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Abstract. Given a transaction database as a global set of transactions
and its sub-database regarded as a local one, we consider a pair of item-
sets whose degrees of correlations are higher in the local database than
in the global one. If they show high correlation in the local database,
they are detectable by some search methods of previous studies. On the
other hand, there exist another kind of paired itemsets such that they
are not regarded as characteristic and cannot be found by the methods
of previous studies but that their degrees of correlations become dras-
tically higher by the conditioning to the local database. We pay much
attention to the latter kind of paired itemsets, as such pairs of itemsets
can be an implicit and hidden evidence showing that something partic-
ular to the local database occurs even though they are not yet realized
as characteristic ones. From this viewpoint, we measure paired itemsets
by a difference of two correlations before and after the conditioning to
the local database, and define a notion of DC pairs whose degrees of
differences of correlations are high. As the measure is non-monotonic,
we present an algorithm, searching for DC pairs, with some new prun-
ing rules for cutting off hopeless itemsets. We show by an experimental
result that potentially significant DC pairs can be actually found for a
given database and the algorithm successfully detects such DC pairs.

1 Introduction

In the studies of data mining from transaction databases, many studies have been
paying much attention to finding itemsets with high supports, paired itemsets
appeared in association rules with high confidence [1], or paired itemsets with
strong correlation [6–9]. These notions are considered useful for distinguishing
characteristic itemsets from other ones in a single transaction database. A sim-
ilar strategy based on the notion of change of supports, known as Emerging
Patterns [2, 3], is successful even for finding itemsets characterizing either of
two databases. All of the notions about itemsets are thus proposed to extract
(paired) itemsets required to be characteristic in a given database or either of a
given pair of databases.
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However, as has been indicated in the study of Chance Discovery [10], some
itemsets not characteristic in the above sense are also useful, as they are poten-
tially significant under some condition. For instance, suppose we have a transac-
tion database for supermarkets in a particular area and the database includes the
information of ages of customers and goods on sale as items. We here consider
the problem of capturing some correlations between some ages and some goods
in the database. We regard the correlations as an interest of customers of some
ages in some goods. For example, consider a case that degrees of the correlations
are not high in a particular area but are very low in a global area including the
particular area. The correlation cannnot be found by search methods of previous
studies because the degrees of the correlations are not high in both global and
particular areas. However, there is a possibility that the customers of the ages
are interested in the goods in the particular area more than in the global area
by some factor even if the correlations in the particular area are not regarded
as characteristic. It may be worth remarking this specific phenomenon as an im-
plicit and hidden evidence in order to consider a new strategy for sale. Moreover,
consider a case that the database includes the information of time as item. In
the particular area, we can find characteristic correlations with high degree of
correlation in time t1 or t2 after t1 by search methods of previous studies. But
we may want to know an implicit correlation which may become a characteristic
correlation in t3 after t2. In short, we want to know customers of some ages start
to be interested in some goods. In the case, non-characteristic correlations in t2
with high degrees of differences of correlations from t1 to t2 may be useful.

From the viewpoints mentioned in the above, for a given global database
and its local database obtained by a certain conditioning, the purpose of this
paper is to present an algorithm for finding pairs of itemsets such that (1) the
paired itemsets are not necessarily characteristic, where we say that two itemsets
are characteristic in a database if the correlation between them is high, (2) the
degrees of correlation become much higher in the local database than ones in
the global database. That is, we are going to observe the degrees of difference of
correlations before and after the conditioning to the local database. Such a pair
of itemsets with high degrees of difference of correlations is called a DC pair. We
confirm by an experiment that potentially significant DC pairs can be actually
found for a given database.

It is generally a hard problem to find DC pairs, as the degrees of difference of
correlations are never monotonic w.r.t. the standard ordering of itemsets, namely
the set inclusion. For this reason, we consider a restricted problem under given
two parameters, ζ and ε. More precisely speaking, we evaluate the degrees of
difference of correlations by a function defined with ζ and ε and restrict DC
pairs we try to find. Then, we prove that a monotone property over itemsets
can be observed in the mining of DC pairs depending on ζ or ε. Based on this
monotonic property, we can design some pruning rules for cutting off hopeless
itemsets X and Y not satisfying the constraints of DC pairs.



