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Abstract

We propose a general framework to describe formally the problem of capturing the intensity
of implication for association rules through statistical metrics. In this framework we present
properties that influence the interestingness of a rule, analyze the conditions that lead a
measure to perform a perfect prune at a time, and define a final proper order to sort the
surviving rules. We will discuss why none of the currently employed measures can capture
objective interestingness, and just the combination of some of them, in a multi-step fashion,
can be reliable. In contrast, we propose a new simple modification of the Pearson coefficient
that will meet all the necessary requirements. We statistically infer the convenient cut-
off threshold for this new metric by empirically describing its distribution function through
simulation. Final experiments serve to show the ability of our proposal.

1. Problem Formulation and Basic Definitions

One of the most relevant tasks in Knowledge Discovery in Databases is mining for association
rules in large masses of data, as it was first formulated by [1]. This task is often decomposed
into two separate phases: 1/ Finding all the frequent itemsets having support over a user-specified
threshold, and, 2/ Generating the association rules from the maximal discovered frequent itemsets.

The input of a frequent sets algorithm is a database, D, composed of a collection of transactions,
where each transaction is a subset of a given fixed set of items 7 = {iy,42,...,in}. Let I CT be
an itemset, and let Pr(I,D) be the ratio of the number of transactions in which I appears to the

number of all transactions in D, i.e, Pr(I,D) = %lj’—pl. We note the support of an itemset I as

Pr(I,D). An itemset is called frequent if its support exceeds a given user-specified threshold, o.

In the second phase, association rules are constructed from the previous maximal frequent
sets. In brief, given any maximal frequent itemset Z, an association rule is an expression X = Y,
where X CZ,Y CZ, XNY =0 and X UY = Z. The number of these extracted implications is
usually very large, leading to a rule quality problem: just a small portion of them are interesting
and the rest are misleading. Currently, this problem can be faced by calculating an interestingness
measure over the rules with the aim of statistically determining their quality. This is a common
technique used by many authors (such as in [4], [6], [5], [11], [14], [16] ... ), as opposed to other
deterministic techniques such as grouping together related rules ([8]), or using closed itemsets to
generate a final non-redundant set of rules ([3] or [18]).

We introduce now some definitions and consideration in our problem.
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Definition 1.1 An interestingness measure I M is a function on association rules that returns a
real value, that is, IM : {Association Rule,D} — R.

So, interestingness measures aim at sorting association rules according to this output real value.
An order induced by a measure in a given database D is a total order, and in current applications,
the user specifies a threshold to split the sorted rules in two classes: those rules ranking under the
user-specified threshold are considered uninteresting and will be pruned; the rest of rules will be
considered interesting. This is a risky step since the function 7M might be unreliable in capturing
the quality of the rule and so, some uninteresting rules can still hold while other interesting ones
could be eliminated.

For the study of association rules, we also need to consider an asymmetric framework where
one variable causes another. So, there is a need to distinguish the strenght of implication of the
rule r = X = Y, from its reversed # = Y = X. The calculation and interpretation of asymmetric
measures depend on which variable is considered dependent, or in other words, which part of
the original itemset will be the best consequent of the rule. These kind of measures that assign
different values to the two rules X = Y and Y = X will be called symmetry breaking.

Definition 1.2 We say that the association ruler = X =Y is a better implication in a database
D than its reversed ¥ =Y = X, according to a measure IM, if IM (r,D) > IM(#,D).

2. General Framework for Pruning Association Rules

This following proposed framework tries to be a generalization of all the different properties and
considerations stated in the broad current literature ([10], [16],[17], [14],[6],[11],[13], among others).

