a strange route), automatic reports will be sent to their parents. Furthermore, an indoor positioning method utilizing Bluetooth is also proposed. Based on the android platform, a prototype of the application for both children and parents is developed incorporating with the proposed techniques in this thesis

    A survey of frequent subgraph mining algorithms

    Get PDF

    Discovery of hidden correlations in a local transaction database based on differences of correlations

    Get PDF
    Abstract. Given a transaction database as a global set of transactions and its sub-database regarded as a local one, we consider a pair of itemsets whose degrees of correlations are higher in the local database than in the global one. If they show high correlation in the local database, they are detectable by some search methods of previous studies. On the other hand, there exist another kind of paired itemsets such that they are not regarded as characteristic and cannot be found by the methods of previous studies but that their degrees of correlations become drastically higher by the conditioning to the local database. We pay much attention to the latter kind of paired itemsets, as such pairs of itemsets can be an implicit and hidden evidence showing that something particular to the local database occurs even though they are not yet realized as characteristic ones. From this viewpoint, we measure paired itemsets by a difference of two correlations before and after the conditioning to the local database, and define a notion of DC pairs whose degrees of differences of correlations are high. As the measure is non-monotonic, we present an algorithm, searching for DC pairs, with some new pruning rules for cutting off hopeless itemsets. We show by an experimental result that potentially significant DC pairs can be actually found for a given database and the algorithm successfully detects such DC pairs

    Review of Recommender Systems Algorithms Utilized in Social Networks based e-Learning Systems & Neutrosophic System

    Get PDF
    In this paper, we present a review of different recommender system algorithms that are utilized in social networks based e-Learning systems. Future research will include our proposed our e-Learning system that utilizes Recommender System and Social Network. Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache in [21, 22, 23] and Salama et al. in [24-66].The purpose of this paper is to utilize a neutrosophic set to analyze social networks data conducted through learning activities

    Comparison of different algorithms for exploting the hidden trends in data sources

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2003Includes bibliographical references (leaves: 92-97)Text in English; Abstract: Turkish and English97 leavesThe growth of large-scale transactional databases, time-series databases and other kinds of databases has been giving rise to the development of several efficient algorithms that cope with the computationally expensive task of association rule mining.In this study, different algorithms, Apriori, FP-tree and CHARM, for exploiting the hidden trends such as frequent itemsets, frequent patterns, closed frequent itemsets respectively, were discussed and their performances were evaluated. The perfomances of the algorithms were measured at different support levels, and the algorithms were tested on different data sets (on both synthetic and real data sets). The algorihms were compared according to their, data preparation performances, mining performance, run time performances and knowledge extraction capabilities.The Apriori algorithm is the most prevalent algorithm of association rule mining which makes multiple passes over the database aiming at finding the set of frequent itemsets for each level. The FP-Tree algorithm is a scalable algorithm which finds the crucial information as regards the complete set of prefix paths, conditional pattern bases and frequent patterns by using a compact FP-Tree based mining method. The CHARM is a novel algorithm which brings remarkable improvements over existing association rule mining algorithms by proving the fact that mining the set of closed frequent itemsets is adequate instead of mining the set of all frequent itemsets.Related to our experimental results, we conclude that the Apriori algorithm demonstrates a good performance on sparse data sets. The Fp-tree algorithm extracts less association in comparison to Apriori, however it is completelty a feasable solution that facilitates mining dense data sets at low support levels. On the other hand, the CHARM algorithm is an appropriate algorithm for mining closed frequent itemsets (a substantial portion of frequent itemsets) on both sparse and dense data sets even at low levels of support
    corecore