1.1 Related Works and Paper Organization

There exist many works in the field of data mining that are based on a strategy
of contrasting two or more databases in order to extract significant properties or
patterns from a huge data set. Particularly, data mining techniques, known as
contrast-set mining [2–5], have been designed specifically to identify differences
between databases to be contrasted.

For instance, in the study of Emerging Patterns [2, 3] for two transaction
databases, itemsets whose supports are significantly higher in one database than
in another one are considered significant, as they can be candidate patterns for
distinguishing the former from the latter. A similar strategy is also used in the
system STUCCO [4] in order to obtain characteristic itemsets in one database
based on χ2 test. In addition, the system, Magnum Opus [5], examines relations
between itemsets and a database among several databases. On the other hand,
what this paper tries to find are paired itemsets whose correlations drastically
increase in one database. Thus we can say that the subject of this paper is a
kind of ”contrast-set mining of correlations between itemsets”.

Secondly, many methodologies have been proposed to detect characteristic
correlations in a single database [6–8]. In these studies, using some function mea-
suring the degree of correlation between itemsets, strongly correlated itemsets
in a given database or in one database from given two databases are examined.
Thus, these methods are also used to discover itemsets or family of itemsets that
are characteristic in one database. On the other hand, the algorithm presented
in this paper is designed so as to find even paired itemsets whose correlation in
one database is not significantly high but is significantly higher than correlation
in another database. Our algorithm may find the characteristic paired itemsets
as special cases, but is never supposed to find only characteristic ones. To find
these paired itemsets, we present in this paper some new pruning rules so that
the algorithm successfully detects even non-characteristic paired itemsets.

Finally, several notions about correlations have been proposed and used in the
above previous studies from information theoretic or statistical viewpoints, then
we describe our standpoint that we use a measure to evaluate correlations. If we
need to consider even negative events that itemsets do not appear in transactions,
the notion of correlations based on χ2-test shall be taken into account. But this
paper is based on the notion of self mutual information without taking log to
measure positive relationships between events that itemsets occur.

The rest of this paper is organized as follows. The next section defines some
terminologies used throughout this paper. In Section 3, we introduce the notion
of DC pairs and define our problem of mining DC pairs. An algorithm for finding
DC pairs is described in Section 4. Section 5 presents our experimental results.
In the final section, we summarize our study and discuss future work.

2 Preliminaries

Let I = {i1, i2, · · · , in} be a set of items. An itemset is a subset of I. A
transaction databaseD is a set of transactions, where a transaction is an itemset.



We say that a transaction t contains an itemset X, if X ⊆ t. For a transaction
database D and an itemset X, the occurrence of X over D, denoted by O(X,D),
is defined as O(X,D) = {t|t ∈ D ∧ X ⊆ t}, and the probability of X over D,
denoted by P (X), is defined as P (X) = |O(X,D)|/|D|.

For an itemset C, a sub-database of D w.r.t. C, denoted by DC , is defined as
the set of transactions containing C in D, that is, DC = O(C,D). The comple-
ment of DC w.r.t. D is denoted by DC and is defined as DC = D −DC .

For itemsets X and Y , the correlation between X and Y over a transaction
database D, correl(X, Y ), is defined as correl(X, Y ) = P (X ∪ Y )/P (X)P (Y ).
For a sub-databaseDC , the correlation between X and Y overDC , correlC(X, Y ),
is given by correlC(X,Y ) = P (X ∪ Y |C)/P (X|C)P (Y |C), where P (X|C) =
P (X ∪ C)/P (C). Note here that correlations are defined for only itemsets X
whose supports in D and DC are non-zero. We regard a pair of X and Y such
that correl(X, Y ) > 1 as characteristic since P (X|Y ) > P (X) holds. Notice that
P (Y |X) > P (Y ) holds, too. Similarly, we regard a pair of X and Y such that
correl(X, Y ) ≤ 1 as non-characteristic.