2.1. Necessary properties for Interestingness Measures

The proposed properties stem from intuitive notions of interestingness considered from an objective
point of view in the context of the association rule mining. Given any interestingness measure
IM, we consider two properties making IM an accurate metric in the assessment of association
rules:

P1l: IM must test independence of a rule »

P2: IM must test the strenght of implication of a rule r against its reversed 7

The first property P1 derives from a common principle in association rule mining: the greater
the support, the better the itemset. As authors in [b] argue, this fact is true to some extent
because itemsets with high support are a source of misleading rules: they appaear in most of the
transactions, and any other itemset (despite the meaning) seems to be a good predictor of the
presence of the high-support itemset. For example, adding a new item 7' to Z and including it in
the transactions of the database, so that i’ appears in all the transactions, gives rise to frequent
itemsets where i’ is always present. However, when generating the subsequent rules, most of them
turn to be useless despite having high support and accuracy, because they hold with negative
dependence or independence between antecedent and consequent.

So, property P1 says that any accuracy measure must test independence between antecedent
and consequent of a rule. Stated formally, this means that IM(A = B) = k when Pr(4 U
C,D) = Pr(A,D) x Pr(C,D) (where k can be any constant value), and it was first formulated
by [14]. So, we want that IM can clearly distinguish rules according to these three degrees of
dependence: rules with Pr(A U C,D) > Pr(A,D) x Pr(C,D) are called the positive association
rules, those with Pr(A U C,D) < Pr(A,D) x Pr(C,D) are the negative association rules and
finally, Pr(AUC,D) = Pr(A,D) x Pr(C,D) are null association rules.



A well-known measure that evaluates the degree of dependency between antecedent and con-
sequent of a rule is the Pearson coefficient, ¢ (see appendix A for more details). Rules with ¢ =0
are independent, rules with ¢ > 0 are the positive rules and the rest with ¢ < 0 are the negative
rules. So, to check independence between two variables (in our case antecedent and consequent
of a rule) we could perform the common statistical correlation testing by rejecting or accepting
the hypothesis HO) ¢ = 0, versus H1) ¢ # 0 (the convenient transformation of ¢ gets an statistic
that follows normality). Unfortunately, Pearson coefficient fails to fulfill property P2; so, it is not
a good measure to be used in the association rule mining framework and other measures should
be considered.

The second predicate illustrates the need to distinguish the best association rules from all
the antecedent-consequent permutation asymmetries. In other words, given that we are in the
asymmetric framework of association rules, we just want to keep one single representative from
any pair of rules » and 7. All the rules r whose value IM (r) < IM (#) are said to be a weak reverse
of another rule.

We can finally define our working hypothesis for which an interestingness measure I'M is
accurate if it can prune misleading rules, i.e, weak rules (null association rules and negative
association rules) and weak reversed rules. Null association rules are useless since we are looking
for association patterns and not independent ones; and we consider that negative association rules
should be better discovered with different specific algorithmic strategies having into account the
negation of attributes, such as in [9], where the necessary monotonicity properties are preserved,
which is not necessarily the case for statistical metrics [13]. This total set of rules that IM has to
prune will be called the uninteresting rules.

2.2. Useful Tests on Rules

The last prune phase becomes a rule classification problem that is currently performed through
the ranking stablished by IM. It can be formalized through the following test.

Definition 2.1 A test T on an association rule v from the input database D, given an interes-
tingness measure IM and a certain threshold 0 is:

T(r,IM,0,D) =
of (IM(r,D)>60 and IM(r,D)>IM(7#, D)), then return I
otherwise return 0

When this test returns 1 means that the association rule r is considered interesting in the
concrete database D, otherwise, returning a 0, it means that r is not considered interesting and it
should be pruned away. In a certain way, if we examine closely the main condition of the test, we
note that the first part, IM(r, D) > 0, controls the satisfactibility of property P1; and the second
part, IM (r,D) > IM(#, D), controls the satisfactivility of property P2. Of course, the utility of
the test depends basically on IM and the value of 8 chosen (that will determine the ability of the
test to capture interestingness). We want to distinguish here two degrees of ability in a test.

A test will be considered harmless if all the real interesting rules pass the test, although it
could still hold many uninteresting rules at the same time. We say it is harmless because at least
real interesting rules are never removed.

