551 research outputs found

    Automatically Optimizing Tree Traversal Algorithms

    Get PDF
    Many domains in computer science, from data-mining to graphics to computational astrophysics, focus heavily on irregular applications. In contrast to regular applications, which operate over dense matrices and arrays, irregular programs manipulate and traverse complex data structures like trees and graphs. As irregular applications operate on ever larger datasets, their performance suffers from poor locality and parallelism. Programmers are burdened with the arduous task of manually tuning such applications for better performance. Generally applicable techniques to optimize irregular applications are highly desired, yet scarce. In this dissertation, we argue that, for an important subset of irregular programs which arises in many domains, namely, tree traversal algorithms like Barnes-Hut, nearest neighbor and ray tracing, there exist general techniques to enhance performance. We investigate two sources of performance improvement: locality enhancement and vectorization. Furthermore we demonstrate that these techniques can be automatically applied by an optimizing compiler, relieving programmers of manual, error-prone, application-specific effort. Achieving high performance in many applications requires achieving good locality of reference. We propose two novel transformations called point blocking and traversal splicing, inspired by the classic tiling loop transformation, and show that it can substantially enhance temporal locality in tree traversals. We then present a transformation framework called TreeSplicer, that automatically applies these transformations, and uses autotuning techniques to determine appropriate parameters for the transformations. For six benchmark algorithms, we show that a combination of point blocking and traversal splicing can deliver single-thread speedups of up to 8.71 (geometric mean: 2.48), just from better locality. Modern commodity processors support SIMD instructions, and using these instructions to process multiple traversals at once has the potential to provide substantial performance improvements. Unfortunately tree algorithms often feature highly diverging traversals which inhibit efficient SIMD utilization, to the point that other, less profitable sources of vectorization must be exploited instead. We propose a dynamic reordering of traversals based on previous behavior, based on the insight that traversals which have behaved similarly so far are likely to behave similarly in the future, and show that this reordering can dramatically improve the SIMD utilization of diverging traversals, close to ideal utilization. We present a transformation framework, SIMTree, which facilitates vectorization of tree algorithms, and demonstrate speedups of up to 6.59 (geometric mean: 2.78). Furthermore our techniques can effectively SIMDize algorithms that prior, manual vectorization attempts could not

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF

    MetaFork: A Compilation Framework for Concurrency Models Targeting Hardware Accelerators

    Get PDF
    Parallel programming is gaining ground in various domains due to the tremendous computational power that it brings; however, it also requires a substantial code crafting effort to achieve performance improvement. Unfortunately, in most cases, performance tuning has to be accomplished manually by programmers. We argue that automated tuning is necessary due to the combination of the following factors. First, code optimization is machine-dependent. That is, optimization preferred on one machine may be not suitable for another machine. Second, as the possible optimization search space increases, manually finding an optimized configuration is hard. Therefore, developing new compiler techniques for optimizing applications is of considerable interest. This thesis aims at generating new techniques that will help programmers develop efficient algorithms and code targeting hardware acceleration technologies, in a more effective manner. Our work is organized around a compilation framework, called MetaFork, for concurrency platforms and its application to automatic parallelization. MetaFork is a high-level programming language extending C/C++, which combines several models of concurrency including fork-join, SIMD and pipelining parallelism. MetaFork is also a compilation framework which aims at facilitating the design and implementation of concurrent programs through four key features which make MetaFork unique and novel: (1) Perform automatic code translation between concurrency platforms targeting multi-core architectures. (2) Provide a high-level language for expressing concurrency as in the fork-join model, the SIMD paradigm and the pipelining parallelism. (3) Generate parallel code from serial code with an emphasis on code depending on machine or program parameters (e.g. cache size, number of processors, number of threads per thread block). (4) Optimize code depending on parameters that are unknown at compile-time

