View metadata, citation and similar papers at core.ac.uk

The VLDB Journal (2015) 24:557-581
DOI 10.1007/s00778-015-0389-y

P
brought to you by .. CORE

rg
‘ ’ CrossMark
e

REGULAR PAPER

Profiling relational data: a survey

Ziawasch Abedjan! - Lukasz Golab? - Felix Naumann®

Received: 1 August 2014 / Revised: 5 May 2015 / Accepted: 13 May 2015 / Published online: 2 June 2015

© Springer-Verlag Berlin Heidelberg 2015

Abstract Profiling data to determine metadata about a
given dataset is an important and frequent activity of any
IT professional and researcher and is necessary for vari-
ous use-cases. It encompasses a vast array of methods to
examine datasets and produce metadata. Among the simpler
results are statistics, such as the number of null values and
distinct values in a column, its data type, or the most frequent
patterns of its data values. Metadata that are more difficult
to compute involve multiple columns, namely correlations,
unique column combinations, functional dependencies, and
inclusion dependencies. Further techniques detect condi-
tional properties of the dataset at hand. This survey provides
a classification of data profiling tasks and comprehensively
reviews the state of the art for each class. In addition, we
review data profiling tools and systems from research and
industry. We conclude with an outlook on the future of data
profiling beyond traditional profiling tasks and beyond rela-
tional databases.

B Felix Naumann
felix.naumann @hpi.de

Ziawasch Abedjan
abedjan @csail.mit.edu

Lukasz Golab

Igolab@uwaterloo.ca
I MIT CSAIL, Cambridge, MA, USA
University of Waterloo, Waterloo, Canada

Hasso Plattner Institute, Potsdam, Germany

1 Data profiling: finding metadata

Data profiling is the set of activities and processes to deter-
mine the metadata about a given dataset. Profiling data is
an important and frequent activity of any IT professional
and researcher. We can safely assume that any reader of this
article has engaged in the activity of data profiling, at least
by eye-balling spreadsheets, database tables, XML files, etc.
Possibly, more advanced techniques were used, such as key-
word searching in datasets, writing structured queries, or even
using dedicated data profiling tools.

Johnson gives the following definition: “Data profiling
refers to the activity of creating small but informative sum-
maries of a database” [79]. Data profiling encompasses a vast
array of methods to examine datasets and produce metadata.
Among the simpler results are statistics, such as the number
of null values and distinct values in a column, its data type,
or the most frequent patterns of its data values. Metadata
that are more difficult to compute involve multiple columns,
such as inclusion dependencies or functional dependencies.
Also of practical interest are approximate versions of these
dependencies, in particular because they are typically more
efficient to compute. In this survey we preclude these and
concentrate on exact methods.

Like many data management tasks, data profiling faces
three challenges: (i) managing the input, (ii) performing the
computation, and (iii) managing the output. Apart from typ-
ical data formatting issues, the first challenge addresses the
problem of specifying the expected outcome, i.e., determin-
ing which profiling tasks to execute on which parts of the data.
In fact, many tools require a precise specification of what to
inspect. Other approaches are more open and perform a wider
range of tasks, discovering all metadata automatically.

The second challenge is the main focus of this survey and
that of most research in the area of data profiling: The com-

@ Springer

-

provided by DSpace@MIT

https://core.ac.uk/display/78071592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-015-0389-y&domain=pdf

558

Z. Abedjan et al.

putational complexity of data profiling algorithms depends
on the number or rows, with a sort being a typical opera-
tion, but also on the number of columns. Many tasks need
to inspect all column combinations, i.e., they are exponen-
tial in the number of columns. In addition, the scalability of
data profiling methods is important, as the ever-growing data
volumes demand disk-based and distributed processing.

The third challenge is arguably the most difficult, namely
meaningfully interpreting the data profiling results. Obvi-
ously, any discovered metadata refer only to the given data
instance and cannot be used to derive schematic/semantic
properties with certainty, such as value domains, primary
keys, or foreign key relationships. Thus, profiling results need
interpretation, which is usually performed by database and
domain experts.

Tools and algorithms have tackled these challenges in
different ways. First, many rely on the capabilities of the
underlying DBMS, as many profiling tasks can be expressed
as SQL queries. Second, many have developed innovative
ways to handle the individual challenges, for instance using
indexing schemes, parallel processing, and reusing interme-
diate results. Third, several methods have been proposed that
deliver only approximate results for various profiling tasks,
for instance by profiling samples. Finally, users may be asked
to narrow down the discovery process to certain columns
or tables. For instance, there are tools that verify inclusion
dependencies on user-suggested pairs of columns, but cannot
automatically check inclusion between all pairs of columns
or column sets.

Systematic data profiling, i.e., profiling beyond the occa-
sional exploratory SQL query or spreadsheet browsing, is
usually performed with dedicated tools or components, such
as IBM’s Information Analyzer, Microsoft’s SQL Server
Integration Services (SSIS), or Informatica’s Data Explorer. !
These approaches follow the same general procedure: A
user specifies the data to be profiled and selects the types
of metadata to be generated. Next, the tool computes the
metadata in batch mode, using SQL queries and/or spe-
cialized algorithms. Depending on the volume of the data
and the selected profiling results, this step can last minutes
to hours. Results are usually displayed in a vast collec-
tion of tabs, tables, charts, and other visualizations to be
explored by the user. Typically, discoveries can then be
translated to constraints or rules that are then enforced in
a subsequent cleansing/integration phase. For instance, after
discovering that the most frequent pattern for phone numbers
is (ddd) ddd-dddd, this pattern can be promoted to a rule
stating that all phone numbers must be formatted accord-
ingly. Most data cleansing tools can then either transform
differently formatted numbers or mark them as improper.

1 See Sect. 6 for a more comprehensive list of tools.

@ Springer

We focus our discussion on relational data, the predomi-
nant format of traditional data profiling methods, but we do
cover data profiling for other data models in Sect. 7.2.

1.1 Use-cases for data profiling

Data profiling has many traditional use-cases, including the
data exploration, data cleansing, and data integration scenar-
ios. Statistics about data are also useful in query optimization.
Finally we describe several domain-specific use-cases, such
as scientific data management and big data analytics.

Data exploration Database administrators, researchers, and
developers are often confronted with new datasets, about
which they know nothing. Examples include data files down-
loaded from the Web, old database dumps, or newly gained
access to some DBMS. In many cases, such data have no
known schema, no or old documentation, etc. Even if a for-
mal schema is specified, it might be incomplete, for instance
specifying only the primary keys but no foreign keys. A nat-
ural first step is to understand how the data are structured,
what they are about, and how much of them there are.

Such manual data exploration, or data gazing?, can and
should be supported with data profiling techniques. Simple,
ad hoc SQL queries can reveal some insight, such as the
number of distinct values, but more sophisticated methods
are needed to efficiently and systematically discover meta-
data. Furthermore, we cannot always expect an SQL expert
as the explorer, but rather “data enthusiasts” without formal
computer science training [68]. Thus, automated data profil-
ing is needed to provide a basis for further analysis. Morton
et al. [107] recognize that a key challenge is overcoming
the current assumption of data exploration tools that data are
“clean and in a well-structured relational format.” Often data
cannot be analyzed and visualized as is.

Database management A basic form of data profiling is the
analysis of individual columns in a given table. Typically, the
generated metadata include various counts, such as the num-
ber of values, the number of unique values, and the number
of non-null values. These metadata are often part of the basic
statistics gathered by a DBMS. An optimizer uses them to
estimate the selectivity of operators and perform other opti-
mization steps. Mannino et al. [99] give a survey of statistics
collection and its relationship to database optimization. More
advanced techniques use histograms of value distributions,
functional dependencies, and unique column combinations
to optimize range queries [118] or for dynamic reoptimiza-
tion [80].

2 “Data gazing involves looking at the data and trying to reconstruct
a story behind these data. [...] Data gazing mostly uses deduction and
common sense.” [104]

Profiling relational data: a survey

559

Database reverse engineering Given a “bare” database
instance, the task of schema and database reverse engineer-
ing is to identify its relations and attributes, as well as domain
semantics, such as foreign keys and cardinalities [103,116].
Hainaut et al. [66] call these metadata “implicit constructs,”
i.e., those that are not explicitly specified by DDL statements.
However, possible sources for reverse engineering are DDL
statements, data instances, data dictionaries, etc. The result of
reverse engineering might be an entity-relationship model or
alogical schema to assist experts in maintaining, integrating,
and querying the database.

Data integration Often, the datasets to be integrated are
unfamiliar and the integration expert wants to explore the
datasets first: How large are they? What data types are
needed? What are the semantics of columns and tables? Are
there dependencies between tables and among databases?,
etc. The vast abundance of (linked) open data and the desire
and potential to integrate them with local data has amplified
this need.

A concrete use-case for data profiling is that of schema
matching, i.e., finding semantically correct correspondences
between elements of two schemata [44]. Many schema
matching systems perform data profiling to create attribute
features, such as data type, average value length, and pat-
terns, to compare feature vectors and align those attributes
with the best matching ones [98,109].

Scientific data management and integration have cre-
ated additional motivation for efficient and effective data
profiling: When importing raw data, e.g., from scientific
experiments or extracted from the Web, into a DBMS, it is
often necessary and useful to profile the data and then devise
an adequate schema. In many cases, scientific data are pro-
duced by non-database experts and without the intention to
enable integration. Thus, they often come with no adequate
schematic information, such as data types, keys, or foreign
keys.

Apart from exploring individual sources, data profiling
can also reveal how and how well two datasets can be inte-
grated. For instance, inclusion dependencies across tables
from different sources suggest which tables might reasonably
be combined with a join operation. Additionally, specialized
data profiling techniques can reveal how much two relations
overlap in their intent and extent. We discuss these challenges
in Sect. 7.1.

Data quality / data cleansing The need to profile a new or
unfamiliar set of data arises in many situations, in general to
prepare for some subsequent task. A typical use-case is pro-
filing data to prepare a data cleansing process. Commercial
data profiling tools are usually bundled with corresponding
data quality / data cleansing software.

Profiling as a data quality assessment tool reveals data
errors, such as inconsistent formatting within a column, miss-
ing values, or outliers. Profiling results can also be used to
measure and monitor the general quality of a dataset, for
instance by determining the number of records that do not
conform to previously established constraints [81,117]. Gen-
erated constraints and dependencies also allow for rule-based
data imputation.

Big data analytics “Big data,” with its high volume, high
velocity, and high variety [90], are data that cannot be man-
aged with traditional techniques. Thus, data profiling gains a
new importance. Fetching, storing, querying, and integrating
big data are expensive, despite many modern technologies:
Before exposing an infrastructure to Twitter’s firehose, it
might be worthwhile to know about properties of the data
one is receiving; before downloading significant parts of the
linked data cloud, some prior sense of the integration effort
is needed; before augmenting a warehouse with text min-
ing results an understanding of its data quality is required.
In this context, leading researchers have noted “If we just
have a bunch of datasets in a repository, it is unlikely anyone
will ever be able to find, let alone reuse, any of these data.
With adequate metadata, there is some hope, but even so,
challenges will remain]...] [7].”

Many big data and related data science scenarios call for
data mining and machine learning techniques to explore and
mine data. Again, data profiling is an important preparatory
task to determine which data to mine, how to import it into
the various tools, and how to interpret the results [120].

Further use-cases Knowledge about data types, keys, for-
eign keys, and other constraints supports data modeling and
helps keep data consistent, improves query optimization, and
reaps all the other benefits of structured data management.
Others have mentioned query formulation and indexing [126]
and scientific discovery [75] as further motivation for data
profiling. Also, compression techniques internally perform
basic data profiling to optimize the compression ratio.
Finally, the areas of data governance and data life-cycle
management are becoming more and more relevant to busi-
nesses trying to adhere to regulations and code. Especially
concerned are financial institutions and health care organiza-
tions. Again, data profiling can help ascertain which actions
to take on which data.

1.2 Article overview and contributions

Data profiling is an important and practical topic that is
closely connected to several other data management areas. It
is also a timely topic and is becoming increasingly important
given the recent trends in data science and big data analyt-
ics [108]. While it may not yet be a mainstream term in the

@ Springer

560

Z. Abedjan et al.

database community, there already exists a large body of
work that directly and indirectly addresses various aspects
of data profiling. The goal of this survey is to classify and
describe this body of work and illustrate its relevance to data-
base research and practice. We also show that data profiling is
far from a “done deal” and identify several promising direc-
tions for future work in this area.

The remainder of this paper is organized as follows. In
Sect. 2, we outline and define data profiling based on a
new taxonomy of profiling tasks. Sections 3, 4, and 5 sur-
vey the state of the art of the three main research areas in
data profiling: analysis of individual columns, analysis of
multiple columns, and detection of dependencies between
columns, respectively. Section 6 surveys data profiling tools
from research and industry. We provide an outlook of data
profiling challenges in Sect. 7 and conclude this survey in
Sect. 8.

2 Profiling tasks

This section presents a classification of data profiling tasks.
Figure 1 shows our classification, which includes single-
column tasks, multi-column tasks and dependency detection.
While dependency detection falls under multi-column pro-
filing, we chose to assign a separate profiling class to this
large, complex, and important set of tasks. The classes are
discussed in the following subsections. We also highlight
additional dimensions of data profiling, such as the type of
storage, the approximation of profiling results, as well as the
relationship between data profiling and data mining.

Collectively, a set of results of these tasks is called the
data profile or database profile. In general, we assume the
dataset itself as our only input, i.e., we cannot rely on query
logs, schema, documentation.

2.1 Single-column profiling

A basic form of data profiling is the analysis of individual
columns in a given table. Typically, the generated metadata
comprise various counts, such as the number of values, the
number of unique values, and the number of non-null values.
These metadata are often part of the basic statistics gath-
ered by the DBMS. In addition, the maximum and minimum
values are discovered and the data type is derived (usu-
ally restricted to string versus numeric versus date). More
advanced techniques create histograms of value distributions
and identify typical patterns in the data values in the form of
regular expressions [122]. Data profiling tools display such
results and can suggest actions, such as declaring a column
with only unique values to be a key candidate or suggesting
to enforce the most frequent patterns. As another exemplary

@ Springer

Cardinalities

Patterns &
data types

Single column
Value

distributions

Domain
Classification

Correlations &
association rules

Multiple columns Clusters & outliers

Summaries &
sketches

Key discovery

oT0}
=
=
(@)
-
o
©
+—
©
()

Conditional

(Approximate)

Foreign key
discovery

Inclusion

dependencies PSR

(Approximate)

Conditional

Functional
dependencies

(Approximate)

Fig. 1 A classification of traditional data profiling tasks

use-case, query optimizers in database management systems
also make heavy use of such statistics to estimate the cost of
an execution plan.