A test will be considered completely useful if it perfectly separates uninteresting rules from
the rest, so, it always performs a perfect classification of rules and never fails to distinguish the
notion of interestingness. Any completely useful test is included in the set of harmless tests, but
the reverse implication does not always hold (i.e, there are harmless tests which are not completely
useful). For our goals, we want to consider only all the completely useful tests, altough this will
depend on IM and the threshold 0 used as a cut-off.



2.3. Partial Orders on Rules

We propose to study the following three partial orders on rules.

Definition 2.2 Given rulesr = A= C, and v = A’ = ', we say r <1 r' in a certain database
D if and only if: Pr(A,D) = Pr(A",D), and Pr(C,D) = Pr(C',D), and Pr(AUC,D) <
Pr(A'uC’, D).

Definition 2.3 Given rules v = A = C, and v = A = ', we say r <3 7 in a certain
database D if and only if: Pr(AUC,D) = Pr(A'UC’,D), and Pr(C,D) = Pr(C’',D), and
Pr(A,D) < Pr(A',D).

These two partial orders on rules derive from the well-known properties proposed by Piatetsky-
Shapiro [14] over the measures of interestingness.

Definition 2.4 Given rulesr = A= C, and v = A’ = ', we say r <z r' in a certain database
D if and only if: Pr(AU C,D) = Pr(A’UC’,D), and Pr(AU C,D) = Pr(A'UC', D), and
Pr(AuUC,D) = Pr(A'UC’,D), and Pr(AUC,D) = Pr(A’UC',D), and Pr(AUC,D) <
Pr(A'UC', D), (where X means the absence of itemset X in the database D).

This third partial order on rules expresses the relationship that should exist between two com-
plementary rules: that is, rules that would have the same support in case all the 1’s (presence
of item in a transaction) would be flipped into 0’s (absence of item) simultaneously in all trans-
actions of D. So, the order of <3 reflects that the co-presence of antecedent and consequent in
each transaction is more meaningful that their co-absence. In other words, in the market basket
framework, the antecedent and the consequent should be strongly associated if they are bought
together by many costumers, rather than because they are not bought together frequently.

From these three partial orders, we define a total proper order that measures IM should keep
to rank the rules. Later, we will show that some total orders induced by specific measures, we
have that they are proper orders.

Definition 2.5 A measure IM induces a proper order if preserves the partial orders <4, <9 and
<3 given in D. That is, r <1 7' or r<gr' or r<gr' — IM(r) <IM(r)

3. Determining the Properties of an Optimal Prune

According to our framework, the main goal of an optimal prune is to find a completely useful
test with the ability to keep a proper order on those interesting surviving rules. For that, we focus
our study on how the chosen threshold 6 affects the properties of the measure I M.

3.1. Finding a Completely Useful Test

We are going to consider here symmetry breaking measures IM (this excludes ¢, that can
never lead to a optimal prune due to P2), and analyze which characteristics the value of # must
fulfill to create a completely useful, whenever this is possible.

We start by observing that given any symmetry breaking I M, it is always possible to find a
threshold 0 that makes the test T(r, IM, 0, D) harmless. This can be done by setting the threshold
0 with the smallest value of the image I'M, that is, if IM (r, D) € [vs, ve], then we can chose 6 = v;.
This will always make the test T(r,IM,vs, D) harmless since always returns 1, and so, all the
rules pass the test. This naive value of # will be called the minimum harmless threshold of I M.
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Figure 1: Dotplots of values IM(r) to illustrate different types of test

The problem with using the minimum harmless threshold is that the test is not useful at all
because all the uninteresting association rules are kept. So, the point is how well we can do with
0, i.e, how much we can increment the value of 6 keeping the test T(r,IM,0,D) being harmless
and, at the same time, with the ability to remove uniteresting rules.

Definition 3.1 The maximum harmless threshold, noted by 0%, for some symmetry breaking
measure IM is that value for 8 such that if we incremented this value 0* with a certain §, then
the test T(r,IM,0* + 6, D) would start being harmful.

