192 research outputs found

    Advanced Process Monitoring for Industry 4.0

    Get PDF
    This book reports recent advances on Process Monitoring (PM) to cope with the many challenges raised by the new production systems, sensors and “extreme data” conditions that emerged with Industry 4.0. Concepts such as digital-twins and deep learning are brought to the PM arena, pushing forward the capabilities of existing methodologies to handle more complex scenarios. The evolution of classical paradigms such as Latent Variable modeling, Six Sigma and FMEA are also covered. Applications span a wide range of domains such as microelectronics, semiconductors, chemicals, materials, agriculture, as well as the monitoring of rotating equipment, combustion systems and membrane separation processes

    Fault diagnosis of a granulator operating under time-varying conditions using canonical variate analysis

    Get PDF
    Granulators play a key role in many pharmaceutical processes because they are involved in the production of tablets and capsule dosage forms. Considering the characteristics of the production processes in which a granulator is involved, proper maintenance of the latter is relevant for plant safety. During the operational phase, there is a high risk of explosion, pollution, and contamination. The nature of this process also requires an in-depth examination of the time-dependence of the process variables. This study proposes the application of canonical variate analysis (CVA) to perform fault detection in a granulation process that operates under time-varying conditions. Beyond this, a different approach to the management of process non-linearities is proposed. The novelty of the study is in the application of CVA in this kind of process, because it is possible to state that the actual literature on the theme shows some limitations of CVA in such processes. The aim was to increase the applicability of CVA in variable contexts, with simple management of non-linearities. The results, considering process data from a pharmaceutical granulator, showed that the proposed approach could detect faults and manage non-linearities, exhibiting future scenarios for more performing and automatic monitoring techniques of time-varying processes

    An improved mixture of probabilistic PCA for nonlinear data-driven process monitoring

    Get PDF
    An improved mixture of probabilistic principal component analysis (PPCA) has been introduced for nonlinear data-driven process monitoring in this paper. To realize this purpose, the technique of a mixture of probabilistic principal component analyzers is utilized to establish the model of the underlying nonlinear process with local PPCA models, where a novel composite monitoring statistic is proposed based on the integration of two monitoring statistics in modified PPCA-based fault detection approach. Besides, the weighted mean of the monitoring statistics aforementioned is utilized as a metrics to detect potential abnormalities. The virtues of the proposed algorithm are discussed in comparison with several unsupervised algorithms. Finally, Tennessee Eastman process and an autosuspension model are employed to demonstrate the effectiveness of the proposed scheme further

    2022 Review of Data-Driven Plasma Science

    Get PDF
    Data-driven science and technology offer transformative tools and methods to science. This review article highlights the latest development and progress in the interdisciplinary field of data-driven plasma science (DDPS), i.e., plasma science whose progress is driven strongly by data and data analyses. Plasma is considered to be the most ubiquitous form of observable matter in the universe. Data associated with plasmas can, therefore, cover extremely large spatial and temporal scales, and often provide essential information for other scientific disciplines. Thanks to the latest technological developments, plasma experiments, observations, and computation now produce a large amount of data that can no longer be analyzed or interpreted manually. This trend now necessitates a highly sophisticated use of high-performance computers for data analyses, making artificial intelligence and machine learning vital components of DDPS. This article contains seven primary sections, in addition to the introduction and summary. Following an overview of fundamental data-driven science, five other sections cover widely studied topics of plasma science and technologies, i.e., basic plasma physics and laboratory experiments, magnetic confinement fusion, inertial confinement fusion and high-energy-density physics, space and astronomical plasmas, and plasma technologies for industrial and other applications. The final section before the summary discusses plasma-related databases that could significantly contribute to DDPS. Each primary section starts with a brief introduction to the topic, discusses the state-of-the-art developments in the use of data and/or data-scientific approaches, and presents the summary and outlook. Despite the recent impressive signs of progress, the DDPS is still in its infancy. This article attempts to offer a broad perspective on the development of this field and identify where further innovations are required

    On-Line Learning and Wavelet-Based Feature Extraction Methodology for Process Monitoring using High-Dimensional Functional Data