3 DC Pair Mining Problem

In this section, we define a notion of DC pairs and our problem of mining them.
For a pair of itemsets X and Y , we especially focus on “difference of corre-

lations observed by conditioning to the local database”. The difference of corre-
lations is measured by the following ratio:

change(X, Y ;C) =
correlC(X,Y )
correl(X, Y )

=
P (C)P (C|X ∪ Y )
P (C|X)P (C|Y )

. (1)

Let ρ(> 1) be an admissible degree of difference of correlations. In our framework,
a pair of itemsets X and Y is considered significant if change(X, Y ; C) ≥ ρ
holds. Since we assume C is given by users, P (C) can be regarded as a constant.
Therefore, the change is actually evaluated with the following function g:

g(X,Y ; C) =
P (C|X ∪ Y )

P (C|X)P (C|Y )
. (2)

A pair of itemsets X and Y is called a DC pair if g(X, Y ; C) ≥ ρ/P (C). We
try to find all DC pairs efficiently. It should be noted here that the function g
behaves non-monotonically according to expansion of itemsets X and Y . So we
cannot apply a simple pruning method like one Apriori adopted [1]. Therefore,
we approximate the above problem according to the following naive strategy:

Find pairs of X and Y which give higher values of P (C|X ∪Y ), keeping
the values of P (C|X) and P (C|Y ) small.

With a new parameter ζ (0 ≤ ζ ≤ 1), our approximated problem is precisely
defined as follows:
Definition 1. DC Pairs Mining Problem
Let C be an itemset for conditioning. Given ρ and ζ, DC pair mining problem



is to find any pairs of X and Y such that P (C|X ∪ Y ) > ζ, P (C|X) < ε and
P (C|Y ) < ε, where ε =

√
ζ · P (C)/ρ.

4 Algorithm for Finding DC Pairs

In this section, we present an algorithm to solve the DC pair mining problem.
In Section 3, by using parameters ζ and ε, we restrict DC pairs we try to find.
But, P (C|Z) behaves non-monotonically according to expansion of an itemset
Z as well as g. This means that there is a possibility that we have to examine
all itemsets in database since a simple pruning method cannot be used. Then,
we prove some pruning rules by considering the problem of mining DC pairs
in top-down manner. Therefore, in this paper, we explain an algorithm which
candidates Z for compound itemsets of DC pairs such that P (C|Z) > ζ are
found at first in top-down manner. In order to examine itemsets in top-down
manner, we firstly enumerate maximal itemsets in the local database DC because
P (Z|C) > 0 must hold. After all, the computation for mining DC pairs is divided
into two phases:

Phase1: Identifying Candidates for Compound Itemsets
An itemset Z such that P (C|Z) > ζ is identified as a candidate itemset from
which DC pairs X and Y are obtained as Z = X ∪ Y .

Phase2: Dividing Compound Itemsets
Each candidate Z is divided into two itemsets X and Y such that Z = X∪Y ,
P (C|X) < ε and P (C|Y ) < ε.

In the algorithm, there is a case that some candidate Z may not be decom-
posable. Therefore, we consider checking the possibility for Z to be divided into
some DC pair. Then, we first describe a basic enumeration schema, and then
introduce more refined one taking the decomposability into account.

4.1 Pruning Search Branches by Dropping Items

For each maximal itemset Zmax found in DC , we first examine Zmax, then its
proper subsets are examined, and so on. During this search, we can prune useless
branches (itemsets) based on the following observation.