So, §* removes as many uninteresting rules as possible, but always keeps the harmless condition
of the test. A graphical example of the threshold 6* for a measure I M, is found in graph (a) of
figure 1. This graph shows a dotplot of IM(r): location of the points (+ and —) along the
line ITM (r) shows the different values that each rule gets with TM. As we see, interesting and
uninteresting rules could be mixed along the line, but at least, the threshold 6* always guarantees
a set of only uninteresting rules at its left side, and it cannot be incremented to hold this invariant.

Proposition 3.1 The value of the mazimum harmless threshold for any IM is 0* = min,, {IM (r;, D)}
where r; are the interesting rules found in the data D.

With 6* = min,, {IM(r;, D)} we are in the limit of harmlessness in a test, holding as few
uninteresting rules as possible in the right side of 8*. These uninteresting rules, noted by r,, are
weak rules or weak reversed rules, but they still could pass the test if and only if TM (ry, D) >
IM(r;,D), for some interesting rule r;. Since the test is harmless, it cannot remove r;, and the
following situation is forced: TM(ry,,DP) > IM(r;, D) > 0*. So, r, is an uninteresting rule that
the test is forced to keep just to continue being harmless. However, we can state that the number
of r, kept with the maximum harmless threshold is minimum by definition. But, when can this
maximum harmless threshold perform a perfect classification of rules?

Proposition 3.2 The mazimum harmless threshold performing a perfect split of interestingness,
exists for any symmetry breaking IM if we have that max,, {IM(ry, D)} < min,, {IM(r;,D)},
where r, are the uninteresting rules and r; are the interesting ones in the data D.

This threshold 0* will convert the test in completely useful when all the rules r,, are removed by
the test. This situation only happens when we have that max,  {IM (ry, D)} < min,, {IM (r;, D)},
and so we can choose 6* such that Vry, TM(r,, D) < 0%, but at the same time, Vr;, IM (r;, D) > 0.
In other words, the function I M assigns values to rules in such a way that interesting rules r;
are separated from the rest of uninteresting rules r, (and the corresponding split between these
two type of rules is pointed out by 0*). Graph (b) of figure 1 shows the situation of proposition
3.2. However, the existence of a 8* for IM giving rise to a completely useful test, depends on the



especific data examined D and especially, on the ability of the measure to clearly separate the two
type of rules at this point §*. In particular, we can state the followig.

Lemma 3.1 If a certain symmetry breaking IM is linearly correlated with ¢, then 0% creating
the test T(r,IM,0%,D) in completely useful.

Proof:

Given the input set of all-kind rules R to be classified, we can construct a new set R’ consisting
of only the strong reversed rules, i.e, R' = {r € R|IM(r) > IM(#)} (this can be done because
our I'M is symmetry breaking). Besides, if M is linearly correlated with ¢, it implies that TM
can distinguish strong positive rules from the rest of weak rules. That is, we can create from
set R’ a partition such that max, {IM(ry,DP)} < min,, {IM(rs,D)}, where r, are the weak
association rules in R’ and r; are the strong association rules in R’. But since R’ just contained
strong reversed rules, we have that rules r; are also the interesting ones (strongly correlated and
the strong reversed ones). So, this IM can separate rules acccording to proposition 3.2, which
implies that the maximum harmless threshold converting the test in completely useful exists for
M. O

3.2. Keeping a Proper Order on Rules
Besides, this measure I M used in the test should induce a proper order on the remaining interesting
rules. The table 1 gathers the conditions satisfied by the different measures (see appendix B for

definitions). Note that measures like Lift, PS or IS will never create the completely useful test
since they are not symmetry breaking. Measures not inducing a proper should be also discarded.