Table 1 lists the possible and typical metadata as a result
of single-column data profiling. Some tasks are self-evident
while others deserve more explanation. In Sect. 3, we elabo-
rate on the more interesting tasks, their implementation, and
their use.

2.2 Multi-column profiling

The second class of profiling tasks covers multiple columns
simultaneously. Multi-column profiling generalizes profil-
ing tasks on single columns to multiple columns and also
identifies intervalue dependencies and column similarities.
One task is to identify correlations between values through
frequent patterns or association rules. Furthermore, cluster-
ing approaches that consume values of multiple columns as
features allow for the discovery of coherent subsets of data
records and outliers. Similarly, generating summaries and
sketches of large datasets relates to profiling values across
columns.

Profiling relational data: a survey

561

Table 1 Overview of selected

. . Categor Task Description
single-column profiling tasks gory P
(see Sect. 3 for details) Cardinalities num-rows Number of rows

value length Measurements of value lengths (minimum, maximum,
median, and average)

null values Number or percentage of null values

distinct Number of distinct values; sometimes called “cardinality”

uniqueness Number of distinct values divided by the number of rows

Value distributions histogram Frequency histograms (equi-width, equi-depth, etc.)

constancy Frequency of most frequent value divided by number of
rows

quartiles Three points that divide the (numeric) values into four equal
groups

first digit Distribution of first digit in numeric values; to check
Benford’s law

Patterns, data types, basic type Generic data type, such as numeric, alphabetic,
and domains alphanumeric, date, time

data type Concrete DBMS-specific data type, such as varchar,
timestamp.

size Maximum number of digits in numeric values

decimals Maximum number of decimals in numeric values

patterns Histogram of value patterns (Aa9...)

data class Semantic, generic data type, such as code, indicator, text,
date/time, quantity, identifier

domain Classification of semantic domain, such as credit card, first

name, city, phenotype

Such metadata are useful in many applications, such as
data exploration and analytics. Outlier detection is used
in data cleansing applications, where outliers may indicate
incorrect data values.

Section 4 describes these tasks and techniques in more
detail. It comprises multi-column profiling tasks that gen-
erate metadata on horizontal partitions of the data, such
as values and records, instead vertical partitions, such as
columns and column groups. Although the discovery of col-
umn dependencies, such as key or functional dependency
discovery, also relates to multi-column profiling, we dedi-
cate a separate section to dependency discovery as described
next.

2.3 Dependencies

Dependencies are metadata that describe relationships among
columns. The difficulties of automatically detecting such
dependencies in a given dataset are twofold: First, pairs of
columns or larger column sets must be examined, and second,
the chance existence of a dependency in the data at hand does
not imply that this dependency is meaningful. While much
research has been invested in addressing the first challenge
and is the focus of this survey, there is less work on seman-
tically interpreting the profiling results.

A common goal of data profiling is to identify suitable
keys for a given table. Thus, the discovery of unique column
combinations, i.e., sets of columns whose values uniquely
identify rows, is an important data profiling task [70]. Once
unique column combinations have been discovered, a second
step is to identify among them the intended primary key of a
relation.

A frequent real-world use-case of multi-column profiling
is the discovery of foreign keys [96,123] with the help of
inclusion dependencies [14,100]. An inclusion dependency
states that all values or value combinations from one set of
columns also appear in the other set of columns—a prereq-
uisite for a foreign key.

Another form of dependency that is also relevant for
data quality is the functional dependency (FD). A func-
tional dependency states that values in one set of columns
functionally determine the value of another column. Again,
much research has been performed to automatically detect
FDs [75,139]. Section 5 surveys dependency discovery algo-
rithms in detail.

Dependencies have many applications: An obvious use-
case for functional dependencies is schema normalization.
Inclusion dependencies can suggest how to join two relations,
possibly across data sources. Their conditional counterparts
help explore the data by focusing on certain parts of the
dataset.

@ Springer

562

Z. Abedjan et al.

2.4 Conditional, partial, and approximate solutions

Real datasets usually contain exceptions to rules. To account
for this, dependencies and other constraints detected by data
profiling can be relaxed. We describe two relaxations below:
partial and approximate.

Partial dependencies hold for only a subset of the records,
for instance, for 95 % of the records or for all but 10 records.
Such dependencies are especially valuable in data cleansing
scenarios: They are patterns that hold for almost all records
and thus should probably hold for all records if the data were
clean. Violating records can be extracted and cleansed [129].

Once a partial dependency has been detected, it is inter-
esting to characterize for which records it holds, i.e., if we
can find a condition that selects precisely those records.
Conditional dependencies can specify such conditions. For
instance, a conditional unique column combination might
state that the column street is unique for all records with city
= ‘NY.” Conditional inclusion dependencies (CINDs) were
proposed by Bravo et al. for data cleaning and contextual
schema matching [19]. Conditional functional dependencies
(Crps) were introduced in [46], also for data cleaning.

Approximate dependencies and other constraints are
unconditional statements, but are not guaranteed to hold for
the entire relation. Such dependencies are often discovered
using sampling [76] or other summarization techniques [31].
Their approximate nature is often sufficient for certain tasks,
and approximate dependencies can be used as input to the
more rigorous task of detecting true dependencies. This sur-
vey does not discuss such approximation techniques.

2.5 Types of storage

Data profiling tasks are applicable to a wide range of sit-
uations in which data are provided in various forms. For
instance, most commercial profiling tools assume that data
reside in a relational database, make use of SQL queries and
indexes. In other situations, for instance, a csv file is provided
and a data profiling method needs to create its own data struc-
tures in memory or on disk. And finally, there are situations in
which a mixed approach is useful: Data that were originally
in the database are read once and processed further outside
the database.

The discussion and distinction of such different situa-
tions is relevant when evaluating the performance of data
profiling algorithms and tools. Can we assume that data are
already loaded into main memory? Can we assume the pres-
ence of indices? Are profiling results, which can be quite
voluminous, written to disk? Fair comparisons need to estab-
lish a level playing field with same assumptions about data
storage.

@ Springer

2.6 Data profiling versus data mining

A clear, well-defined, and accepted distinction between data
profiling and data mining does not exist. Two criteria are
conceivable:

1. Distinction by the object of analysis: instance versus
schema or columns versus rows

2. Distinction by the goal of the task: description of existing
data versus new insights beyond existing data.

Following the first criterion, Rahm and Do distinguish data
profiling from data mining by the number of columns that are
examined: “Data profiling focuses on the instance analysis
of individual attributes. [...] Data mining helps discover spe-
cific data patterns in large datasets, e.g., relationships holding
between several attributes” [121]. While this distinction is
well defined, we believe several tasks, such as IND or FD
detection, belong to data profiling, even if they discover rela-
tionships between multiple columns.

We believe a different distinction along both criteria is
more useful: Data profiling gathers technical metadata to
support data management; data mining and data analytics
discovers non-obvious results to support business manage-
ment with new insights. While data profiling focuses mainly
on columns, some data mining tasks, such as rule discovery
or clustering, may also be used for identifying interesting
characteristics of a dataset. Others, such as recommendation
or classification, are not related to data profiling.

With this distinction, we concentrate on data profiling
and put aside the broad area of data mining, which has
already received unifying treatment in numerous textbooks
and surveys. However, in Sect. 4, we address the subset
of unsupervised mining approaches that can be applied on
unknown data to generate metadata and hence serves the pur-
pose of data profiling.

Classifications of data mining tasks include an overview
by Chen et al., who distinguish the kinds of databases (rela-
tional, OO, temporal, etc.), the kinds of knowledge to be
mined (association rules, clustering, deviation analysis, etc.),
and the kinds of techniques to be used [130]. We make a sim-
ilar distinction in this survey. In particular, we distinguish
the different classes of data profiling tasks and then exam-
ine various techniques to perform them. We discuss profiling
non-relational data in Sect. 7.

2.7 Summary

We summarize this section by connecting the various data
profiling tasks with the use-cases mentioned in the introduc-
tion. Conceivably, any task can be useful for any use-case,
depending on the context, the properties of the data at hand,

Profiling relational data: a survey 563
Table 2 Data profiling tasks and their primary use-cases
Database Data Data Database Data Data Scientific
management integration cleansing reverse exploration analytics data
engineering management
Single-column
Cardinalities v v v
Patterns and data types v v v
Value distributions v v v v
Domain classification v v v 4
Multi-column
Correlations v v v
Association rules v v
Clustering 4 v 4 4
Outliers v v
Summaries and sketches v v v
Dependencies
Unique column 4 v 4
combinations
Inclusion dependencies v v v v v
Conditional inclusion v v v v
dependencies
Functional dependencies v v v v
Conditional functional v v v
dependencies

etc. Table 2 lists the profiling tasks and their primary use-
cases.

3 Column analysis

The analysis of the values of individual columns is usually
a straightforward task. Table 1 lists the typical metadata that
can determined for a given column. The following sections
describe each category of tasks in more detail, mention-
ing possible uses of the respective results. In [104], a book
addressing practitioners, several of these tasks are discussed
in more detail.

3.1 Cardinalities

Cardinalities or counts of values in a column are the most
basic form of metadata. The number of rows in a table (num-
rows) reflects how many entities (e.g., customers, orders,
items) are represented in the data, and it is relevant to data
management systems, for instance to estimate query costs or
to assign storage space.

Information about the length of values in terms of char-
acters (value length), including the length of the longest
and shortest value and the average length, is useful for
schema reverse engineering (e.g., to determine tight data type

bounds), outlier detection (e.g., single-character first names),
and formatting (dates have the same min-, max- and average
length).

The number of empty cells, i.e., cells with null values or
empty strings (null values), indicates the (in-)completeness
of a column. The number of distinct values (distinct) allows
query optimizers to estimate selectivity of selection or join
operations: The more distinct values there are, the more selec-
tive such operations are. To users, this number can indicate
a candidate key by comparing it with the number of rows.
Alternatively, this number simply illustrates how many dif-
ferent values are present (e.g., how many customers have
ordered something or how many cities appear in an address
table).

Determining the number of rows, metadata about value
lengths, and the number of null values is straightforward and
can be performed in a single pass over the data. Determining
the number of distinct values is more involved: Either hashing
or sorting all values is necessary. When hashing, the number
of non-empty buckets must be counted, taking into account
hash collisions, which further add to the count. When sorting,
a pass through the sorted data counts the number of values,
where groups of same values are counted only once.

From the number of distinct values the uniqueness can be
calculated, which is typically defined as the number of unique
values divided by the number of rows. Note that the number

@ Springer

564

Z. Abedjan et al.

of distinct values can also be estimated using the minHash
technique discussed in Sect. 4.3.

Apart from determining the exact number of distinct val-
ues, query optimization is a strong incentive to estimate those
counts in order to predict query execution plan costs with-
out actually reading the entire data. Because approximate
profiling is not the focus of this survey, we give only two
exemplary pointers. Haas et al. [65] base their estimation on
data samples and describe and empirically compare various
estimators from the literature. Other works do scan the entire
data but use only a small amount of memory to hash the
values and estimate the number of distinct values, an early
example being [11].

3.2 Value distribution

Value distributions are more fine-grained cardinalities,
namely the cardinalities of groups of values. Histograms
are among the most common profiling results. A histogram
stores frequencies of values within well-defined groups, usu-
ally by dividing the ordered set of values into a fixed set of
buckets. The buckets of equi-width histograms span value
ranges of same length, while the buckets of equi-depth (or
equi-height) histograms each represent the same number of
value occurrences. A common special case of an equi-depth
histogram is dividing the data into four quartiles. A more
general concept is biased histograms, which can adapt their
accuracy for different regions[33]. Histograms are used for
database optimization as a rough probability distribution to
avoid a uniform distribution assumption and thus provide
better cardinality estimations [77]. In addition, histograms
are interpretable by humans, as their visual representation is
easy to comprehend.

The constancy of a column is defined as the ratio of the
frequency of the most frequent value (possibly a pre-defined
default value) and the overall number of values. It thus rep-
resents the proportion of some constant value compared with
the entire column.

A particularly interesting distribution is the first digit dis-
tribution for numeric values. Benford’s law [15] states that in
naturally occurring numbers the distribution of the first digit
d of a number approximately follows P(d) = log;o(1 + dl).
Thus, the 1 is expected to be the most frequent leading digit,
followed by 2, etc. Benford and others have observed this
behavior in many sets of numbers, such as molecular weights,
building sizes, and electricity bills. In fact, the law has been
used to uncover accounting fraud and other fraudulently cre-
ated numbers.

Determining the above distributions usually involves a sin-
gle pass over the column, except for equi-depth histograms
(i.e., with fixed bucket sizes) and quartiles, which determine
bucket boundaries through sorting. In the same manner or

@ Springer

through hashing the most frequent value can be discovered
to determine constancy.

Finally, many more things can be counted and aggregated
in a column. For instance, some profiling tools and meth-
ods determine among others the frequency distribution of
soundex code, n-grams, and others, the inverse frequency dis-
tribution, i.e., the distribution of the frequency distribution,
or the entropy of the frequency distribution of the values in
a column [82].

3.3 Types and patterns

The profiling tasks of this section are ordered by increasing
semantic richness (see also Table 1). We start with the most
simple observable properties, move on to specific patterns of
the values of a column, and end with the semantic domain of
a column.

Discovering the basic type of a column, i.e., classifying it
as numeric, alphabetic, alphanumeric, date, or time, is fairly
simple: The presence or absence of numeric and non-numeric
characters already distinguishes the first three. The latter two
can usually be recognized by the presence of numbers only
within certain ranges, and by numbers separated in regu-
lar patterns by special symbols. Recognizing the actual data
type, for instance among the SQL types, is similarly easy. In
fact, data of many data types, such as timestamp, boolean,
or int, must follow a fixed, sometimes DBMS-specific pat-
tern. When classifying columns into data types, one should
choose the most specific data type—in particular avoiding
the catchalls char or varchar if possible. For the data types
decimal, float, and double, one can additionally extract the
maximum number of digits and decimals to determine the
metadata Size and decimals.

A common and useful data profiling result is the extrac-
tion of frequent patterns observed in the data of a col-
umn. Then, data that do not conform to such a pattern
are likely erroneous or ill-formed. For instance, a pat-
tern for phone numbers might be informally encoded as
+dd (ddd) ddd ddddor as a simple regular expression
\(\d3\)\ — \da3\ — \d4).> A challenge when determining
frequent patterns is to find a good balance between generality
and specificity. The regular expression . * is the most general
and matches any string. On the other hand, the expression
data allows only that one single string. For the Potter’s
Wheel tool, Raman and Hellerstein [122] suggest finding
the data pattern with the minimal description length (MDL).
They model description length as a combination of precision,
recall, and conciseness and provide an algorithm to enumer-
ate all possible patterns. The RellE system was designed

3 A more detailed regular expression, taking into account different for-
matting options and different restrictions (e.g., phone numbers cannot
begin with a 1), can easily reach 200 characters in length.