Let Z be an itemset containing an item i. Suppose that there exists a
subset Z ′ of Z such that i ∈ Z ′ ⊂ Z and P (C|Z ′) > ζ. Since P (C|Z ′) =
P (C)P (Z ′|C)/P (Z ′) > ζ, P (Z ′|C) > ζ ·P (Z ′)/P (C) holds. Therefore, P (i|C) ≥
P (Z ′|C) > ζ · P (Z ′)/P (C) ≥ ζ · P (Z)/P (C). As the result, we have P (C ∪ i) >
ζ · P (Z). This means that if P (C ∪ i) ≤ ζ · P (Z) holds, then we cannot obtain
any subset Z ′ of Z containing i such that P (C|Z ′) > ζ. That is, assuming Z as
a search node in Phase1, if P (C ∪ i) ≤ ζ · P (Z) holds, any immediate subset of
Z containing i does not have to be examined. Therefore, we can safely drop i
from Z.
Dropping Items:
For a search node (itemset) Z and an item i ∈ Z, if P (C ∪ i) ≤ ζ · P (Z), any



subset Z ′ containing i never be a child node of Z in our top-down construction
process. In other words, any child node consists of only items in Z that are not
dropped.

As a special case, if any item i ∈ Z is dropped, we do not need to examine
any subset of Z.
Termination Condition :
For a search node (itemset) Z, if max{P (C ∪ i)|i ∈ Z}/ζ ≤ P (Z) holds, then Z
does not have to be expanded further.

The termination condition provides a theoretical lower bound of our search
in Phase1. Since i ∈ Z and P (Z|C) > 0, then P (i|C) > 0 holds. Therefore, we
can obtain the following
Lower Bound of Search in Phase1 :
If a search node Z is visited in Phase1, then P (Z) ≤ maxpζ , where maxpζ =
max{P (C∪i)|P (i|C) > 0}. In other words, any search node Z whose probability
exceeds maxpζ never be generated in Phase1.

4.2 Pruning Search Branches Based on Decomposability

The pruning mechanism just discussed above can become more powerful by
taking some constraint in Phase2 into account. More concretely speaking, we
can perform the operation of “Dropping Items” more frequently.

In Phase2, each candidate Z found in Phase1 is divided into two itemsets X
and Y such that P (C|X) < ε and P (C|Y ) < ε. Similar to the above discussion,
for any i ∈ X ∪ Y (= Z), P (C ∪Z) < ε · P (i) holds. Therefore, if there exists an
item i ∈ Z such that P (C ∪ Z) ≥ ε · P (i), Z cannot be divided into two parts
satisfying the constraint on ε. In other words, such an item i never be a member
of adequate two parts. Therefore, i can be dropped from Z. Thus, we can obtain
a revised operation on search nodes which is more powerful.
Dropping Items (Revised):
For a search node Z and an item i ∈ Z, if P (C ∪ i) ≤ ζ · P (Z) or P (i) ≤
P (C ∪ Z)/ε, i can be dropped from Z.

According to it, a new termination condition and a new theoretical lower
bound is given as follows:
Termination Condition (Revised):
For a search node Z, if max{P (C ∪ i)|i ∈ Z}/ζ ≤ P (Z) or max{P (i)|i ∈ Z} ≤
P (C ∪ Z)/ε, then Z does not have to be expanded further.
Lower Bound of Search in Phase1 (Revised):
If a search node Z is visited in Phase1, then P (Z) ≤ maxpζ and P (C ∪ Z) ≤
ε ·maxpε holds, where maxpε = max{P (i)|P (i|C) > 0}.

4.3 Another Termination Condition in Phase1

In this section, we show another lower bound in Phase1 by taking the complement
DC = D −DC into account. We expect this lower bound stop expanding search
nodes before Dropping Items start to work.



Suppose a DC pair of X and Y is obtained from an itemset Z, that is, Z =
X∪Y . Then, P (C|Z) = |O(Z,DC)|/(|O(Z,DC)|+|O(Z,DC)|) > ζ and P (C|X) =
|O(X,DC)|/(|O(X,DC)| + |O(X,DC)|) < ε. Then it follows that |O(Z,DC)| >

