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ABSTRACT

Jo, Youngjoon Ph.D., Purdue University, December 2013. Automatically Optimizing Tree
Traversal Algorithms. Major Professor: Milind Kulkarni.

Many domains in computer science, from data-mining to graphics to computational

astrophysics, focus heavily on irregular applications. In contrast to regular applications,

which operate over dense matrices and arrays, irregular programs manipulate and traverse

complex data structures like trees and graphs. As irregular applications operate on ever

larger datasets, their performance suffers from poor locality and parallelism. Programmers

are burdened with the arduous task of manually tuning such applications for better per-

formance. Generally applicable techniques to optimize irregular applications are highly

desired, yet scarce.

In this dissertation, we argue that, for an important subset of irregular programs which

arises in many domains, namely, tree traversal algorithms like Barnes-Hut, nearest neighbor

and ray tracing, there exist general techniques to enhance performance. We investigate two

sources of performance improvement: locality enhancement and vectorization. Further-

more we demonstrate that these techniques can be automatically applied by an optimizing

compiler, relieving programmers of manual, error-prone, application-specific effort.

Achieving high performance in many applications requires achieving good locality of

reference. We propose two novel transformations called point blocking and traversal splic-

ing, inspired by the classic tiling loop transformation, and show that it can substantially

enhance temporal locality in tree traversals. We then present a transformation framework

called TREESPLICER, that automatically applies these transformations, and uses autotun-

ing techniques to determine appropriate parameters for the transformations. For six bench-

mark algorithms, we show that a combination of point blocking and traversal splicing can
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deliver single-thread speedups of up to 8.71 (geometric mean: 2.48), just from better local-

ity.

Modern commodity processors support SIMD instructions, and using these instruc-

tions to process multiple traversals at once has the potential to provide substantial perfor-

mance improvements. Unfortunately tree algorithms often feature highly diverging traver-

sals which inhibit efficient SIMD utilization, to the point that other, less profitable sources

of vectorization must be exploited instead. We propose a dynamic reordering of traversals

based on previous behavior, based on the insight that traversals which have behaved sim-

ilarly so far are likely to behave similarly in the future, and show that this reordering can

dramatically improve the SIMD utilization of diverging traversals, close to ideal utiliza-

tion. We present a transformation framework, SIMTREE, which facilitates vectorization of

tree algorithms, and demonstrate speedups of up to 6.59 (geometric mean: 2.78). Further-

more our techniques can effectively SIMDize algorithms that prior, manual vectorization

attempts could not.
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1. INTRODUCTION

1.1 Motivation

Avatar was an impressive film released in 2009 which currently holds the worldwide

box office sales record1. But Avatar was also a ray traced film which took on average 30-50

hours to render each frame [1]. For 24 frames per second, this would be 8 million hours

to render 2 hours of film on a single processor. The lead visual effects company for Avatar

used a 10,000 square foot server farm with 35,000 cores for rendering.

Computer graphics rendering for Avatar is one example of the many compute intensive

tasks that are crunched in massive data centers around the world today. Google employs

more than a million cores in its data centers worldwide to continuously index the evolv-

ing web, and deliver search results with milliseconds of latency (among many other tasks).

Many of these data center workloads from data-mining to graphics to computational astro-

physics, focus heavily on irregular applications. In contrast to regular applications, which

operate over dense matrices and arrays, irregular programs manipulate and traverse com-

plex data structures like trees and graphs. Ray tracing builds a tree over the objects in the

scene and repeatedly traverses the tree to determine the color of each pixel. Nearest neigh-

bor algorithms build a tree over a dataset, and traverse the tree to find the nearest neighbor

of each data point.

Such irregular programs perform complex operations on complex data structures, and

hence writing high-performance implementations is difficult. This difficulty is exacerbated

by increasing input sizes, and the poor locality of reference that follows from it. Poor

locality in turn results in poor parallelism, and both result in poor performance. In contrast

to the decades of work on developing automatic compiler optimizations to enhance the

performance of regular programs, most attempts at optimizing irregular programs have
1The record was previously held by Titanic released in 1997, also directed by James Cameron.
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been ad-hoc and application specific. Programmers are burdened with the arduous task of

manually tuning such applications for better performance. Generally applicable techniques

to optimize irregular applications are highly desired, yet scarce.

The chief obstacle to identifying and applying performance-enhancing transformations

on irregular applications is the apparent lack of principles that unify them. This apparent

lack of structure in irregular programs can be misleading. While the particular set of con-

crete memory accesses may exhibit little regularity, at an abstract level there are organizing

principles governing these accesses, such as the topology of the irregular data structure,

or the nature of operations on that data structure. Recent work by Pingali et al. has sug-

gested that there may, indeed, be significant structure latent in irregular applications [2].

Can this structure be exploited to transform irregular applications so as to enhance locality

and facilitate vectorization?