Profiling relational data: a survey

565

for information extraction from textual data [92]. It creates
regular expressions based on training data with positive and
negative examples by systematically, greedily transforming
regular expressions. Finally, Fernau [51] provides a good
characterization of the problem of learning regular expres-
sions from data and presents a learning algorithm for the task.
This work is also a good starting point for further reading

The semantic domain of a column describes not the syntax
of its values but their meaning. While a regular expression
might characterize a column, labeling it as “phone number”
provides a concrete domain. Clearly, this task cannot be fully
automated, but some work has been done for common-place
domains about persons, places, etc. Zhang et al. take a first
step by clustering columns that have the same meaning across
the tables of a database [144], which they extend to the par-
ticularly difficult area of numeric values in [142]. In [133]
the authors take the additional step of matching columns to
pre-defined semantics from the person domain. Knowledge
of the domain is not only of general data profiling interest,
but also of particular interest to schema matching, i.e., the
task of finding semantic correspondences between elements
of different database schemata.

3.4 Data completeness

Explicit missing data are simple to characterize: For each col-
umn, we report the number of tuples with a null or a default
value. However, datasets may contain disguised missing val-
ues. For example, Web forms often include fields whose
values must be chosen from pull-down lists. The first value
from the pull-down list may be pre-populated on the form,
and some users may not replace it with a proper or correct
value due to lack of time or privacy concerns. Specific exam-
ples include entering 99999 as the zip code of an address
or leaving “Alabama” as the pre-populated state (in the US,
Alabama is alphabetically the first state). Of course, for some
records, Alabama may be the true state.

Detecting disguised default values is difficult. One heuris-
tic solution is to examine each column at a time, and, for each
possible value, compute the distribution of the other attribute
values [74]. For example, if Alabama is indeed a disguised
default value, we expect a large subset of tuples with state =
Alabama (i.e., those whose true state is different) to form
an unbiased sample of the whole relation.

Another instance in which profiling missing data is not
trivial involves timestamped data, such as measurement or
transaction data feeds. In some cases, tuples are expected to
arrive regularly, e.g., in datacenter monitoring, every machine
may be configured to report its CPU utilization every minute.
However, measurements may be lost en route to the data-
base, and overloaded or malfunctioning machines may not
report any measurements at all. [60]. In contrast to detecting
missing attribute values, here we are interested in estimat-

ing the number of missing tuples. Thus, the profiling task
may be to single out the columns identified as being of type
timestamp, and, for those that appear to be distributed uni-
formly across a range, infer the expected frequency of the
underlying data source and estimate the number of miss-
ing tuples. Of course, some timestamp columns correspond
to application timestamps with no expectation of regularity,
rather than data arrival timestamps. For instance, in an online
retailer database, order dates and delivery dates are generally
not expected to be scattered uniformly over time.

4 Multi-column analysis

Profiling tasks over a single column can be generalized to
projections of multiple columns. For example, there has been
work on computing multi-dimensional histograms for query
optimization [41,119]. Multi-column profiling also plays
an important role in data cleansing, e.g., in assessing and
explaining data glitches, which often occur in column com-
binations [40].

In the remainder of this section, we discuss statistical
methods and data mining approaches for generating meta-
data based on co-occurrences and dependencies of values
across attributes. We focus on correlation and rule mining
approaches as well as unsupervised clustering and learning
approaches; machine learning techniques that require train-
ing data or detailed knowledge of the data are beyond the
scope of data profiling.

4.1 Correlations and association rules

Correlation analysis reveals related numeric columns, e.g.,
in an Employees table, age and salary may be correlated. A
straightforward way to do this is to compute pairwise correla-
tions among all pairs of columns. In addition to column-level
correlations, value-level associations may provide useful
data profiling information.

Traditionally, a common application of association rules
has been to find items that tend to be purchased together based
on point-of-sale transaction data. In these datasets, each row
is alist of items purchased in a given transaction. An associa-
tionrule {bread} — {butter}, for example, states that if
atransaction includes bread, it is also likely to include butter,
i.e., customers who buy bread also buy butter. A set of items
is referred to as an itemset, and an association rule specifies
an itemset on the left-hand side and another itemset on the
right-hand side.

Algorithms for generating association rules from data
decompose the problem into two steps [8]:

1. Discover all frequent itemsets, i.e., those whose fre-
quencies in the dataset (i.e., their support) exceed some

@ Springer

566

Z. Abedjan et al.

threshold. For instance, the itemset {bread, butter}
may appear in 800 out of a total of 50,000 transactions
for a support of 1.6 %.

2. For each frequent itemset a, generate association rules
of the form ! — a — [with [C a, whose confidence
exceeds some threshold. Confidence is defined as the
frequency of a divided by the frequency of /, i.e., the
conditional probability of / given a — [. For example, if
the frequency of {bread, butter} is 800 and the fre-
quency of {bread} alone is 1000, then the confidence
of the association rule {bread} — {butter} is 0.8.
That s, if bread is purchased, there is an 80 % chance that
butter is also purchased in the same transaction.

In the context of relational data profiling, association
rules denote relationships or patterns between attribute val-
ues among columns. Consider an Employees table with
fields name, employee number, department, position,
and allowance. We may find a frequent itemset of the
form {department = finance, position = assistant
manager, allowance = $1000} and a corresponding asso-
ciation rule of the form {department = finance, position
= assistant manager} — {allowance = $1000}.
This would be the case if most or all assistant managers in
the finance department were assigned an allowance budget
of $1000.

While the second step mentioned above is straightforward
(generating association rules from frequent itemsets), the first
step is computationally expensive due to the large number of
possible frequent itemsets (or patterns of values) [72]. Pop-
ular algorithms for efficiently discovering frequent patterns
include Apriori [8], Eclat [141], and FP-Growth [67].

The Apriori algorithm exploits the observation that all
subsets of a frequent itemset must also be frequent. In the first
iteration, Apriori finds all frequent itemsets of size one, i.e.,
those containing one item or one attribute value. In the next
iteration, only the frequent itemsets of size one are expanded
to find frequent itemsets of size two, and so on.

There are also several optimized versions of Apriori,
such as DHP [115] and RARM [35]. FP-Growth discov-
ers frequent itemsets without a candidate generation step.
It transforms the database into an extended prefix tree of
frequent patterns (FP-tree). The FP-Growth algorithm tra-
verses the tree and generates frequent itemsets by pattern
growth in a depth-first manner. Finally, Eclat is based on
intersecting transaction-id (TID) sets of associated itemsets
and is best suited for dealing with large frequent itemsets.
Eclat’s strategy for identifying frequent itemsets is similar to
Apriori.

Negative correlation rules, i.e., those that identify attribute
values that do not co-occur with other attribute values, may
also be useful in data profiling to find anomalies and out-
liers [21]. However, discovering negative association rules is

@ Springer

more difficult, because infrequent itemsets cannot be pruned
in the same way as frequent itemsets, and therefore, novel
pruning rules are required [135].

Finally, we note that in addition to using existing tech-
niques, such as correlations and association rules for pro-
filing, extensions have been proposed, such as discovering
linear dependencies between columns [25].

However, in this approach, the user has to choose the
subset of attributes to be analyzed. We discuss dependency
discovery in more detail in Sect. 5.

4.2 Clustering and outlier detection

Another useful profiling task is to segment the records into
homogeneous groups using a clustering algorithm; further-
more, records that do not fit into any cluster may be flagged
as outliers. Cluster analysis can identify groups of similar
records in a table, while outliers may indicate data qual-
ity problems. For example, Dasu and Johnson [36] cluster
numeric columns and identify outliers in the data. Further-
more, based on the assumption that data glitches occur across
attributes and not in isolation [16], statistical inference has
been applied to measure glitch recovery in [39].

Another example of clustering in the context of data profil-
ing is ProLOD++, which applies k-means clustering to RDF
relations [1]. We refer the reader to surveys by Jain et al. [78]
and Xu and Wunsch II [137] for more details on clustering
algorithms for relational data.

4.3 Summaries and sketches

Besides clustering, another way to describe data is to create
summaries or sketches [23]. This can be done by sampling
or hashing data values to a smaller domain. Sketches have
been widely applied to answering approximate queries, data
stream processing and estimating join sizes [37,54,111].
Cormode et al. [31] give an overview of sketching and sam-
pling for approximate query processing.

Another interesting task is to assess the similarity of two
columns, which can be done using multi-column hashing
techniques. The Jaccard similarity of two columns A and
B is |A N B|/|A U Bj, i.e., the number of distinct values
they have in common divided by the total number of distinct
values appearing in them. This gives the relative number of
values that appear in both A and B. Since semantically similar
values may have different formats, we can also compute the
Jaccard similarity of the n-gram distributions in A and B. If
the distinct value sets of columns A and B are not available,
we can estimate the Jaccard similarity using their MinHash
signatures [38].

Profiling relational data: a survey

567

Table 3 Dependency discovery

algorithms Dependency

Algorithms

Uniques

Functional dependencies
Conditional functional dependencies

Inclusion dependencies
Conditional inclusion dependencies
Foreign keys

Denial constraints

Differential dependencies

Sequential dependencies

HCA [3], GORDIAN [126], DUCC [70], SWAN [5]

TANE [75], FUN [110], FD_Mine [139], Dep-Miner [95],
FastFDs [136], FDEP [52], DFD[6]

[24], [59], CTANE [47], CFUN [42], FACD [91], FastCFD
[47]

[101], [87], SPIDER [14], ZigZag [102]
[61], CINDERELLA [13], PLI[13]
[123], [143]

FastDC [29]

[128]

[57]

5 Dependency detection

We now survey various formalisms for detecting depen-
dencies among columns and algorithms for mining them
from data, including keys and unique column combinations
(Sect. 5.1), functional dependencies (Sect. 5.2), inclusion
dependencies (Sect. 5.3), and other types of dependencies
that are relevant to data profiling (Sect. 5.4). Table 3 lists the
algorithms that are discussed.

We use the following symbols: R and S denote relational
schemata, with r and s denoting instances of R and S, respec-
tively. The number of columns in R is | R| and the number of
tuples in r is |r|. We refer to tuples of r and s as r; and s,
respectively. Subsets of columns are denoted by uppercase
X, Y, Z (with | X| denoting the number of columns in X) and
individual columns by uppercase A, B, C. Furthermore, we
define x (r) and 74 () as the projection of 7 on the attribute
set X or attribute A, respectively; thus, |wx (r)| denotes the
count of district combinations of the values of X appearing
in r. Accordingly, r;[A] indicates the value of the attribute A
of tuple r; and r;[X] = mx (r;). We refer to an attribute value
of a tuple as a cell.

The number of potential dependencies in r can be expo-
nential in the number of attributes |R|; see Fig. 2 for an
illustration of all possible subsets of the attributes in Table 4.
This means that any dependency discovery algorithm has
a worst-case exponential time complexity. There are two
classes of heuristics that have appeared in the literature.

{first, last, age, phone}

{first, last, age} {first, last, phone} {first, age, phone} {last, age, phone}
IS

/

{first, last} {first, age} {first, prhone} {last, age} {last, phone} {age, phone}

{first} {last} {age} {phone}

Fig. 2 Powerset lattice for the example Table 4

Table 4 Example dataset

Tuple id First Last Age Phone
1 Max Payne 32 1234
2 Eve Smith 24 5432
3 Eve Payne 24 3333
4 Max Payne 24 3333

Column-based or top-down approaches start with “small”
dependencies (in terms of the number of attributes they ref-
erence) and work their way to larger dependencies, pruning
candidates along the way whenever possible. Row-based or
bottom-up approaches attempt to avoid repeated scanning
of the entire relation during candidate generation. While
these approaches cannot reduce the worst-case exponential
complexity of dependency discovery, experimental studies
have shown that column-based approaches work well on
tables containing a very large number of rows and row-based
approaches work well for wide tables [6,113]. For more
details on the computational complexity of various FD and
IND discovery algorithms, we refer the interested reader to
[94].

5.1 Unique column combinations and keys

Given a relation R with instance r, a unique column com-
bination (a “unique”) is a set of columns X C R whose
projection on r contains only unique value combinations.

Definition 1 (Unigue) A column combination X C R is a
unique, iff Vri,rj € r,i # j: ri[X] # rj[X].

Analogously, a set of columns X C R is a non-unique
column combination (a “non-unique”), iff its projection on r
contains at least one duplicate value combination.

Definition 2 (Non-unique) A column combination X € R
is a non-unique, iff Ir;, r; € r,i # j : ri[X] =r;[X].

@ Springer

568

Z. Abedjan et al.

Each superset of a unique is also unique while each subset
of a non-unique is also a non-unique. Therefore, discovering
all uniques and non-uniques can be reduced to the discovery
of minimal uniques and maximal non-uniques:

Definition 3 (Minimal Unique) A column combination X C
R is a minimal unique, iff VX' C X : X’ is a non-unique.

Definition 4 (Maximal Non-Unique) A column combina-
tion X C R is a maximal non-unique, ift VX' > X : X’
is a unique.

A primary key is a unique that was explicitly chosen to be
the unique record identifier while designing the table schema.
Since the discovered uniqueness constraints are only valid for
a relational instance at a specific point of time, we refer to
uniques and non-uniques instead of keys and non-keys. A
further distinction can be made in terms of possible keys and
certain keys when dealing with uncertain data and NULL
values [86].

The problem of discovering a minimal unique of size
k < n is NP-complete [97]. To discover all minimal uniques
and maximal non-uniques of a relational instance, in the
worst case, one has to visit all subsets of the given relation, no
matter the strategy (breadth-first or depth-first) or direction
(bottom-up or top-down). Thus, the discovery of all minimal
uniques and maximal non-uniques of a relational instance is
an NP-hard problem and even the solution set can be expo-
nential [64].

Given | R|, there can be (@) > 2'% minimal uniques in the

2

. . . R .
worst case, as all combinations of size % can simultaneously

be minimal uniques.
5.1.1 GORDIAN: row-based discovery

Row-based algorithms require multiple runs over all column
combinations as more and more rows are considered. They
benefit from the intuition that non-uniques can be detected
without considering every row. A recursive unique discovery
algorithm that works this way is GORDIAN [126]. The algo-
rithm consists of three parts: (i) Pre-organize the data in form
of a prefix tree, (ii) find maximal non-uniques by traversing
the prefix tree, (iii) compute minimal uniques from maximal
non-uniques.