Lemma 3.2 For all rules r = A = B, the following conditions, taken joinly, are sufficient for
establishing that a total order induced by IM is a proper order:

(1) TM(r, D) is monotone in Pr(AUC, D) over rules with the same Pr(A,D) and same Pr(C, D).
(2) TM(r, D) is monotone in Pr(A, D) over rules with the same Pr(AUC, D) and same Pr(C, D).

(3) IM(r,D) is monotone in Pr(AUC, D) over complementary rules.

Proof sketch: As appendix C.

Table 1: Conditions satisfied by main IM

IM (1) (2) (3) IM (1) (2) (3)

0] Yes Yes Yes 0] Yes Yes Yes
| Confidence | Yes | Yes | Yes || Lift | Yes | Yes | Yes |
| Conviction | Yes [Yes [Yes [ PS[14] | No | Yes [ Yes |
| Gini Index | No | No' | No' [ IS[16] | Yes | Yes [Yes |
| Inf. Gain | No | Nol | Yes || J-Measure | Yes | Nol | Nol |

I'No, unless only positive association rules are considered.
4. Multi-test Approach

To find the completely useful test, the current symmetry breaking measures also able to induce
a final proper order should be studied (Confidence, Conviction [7] and J-Measure). For comparison
purposes, we generate artificial datasets such as in [16] containing 10,000 random samples. Each
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Figure 2: Correlation of Confidence, Conviction and J-Measure against ¢

sample is a 2 X 2 contingency table representing an association rule X = Y where X,Y C 7.
Each generated contingency table is subject to the same restrictions as in [16]. Apart from
these restrictions, a minimum support o will represent the support-based prune performed by
the frequent sets algorithms on the first phase. In the following synthetic experiments we assume
o =0, i.e, we are dealing with the worst case where all the possible rules are generated.

At a glance, comparisons of this main symmetry breaking measures to ¢ can be grasped from
figure 2. Note that the interesting rules we want to keep are exactly located in the high top half of
each square, that is, those with ¢ >> 0 and with no other stronger reverse (which are not plotted
in these figures). From the graphics we can see that none of these measures can perform a perfect
prune of all uninteresting rules at a time. A test can be regarded as a split along the vertical line
y = 0, and whatever the threshold @ chosen for these measures, the test T'(r, IM, 0, D) will always
maintain null association rules or negative association rules; thus, the proposition 3.2 never holds.

However, although a completely useful test is not possible with one single measure, we can
try to combine them to create a multi-test proposal achieving the three goals of a completely
useful test: 1) pruning null association rules, 2) pruning negative association rules, 3) pruning
weak reversed rules. For example, T(r, ¢,01, D) and T(r, Conviction, 1, D) is a completely useful
multi-test: ¢ with the convenient threshold 81, keeps only the strongest rules; and then, those rules
go to the second test where Conviction with a harmless threshold, will prune the worst reversed
rules and keep the proper order on the rest. Note that the threhold 0, for the measure ¢ could be
determined statistically by studying the distribution function of ¢ (in the same way that one can
perform a correlation test to decide the significance of ¢ between two variables).

More complex combinations can be done: T(r, Conviction, 1, D) and T(r,J— Measure, 03, D).
Here, Conviction with this harmless threshold, = 1, prunes all the negative association rules (see
figure 2) and all the weak reversed rules. Finally, J-Measure in the second test would prune all the
null association rules. The harmless value of 8, for J-Measure is here more difficult to determine
theorethically (from figure 2 we see that 0, is somewhere around 0.25).

5. A New Measure to Have an Optimal Prune

We want to study now the existance of a perfect IM: it should be symmetry breaking (P2),
it should be able remove null and negative rules (P1), and keep a final proper order. This single
measure could certainly make the post-prunning phase faster and simpler, since just one single
statement should be checked for each association rule. For that, we observe that the Pearson
coefficient ¢ just fails to fullfil predicate P2; so, the most natural approach to this problem seems
to modify ¢ and transform it into a symmetry breaking measure.