ζ
1−ζ |O(Z,DC)| and |O(X,DC)| < ε

1−ε |O(X,DC)|. Therefore, ζ
1−ζ |O(Z,DC)| <

|O(Z,DC)| ≤ |O(X,DC)| < ε
1−ε |O(X,DC)|. As a result, we have |O(Z,DC)| <

k(ζ, ε)|O(X,DC)|, where k(ζ, ε) = (1−ζ)ε
ζ(1−ε) . Furthermore, as |O(Z,DC)| ≤ |DC | ≤

|D|, we have |O(Z,DC)| < k(ζ, ε)|D|. Conversely, if |O(Z,DC)| ≥ k(ζ, ε)|D|, it
follows that Z as well as any subset Z ′ of Z is never decomposable to obtain DC
pairs, as |O(Z ′,DC)| ≥ |O(Z,DC)|.
Termination Condition based on Complement
If |O(Z,DC)|/|D| ≥ k(ζ, ε), Z does not need to be expanded further.

In the top-down mining process of DC pairs, we firstly check the above ter-
mination condition for the present itemset Z. If the condition does not hold,
then we make the next node Z ′ with the help of the rule of dropping items.

4.4 Dividing Compound Itemsets

In Phase 2, we divide a candidate compound itemset Z into itemsets X and Y
such that Z = X ∪ Y , X ∩ Y = ∅, P (C|X) < ε, and P (C|Y ) < ε. For this
purpose, we consider a lattice of itemsets with Z as its greatest itemset, and
enumerate X ⊂ Z in a bottom-up manner, from a singleton itemset to Z, with
the following pruning rule.
Dropping Items in Phase 2:
For a search node (itemset) X and an item i ∈ X, if P (C ∪Z) ≤ εP (i∪X), any
superset of X containing i does not need to be expanded further.

The above rule is exactly dual to the rule of Dropping Items in Phase1, and
is therefore similarly proved and utilized for cutting off useless branches to next
nodes including items that can be dropped.

5 An Experiment

In this section, we present some experimental results on the mining of DC pairs.
The main purpose of experiments is to confirm that potentially significant DC
pairs can be actually found for a given database.

5.1 Datasets and Implementation

At first, we explain a database we use in our experiment. We carried out the ex-
periments on Entree Chicago Recommendation Data, a family of databases from
the UCI KDD Archive (http://kdd.ics.uci.edu). It consists of eight databases
each of which contains restaurant features in a region, e.g. Atlanta, Los Angeles,
New Orleans and so on in the USA. To examine DC pairs given a particular
region to be compared with the whole regions, we consider a new item working
as a name for each region, and assign it to every transaction of the corresponding



database. By this operation, we have an integrated database of 4160 transactions
and 265 items. The items represent various restaurant features as ”Italian”, ”ro-
mantic”, ”parking” and so on. Given the integrated database, we have developed
a system written in C for finding DC pairs. All experiments are conducted on
1.5 GHz PentiumIV PC with 896 MB memory.

As we have already explained in Section 4, our top-down search procedure
enumerates compound itemsets Z such that P (C|Z) > ζ, starting from maximal
itemsets in DC and using the pruning rules based on Dropping Items (Revised)
and two Termination Conditions.

We carried out a preliminary experiment before the experiment at first. So, we
can know our pruning rules are difficult to work well when the size of an itemset
examined is long. We describe the reason in 5.2. Therefore, let the purpose of the
experiment be to confirm that potentially significant DC pairs can be actually
found for a given database and the algorithm successfully detects such DC pairs
and to examine a performance of our pruning rules when the size of an itemset
examined is short. Moreover, based on the result of the experiment, we examine
a possibility of an efficient search of DC pairs.

For the above purpose, we here assume that our search procedure starts from
itemsets of shorter length than maximal itemsets in DC . More precisely speaking,
instead of maximal itemsets in DC , we introduce a family of itemsets such that
(1) the lengths are no more than a given size parameter (6 in our experiment)
and that (2) they are maximal among all itemsets having non-zero support and
satisfying (1), where the order to define the maximality is also based on the set
inclusion.