The prefix tree is stored in main memory. Each level of
the tree represents one column of the table, whereas each
branch stands for one distinct tuple. Tuples that have the
same values in their prefix share the corresponding branches.
For example, all tuples that have the same value in the first
column share the same node cells. The time to create the
prefix tree depends on the number of rows; therefore, this
can be a bottleneck for very large datasets.

The traversal of the tree is based on the cube operator [63],
which computes aggregate functions on projected columns.

@ Springer

Non-unique discovery is performed by a depth-first traver-
sal of the tree for discovering maximum repeated branches,
which constitute maximal non-uniques.

After discovering all maximal non-uniques, GORDIAN
computes all minimal uniques by generating minimal com-
binations that are not covered by any of the maximal
non-uniques. In [126] it is stated that this complementation
step needs only quadratic time in the number of minimal
uniques, but the presented algorithm implies cubic runtime:
For each non-unique, the updated set of minimal uniques
must be simplified by removing redundant uniques. This
simplification requires quadratic runtime in the number of
uniques. As the number of minimal uniques is bound lin-
early by the number s of maximal non-uniques, the runtime
of the unique generation step is O (s>).

GORDIAN exploits the intuition that non-uniques can be
discovered faster than uniques. Non-unique discovery can be
aborted as soon as one repeated value is discovered among
the projections. The prefix structure of the data facilitates this
analysis. It is stated that the algorithm is polynomial in the
number of tuples for data with a Zipfian distribution of values.
Nevertheless, in the worst case, GORDIAN has exponential
runtime.

The generation of minimal uniques from maximal non-
uniques can be a bottleneck if there are many maximal
non-uniques. Experiments showed that in most cases the
unique generation dominates the runtime [3]. Furthermore,
the approach is limited by the available main memory.
Although data may be compressed because of the prefix
structure of the tree, the amount of processed data may still
be too large to fit in main memory.

5.1.2 Column-based traversal of the column lattice

The problem of finding minimal uniques is comparable to
the problem of finding frequent itemsets [8]. The well-known
Apriori approach is applicable to minimal unique discovery,
working bottom-up as well as top-down. With regard to the
powerset lattice of arelational schema, the Apriori algorithms
generate all relevant column combinations of a certain size
and verify those at once. Figure 2 illustrates the powerset lat-
tice for the running example in Table 4. The effectiveness and
theoretical background of those algorithms is discussed by
Giannela and Wyss [55]. They presented three breadth-first
traversal strategies: a bottom-up, a top-down, and a hybrid
traversal strategy.

Bottom-up unique discovery traverses the powerset lat-
tice of the schema R from the bottom, beginning with all
1-combinations toward the top of the lattice, which is the
| R|-combination. The prefixed number k of k-combination
indicates the size of the combination. The same notation
applies for k-candidates, k-uniques, and k-non-uniques. To
generate the set of 2-candidates, we generate all pairs of

Profiling relational data: a survey

569

1-non-uniques. k-candidates with k > 2 are generated by
extending the (k — 1)-non-uniques by another non-unique
column. After the candidate generation, each candidate is
checked for uniqueness. If it is identified as a non-unique,
the k-candidate is added to the list of k-non-uniques.

If the candidate is verified as unique, its minimality
has to be checked. The algorithm terminates when k =
|1-non-uniques|. A disadvantage of this candidate generation
technique is that redundant uniques and duplicate candidates
are generated and tested.

The Apriori idea can also be applied to the top-down
approach. Having the set of identified k-uniques, one has
to verify whether the uniques are minimal. Therefore, for
each k-unique, all possible (k — 1)-subsets have to be gener-
ated and verified. The hybrid approach generates the kth and
(n—k)thlevels simultaneously. Experiments have shown that
in most datasets, uniques usually occur in the lower levels of
the lattice, which favors bottom-up traversal [3].

Hca is an improved version of the bottom-up Apriori
technique [3]. HCA optimizes the candidate generation step,
applies statistical pruning and considers functional depen-
dencies that have been inferred on the fly. In terms of
candidate generation, HCA applies the optimized join that
was introduced for frequent itemset mining [8]. HCA gener-
ates candidates by combining only (k — 1)-non-uniques that
share the first k — 2 elements. If no such two non-uniques
exist, no candidates are generated and the algorithm termi-
nates before reaching the last level of the powerset lattice.
Further pruning can be achieved by considering value his-
tograms and distinct counts that can be retrieved on the fly in
previous levels. For example, consider the /-non-uniques last
and age from Table 4. The column combination {last,age}
cannot be a unique based on the value distributions. While
the value “Payne” occurs three times in last, the column
age contains only two distinct values. That means at least
two of the rows containing the value “Payne” also have a
duplicate value in the age column. Using the count distinct
values, HCA detects functional dependencies on the fly and
leverages them to avoid unnecessary uniqueness checks.

While HCA improves existing bottom-up approaches, it
does not perform the early identification of non-uniques in
a row-based manner done by GORDIAN. Thus, GORDIAN is
faster on datasets with many non-uniques, but HCA works
better on datasets with many minimal uniques.

5.1.3 DUCC: traversing the lattice via random walk

While the breadth-first approach for discovering minimal
uniques gives the most pruning, a depth-first approach might
work well if there are relatively few minimal uniques that are
scattered on different levels of the powerset lattice. Depth-
first detection of unique column combinations resembles the
problem of identifying the most promising paths through the

lattice to discover existing minimal uniques and avoid unnec-
essary uniqueness checks. DUCC is a depth-first approach that
traverses the lattice back and forth based on the uniqueness
of combinations [70]. Following a random walk principle
by randomly adding columns to non-uniques and removing
columns from uniques, DUCC traverses the lattice in a manner
that resembles the border between uniques and non-uniques
in the powerset lattice of the schema.

Ducc starts with a seed set of 2-non-uniques and picks
a seed at random. Each k-combination is checked using the
superset/subset relations and pruned if any of them subsumes
the current combination. If no previously identified combi-
nation subsumes the current combination DUCC performs
uniqueness verification. Depending on the verification, Ducc
proceeds with an unchecked (k—1)-subset or (k—1)-superset
of the current k-combination. If no seeds are available, it
checks whether the set of discovered minimal uniques and
maximal non-uniques correctly complement each other. If
so, DUCC terminates; otherwise, a new seed set is generated
by complementation.

Ducc also optimizes the verification of minimal uniques
by using a position list index (PLI) representation of val-
ues of a column combination. In this index, each position
list contains the tuple ids that correspond to the same value
combination. Position lists with only one tuple id can be dis-
carded, so that the position list index of a unique contains no
position lists. To obtain the PLI of a column combination,
the position lists in PLIs of all contained columns have to
be cross-intersected. In fact, DUCC intersects two PLIs in a
similar way in which a hash join operator would join two
relations. As a result of using PLIs, DUCC can also apply
row-based pruning, because the total number of positions
decreases with the size of column combinations. Intuitively,
combining columns makes the contained combination values
more specific and therefore more likely to be distinct.

Ducc has been experimentally compared to HCA, a
column-based approach, and GORDIAN, a row-based unique
discovery algorithm. Since DUCC combines row-based and
column-based pruning, it performs significantly better [70].
Experiments on smaller datasets showed that while HCA
outperforms GORDIAN on low-dimensional data with many
uniques, GORDIAN outperforms HCA on datasets with many
attributes but few uniques [3].

Furthermore the random walk strategy allows a distributed
application of DUCC for better scalability.

5.1.4 SWAN: an incremental approach

SWAN maintains a set of indexes to efficiently find the new
sets of minimal uniques and maximal non-uniques after
inserting or deleting tuples [5]. SWAN builds such indexes
based on existing minimal uniques and maximal non-uniques
in a way that avoids a full table scan. SWAN consists of two

@ Springer

570

Z. Abedjan et al.

main components: the Inserts Handler and the Deletes Han-
dler. The Inserts Handler takes as input a set of inserted
tuples, checks all minimal uniques for uniqueness, finds the
new sets of minimal uniques and maximal non-uniques, and
updates the repository of minimal uniques and maximal non-
uniques accordingly. Similarly, the Deletes Handler takes as
input a set of deleted tuples, searches for duplicates in all
maximal non-uniques, finds the new sets of minimal uniques
and maximal non-uniques, and updates the repository accord-

ingly.
5.2 Functional dependencies

A functional dependency (FD) over R is an expression of the
form X — A, indicating that Vr;, r; € r if r;[X] = r;[X];
then, r;[A] = r;[A]. That is, any two tuples that agree on
X must also agree on A. We refer to X as the left-hand side
(LHS) and A as the right-hand side (RHS). Given r, we are
interested in finding all non-trivial and minimal FDs X — A
that hold on r, with non-trivial meaning A N X = {J and
minimal meaning that there must not be any FD Y — A for
any Y C X. A naive solution to the FD discovery problem is
as follows.

For each possible RHS A
For each possible LHS X € R\A
For each pair of tuples r; and
If ri[X] = r;j[X] and r;[A] # r;[A] Break
Return X — A

This algorithm is prohibitively expensive: For each of the
|R| possibilities for the RHS, it tests 2RI~ possibilities
for the LHS, each time having to scan r multiple times to
compare all pairs of tuples. However, notice that for X — A
to hold, the number of distinct values of X must be the same as
the number of distinct values of X A—otherwise at least one
combination of values of X that is associated with more than
one value of A, thereby breaking the FD [75]. Thus, if we pre-
compute the number of distinct values of each combination
of one or more columns, the algorithm simplifies to:

For each possible RHS A
For each possible LHS X € R\ A
If |zx (r)| = lmxa(r)]
Return X — A

Recall Table 4. We have |7phone ()| = |7age,phone ()| =
|iast,phone ()|. Thus, phone — age and phone —
last hold. Furthermore, |7|ast,age (*)| = |7last,age,phone ("),
implying {last,age} — phone.

The above algorithm is still inefficient due to the need
to compute distinct value counts and test all possible col-
umn combinations. As was the case with unique discovery,
FD discovery algorithms employ row-based (bottom-up) and

@ Springer

FD Discovery CFD Discovery

\

Chiang &
Milller

Column-
based

Dep-Miner
Row-based

FastFDs FastCFD

Other FDEP

Fig. 3 Classification of algorithms for functional dependency discov-
ery and their extensions to conditional functional dependencies

column-based (top-down) optimizations, as discussed below.
Figure 3 lists the algorithms that are discussed, along with
their extensions to conditional FD discovery, which are cov-
ered in Sect. 5.2.4. An extensive experimental evaluation of
various FD discovery algorithms on different datasets, scal-
ing in both the number of rows and the number of columns,
is presented in [113].

5.2.1 Column-based algorithms

As was the case with uniques, Apriori-like approaches can
help prune the space of FDs that need to be examined, thereby
optimizing the first two lines of the above straightforward
algorithms. TANE [75], FUN [110], and FD_Mine [139]
are three algorithms that follow this strategy, with FUN
and FD_Mine introducing additional pruning rules beyond
TANE’s based on the properties of FDs. They start with sets
of single columns in the LHS and work their way up the
powerset lattice in a level-wise manner. Since only min-
imal FDs need to be returned, it is not necessary to test
possible FDs whose LHS is a superset of an already found
FD with the same RHS. For instance, in Table 4, once we
find that phone — age holds, we do not need to consider
{first,phone} — age, {last,phone} — age, etc.
Additional pruning rules may be formulated from Arm-
strong’s axioms, i.e., we can prune from consideration those
FDs that are logically implied by those we have found so
far. For instance, if we find that A — B and B — A, then
we can prune all LHS column sets including B, because A

Profiling relational data: a survey

571

and B are equivalent [139]. Another pruning strategy is to
ignore columns sets that have the same number of distinct
values as their subsets [110]. Returning to Table 4, observe
that phone — first does not hold. Since |pnone ()| =
|7Tlast,phone('")| = |7Tage,phone(’”)| = |7TIast,age,phone(r)|, we
know that adding last and/or age to the LHS cannot lead to a
valid FD with first on the RHS. To determine these cardinal-
ities the approaches use a so-called partition data structure,
which is similar to the PLIs of Sect. 5.1.3.

5.2.2 Row-based algorithms

Row-based algorithms examine pairs of tuples to determine
LHS candidates. Dep-Miner [95] and FastFDs [136] are two
examples; the FDEP algorithm [52] is also row-based, but
the way it ultimately finds FDs that hold is different.

The idea behind row-based algorithms is to compute the
so-called difference sets for each pair of tuples, which are
the columns on which the two tuples differ. Table 5 enu-
merates the difference sets in the data from Table 4. Next,
we can find candidate LHS’s from the difference sets as fol-
lows. Pick a candidate RHS, say, phone. The difference sets
that include phone, with phone removed are as follows:
{first,last,age}, {first,age}, {age}, {last} and {first,last}.
This means that there exist pairs of tuples with different val-
ues of phone and also with different values of these five
difference sets. Next, we find minimal subsets of columns
that have a non-empty intersection with each of these differ-
ence sets. Such subsets are exactly the LHS’s of minimal FDs
with phone as the RHS: If two tuples have different values
of phone, they are guaranteed to have different values of the
columns in the above minimal subsets, and therefore, they
do not cause FD violations. Here, there is only one such min-
imal subset, {last,age}, giving {last,age} — phone. If we
repeat this process for each possible RHS, and compute min-
imal subsets corresponding to the LHS’s, we obtain the set
of minimal FDs. The main difference among row-based FD
discovery algorithms is in how they find the minimal subsets.

A recent approach to FD discovery is DFD, which adapts
the column-based and row-based pruning of the unique dis-
covery approach DUCC to the problem of FD discovery [6].

Table 5 Difference sets computed from Table 4

Tuple ID pair Difference set

(1,2) first, last, age, phone
(1,3) first, age, phone
(1,4) age, phone

(2,3) last, phone

2.4) first, last, phone

3.4 first

DFD decomposes the attribute lattice into |R| lattices, con-
sidering each attribute as a possible RHS of an FD. For the
remaining |R| — 1 attributes, DFD applies a random walk
approach by pruning supersets of FD LHS’s and subsets of
non-FD LHS’s.

DFD has been experimentally compared to TANE, which
is a column-based approach, and FastFDs, which is row-
based [6]. The experiments confirm that row-based approa-
ches work well on high-dimensional tables with a relatively
small number of tuples, while column-based approaches,
such as TANE, perform better on low-dimensional tables
with a large number of rows. DFD, which benefits from
row-based and column-based pruning, performs significantly
better than TANE and FastFDs, unless the table has very
many tuples and very few columns or vice versa.