In general, when examining association rules, we should take into account that the best rule in
terms of ¢mplication, A = (', comes when the transactions where antecedent A occurs are a subset
of the transactions where consequent C' occurs (i.e, trans(A) C trans(C)). In other words, the
occurrence of A in the database fully implies the occurrence of C'. Besides, transactions where A



occurs, can be divided into: trans(A) = trans(AUC) +trans(AU—-C). So, the fewer transactions
in which A U —=C occurs, the better for the rule A = C (this implies that the support of A is
mainly due to A U ', where both itemsets occur together, and we get closer to the inclusion
trans(A) C trans(C)).

To incorporate this reasoning in the Pearson coefficient ¢, we examine the contingency table
from where its value is calculated (see table 3 in appendix A). Given two itemsets X and Y, we
study the values fo; and fio (i.e, counting supports for the occurence of one varible without the
other, and viceversa), and we can conclude that:

o If trans(X U-Y) > trans(—-X UY), we choose the implication Y = X.

o If trans(X U-Y) < trans(—X UY), we choose the implication X = V.

Pr(AUC
W, that

is, the bigger proportion of the antecedent that is shared with the consequent, the better. Or in
other words, the ratio gives the strenght of the implication in case we chose A as antecedent. The
easiest way to modify the Pearson coefficient ¢ to incorporate this knowledge without losing the
ability to prune weak rules, is then the following:

For a general rule A = C, these two observations can expressed by the ratio

4= €)= 0.0 x T

i.e, the product of confidence of the rule times its Pearson coefficient (definition of the Pearson
coefficient in appendix A). We note that confidence forms part of the well-known framework that
states that strong rules have support and confidence over the user-specified threshold ([4]); this
makes our mesure also suitable for that framework, but even solving some of the inconvenients
that have been stated in the current literature.

In particular, the inconvenient of confidence (see [7] or [5]) is that independent rules r = A = C
have a confidence equal to Pr(C, D), which could be still high enough to make the rule hold, and
only positive association rules have confidence over Pr(C,D). However, this lack of variability
in the presence of the consequent in the data does not allow us to be sure about the rule. With
our measure, this problem is solved: we know by construction that if a rule r is independent then
(/;(r) = 0, regardless of the value for confidence; and if the rule is positive dependent then (/;(r) >0
since confidence can never have a negative value.

Values of q; for negative dependent rules have more variability. However, this value of q/; for
negative association rules will never be over zero, which eases the optimal prune. In other words,
q/; will be correlated with ¢ for positive dependent rules, and the value of zero give us a point from
where to start pruning in a harmless way.

Apart from that, te new measure q/; can be regarded a transformation of ¢ that gets to be
symmetry breaking; so, it can distinguish the strenght of both implications. We know that (/;(r) >
(/;(f) if con fidence(r) > con fidence(#); so, the new measure keeps the accuracy of the widely-used
measure confidence.

Measure q; is highly correlated with ¢ for positive rules (see figure 3), even keeping almost
the same scale (this is good to distinguish strong positive rules from the weak rules). So, ¢
distinguishes positive association rules from the rest and also it is symmetry breaking. This new
q/; can create a completely useful test in just one step: T(r, (;NS, 0%, D).

5.1. Evaluating the Maximum Harmless Threshold for ¢

We know that a symmetry breaking IM with the ability to prune weak and null rules, can
potentially construct a completely useful test. However, this will depend on the value for the
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Figure 3: Behaviour of our proposal q/; with synthetic uncorrelated data

threshold 6%, that should represent a perfect split between interesting rules and uninteresting
rules (see proposition 3.1 and 3.2). So, now we study this convenenient value for 0 for our
measure ¢ (we know that this value exists by lemma 3.1).

The threshold 6* only plays a role on the first part of the condition of the test, i.e, 0% is just
used to decide if the antecedent and consequent are correlated according to ¢ (P1). Hence, to
approach the study of this harmless value of 8* that creates a completely useful test, we study the
acceptance or rejection of the following hypothesis for an input rule r: HO) 7 is an uncorrelated
association rule (¢ = 0) versus H1) r is strong positive association rule (¢ > 0). The
cut-off point that distiguishes these two hypothesis at a certain user-specified significance level
will give the value we want for 0*.