5.2 Experimental Results

Our experimental results are summarized in Figure 1, where ρ is the ratio of
correlC(X, Y ) to correl(X, Y ), ζ is a parameter in our search strategy, and
|Nfull| is the number of itemsets in DC whose sizes are no more than the size
parameter. ρ, ζ and size parameter are set for the values 3.0, 0.4 and 6, respec-
tively in our experiment. |Ndrop| is the number of itemsets actually examined in
Phase1, |P (C|Z) > ζ| denotes the number of itemsets Z such that P (C|Z) > ζ
in DC whose sizes are no more than 6, |DC| is the number of detected DC
pairs. Finally, |DCNotCor| is the number of DC pairs of itemsets whose degree
of correlation is less than or equal to 1.

There exist various kinds of DC pairs in the experimental data. For instance,
in New Orleans, a DC pair X = {Entertainment, Quirky, Up and Coming} and
Y = {$ 15-$ 30, Private Parties, Spanish} is found. The pair shows high degree
of difference of correlations by conditioning to New Orleans. But since the pair
shows very high degree of correlation as a result of its conditioning, the pair can
be found by search methods of previous studies. Also, in many cases, such DC
pairs show high degrees of correlations in global database in the experiment. In
short, such DC pairs may not be worth paying attention to by especially condi-
tioning to New Orleans. On the other hand, there exists a pair X = {Quirky}
and Y = {Good Decor, Italian, $15-$30, Good Service} in DC pairs in New



Orleans. The pair is not correlated in both global database and local database.
Therefore, the pair cannot be found by search methods of previous studies. But
the pair shows high degree of difference of correlations by conditioning to New
Orleans. In short, the pair shows not high degree of correlation in New Orleans,
on the other hand, the pair shows very low degree of correlation in a global
database. We pay much attention to such DC pairs. We consider such DC pairs
can be useful in some cases. For instance, people who look for a restaurant in
New Orleans may be interested in a ”quirky Italian restaurant” which is a hidden
feature in New Orleans in contrast with a ”quirky Spanish restaurant” which is a
significant feature in both global and local database because there may be some
factor of its high degrees of difference of correlations even if the pair doesn’t
show high degree of correlation. As we described the above, it is shown that po-
tentially significant DC pairs can be actually found for the given database and
our algorithm detects such DC pairs. In addition, various potentially significant
DC pairs are found in the experimental data.

As is shown in Figure 1, the number of compound itemsets examined is
certainly reduced by the pruning rules in Section 4. Every pruning rule we have
presented is theoretically safe in the sense that they cut off some branches only
when it is proved that no solution can be reached through the branches. However,
the degree of reduction does not seem sufficient to improve the efficiency. We
consider the causes as follows.

The first cause is a low chance that our pruning rules can be applied to
itemsets examined in our search. By a simple operation of our pruning rules,
there is a possibility that we can turn out that many itemsets don’t have to be
examined. But our pruning rules cannot reduce so many itemsets examined in
the experiment because there are not many opportunities that our pruning rules
can be applied to the itemsets. So, we analyze a property of our pruning rules.
And we can know our pruning rules are difficult to work well when a difference
between a probability of an itemset Z and a probability of an item i ∈ Z is large
in a global or a local database. Note here that, in a sparse data which is often
used in data mining, many itemsets whose size is long have a low probability
and the difference is large in many cases. This is the cause that our pruning rules
are difficult to be applied to the itemsets whose size is long. Therefore, in order
to solve the problem and increase the chance of our pruning, we have to weaken
conditions of our pruning rules and modify a procedure in our search.

The second cause is the large number of an itemset Z such that P (C|Z) >
ζ in the experimental data. In Fig. 1, in Atlanta, it seems that our pruning
rules cannot reduce only 100 thousands itemsets out of one million and 920
thousands all itemsets. But there are one million and 570 thousands itemsets
Z such that P (C|Z) > ζ which we find in step 1. Therefore, there are only
350 thousands itemsets which don’t have to be examined in Step 1. Notice here
that, in Los Angeles, the number of itemsets actually examined is less than the
number of itemsets Z such that P (C|Z) > ζ. This phenomenon is influenced by
decomposability of DC pair described in 4.2. Then, by taking decomposability
of DC pairs into account more, there is a possibility that itemsets examined can