    The fast multipole method at exascale

    Get PDF
    This thesis presents a top to bottom analysis on designing and implementing fast algorithms for current and future systems. We present new analysis, algorithmic techniques, and implementations of the Fast Multipole Method (FMM) for solving N- body problems. We target the FMM because it is broadly applicable to a variety of scientific particle simulations used to study electromagnetic, fluid, and gravitational phenomena, among others. Importantly, the FMM has asymptotically optimal time complexity with guaranteed approximation accuracy. As such, it is among the most attractive solutions for scalable particle simulation on future extreme scale systems. We specifically address two key challenges. The first challenge is how to engineer fast code for today’s platforms. We present the first in-depth study of multicore op- timizations and tuning for FMM, along with a systematic approach for transforming a conventionally-parallelized FMM into a highly-tuned one. We introduce novel opti- mizations that significantly improve the within-node scalability of the FMM, thereby enabling high-performance in the face of multicore and manycore systems. The second challenge is how to understand scalability on future systems. We present a new algorithmic complexity analysis of the FMM that considers both intra- and inter- node communication costs. Using these models, we present results for choosing the optimal algorithmic tuning parameter. This analysis also yields the surprising prediction that although the FMM is largely compute-bound today, and therefore highly scalable on current systems, the trajectory of processor architecture designs, if there are no significant changes could cause it to become communication-bound as early as the year 2015. This prediction suggests the utility of our analysis approach, which directly relates algorithmic and architectural characteristics, for enabling a new kind of highlevel algorithm-architecture co-design. To demonstrate the scientific significance of FMM, we present two applications namely, direct simulation of blood which is a multi-scale multi-physics problem and large-scale biomolecular electrostatics. MoBo (Moving Boundaries) is the infrastruc- ture for the direct numerical simulation of blood. It comprises of two key algorithmic components of which FMM is one. We were able to simulate blood flow using Stoke- sian dynamics on 200,000 cores of Jaguar, a peta-flop system and achieve a sustained performance of 0.7 Petaflop/s. The second application we propose as future work in this thesis is biomolecular electrostatics where we solve for the electrical potential using the boundary-integral formulation discretized with boundary element methods (BEM). The computational kernel in solving the large linear system is dense matrix vector multiply which we propose can be calculated using our scalable FMM. We propose to begin with the two dielectric problem where the electrostatic field is cal- culated using two continuum dielectric medium, the solvent and the molecule. This is only a first step to solving biologically challenging problems which have more than two dielectric medium, ion-exclusion layers, and solvent filled cavities. Finally, given the difficulty in producing high-performance scalable code, productivity is a key concern. Recently, numerical algorithms are being redesigned to take advantage of the architectural features of emerging multicore processors. These new classes of algorithms express fine-grained asynchronous parallelism and hence reduce the cost of synchronization. We performed the first extensive performance study of a recently proposed parallel programming model, called Concurrent Collections (CnC). In CnC, the programmer expresses her computation in terms of application-specific operations, partially-ordered by semantic scheduling constraints. The CnC model is well-suited to expressing asynchronous-parallel algorithms, so we evaluate CnC using two dense linear algebra algorithms in this style for execution on state-of-the-art mul- ticore systems. Our implementations in CnC was able to match and in some cases even exceed competing vendor-tuned and domain specific library codes. We combine these two distinct research efforts by expressing FMM in CnC, our approach tries to marry performance with productivity that will be critical on future systems. Looking forward, we would like to extend this to distributed memory machines, specifically implement FMM in the new distributed CnC, distCnC to express fine-grained paral- lelism which would require significant effort in alternative models.Ph.D

    Report from the MPP Working Group to the NASA Associate Administrator for Space Science and Applications

    Get PDF
    NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era

    Programming Dense Linear Algebra Kernels on Vectorized Architectures

    Get PDF
    The high performance computing (HPC) community is obsessed over the general matrix-matrix multiply (GEMM) routine. This obsession is not without reason. Most, if not all, Level 3 Basic Linear Algebra Subroutines (BLAS) can be written in terms of GEMM, and many of the higher level linear algebra solvers\u27 (i.e., LU, Cholesky) performance depend on GEMM\u27s performance. Getting high performance on GEMM is highly architecture dependent, and so for each new architecture that comes out, GEMM has to be programmed and tested to achieve maximal performance. Also, with emergent computer architectures featuring more vector-based and multi to many-core processors, GEMM performance becomes hinged to the utilization of these technologies. In this research, three Intel processor architectures are explored, including the new Intel MIC Architecture. Each architecture has different vector lengths and number of cores. The effort given to create three Level 3 BLAS routines (GEMM, TRSM, SYRK) is examined with respect to the architectural features as well as some parallel algorithmic nuances. This thorough examination culminates in a Cholesky (POTRF) routine which offers a legitimate test application. Lastly, four shared memory, parallel languages are explored for these routines to explore single-node supercomputing performance. These languages are OpenMP, Pthreads, Cilk and TBB. Each routine is developed in each language offering up information about which language is superior. A clear picture develops showing how these and similar routines should be written in OpenMP and exactly what architectural features chiefly impact performance

    Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 1

    Get PDF
    Conference topics included definition of tool requirements, advanced multibody component representation descriptions, model reduction, parallel computation, real time simulation, control design and analysis software, user interface issues, testing and verification, and applications to spacecraft, robotics, and aircraft

    Parallel Multiscale Contact Dynamics for Rigid Non-spherical Bodies

    Get PDF
    The simulation of large numbers of rigid bodies of non-analytical shapes or vastly varying sizes which collide with each other is computationally challenging. The fundamental problem is the identification of all contact points between all particles at every time step. In the Discrete Element Method (DEM), this is particularly difficult for particles of arbitrary geometry that exhibit sharp features (e.g. rock granulates). While most codes avoid non-spherical or non-analytical shapes due to the computational complexity, we introduce an iterative-based contact detection method for triangulated geometries. The new method is an improvement over a naive brute force approach which checks all possible geometric constellations of contact and thus exhibits a lot of execution branching. Our iterative approach has limited branching and high floating point operations per processed byte. It thus is suitable for modern Single Instruction Multiple Data (SIMD) CPU hardware. As only the naive brute force approach is robust and always yields a correct solution, we propose a hybrid solution that combines the best of the two worlds to produce fast and robust contacts. In terms of the DEM workflow, we furthermore propose a multilevel tree-based data structure strategy that holds all particles in the domain on multiple scales in grids. Grids reduce the total computational complexity of the simulation. The data structure is combined with the DEM phases to form a single touch tree-based traversal that identifies both contact points between particle pairs and introduces concurrency to the system during particle comparisons in one multiscale grid sweep. Finally, a reluctant adaptivity variant is introduced which enables us to realise an improved time stepping scheme with larger time steps than standard adaptivity while we still minimise the grid administration overhead. Four different parallelisation strategies that exploit multicore architectures are discussed for the triad of methodological ingredients. Each parallelisation scheme exhibits unique behaviour depending on the grid and particle geometry at hand. The fusion of them into a task-based parallelisation workflow yields promising speedups. Our work shows that new computer architecture can push the boundary of DEM computability but this is only possible if the right data structures and algorithms are chosen
    • …
    corecore