5.2.3 Partial and approximate functional dependencies

While FDs were meant for schema design and were enforced
by the database management system, there are many instan-
ces in which a database may not satisfy some FDs exactly. For
example, the application semantics may have changed over
time and FD enforcement was disabled, or the database may
have been created by integrating conflicting data sources. As
aresult, it is useful to discover partial or soft FDs, i.e., those
which “almost hold,” perhaps with a few exceptions.

A common definition of “almost holding” or “confidence”
is the relative size of the largest subset of 7 on which a given
FD holds exactly divided by |r| [58,85]. For example, if we
remove tuple 1 from Table 4, the FD last — phone holds
exactly, and therefore, its confidence is %. The CORDS sys-
tem for finding soft FDs uses a slightly different definition:
The confidence of X — A is leXA((rr))ll [76]. Other definitions
involve computing the number of tuples or tuple pairs that do
not violate the FD divided by |r| or |r|2, respectively [85].

A related notion is that of approximate FD inference, in
which partial or exact FDs are generated from a sample of
a relation [76,85]. Of course, even if an FD holds exactly
on a subset of a relation, it may hold partially on the whole
relation. Approximate FD inference is appealing from a com-
putational standpoint as it requires only a sample of the data.

5.2.4 Conditional functional dependencies

Conditional functional dependencies (CFDs), proposed in
[46], encode FDs that hold only on well-defined subsets of
r. For instance, {first,last} — age does not hold on the
entire relation in Table 4, but it does hold on a subset of it
where first = Eve. Formally, a CFD consists of two parts:
an embedded FD X — A and an accompanying pattern
tuple with attributes X A. Each cell of a pattern tuple con-
tains a value from the corresponding attribute’s domain or a
wildcard symbol “_". A pattern tuple identifies a subset of a

@ Springer

572

Z. Abedjan et al.

relation instance in a natural way: A tuple r; matches a pat-
tern tuple if it agrees on all of its non-wildcard attributes. In
the above example, we can formulate a CFD with an embed-
ded Fp {first,last} — age and a pattern tuple (Eve, _, _),
meaning that the embedded FD holds only on tuples which
match the pattern, i.e., those with first = Eve. We define the
support of a pattern tuple as the fraction of tuples in r that it
matches; for example, the support of (Eve, _, _) in Table 4
is %.

An important special case occurs when the pattern tuple
has no wildcards. For example, the following (admittedly
accidental) CFD holds on Table 4: age — phone with a
pattern tuple (32, 1234). In other words, if age = 32,
then phone = 1234. These special cases, which resemble
instance-level association rules (that have 100 % confidence),
are referred to as constant CFDs.

Additionally, as was the case with traditional FDs, we can
define approximate CFDs as those that hold on the subset
specified by the pattern tableau with some exceptions. For the
case of confidence defined as the minimum number of tuples
that must be removed to make the CFD hold, [32] gives algo-
rithms for computing summaries that allow the confidence
of a CFD to be estimated with guaranteed accuracy.

CrD discovery involves a larger search space than FD dis-
covery: In addition to detecting embedded FDs, we must
also find the pattern tuples. CFD discovery algorithms typi-
cally extend existing FD discovery algorithms: For example,
CTANE [47] and the algorithm from [24] extend TANE,
while FastCFD [47] extends FastFDs (see Fig. 3).

Additionally, two simpler problems have been studied.
The first is to discover pattern tuples given an embedded
FD [59]. The output of this technique is an (approximately)
smallest set of pattern tuples, each leading to an approximate
CrD with a confidence exceeding a user-supplied confidence
threshold, the union of which has a support that exceeds a
user-supplied support threshold. The second problem is to
report only the constant CFDs. For this problem, CFDMiner
has been proposed CFDs [47], which is based on frequent
itemset mining, as well as FACD [91], which includes more
pruning rules. Also, CFUN, an extension of FUN to gen-
erating frequent constant CFDs that exceed a given support
threshold, has been proposed in [42].

5.3 Inclusion dependencies

Aninclusion dependency (IND) between column A of relation
R and column B of relation S, written R.A C S.B,orA C B
when the relations are clear from context, asserts that each
value of A appears in B. Similarly, for two sets of columns X
and Y, we write R.X C S.Y, or X C Y, when each distinct
combinations of values in X appears in Y. We refer to R.A or
R.X as the left-hand side (LHS) and S.B or S.Y as the right-
hand side (RHS). INDs with a single-column LHS and RHS

@ Springer

are referred to as unary and those with multiple columns in
the LHS and RHS are called n-ary.

A naive solution to IND discovery in relation instances r
and s is to try to match each possible LHS with each possible
RHS, as shown below.

For each column combination X in R
For each column combination Y in §
with |[Y| = | X]|
IfVx € mx(r) Iy € my(s) such that x =y
Return X C Y

Note that for any considered X and Y, we can stop as soon
as we find a value combination of X that does not appearin Y.
Still, this is not an efficient approach as it repeatedly scans r
and s when testing the possible LHS and RHS combinations.

5.3.1 Generating unary inclusion dependencies

For the special case of unary INDs, a common approach is to
preprocess the data to speed up the subsequent IND discovery.
De Marchietal. [101] propose a technique that scans the data-
base and builds value indices, which are similar to inverted
indices. Table 6 shows excerpts of two relations instances,
one with columns A and B and the other with columns C and
D, and the corresponding value index. The index contains an
entry for each value occurring in the database, followed by a
list of columns in which this value appears. It is now straight-
forward to find the INDs: For each possible LHS column, we
check if there exists another column that occurs in every row
of the value index that contains the LHS column. In Table 6,
we have A C C (whenever A appears in the value index, so
does B) and D C B.

The SPIDER algorithm [14] is another example, which
preprocesses the data by sorting the values of each column
and writing them to disk. Next, each sorted stream, corre-
sponding to the values of one particular attribute, is consumed
in parallel in a cursor-like manner, and an IND A € B can be
discarded as soon as we detect a value in A that is not present
in B.

Table 6 Excerpts of two relation instances and the corresponding value
index

A B C

w)

Value Columns

A, C
A, C
B,D
B,D
B
C

3
4
3
5

—_ N = e
ACTR O -
AR W oW

~N R W N =

Profiling relational data: a survey

573

5.3.2 Generating n-ary inclusion dependencies

Once all unary INDs have been discovered, De Marchi et
al. [101] give a level-wise algorithm, similar to the TANE
algorithm for FD discovery, which constructs INDs with i
columns from those with i — 1 columns and prunes INDs that
cannot be true. Additionally, hybrid algorithms have been
proposed in [87,102] that combine bottom-up and top-down
traversal for additional pruning.

The BINDER algorithm uses divide and conquer principles
to handle larger datasets than related work [114]. In the divide
step, it splits the input dataset horizontally into partitions and
vertically into buckets with the goal to fit each partition into
main memory. In the conquer step, BINDER then validates the
set of all possible inclusion dependency candidates, which
are created in the same fashion as in [101], against the par-
titions. Processing one partition after another, the validation
constructs two indexes on each partition, a dense index and
an inverted index, and uses them to efficiently prune invalid
candidates from the result set.

5.3.3 Partial and approximate inclusion dependencies

Similar to partial FDs, partial INDs have been defined as those
that almost hold. Using the notion of removing the fewest
tuples so that the remainder satisfies the IND exactly, we can
define the strength or confidence of a partial IND X C Y
as ‘ﬂX(r)‘Tyer)Er(;f/nY(r)‘ [96,101]. That is, the confidence is
the number of distinct values of X that appear in Y divided
by the number of distinct values of X. An equivalent bag-
semantics version of this definition is to divide the number
of tuples whose X-values appear in Y by the total number
of tuples [61]. According to both definitions, the confidence
of B € D in Table 6 is %. Most of the algorithms discussed
above can be extended to discover partial INDs.

5.3.4 Conditional inclusion dependencies

Similar to CFDs, conditional inclusion dependencies (CINDs)
represent INDs that hold only on well-defined subsets of
relations [19]. A CIND consists of an embedded standard
IND R.X C S.Y and an accompanying pattern tuple with
attributes R.X , and S.Y,, where XNX, = fandYNY, = 0.
A CIND specifies that for the subset of R that matches the X -
values of the pattern tuple, all the X-values must appear in
Y, and furthermore, the Y, values of these tuples in S must
match the Y),-values of the pattern tuple.

For example, suppose a business maintains a Customers
table, keyed by cid, and including a column class indicating
the class of the customer (e.g., gold or silver). Further-
more, suppose a Services table maintains the services that
customers subscribe to, including a service id (sid), a cid
and the type of service (e.g., hardware or software). Let

Services.cid € Customers.cid be the embedded IND and
let (Services.type = software, Customers.class =
gold) be a pattern tuple. This CIND asserts that the customer
ids in the Services table must be drawn from the customer
ids in the Customers table, and moreover, gold customers can
obtain only software services. On the other hand, a pattern
tuple Services.type = software implies that only the
software services must have customer ids drawn from those
in the Customers table (e.g., perhaps hardware services are
provided to customers stored in a different table).

Given an embedded IND, the algorithm from [61], which
also applies to CFDs, finds pattern tuples that lead to partial
CINDs with a confidence satisfying a user-supplied threshold.
Similarly, Bauckmann et al. [13] start with a set of approx-
imate INDs and find pattern tuples to turn these into CINDs;
however, in contrast to [61], they are not constrained to a
single embedded IND. The authors present two algorithms:
CINDERELLA, which is based on the Apriori algorithm for
association rule mining and employs a breadth-first traversal
of the powerset lattice, and PLI, which employs a depth-first
traversal instead.

5.3.5 Generating foreign keys

IND discovery is a precursor to foreign key detection: A
foreign key must satisfy the corresponding inclusion depen-
dency but not all INDs are foreign keys. For example, multiple
tables may contain auto-increment columns that serve as sur-
rogate keys, and while inclusion dependencies among them
may exist, they are not foreign keys. Once INDs have been
discovered, additional heuristics have been proposed, which
essentially rank the discovered INDs according to their like-
lihood of being foreign keys [96,123,143]. A very simple
rule may be that if the LHS and RHS have similar names,
then A may be a foreign key. It is also useful to examine the
set of discovered INDs as a whole: For instance, foreign keys
usually are not also primary keys that serve as foreign keys
for other tables, and furthermore, a primary key is often ref-
erenced by multiple foreign keys in multiple tables, meaning
that a primary key should appear in the RHS of multiple INDs,
with the LHS’s being the foreign keys. More complex rules
may reference value distributions; for example, the values in
a foreign key column should form a random sample of the
values in the corresponding primary key column.

5.4 Other dependencies

Having outlined the algorithms for discovering traditional
dependencies and their extensions, we now discuss other
types of dependencies related to data profiling. Recently, an
extension of FastFDs called FastDC was proposed for dis-
covering denial constraints, which are universally quantified

@ Springer

574

Z. Abedjan et al.

first-order logic formulas that subsume FDs, CFDs, INDs and
many others [29].

Also, functional dependencies have recently been gener-
alized to differential dependencies in [128]. A differential
dependency X — Y states that if two tuples have “close”
values of X (say, the edit distance between them is small),
then their A values must also be close.* For example, in
a financial database, it may be true that if two tuples have
similar values of date (e.g., within seven days), then their
price values must also be similar (e.g., within 100 dollars).
Row- and column-based approaches to discovering differen-
tial dependencies were given in [128].

Another interesting class of dependencies involve order.
For instance, it may be useful to discover that if r is sorted
on some attribute A, it is also sorted on B, which gives an
order dependency between A and B [56]. This concept was
generalized in [57], which proposed sequential dependencies
(SDs). An SD states that when sorted on A, any two consec-
utive values of B must be within a predefined range. Given
a complete SD, including the attributes A and B as well as
the range, [57] gives an algorithm for discovering ranges of
values of A in which the SD is approximately satisfied. To the
best of our knowledge, the general problem of SD discovery
from data is open.

5.5 Summary and discussion

Dependency discovery has been a popular research area in
data management. Many of the algorithms and techniques for
dependency discovery are based upon classical data mining
solutions, such as the Apriori algorithm for efficient gener-
ation of association rules. Additional technical challenges
arise in the context of conditional dependencies, and novel
search space pruning strategies have been developed based
on the properties of the given dependencies.

Data profiling results can be not only complex, but also
very large. For instance, it is not uncommon to find thousands
of functional dependencies in a given dataset. To handle this
and focus users on the most important, interesting, or surpris-
ing ones, ranking profiling results can help, as Chu et al. [29]
show for denial constraints. They suggest two functions,
namely succinctness and coverage, to assess their interest-
ingness. Similar interestingness functions for CFDs are given
by Chiang and Miller [24]. Additionally, Andritsos et al. [9]
show how to rank FDs according to their information con-
tent. Furthermore, as we discussed earlier, post-processing
methods have been proposed to determine which of the dis-
covered inclusion dependencies are likely to be foreign keys;

4 Differential dependencies also generalize matching dependencies
[49] (if two tuples have close values of X, their A values must be exactly
the same) and metric functional dependencies [89] (if two tuples have
the same values of X, their A values must be close).

@ Springer

however, we are not aware of corresponding techniques for
uniques and FDs.

6 Profiling tools

Whenever data are too voluminous to fit on a screen or a sheet
of paper, data profiling is performed. Even lacking explicit
profiling tools, much can already be done with data man-
agement tools, such as spreadsheet software, SQL queries,
search capabilities of text editors or simply by “eyeballing”
the data. Such methods to become acquainted with a new
set of data are probably familiar to most readers. The simple
method of sorting the values of a column can already reveal
minimum and maximum values, and scrolling through that
sorted data intuits the value distribution, including the num-
ber of null values, which are typically sorted to the very
beginning or end, and the uniqueness of a column. Finding
the median or average values requires additional calculations,
whereas it is infeasible to detect dependencies with such sim-
ple means.

To allow a more powerful and integrated approach to data
profiling, software companies have developed data profiling
tools, mostly to profile data residing in relational databases.
Most tools discussed in this survey are part of a larger soft-
ware suite, either for data integration or for data cleansing.
We first give an overview of tools that were created in the
context of a research project (see Table 7 for a listing). Then,
we give a brief glimpse of the vast set of commercial tools
with profiling capabilities (see Table 8 for a listing).

6.1 Research tools

In the research literature, data profiling tools are often embed-
ded in data cleaning systems. For example, the Bellman [38]
data quality browser supports column analysis (counting the
number of rows, distinct values, and NULL values, finding
the most frequently occurring values, etc.), and key detection
(up to four columns). It also provides a column similar-
ity functionality that finds columns whose value or n-gram
distributions are similar; this is helpful for discovering poten-
tial foreign keys and join paths. Furthermore, an interesting
application of Bellman was to profile the evolution of a data-
base using value distributions and correlations [37]: Which
tables change over time and in what ways (insertions, dele-
tions, modifications), and which groups of tables tend to
change in the same way. The Potters Wheel tool [122] also
supports column analysis, in particular, detecting data types
and syntactic structures/patterns.