ρ = 3.0, ζ = 0.4

region sup(C) ε |Nfull| |Ndrop| |P (C|Z) > ζ| |DC| |DCNotCor|
Atlanta 0.064 0.0922 1922264 1826678 1575575 112877 269

Los Angeles 0.107 0.118 1857501 1760522 1769705 30404 97

New Orleans 0.079 0.102 1120224 1071306 1027241 39158 55

San Francisco 0.100 0.114 2154595 2113443 1735822 134520 312

Fig. 1. Experimental Results

be reduced. We describe the prosperity of the above problems in Concluding
Remarks.

6 Concluding Remarks

Given a transaction database D and its sub-database DC , we proposed the notion
of DC pairs. A pair of itemsets X and Y is called a DC pair if the correlation
between X and Y in DC is relatively high to one in the original D with some
degree. It should be noted that the correlation is not always high in DC even
though we can observe some degree of correlation change for D and DC . In this
sense, such a pair might not be characteristic in DC . Thus, DC pairs are regarded
as potential characteristics in the sub-database. Our experimental results showed
that DC pairs which are potentially significant can be actually found for “Entree
Chicago Recommendation Data” under conditioning by each region. On the
other hand, it is turned out that our pruning rules have to be more powerful
before we apply our algorithm to a problem in a real life. Then, in order to search
DC pairs efficiently, we have some prosperities as follows.

At first, we try to weaken conditions of our pruning rules and modify a
procedure. In the experiment, we can know our pruning rules are difficult to
work well when a difference between P (Z) and P (i) or P (C ∪ Z) and P (C ∪ i)
(i ∈ Z) is large. Conversely, if the difference is small, our pruning rules can work
well. So, in order to increase an opportunity of our pruning, a set of itemset
whose probability is almost same can be useful. In order to make use of the
set of itemsets, we have to weaken conditions of pruning rules. In short, for an
itemset Z, our pruning rules need to be applied to itemsets Z ′ ⊂ Z not items
i ∈ Z. Moreover, in order to use the weaken rules, we have to modify a search
procedure. Next, we try to take advantage of decomposability of DC pairs more.
In 4.2, if an itemset Z examined doesn’t contain X(i ∈ X ⊂ Z) such that
P (C|X) < ε, we drop an item i ∈ Z from Z because Z ′(i ∈ Z ′ ⊂ Z) cannot
be divided into two itemsets X and Y such that P (C|X) < ε and P (C|Y ) < ε.
Notice here that we can make use of the decomposability more. Briefly speaking,
a DC pair is a pair of itemsets X and Y . Therefore, if X cannot hold P (C|X) < ε
or Y cannot hold P (C|Y ) < ε, a pair of X and Y is not a DC pair. In addition,
when an itemset Z is divided into two itemsets X and Y (Z = X∪Y,X∩Y = ∅),
X or Y contains an item i ∈ Z necessarily. In short, Z cannot be divided into a



DC pair if X(i ∈ X ⊂ Z) cannot hold P (C|X) < ε. In a preliminary experiment,
by taking the new decomposability into account, there is a possibility that the
number of itemsets examined may become no more than the half number without
using the new decomposability. We are trying to tackle the above problems.

Finally, we discuss our future work. As we described in Introduction, we
consider our frame work can be applied to time series data. In this paper, we
pay attention to a difference of correlation observed by conditioning to the local
database. Based on the notion of the DC pair, if we pay attention to a difference
of correlation from time t1 to t2 after t1, our algorithm can be applied to time
series data easily although we have to take the information particular to time
series data into account. In this problem, characteristic correlation in t1 or t2 can
be found by using search methods of previous studies. But there may be a case
that we want to know an implicit correlation that may become characteristic in
t3 after t2 although we have to consider an interval between t1 and t2 seriously.
We can find such a correlation by capturing a difference of correlations from t1
to t2. We are considering the application of the notion of the DC pair to time
series data.
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