    Get PDF
    The recent advances in information technology, such as the various automatic data acquisition systems and sensor systems, have created tremendous opportunities for collecting valuable process data. The timely processing of such data for meaningful information remains a challenge. In this research, several data mining methodology that will aid information streaming of high-dimensional functional data are developed. For on-line implementations, two weighting functions for updating support vector regression parameters were developed. The functions use parameters that can be easily set a priori with the slightest knowledge of the data involved and have provision for lower and upper bounds for the parameters. The functions are applicable to time series predictions, on-line predictions, and batch predictions. In order to apply these functions for on-line predictions, a new on-line support vector regression algorithm that uses adaptive weighting parameters was presented. The new algorithm uses varying rather than fixed regularization constant and accuracy parameter. The developed algorithm is more robust to the volume of data available for on-line training as well as to the relative position of the available data in the training sequence. The algorithm improves prediction accuracy by reducing uncertainty in using fixed values for the regression parameters. It also improves prediction accuracy by reducing uncertainty in using regression values based on some experts’ knowledge rather than on the characteristics of the incoming training data. The developed functions and algorithm were applied to feedwater flow rate data and two benchmark time series data. The results show that using adaptive regression parameters performs better than using fixed regression parameters. In order to reduce the dimension of data with several hundreds or thousands of predictors and enhance prediction accuracy, a wavelet-based feature extraction procedure called step-down thresholding procedure for identifying and extracting significant features for a single curve was developed. The procedure involves transforming the original spectral into wavelet coefficients. It is based on multiple hypothesis testing approach and it controls family-wise error rate in order to guide against selecting insignificant features without any concern about the amount of noise that may be present in the data. Therefore, the procedure is applicable for data-reduction and/or data-denoising. The procedure was compared to six other data-reduction and data-denoising methods in the literature. The developed procedure is found to consistently perform better than most of the popular methods and performs at the same level with the other methods. Many real-world data with high-dimensional explanatory variables also sometimes have multiple response variables; therefore, the selection of the fewest explanatory variables that show high sensitivity to predicting the response variable(s) and low sensitivity to the noise in the data is important for better performance and reduced computational burden. In order to select the fewest explanatory variables that can predict each of the response variables better, a two-stage wavelet-based feature extraction procedure is proposed. The first stage uses step-down procedure to extract significant features for each of the curves. Then, representative features are selected out of the extracted features for all curves using voting selection strategy. Other selection strategies such as union and intersection were also described and implemented. The essence of the first stage is to reduce the dimension of the data without any consideration for whether or not they can predict the response variables accurately. The second stage uses Bayesian decision theory approach to select some of the extracted wavelet coefficients that can predict each of the response variables accurately. The two stage procedure was implemented using near-infrared spectroscopy data and shaft misalignment data. The results show that the second stage further reduces the dimension and the prediction results are encouraging

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Artificial Intelligence-based Technique for Fault Detection and Diagnosis of EV Motors: A Review

    Get PDF
    The motor drive system plays a significant role in the safety of electric vehicles as a bridge for power transmission. Meanwhile, to enhance the efficiency and stability of the drive system, more and more studies based on AI technology are devoted to the fault detection and diagnosis of the motor drive system. This paper reviews the application of AI techniques in motor fault detection and diagnosis in recent years. AI-based FDD is divided into two main steps: feature extraction and fault classification. The application of different signal processing methods in feature extraction is discussed. In particular, the application of traditional machine learning and deep learning algorithms for fault classification is presented in detail. In addition, the characteristics of all techniques reviewed are summarized. Finally, the latest developments, research gaps and future challenges in fault monitoring and diagnosis of motor faults are discussed

    Towards A Computational Intelligence Framework in Steel Product Quality and Cost Control

    Get PDF
    Steel is a fundamental raw material for all industries. It can be widely used in vari-ous fields, including construction, bridges, ships, containers, medical devices and cars. However, the production process of iron and steel is very perplexing, which consists of four processes: ironmaking, steelmaking, continuous casting and rolling. It is also extremely complicated to control the quality of steel during the full manufacturing pro-cess. Therefore, the quality control of steel is considered as a huge challenge for the whole steel industry. This thesis studies the quality control, taking the case of Nanjing Iron and Steel Group, and then provides new approaches for quality analysis, manage-ment and control of the industry. At present, Nanjing Iron and Steel Group has established a quality management and control system, which oversees many systems involved in the steel manufacturing. It poses a high statistical requirement for business professionals, resulting in a limited use of the system. A lot of data of quality has been collected in each system. At present, all systems mainly pay attention to the processing and analysis of the data after the manufacturing process, and the quality problems of the products are mainly tested by sampling-experimental method. This method cannot detect product quality or predict in advance the hidden quality issues in a timely manner. In the quality control system, the responsibilities and functions of different information systems involved are intricate. Each information system is merely responsible for storing the data of its corresponding functions. Hence, the data in each information system is relatively isolated, forming a data island. The iron and steel production process belongs to the process industry. The data in multiple information systems can be combined to analyze and predict the quality of products in depth and provide an early warning alert. Therefore, it is necessary to introduce new product quality control methods in the steel industry. With the waves of industry 4.0 and intelligent manufacturing, intelligent technology has also been in-troduced in the field of quality control to improve the competitiveness of the iron and steel enterprises in the industry. Applying intelligent technology can generate accurate quality analysis and optimal prediction results based on the data distributed in the fac-tory and determine the online adjustment of the production process. This not only gives rise to the product quality control, but is also beneficial to in the reduction of product costs. Inspired from this, this paper provide in-depth discussion in three chapters: (1) For scrap steel to be used as raw material, how to use artificial intelligence algorithms to evaluate its quality grade is studied in chapter 3; (2) the probability that the longi-tudinal crack occurs on the surface of continuous casting slab is studied in chapter 4;(3) The prediction of mechanical properties of finished steel plate in chapter 5. All these 3 chapters will serve as the technical support of quality control in iron and steel production

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis
    • …
    corecore