For that, we now study the distribution function of 6* for uncorrelated data (i.e, under the
hypothesis HO). In figure 3 we see that the histogram of q; for this kind of data does not follow
normality; so, the probability density function of the new measure, and so, its distribution function,
can be difficult to approximate theoretically. In this paper we will use as an approximation the
empirical distribution function of a sequence of realizacions of q/; for randomly-generated rules.
That is, if ¢ ~ f, and xq,...,x, is a sample for values of ¢, then we approximate fn with this
sample (the well-known theorem by Glivenko-Cantelli ensures this is a good way to aproximate
the real distribution function as the sample size becomes bigger).

Sample Size | Cut-off at 99% | Cut-off at 95%
130,000 0.7700 0.5302
140,000 0.7696 0.5302
150,000 0.7694 0.5309
160,000 0.7682 0.5308
170,000 0.7682 0.5308
180,000 0.7682 0.5308

Table 2: Simulation of empirical distribution ofqz;

So, simulation of different samples will lead to a good approximation of the real distribution
function, and we will be able to infer from threre the cut-off point at the significance levels of
99% and 95%. Table 2 shows the different simulations and results for growing samples. As the
sample becomes bigger, the cut-off points become more stable. Finally, we decide to take as a
good inferred value 8* = 0.7682 to determine the statistically significant interestingness of rules
at a level of 99%, and #* = 0.5308 at a level of 95%. Other methods to infer the density function,
and from there the distribution function, could have been applied: for instance kernel methods of
non-parametrics statistics, or fitting a Johnson curve to find the exact formula.
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6. Experiments

Interestingly enough, our measure performs a completely useful test T(r, (;NS, 0%, D), keeps the
proper order among the surviving rules. This leads to the following one-step strategy.

Step 1/ Order by ¢ those rules r such that (/;(r) > 0.7682.

Since q; induces a proper order, no more than one single step is needed to prune all the
uninteresting rules. So, the strategy is not only simple, but also faster than any multi-test proposal.
For synthetic data we generated synthetic 10,000 initial association rules such as in [16], considering
that the minimum support threshold is ¢ = 0, so all the possible rules are generated. With just
one step, the strategy removes all the uninteresting rules keeping just 113 final rules, that have a
confidence over 99%. So, these are the stronger ones.

The next goal is to perform tests using real databases. We used a sample of the USA census from
PUMS' consisting of 3000-transaction database of 80 possible items. In contrast with synthetic
experiments, we used now a o = 0.15 and we got a total of 26,164 initial association rules. These
total rules are ploted in the first graph of figure 4. The second graph of the same figure shows
the 142 surviving rules after applying the proposed strategy. All these remaining rules have a
confidence over 99%, so they are the strongest ones.

6.1. Overall Conclusion

In this paper we have presented a general framework that describes the last pruning phase of
the uninteresting association rules. We formalize the optimal prune with a completely useful test
created by a maximal harmless threshold, that is, a test formed by a measure IM capturing
predicates P1 and P2 and keeping a proper order on rules. This formalization has allowed the
evaluation of current different measures and the proposal of multi-test strategies. We also present
a new measure, q;, that meets all the necessary requirements for the optimal prune.

It is worth noting that our proposed measure is objective and it does not take into account
any subjective considerations. Thus, once the strongest patterns are separated from the rest, the
user can use other subjective measures of interestingness over the remaining rules (see [15]). The
proposals of this paper could also be followed in a temporal dimension (following the ideas in [12]).
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Appendix A
Pearson coefficient

The Pearson coeflicient, ¢, can be used to measure the degree of correlation between two variables (in
case antecedent and consequent of association rules). So, given the rule A = (), one can represent the

following 2 x 2 contingency table as in table 3, where A = 1 represents the precence of the antecedent in

transactions, and A = 0 its absence (equally for the consequent (). In fact, any association rule A = C'

can

be represented using the mentioned contingency table since each %’ is Pr(A=iUC =4,D).