Data profiling functionality is also included in the
MADLIib toolkit for scalable in-database analytics [71],
including column statistics, such as count, count distinct,

Profiling relational data: a survey

575

Table 7 Research tools with

data profiling capabilities Tool

Main goal

Profiling capabilities

Bellman [38]

Potters Wheel [122]
Data Auditor [58]
RuleMiner [28]
MADLIb [71]

Data quality browser

Data quality, ETL
Rule discovery
Rule discovery

Machine learning

Column statistics, column similarity, candidate key
discovery

Column statistics (including value patterns)
CFD and CIND discovery
Denial constraint discovery

Simple column statistics

Table 8 Commercial data

profiling tools/components with Vendor and product

Features — Focus

their primary capabilities and

P Attacama DQ Analyzer
application areas

IBM InfoSphere Information Analyzer

Informatica Data Quality

Microsoft SQL Server Data Profiling Task

Oracle Enterprise Data Quality

Paxata Adaptive Data Preparation

SAP Information Steward

Splunk Enterprise / Hunk
Talend Data Profiler
Trifacta

Statistics, patterns, uniques — Data exploration, ETL

Statistics, patterns, multi-column dependencies — Data
exchange, integration, cleansing

Structure, completeness, anomalies, dependencies —
Business rules, cleansing

Statistics, patterns, dependencies — ETL, cleansing

Statistics, patterns, multi-column dependencies, text
profiling — Quality assessment, business rules,
cleansing

Statistics, histograms, semantic data types —
Exploration, cleansing, sharing

Statistics, patterns, semantic data types, dependencies
— ETL, modeling, cleansing

Patterns, data mining — Search, analytics, visualization
Statistics, patterns, dependencies — ETL, cleansing

Statistics, patterns — Quality assessment, data
transformation

minimum and maximum values, quantiles, and the £ most
frequently occurring values.

Recent data quality tools are dependency-driven: Clas-
sical dependencies, such as FDs and INDs, as well as their
conditional extensions, may be used to express the intended
data semantics, and dependency violations may indicate pos-
sible data quality problems. Most research systems require
users to supply data quality rules and dependencies, such
as GDR [138], Nadeef [34], Semandaq [45] and Stream-
Clean [84]. These systems focus on languages for specifying
rules and generating repairs. However, data quality rules are
not always known Apriori in unfamiliar and undocumented
datasets, in which case data profiling, and dependency dis-
covery in particular, is an important prerequisite to data
cleaning. Notably, many of these systems perform a focused
profiling of counting the number of inconsistent tuples with
respect to the given rules.

There are at least two research prototype systems that per-
form rule discovery to some degree: Data Auditor [58] and
RuleMiner [28]. Data Auditor requires an FD as input and
generates corresponding CFDs from the data. Additionally,
Data Auditor considers FDs similar to the one that is provided
by the user and generates corresponding CFDs. The idea is to

see if a slightly modified FD can generate a more suitable CFD
for the given relation instance. On the other hand, RuleMine
does not require any rules as input and instead it is designed to
generate all reasonable rules from a given dataset. RuleMiner
expresses the discovered rules as denial constraints, which
are universally quantified first-order logic formulas that sub-
sume FDs, CFDs, INDs and many others. Some of the rules
it finds are instance-specific and therefore more general than
those a typical data profiling tool would find; for example, in
a database of income tax records, RuleMiner might find that
if one person, A, has a higher salary than another, B, then
Person A must have a higher tax rate than Person B.

6.2 Commercial tools

Because data profiling is such an important capability for
many data management tasks, there are various commercial
data profiling applications. In many cases, they are a part of a
data quality / data cleansing tool suite, to support the use-case
of profiling for frequent patterns or rules and then cleaning
those records that violate them. In addition, most Extract—
Transform—Load tools have some profiling capabilities.

@ Springer

576

Z. Abedjan et al.

Table 8 mentions prominent examples of current com-
mercial tools, together with their capabilities and application
focus, based on the respective product documentations. It is
beyond the scope of this survey to provide a market overview
or compile feature matrices. We also deliberately refrain from
providing static URLSs for the various products, because com-
mercial Web sites are too fickle.

Finally, and as mentioned before, every database man-
agement system collects and maintains base statistics about
the tables it manages. However, they do not readily expose
those metadata, the metadata are not always up-to-date and
sometimes based only on samples, and their scope is usually
limited to simple counts and cardinalities.

7 Next generation profiling

Recent trends in data management have added new chal-
lenges but also opportunities for data profiling. First, under
the big data umbrella, industry and research have turned their
attention to data that they do not own or have not made use
of yet. Data profiling can help assess which data might be
useful and reveals the yet unknown characteristics of such
new data. Second, much of the data that shall be exploited is
of non-traditional type for data profiling, i.e., non-relational,
non-structured (textual), and heterogeneous. And it is often
truly “big,” both in terms of schema and in terms of data.
Many existing profiling methods cannot adequately handle
that kind of data: Either they do not scale well, or there simply
are no methods yet. Third, different and new data manage-
ment architectures and frameworks have emerged, including
distributed systems, key-value stores, multi-core- or main-
memory-based servers, column-oriented layouts, streaming
input, etc. We discuss some of these trends and their impli-
cations toward data profiling. A more elaborate overview of
upcoming challenges of data profiling is in [108].

7.1 Profiling for integration

An important use-case of traditional data profiling methods is
data integration. Knowledge about the properties of different
data sources is important to create correct schema mappings
and data transformations, and to correctly standardize and
cleanse the data. For instance, knowledge of inclusion depen-
dencies might hint upon ways to join two yet unrelated tables.

However, data profiling can reach beyond such support-
ive tasks and assess the integrability or ease of integration
of datasets and thus also indicate the necessary integration
effort, which is vital to project planning. Integration effort
might be expressed in terms of similarity, but also in terms
of manmonths or in terms of which tools are needed.

Like integration projects themselves, integrability has two
dimensions, namely schematic fit and data fit. Schematic fit is

@ Springer

the degree to which two schemata complement and overlap
each other and can be determined using schema matching
techniques [44]. Smith et al. [127] have recognized that
schema matching techniques often play the role of profiling
tools: Rather than using them to derive schema mappings
and perform data transformation, they might assess project
feasibility. Finally, the mere matching of schema elements
might not suffice as a profiling-for-integration result: Addi-
tional column metadata can provide further details about the
integration difficulty.

Data fit is the (estimated) number of real-world objects
that are represented in both datasets, or that are represented
multiple times in a single dataset and how different they
are. Such multiple representations are typically identified
using entity matching methods (also known as record link-
age, duplicate detection, etc.) [27]. However, estimating the
number of matches without actually performing the matching
on the entire dataset is an open problem.

7.2 Profiling non-relational data

With the rapid growth of the World Wide Web, semi-
structured data, such as XML and RDF data, and non-
structured data, such as text document corpora, have become
more important. The more flexible structure of non-relational
datasets opens new challenges for profiling algorithms. So
far, most methods apply only to or were developed for rela-
tional data. Below, we give an overview of both existing work
that applies traditional profiling algorithms, as well as exist-
ing work about data-model-specific profiling approaches, to
non-relational data. We focus on the three most relevant non-
relational data formats: XML, RDF, and text documents.

7.2.1 XML

XML is the quasi-standard for exchanging data on the Web.
Many applications, especially Web services, provide their
results as XML documents. Because the XML structure
explicitly contains markup and schema information, different
profiling approaches have to be considered. Apart from that,
Web services themselves are accessible through XML docu-
ments, such as WSDL and SOAP files, which are also worth
profiling for Web service inspection and categorization.

There has already been a number of research approaches
and proposals with a focus on statistical analysis of XML-
formatted data. They concentrate either on the DTD structure,
the XSD schema structure, or the inherent structure of XML
documents. The analysis concentrates on gathering statistics
about the number of root elements, attributes, the depth of
content models, etc. [26,105,106,124].

Further approaches focus on algorithms that identify tradi-
tional relational dependencies in XML data. While Vincent
et al. extend the notion of FDs to XML data [132], Yu et

Profiling relational data: a survey

577

al.s [140] present an approach for discovering redundancies
based on identified XML FD. There have also been adapta-
tions of unique and key discovery concepts and algorithms to
XML data [22]. Due to the more relaxed structure of XML,
these approaches identify approximate keys [62] or validate
the consistency of the identified keys against XSD defini-
tions [10].

As many XML documents do not refer to a specific
schema, a relevant application of profiling approaches is to
support the process of schema extraction [17,69]. Addition-
ally, the vast amount of existing documents do not always
comply to specified syntactical rules [88], which can be iden-
tified via appropriate profiling techniques.

7.2.2 RDF

Although profiling tasks for XML data can easily be adapted
to RDF datasets and vice versa, the requirement for RDF data
to be machine readable and its important use-case Linked
Open Data (LOD) give rise to RDF-specific challenges for data
profiling. There are already some tools that generate metadata
for a given RDF dataset. For example, LODStats is a stream-
based approach for gathering comprehensive statistics about
RDF datasets [12].

ProLoD++ provides additional functionalities by applying
clustering and rule mining techniques [1]. When profiling
RDF data, there are many interesting metadata beyond simple
statistics and patterns of RDF statement elements, including
synonymously used properties [4], inverse relationships of
properties, the conformity and consistence of RDF structured
data to the corresponding ontology [2], and the distribution
of literals and de-referenceable resource URIs from different
namespaces.

Because of the heterogeneity of interlinked sources, it is
vital to identify where specific facts come from and how reli-
able they are. Therefore, another interesting task for profiling
RDF data is provenance analysis [18].

7.2.3 Text

Many text analysis approaches and applications can be
regarded as text profiling tasks. Statistical methods are used
for tasks, such as information extraction [125], part-of-
speech tagging [20], and text categorization [83].
Specifically, in the field of author attribution, there has
been research on defining interesting features, such as word-
length distributions, average number of syllables [73].
Additionally, linguistic metrics, such as distinctiveness,
type-token ratio, and Simpson’s index have been proposed
to measure the style and diversity of text documents. The
task of profiling can target single documents, such as a
paper or a book, as well as sets of documents, such as
Web document corpora, product reviews, or user comments.

More sophisticated applications that use metadata gener-
ated through profiling include sentiment analysis and opinion
mining [93,112].

7.3 Profiling dynamic data

Data profiling describes an instance of a dataset at a particular
time. Since many applications work on frequently changing
data, it is desirable to re-profile a dataset after a change,
such as a deletion, insertion, or update, in order to obtain
up-to-date metadata. Simple aggregates are easy to main-
tain incrementally, but many statistics needed for column
analysis, such as distinct value counts, cannot be maintained
exactly using limited space and time. For these aggregates,
stream sketching techniques [53] may be used to maintain
approximate answers. There are also techniques for con-
tinuously updating discovered association rules [131] and
clusters [43].

Dependency detection may be too time-consuming for
repeated execution on the entire dataset. Thus, it is necessary
to incrementally update the metadata without processing the
complete dataset again. One example is SWAN, an approach
for unique discovery on dynamic datasets with insertions
and deletions [5] as reported in Sect. 5.1.4. Also, Wang et
al. present an approach for maintaining discovered FDs after
data deletions [134]. From a data cleaning standpoint, there
are solutions for incremental detection of FD and CFD vio-
lations [50], and incremental data repairing with respect to
FDs and CFDs [30]. In general, incremental solutions for FDs,
CrDs, INDs, and CINDs on growing and changing datasets
remain challenges for future research.

7.4 Profiling on new architectures

There are at least two database architecture trends that
affect profiling. The first is column versus row storage.
Column-store systems appear to have a natural computa-
tional advantage, at least in terms of the column analysis
tasks we discussed in Sect. 3, since they can directly fetch
the column of interest and compute statistics on it. How-
ever, if all columns are to be profiled, the entire dataset must
be read and the only remaining advantage of column stores
may be their potential compression. The second trend is that
of distributed and cloud data management. This introduces
additional profiling challenges, such as combining statistics
from multiple nodes into final per-column analysis. There
has been some work on detecting FD and CFD violations in a
distributed database [48,50], but many other problems in this
space, such as efficient dependency detection in distributed
data, remain open.

@ Springer

578

Z. Abedjan et al.

7.5 Visualization

Because data profiling mostly targets human users, effec-
tively visualizing any profiling results is of utmost impor-
tance. Only then can users interpret results and react to them.
A suggestion for a visual data profiling tool is the Profiler
system by Kandel et al. [81]. A strong cooperation between
the database community, which produces the data and meta-
data to be visualized, and the visualization community, which
enables users to understand and make use of the data, is
needed.

8 Summary

In this article, we provided a comprehensive survey of the
state of the art in data profiling: the set of activities and
processes to determine metadata about a given database. We
discussed single-column profiling tasks such as identifying
datatypes, value distributions and patterns, and multi-column
tasks such as detecting various kinds of dependencies. As
the amount of data and users who require access to data
increase, efficient and effective data profiling will continue to
be an important data management problem in research and
practice. While many data profiling algorithms have been
proposed and implemented in research prototypes and com-
mercial tools, further work is needed, especially in the context
of profiling new types of data, supporting and leveraging new
data management architectures, and interpreting and visual-
izing data profiling results.

References

1. Abedjan, Z., Griitze, T., Jentzsch, A., Naumann, F.: Mining and
profiling RDF data with ProLOD++. In: Proceedings of the Inter-
national Conference on Data Engineering (ICDE), pp. 1198-1201
(2014). Demo

2. Abedjan, Z., Lorey, J., Naumann, F.: Reconciling ontologies and
the web of data. In: Proceedings of the International Conference
on Information and Knowledge Management (CIKM), pp. 1532—
1536 (2012)

3. Abedjan, Z., Naumann, F.: Advancing the discovery of unique
column combinations. In: Proceedings of the International Con-
ference on Information and Knowledge Management (CIKM),
pp. 1565-1570 (2011)

4. Abedjan, Z., Naumann, F.: Synonym analysis for predicate expan-
sion. In: Proceedings of the Extended Semantic Web Conference
(ESWCQ), pp. 140-154 (2013)

5. Abedjan, Z., Quiané-Ruiz, J.-A., Naumann, F.: Detecting unique
column combinations on dynamic data. In: Proceedings of the
International Conference on Data Engineering (ICDE), pp. 1036—
1047 (2014)

6. Abedjan, Z., Schulze, P., Naumann, F.: DFD: efficient functional
dependency discovery. In: Proceedings of the International Con-
ference on Information and Knowledge Management (CIKM),
pp- 949-958 (2014)

@ Springer

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Agrawal, D., Bernstein, P., Bertino, E., Davidson, S., Dayal,
U., Franklin, M., Gehrke, J., Haas, L., Halevy, A., Han, J.,
Jagadish, H.V., Labrinidis, A., Madden, S., Papakonstantinou, Y.,
Patel, J.M., Ramakrishnan, R., Ross, K., Shahabi, C., Suciu, D.,
Vaithyanathan, S., Widom, J.: Challenges and opportunities with
Big Data. Technical report, Computing Community Consortium.
http://cra.org/cce/docs/init/bigdatawhitepaper.pdf (2012)
Agrawal, R., Srikant, R.: Fast algorithms for mining association
rules in large databases. In: Proceedings of the International Con-
ference on Very Large Databases (VLDB), pp. 487-499 (1994)
Andritsos, P., Miller, R.J., Tsaparas, P.: Information-theoretic
tools for mining database structure from large data sets. In: Pro-
ceedings of the International Conference on Management of Data
(SIGMOD), pp. 731-742 (2004)

Arenas, M., Daenen, J., Neven, F., Ugarte, M., Van den Bussche,
J., Vansummeren, S.: Discovering XSD keys from XML data. In:
Proceedings of the International Conference on Management of
Data (SIGMOD), pp. 61-72 (2013)

Astrahan, M.M., Schkolnick, M., Kyu-Young, W.: Approximating
the number of unique values of an attribute without sorting. Inf.
Syst. 12(1), 11-15 (1987)

Auer, S., Demter, J., Martin, M., Lehmann, J.: LODStats—an
extensible framework for high-performance dataset analytics. In:
Proceedings of the International Conference on Knowledge Engi-
neering and Knowledge Management (EKAW), pp. 353-362
(2012)

Bauckmann, J., Abedjan, Z., Miiller, H., Leser, U., Naumann, F.:
Discovering conditional inclusion dependencies. In: Proceedings
of the International Conference on Information and Knowledge
Management (CIKM), pp. 2094-2098 (2012)

Bauckmann, J., Leser, U., Naumann, F., Tietz, V.: Efficiently
detecting inclusion dependencies. In: Proceedings of the Interna-
tional Conference on Data Engineering (ICDE), pp. 1448-1450
(2007)

Benford, F.: The law of anomalous numbers. Proc. Am. Philos.
Soc. 78(4), 551-572 (1938)

Berti-Equille, L., Dasu, T., Srivastava, D.: Discovery of complex
glitch patterns: a novel approach to quantitative data cleaning. In:
Proceedings of the International Conference on Data Engineering
(ICDE), pp. 733-744 (2011)

Bex, G.J., Neven, F., Vansummeren, S.: Inferring XML schema
definitions from XML data. In: Proceedings of the International
Conference on Very Large Databases (VLDB), pp. 998-1009
(2007)

Bohm, C., Lorey, J., Naumann, F.: Creating void descriptions for
web-scale data. J. Web Semant. 9(3), 339-345 (2011)

Bravo, L., Fan, W., Ma, S.: Extending dependencies with con-
ditions. In: Proceedings of the International Conference on Very
Large Databases (VLDB), pp. 243-254 (2007)

Brill, E.: Transformation-based error-driven learning and natural
language processing: a case study in part-of-speech tagging. Com-
put. Linguist. 21(4), 543-565 (1995)

Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets:
generalizing association rules to correlations. SIGMOD Rec.
26(2), 265-276 (1997)

Buneman, P., Davidson, S.B., Fan, W., Hara, C.S., Tan, W.C.: Rea-
soning about keys for XML. Inf. Syst. 28(8), 1037-1063 (2003)
Chandola, V., Kumar, V.: Summarization—compressing data into
an informative representation. Knowl. Inf. Syst. 12(3), 355-378
(2007)

Chiang, F., Miller, R.J.: Discovering data quality rules. Proc.
VLDB Endow. 1, 1166-1177 (2008)

Chiang, R.H.L., Cecil, C.E.H., Lim, E.-P.: Linear correlation dis-
covery in databases: a data mining approach. Data Knowl. Eng.
53(3), 311-337 (2005)

http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf

Profiling relational data: a survey

579

26.

217.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Choi, B.: What are real DTDs like? In: Proceedings of the ACM
SIGMOD Workshop on the Web and Databases (WebDB), pp.
43-48 (2002)

Christen, P.: Data Matching. Springer, Berlin (2012)

Chu, X., Ilyas, I., Papotti, P., Ye, Y.: RuleMiner: data quality
rules discovery. In: Proceedings of the International Conference
on Data Engineering (ICDE), pp. 1222-1225 (2014)

Chu, X., Ilyas, L.F., Papotti, P.: Discovering denial constraints.
Proc. VLDB Endow. 6(13), 1498-1509 (2013)

Cong, G., Fan, W., Geerts, F,, Jia, X., Ma, S.: Improving data
quality: consistency and accuracy. In: Proceedings of the Interna-
tional Conference on Very Large Databases (VLDB), pp. 315-326
(2007)

Cormode, G., Garofalakis, M., Haas, P.J., Jermaine, C.: Synopses
for massive data: samples, histograms, wavelets, sketches. Found.
Trends Databases 4(13), 1-294 (2011)

Cormode, G., Golab, L., Flip, K., McGregor, A., Srivastava, D.,
Zhang, X.: Estimating the confidence of conditional functional
dependencies. In: Proceedings of the International Conference on
Management of Data (SIGMOD), pp. 469-482 (2009)
Cormode, G., Korn, F., Muthukrishnan, S., Srivastava, D.: Space-
and time-efficient deterministic algorithms for biased quantiles
over data streams. In: Proceedings of the Symposium on Principles
of Database Systems (PODS), pp. 263-272 (2006)

Dallachiesa, M., Ebaid, A., Eldawy, A., Elmagarmid, A., Ilyas,
LF., Ouzzani, M., Tang, N.: NADEEF: a commodity data clean-
ing system. In: Proceedings of the International Conference on
Management of Data (SIGMOD), pp. 541-552 (2013)

Das, A., Ng, W.-K., Woon, Y.-K.: Rapid association rule mining.
In: Proceedings of the International Conference on Information
and Knowledge Management (CIKM), pp. 474481 (2001)
Dasu, T., Johnson, T.: Hunting of the snark: finding data glitches
using data mining methods. In: Proceedings of the International
Conference on Information Quality (IQ), pp. 89-98 (1999)
Dasu, T., Johnson, T., Marathe, A.: Database exploration
using database dynamics. IEEE Data Eng. Bull. 29(2), 43-59
(2006)

Dasu, T., Johnson, T., Muthukrishnan, S., Shkapenyuk, V.: Mining
database structure; or, how to build a data quality browser. In:
Proceedings of the International Conference on Management of
Data (SIGMOD), pp. 240-251 (2002)

Dasu, T., Loh, J.M.: Statistical distortion: consequences of data
cleaning. Proc. VLDB Endow. 5(11), 1674-1683 (2012)

Dasu, T., Loh, J.M., Srivastava, D.: Empirical glitch expla-
nations. In: Proceedings of the International Conference on
Knowledge Discovery and Data Mining (SIGKDD), pp. 572-581
(2014)

Deshpande, A., Garofalakis, M., Rastogi, R.: Independence
is good: dependency-based histogram synopses for high-
dimensional data. In: Proceedings of the International Conference
on Management of Data (SIGMOD), pp. 199-210 (2001)
Diallo, T., Novelli, N., Petit, J.-M.: Discovering (frequent) con-
stant conditional functional dependencies. Int. J. Data Min.
Model. Manag. 4(3), 205-223 (2012)

Ester, M., Kriegel, H.-P., Sander, J., Wimmer, M., Xu, X.: Incre-
mental clustering for mining in a data warehousing environment.
In: Proceedings of the International Conference on Very Large
Databases (VLDB), pp. 323-333 (1998)

Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer,
Berlin (2013)

Fan, W., Geerts, F., Jia, X.: Semandaq: a data quality system based
on conditional functional dependencies. Proc. VLDB Endow.
1(2), 1460-1463 (2008)

Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional
functional dependencies for capturing data inconsistencies. ACM
Trans. Database Syst. 33(2), 1-48 (2008)

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Fan, W., Geerts, F, Li, J., Xiong, M.: Discovering conditional
functional dependencies. IEEE Trans. Knowl. Data Eng. 23(4),
683-698 (2011)

Fan, W., Geerts, F., Ma, S., Miiller, H.: Detecting inconsistencies
in distributed data. In: Proceedings of the International Confer-
ence on Data Engineering (ICDE), pp. 64-75 (2010)

Fan, W., Jia, X., Li, J., Ma, S.: Reasoning about record matching
rules. Proc. VLDB Endow. 2(1), 407-418 (2009)

Fan, W., Li, J., Tang, N., Yu, W.: Incremental detection of incon-
sistencies in distributed data. In: Proceedings of the International
Conference on Data Engineering (ICDE), pp. 318-329 (2012)
Fernau, H.: Algorithms for learning regular expressions from pos-
itive data. Inf. Comput. 207(4), 521-541 (2009)

Flach, P.A., Savnik, I.: Database dependency discovery: a machine
learning approach. Al Commun. 12(3), 139-160 (1999)
Ganguly, S.: Counting distinct items over update streams. Theor.
Comput. Sci. 378(3), 211-222 (2007)

Garofalakis, M., Keren, D., Samoladas, V.: Sketch-based geomet-
ric monitoring of distributed stream queries. Proc. VLDB Endow.
6(10), 937-948 (2013)

Giannella, C., Wyss, C.: Finding minimal keys in a relation
instance (1999). http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=?doi=10.1.1.41.7086

Ginsburg, S., Hull, R.: Order dependency in the relational model.
Theor. Comput. Sci. 26, 149-195 (1983)

Golab, L., Karloff, H., Korn, F.,, Saha, A., Srivastava, D.: Sequen-
tial dependencies. Proc. VLDB Endow. 2(1), 574-585 (2009)
Golab, L., Karloff, H., Korn, F., Srivastava, D.: Data auditor:
exploring data quality and semantics using pattern tableaux. Proc.
VLDB Endow. 3(1-2), 1641-1644 (2010)

Golab, L., Karloff, H., Korn, F., Srivastava, D., Bei, Y.: On gener-
ating near-optimal tableaux for conditional functional dependen-
cies. Proc. VLDB Endow. 1(1), 376-390 (2008)

Golab, L., Korn, F,, Srivastava, D.: Discovering pattern tableaux
for data quality analysis: a case study. In: Proceedings of the Inter-
national Workshop on Quality in Databases (QDB), pp. 47-53
(2011)

Golab, L., Korn, F,, Srivastava, D.: Efficient and effective analysis
of data quality using pattern tableaux. IEEE Data Eng. Bull. 34(3),
26-33 (2011)

Grahne, G., Zhu, J.: Discovering approximate keys in XML data.
In: Proceedings of the International Conference on Information
and Knowledge Management (CIKM), pp. 453—460 (2002)
Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D.,
Venkatrao, M., Pellow, F., Pirahesh, H.: Data cube: a relational
aggregation operator generalizing group-by, cross-tab, and sub
totals. Data Min. Knowl. Discov. 1(1), 29-53 (1997)
Gunopulos, D., Khardon, R., Mannila, H., Sharma, R.S.: Discov-
ering all most specific sentences. ACM Trans. Database Syst. 28,
140-174 (2003)

Haas, P.J., Naughton, J.F., Seshadri, S., Stokes, L.: Sampling-
based estimation of the number of distinct values of an attribute.
In: Proceedings of the International Conference on Very Large
Databases (VLDB), pp. 311-322 (1995)

Hainaut, J.-L., Henrard, J., Englebert, V., Roland, D., Hick, J.-
M.: Database reverse engineering. In: Liu, L., Tamer Ozsu, M.
(eds.) Encyclopedia of Database Systems, pp. 723-728. Springer,
Heidelberg (2009)

Han, J., Pei,J., Yin, Y.: Mining frequent patterns without candidate
generation. SIGMOD Rec. 29(2), 1-12 (2000)

Hanrahan, P.: Analytic database technology for a new kind of
user—the data enthusiast (keynote). In: Proceedings of the Inter-
national Conference on Management of Data (SIGMOD), pp.
577-578 (2012)

Hegewald, J., Naumann, F., Weis, M.: XStruct: efficient schema
extraction from multiple and large XML databases. In: Proceed-

@ Springer

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.41.7086
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.41.7086

580

Z. Abedjan et al.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

ings of the International Workshop on Database Interoperability
(InterDB) (2006)

Heise, A., Quiané-Ruiz, J.-A., Abedjan, Z., Jentzsch, A., Nau-
mann, F.: Scalable discovery of unique column combinations.
Proc. VLDB Endow. 7(4), 301-312 (2013)

Hellerstein, J.M., Ré, C., Schoppmann, F., Wang, D.Z., Fratkin,
E., Gorajek, A., Ng, K.S., Welton, C., Feng, X., Li, K., Kumar,
A.: The MADIib analytics library or MAD skills, the SQL. Proc.
VLDB Endow. 5(12), 17001711 (2012)

Hipp, J., Giintzer, U., Nakhaeizadeh, G.: Algorithms for associ-
ation rule mining—a general survey and comparison. SIGKDD
Explor. 2(1), 58-64 (2000)

Holmes, D.I.: Authorship attribution. Comput. Humanit. 28, 87—
106 (1994)

Hua, M., Pei, J.: Cleaning disguised missing data: a heuristic
approach. In: Proceedings of the International Conference on
Knowledge Discovery and Data Mining (SIGKDD), pp. 950-958
(2007)

Huhtala, Y., Kirkkiinen, J., Porkka, P., Toivonen, H.: TANE: an
efficient algorithm for discovering functional and approximate
dependencies. Comput. J. 42(2), 100-111 (1999)

Ilyas, L.F,, Markl, V., Haas, PJ., Brown, P, Aboulnaga, A.:
CORDS: automatic discovery of correlations and soft functional
dependencies. In: Proceedings of the International Conference on
Management of Data (SIGMOD), pp. 647-658 (2004)
Ioannidis, Y.: The history of histograms (abridged). In: Proceed-
ings of the International Conference on Very Large Databases
(VLDB), pp. 19-30 (2003)

Jain, A.K., Narasimha Murty, M., Flynn, P.J.: Data clustering: a
review. ACM Comput. Surv. 31(3), 264-323 (1999)

Johnson, T.: Encyclopedia of Database Systems, chapter Data Pro-
filing. Springer, Heidelberg (2009)