Thus, for each association rule the degree of correlation between antecedent and consequent is:
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| [c=1 [c=0 | |

A=1 fi1 fio fiy
A=0 for foo fos
| [ | F+o | DB

Table 3: Contingency table for two variables A and C

J11foo = Jrofor.
Vit fot f+1f+40

Note that this metric is not symmetry breaking. When ¢ >> 0 the correlation between A and C is

P(A, 0) =

highly positive (it is a strong positive rule); when ¢ < 0 the correlation is negative (negative rule) and
with ¢ = 0 we have independence between the two variables (null association rule).

Appendix B

Here we provide definitions for Confidence [2], Conviction [7], Gini Index, Information Gain, J-Measure,
Lift, PS [14], and IS [16], over a rule r = A = (. In order to make the definitions more readable, we
will avoid the use of the D in each definition; so, we consider the Pr(A) equivalent to the previous defined
Pr(A, D).

o Confidence (A= C) = %7%1

e Conviction (A= () = Pr(A)Pr(=C)

Pr(AU=0)
¢ The definition for the Gini Index is the following:

Gini (A= C) = Pr(A)(Pr(C|A) + Pr(=C|A)?) + Pr(=A)(Pr(C|-A)
+Pr(=C|=A)%) = Pr(C)* = Pr(=C)*

o Inf Gain (A= C) = H(AHH;JC(L_)H(AUC)

where H(A) = —Pr(A)log Pr(A)—Pr(—A)log Pr(—A),and H(C) = —Pr(C)log Pr(C)—Pr(—=C)log Pr(=(),
and H(A,C) = =323 Pr(A=iUC = j)log Pr(A=1iUC =).

e The J-Measure of a rule A = (' is defined as:
J(A = C) = Pr(A) (Pr(C|A)logm%l ¥ Pr(—|0|A)logM)

Pr Pr(—C)

o Lift (A= C) = poriocl

e PS(A=C)=Pr(AUC)—Pr(A)Pr(C)
e IS (A= C)=+/Lift(A= C) x Pr(AU0)

Appendix C

In order to make the proof more readable, we will avoid the use of the D in the definitions. We remind
that a function f(z) is said to be monotone in & if &1 < 2 implies that f(z1) < f(z2).

Proof sketch of Lemma 3.2

To proof that these three conditions are sufficient for establishing a total order we must see that the
following implication is always true:

ri<ipry or rp <srz or rp <grs—r1 <rnmre

First of all, it is worth mentioning that the three partial orders we have previously defined (r; <; r2,
ry <2 rz, ry <s rz) cannot occur at the same time over the same pair of rules. In other words, only a single
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of these partial orders (or, none of them) coexist over a given pair of rules r; and ro. This observation
is quite easy to justify following the definitions of the three partial orders; so, we are leaving the proof of
this observation to the reader.

Now, suppose that we have a pair of rules r; = A; = €} and ro = A2 = (5, such that can be ordered
with the first partial order, i.e, r; <; rz. Then, consider a new rule r = A = C' where Pr(A) = Pr(4:) =
Pr(Az), Pr(C)= Pr(Cy) = Pr(Cs), and Pr(A; UC1) < Pr(AUC) and Pr(AUC) < Pr(A2U C3).

Note that by definition r1 <; r and r <; r2. Now, if a total order <jras has the first monotonicity
property from the lemma 3.2, then r1 <jas r and r <ras r2. Since total orders are transitive, we then
have that ri <jras ro, which satisfies the claim.

We can use the same arguments in case the pair of rules are ordered by the second partial order, i.e,
r1 <2 ro. In this situation the second monotonicity property from lemma 3.2 is needed to proof the claim.
Or also, in case that r; <s rz, where we need /M (r) to fulfill the third monotonicity property.
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