Kache, H., Han, W.-S., Markl, V., Raman, V., Ewen, S.: POP/FED:
progressive query optimization for federated queries in DB2. In:
Proceedings of the International Conference on Very Large Data-
bases (VLDB), pp. 11751178 (2006)

Kandel, S., Parikh, R., Paepcke, A., Hellerstein, J., Heer, J.:
Profiler: integrated statistical analysis and visualization for data
quality assessment. In: Proceedings of Advanced Visual Interfaces
(AVI), pp. 547-554 (2012)

Kang, J., Naughton, J.F.: On schema matching with opaque col-
umn names and data values. In: Proceedings of the International
Conference on Management of Data (SIGMOD), pp. 205-216
(2003)

Keim, D.A., Oelke, D.: Literature fingerprinting: a new method
for visual literary analysis. In: Proceedings of Visual Analytics
Science and Technology (VAST), pp. 115-122 (2007)
Khoussainova, N., Balazinska, M., Suciu, D.: Towards correcting
input data errors probabilistically using integrity constraints. In:
Proceedings of the ACM International Workshop on Data Engi-
neering for Wireless and Mobile Access (MobiDE), pp. 43-50
(2006)

Kivinen, J., Mannila, H.: Approximate inference of functional
dependencies from relations. In: Proceedings of the Interna-
tional Conference on Database Theory (ICDT), pp. 129-149
(1995)

Koehler, H., Leck, U., Link, S., Prade, H.: Logical foundations of
possibilistic keys. In: Fermé, E., Leite, J. (eds.) Logics in Artificial
Intelligence, volume 8761 of Lecture Notes in Computer Science,
pp. 181-195. Springer, Heidelberg (2014)

Koeller, A., Rundensteiner, E.A.: Heuristic strategies for the dis-
covery of inclusion dependencies and other patterns. J. Data
Semant. V. 3870, 185-210 (2006)

Korn, F,, Saha, B., Srivastava, D., Ying, S.: On repairing structural
problems in semi-structured data. Proc. VLDB Endow. 6(9), 601—
612 (2013)

@ Springer

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

Koudas, N., Saha, A., Srivastava, D., Venkatasubramanian, S.:
Metric functional dependencies. In: Proceedings of the Interna-
tional Conference on Data Engineering (ICDE), pp. 1275-1278
(2009)

Laney, D.: 3D data management: controlling data volume, velocity
and variety. Technical report, Gartner (2001)

Li, J., Liu, J., Toivonen, H., Yong, J.: Effective pruning for the dis-
covery of conditional functional dependencies. Comput. J. 56(3),
378-392 (2013)

Li, Y., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S.,
Jagadish, H.V.: Regular expression learning for information
extraction. In: Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pp. 21-30 (2008)
Liu, B.: Sentiment analysis and subjectivity. Handbook of Natural
Language Processing, 2nd edn. Chapman and Hall/CRC, London
(2010)

Liu, J., Li, J., Liu, C., Chen, Y.: Discover dependencies from
data—a review. IEEE Trans. Knowl. Data Eng. 24(2), 251-264
(2012)

Lopes, S., Petit, J.-M., Lakhal, L.: Efficient discovery of func-
tional dependencies and Armstrong relations. In: Proceedings of
the International Conference on Extending Database Technology
(EDBT), pp. 350-364 (2000)

Lopes, S., Petit, J.-M., Toumani, F.: Discovering interesting inclu-
sion dependencies: application to logical database tuning. Inf.
Syst. 27(1), 1-19 (2002)

Lucchesi, C.L., Osborn, S.L.: Candidate keys for relations. J.
Comput. Syst. Sci. 17(2), 270-279 (1978)

Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema match-
ing with Cupid. In: Proceedings of the International Conference
on Very Large Databases (VLDB), pp. 49-58 (2001)

Mannino, M.V., Chu, P., Sager, T.: Statistical profile estimation in
database systems. ACM Comput. Surv. 20(3), 191-221 (1988)
De Marchi, F, Lopes, S., Petit, J.-M.: Efficient algorithms for
mining inclusion dependencies. In: Proceedings of the Interna-
tional Conference on Extending Database Technology (EDBT),
pp. 464-476 (2002)

De Marchi, F,, Lopes, S., Petit, J.-M.: Unary and n-ary inclusion
dependency discovery in relational databases. J. Intell. Inf. Syst.
32, 53-73 (2009)

De Marchi, F. , Petit, J.-M.: Zigzag: a new algorithm for mining
large inclusion dependencies in databases. In: Proceedings of the
IEEE International Conference on Data Mining (ICDM), pp. 27—
34 (2003)

Markowitz, V.M., Makowsky, J.A.: Identifying extended entity-
relationship object structures in relational schemas. IEEE Trans.
Softw. Eng. 16(8), 777-790 (1990)

Maydanchik, A.: Data Quality Assessment. Technics Publica-
tions, New Jersey (2007)

Mignet, L., Barbosa, D., Veltri, P.: The XML web: a first study.
In: Proceedings of the International World Wide Web Conference
(WWW), pp. 500-510 (2003)

Mlynkova, 1., Toman, K., Pokorny, J.: Statistical analysis of real
XML data collections. In: Proceedings of the International Con-
ference on Management of Data (COMAD), pp. 15-26 (2006)
Morton, K., Balazinska, M., Grossman, D., Mackinlay, J.: Support
the data enthusiast: challenges for next-generation data-analysis
systems. Proc. VLDB Endow. 7(6), 453-456 (2014)

Naumann, F.: Data profiling revisited. SIGMOD Rec. 42(4), 40—
49 (2013)

Naumann, F., Ho, C.-T., Tian, X., Haas, L., Megiddo, N.:
Attribute classification using feature analysis. In: Proceedings of
the International Conference on Data Engineering (ICDE), p 271
(2002)

Novelli, N., Cicchetti, R.: FUN: an efficient algorithm for mining
functional and embedded dependencies. In: Proceedings of the

Profiling relational data: a survey

581

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

International Conference on Database Theory (ICDT), pp. 189—
203 (2001)

Ntarmos, N., Triantafillou, P., Weikum, G.: Distributed hash
sketches: scalable, efficient, and accurate cardinality estimation
for distributed multisets. ACM Trans. Comput. Syst. 27(1), 1-53
(2009)

Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found.
Trends Inf. Retr. 2(1-2), 1-135 (2008)

Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J.-P.,
Schonberg, M., Zwiener, J., Naumann, F.: Functional dependency
discovery: an experimental evaluation of seven algorithms. Proc.
VLDB Endow. 8(10) (2015)

Papenbrock, T., Kruse, S., Quiané-Ruiz, J.-A., Naumann, F.:
Divide & conquer-based inclusion dependency discovery. Proc.
VLDB Endow. 8(7), 774-785 (2015)

Park, J.S., Chen, M.-S., Yu, P.S.: Using a hash-based method with
transaction trimming for mining association rules. IEEE Trans.
Knowl. Data Eng. 9, 813-825 (1997)

Petit, J.-M., Kouloumdjian, J., Boulicaut, J.-F., Toumani, F.: Using
queries to improve database reverse engineering. In: Proceedings
of the International Conference on Conceptual Modeling (ER),
pp. 369-386 (1994)

Pipino, L., Lee, Y., Wang, R.: Data quality assessment. Commun.
ACM 4, 211-218 (2002)

Poosala, V., Haas, P.J., Ioannidis, Y.E., Shekita, E.J.: Improved
histograms for selectivity estimation of range predicates. In: Pro-
ceedings of the International Conference on Management of Data
(SIGMOD), pp. 294-305 (1996)

Poosala, V., Ioannidis, Y.E.: Selectivity estimation without the
attribute value independence assumption. In: Proceedings of the
International Conference on Very Large Databases (VLDB), pp.
486495 (1997)

Pyle, D.: Data Preparation for Data Mining. Morgan Kaufmann,
Burlington (1999)

Rahm, E., Do, H.-H.: Data cleaning: problems and current
approaches. IEEE Data Eng. Bull. 23(4), 3—13 (2000)

Raman, V., Hellerstein, J.M.: Potters wheel: an interactive data
cleaning system. In: Proceedings of the International Conference
on Very Large Databases (VLDB), pp. 381-390 (2001)

Rostin, A., Albrecht, O., Bauckmann, J., Naumann, F., Leser,
U.: A machine learning approach to foreign key discovery. In:
Proceedings of the ACM SIGMOD Workshop on the Web and
Databases (WebDB) (2009)

Sahuguet, A., Azavant, F.: Building light-weight wrappers for
legacy Web data-sources using W4F. In: Proceedings of the
International Conference on Very Large Databases (VLDB), pp.
738-741 (1999)

Sarawagi, S.: Information extraction. Found. Trends Databases
1(3), 261-377 (2008)

Sismanis, Y., Brown, P., Haas, P.J., Reinwald, B.: GORDIAN:
efficient and scalable discovery of composite keys. In: Proceed-
ings of the International Conference on Very Large Databases
(VLDB), pp. 691-702 (2006)

Smith, K.P., Morse, M., Mork, P., Li, M.H., Rosenthal, A., Allen,
M.D., Seligman, L.: The role of schema matching in large enter-
prises. In: Proceedings of the Conference on Innovative Data
Systems Research (CIDR) (2009)

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

Song, S., Chen, L.: Differential dependencies: reasoning and dis-
covery. ACM Trans. Database Syst. 36(3), 16:1-16:41 (2011)
Stonebraker, M., Bruckner, D., Ilyas, L.F., Beskales, G., Cherni-
ack, M., Zdonik, S., Pagan, A., Xu, S.: Data curation at scale:
the Data Tamer system. In: Proceedings of the Conference on
Innovative Data Systems Research (CIDR) (2013)

Chen, M., Hun, J., Yu, P.S.: Data mining: an overview from a
database perspective. IEEE Trans. Knowl. Data Eng. 8, 866-883
(1996)

Tsai, P.S.M., Lee, C.-C., Chen, A.L.P.: An efficient approach for
incremental association rule mining. Methodologies for Knowl-
edge Discovery and Data Mining. volume 1574 of Lecture Notes
in Computer Science, pp. 74-83. Springer, Heidelberg (1999)
Vincent, M.W,, Liu, J., Liu, C.: Strong functional dependencies
and their application to normal forms in XML. ACM Trans. Data-
base Syst. 29(3), 445-462 (2004)

Vogel, T., Naumann, F.: Instance-based “one-to-some” assign-
ment of similarity measures to attributes. In: Proceedings of the
International Conference on Cooperative Information Systems
(CooplS), pp. 412-420 (2011)

Wang, S.-L., Tsou, W.-C., Lin, J.-H., Hong, T.-P.: Maintenance of
discovered functional dependencies: incremental deletion. Intel-
ligent Systems Design and Applications, volume 23 of Advances
in Soft Computing, pp. 579-588. Springer, Heidelberg (2003)
Xindong, W., Zhang, C., Zhang, S.: Efficient mining of both pos-
itive and negative association rules. ACM Trans. Inf. Syst. 22(3),
381-405 (2004)

Wyss, C., Giannella, C., Robertson, E.L.: FastFDs: a heuristic-
driven, depth-first algorithm for mining functional dependencies
from relation instances. In: Proceedings of the International
Conference on Data Warehousing and Knowledge Discovery
(DaWakK), pp. 101-110 (2001)

Xu, R., Wunsch II, D.C.: Survey of clustering algorithms. IEEE
Trans. Neural Netw. 16(3), 645-678 (2005)

Yakout, M., Elmagarmid, A.K., Neville, J., Ouzzani, M.: GDR: a
system for guided data repair. In: Proceedings of the International
Conference on Management of Data (SIGMOD), pp. 1223-1226
(2010)

Yao, H., Hamilton, H.J.: Mining functional dependencies from
data. Data Min. Knowl. Discov. 16(2), 197-219 (2008)

Yu, C., Jagadish, H.V.: Efficient discovery of XML data redun-
dancies. In: Proceedings of the International Conference on Very
Large Databases (VLDB), pp. 103-114 (2006)

Zaki, M.J.: Scalable algorithms for association mining. IEEE
Trans. Knowl. Data Eng. 12(3), 372-390 (2000)

Zhang, M., Chakrabarti, K.: InfoGather+: semantic matching and
annotation of numeric and time-varying attributes in web tables.
In: Proceedings of the International Conference on Management
of Data (SIGMOD), pp. 145-156 (2013)

Zhang, M., Hadjieleftheriou, M., Ooi, B.C., Procopiuc, C.M., Sri-
vastava, D.: On multi-column foreign key discovery. Proc. VLDB
Endow. 3(1-2), 805-814 (2010)

Zhang, M., Hadjieleftheriou, M., Ooi, B.C., Procopiuc, C.M.,
Srivastava, D.: Automatic discovery of attributes in relational
databases. In: Proceedings of the International Conference on
Management of Data (SIGMOD), pp. 109-120 (2011)

@ Springer

	Profiling relational data: a survey
	Abstract
	1 Data profiling: finding metadata
	1.1 Use-cases for data profiling
	1.2 Article overview and contributions

	2 Profiling tasks
	2.1 Single-column profiling
	2.2 Multi-column profiling
	2.3 Dependencies
	2.4 Conditional, partial, and approximate solutions
	2.5 Types of storage
	2.6 Data profiling versus data mining
	2.7 Summary

	3 Column analysis
	3.1 Cardinalities
	3.2 Value distribution
	3.3 Types and patterns
	3.4 Data completeness

	4 Multi-column analysis
	4.1 Correlations and association rules
	4.2 Clustering and outlier detection
	4.3 Summaries and sketches

	5 Dependency detection
	5.1 Unique column combinations and keys
	5.1.1 Gordian: row-based discovery
	5.1.2 Column-based traversal of the column lattice
	5.1.3 DUCC: traversing the lattice via random walk
	5.1.4 SWAN: an incremental approach

	5.2 Functional dependencies
	5.2.1 Column-based algorithms
	5.2.2 Row-based algorithms
	5.2.3 Partial and approximate functional dependencies
	5.2.4 Conditional functional dependencies

	5.3 Inclusion dependencies
	5.3.1 Generating unary inclusion dependencies
	5.3.2 Generating n-ary inclusion dependencies
	5.3.3 Partial and approximate inclusion dependencies
	5.3.4 Conditional inclusion dependencies
	5.3.5 Generating foreign keys

	5.4 Other dependencies
	5.5 Summary and discussion

	6 Profiling tools
	6.1 Research tools
	6.2 Commercial tools

	7 Next generation profiling
	7.1 Profiling for integration
	7.2 Profiling non-relational data
	7.2.1 XML
	7.2.2 RDF
	7.2.3 Text

	7.3 Profiling dynamic data
	7.4 Profiling on new architectures
	7.5 Visualization

	8 Summary
	References