One important class of irregular applications is traversal codes, applications that per-

form repeated traversals of irregular data structures. Examples include well-known scien-

tific algorithms such as Barnes-Hut [3], data mining algorithms such as point correlation

and nearest neighbor [4], and graphics algorithms like ray tracing with bounding volume

hierarchies [5]. These algorithms feature repeated traversals of highly irregular trees, with

unpredictable application- and input-dependent traversal sizes, shapes and orders. We in-

vestigate two sources of performance improvement for tree algorithms: locality enhance-

ment [6, 7] and vectorization [8].

Exploiting locality in these algorithms is critical because their performance is domi-

nated by memory-access time, and careless accesses to irregular data structures are likely

to result in cache misses. Any technique that can turn a substantial portion of those misses

into hits has the potential to dramatically improve performance. Once locality is improved

we can turn our attention to parallelization. We look into vectorization techniques to take

advantage of SIMD instructions available on commodity processors.
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1.2 Locality in tree algorithms

While there has been much work on automatic techniques for improving locality in

regular programs, which operate over dense matrices and arrays [9], there has been com-

paratively little work on general techniques for improving locality in irregular programs,

which operate over pointer-based data structures such as trees and graphs. There has been

various work to enhance the spatial locality of pointer based structures, either at allocation

time or through garbage collection, some of which are automatic [10–15]. On the other

hand, attempts at enhancing temporal locality has focused on ad hoc techniques that lever-

age application semantics [16–24], or work well for sparse-matrix style algorithms [25–27],

but not the tree- and graph-based algorithms that proliferate in domains like data mining

and graphics.

Prior work focusing on temporal locality in tree algorihtms has proposed changing the

order in which points (i.e. the entities that traverse the tree) are processed [16, 17, 19, 22].

By “sorting” the points such that points processed consecutively have similar traversals,

locality can be enhanced. Unfortunately, performing point sorting requires analyzing the

points prior to the traversals to rearrange them effectively. Determining an efficient way of

performing this a priori sort requires an understanding of the semantics of the algorithm

and hence highly application-specific techniques. Indeed, for some algorithms, the traver-

sals are so complex that it is unclear how to do an a priori sort of the points to maximize

traversal overlap, even when armed with semantic knowledge.

We develop an abstract model of tree traversal codes that analogizes them to doubly-

nested loops as seen in regular algorithms like vector outer product. The outer loop is a

loop of points that must traverse the tree, while the inner loop is a loop over the nodes

that make up the traversal, irrespective of their position in the tree. Using this model, we

propose two novel transformations akin to loop tiling in regular loop programs.

The first is point blocking [6], which essentially “tiles” the point loop: rather than per-

forming a single point’s entire traversal before moving on to the next point, a group of

points are placed into a block, and the block traverses the tree, with each point in the block
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interacting with the necessary portions of the tree. Point blocking can deliver substantial

locality and performance improvements for large traversals. Unfortunately, point block-

ing’s performance is sensitive to the order in which points are processed; achieving the

best possible performance from point blocking requires that the point sorting optimization

be performed. As a result, point blocking is not a truly automatic, application-agnostic

technique, depending instead on point sorting.

The second transformation we propose is traversal splicing [7]. Much as point blocking

tiles the point loop, traversal splicing tiles the traversal loop: each point’s traversal is

divided into a number of partial traversals, and we perform a partial traversal for all points

before moving on to the next partial traversal for any point. There are two key advantages to

traversal splicing. First, the performance of splicing is largely independent of the order of

points, decoupling its behavior from application-specific sorting transformations. Second,

the order in which partial traversals are performed can be changed during execution. In

particular, as points traverse the tree, we can use their traversal history as a predictor of

their remaining traversal patterns, and group similar points together. In essence, traversal

splicing sorts the points on the fly but without any application-specific optimization.

We develop TREESPLICER2, a compiler framework that automatically identifies re-

gions of programs where data reuse implies that point blocking and traversal splicing might

be successfully applied. In regular programs, data reuse often arises in nested loops that

manipulate arrays and matrices, and can be readily identified. In irregular programs, in

contrast, data reuse is often masked by pointer-manipulation operations. TREESPLICER

identifies code where point blocking might be performed by looking for recursive traver-

sals of recursive structures. If point blocking and traversal splicing is legal for such a

traversal, TREESPLICER automatically performs the transformation.

Point blocking and traversal splicing, like loop tiling, requires that optimization pa-

rameters be carefully tuned to match both the application and the architecture. Autotuning

has emerged as a popular approach to parameter selection as it can select optimization pa-

rameters for a particular execution scenario without programmer intervention [28–30], a
2https://engineering.purdue.edu/plcl/treesplicer/



5

necessity for any automated transformation framework. Because irregular programs are

highly input-dependent, TREESPLICER uses run-time profiling to guide its selection of

parameters for our transformations.

We evaluate TREESPLICER on six benchmark algorithms, and show that our transfor-

mations deliver (single-thread) speedups of up to 8.71 (geometric mean: 2.48) when com-

pared to straightforward implementations of these algorithms. We present comprehensive

results of all combinations of point sorting, point blocking and/or traversal splicing, and

find that point blocking with traversal splicing, which can be applied fully automatically,

is competitive with hand optimized implementations which exploit semantics based point

sorting.

1.3 Vectorizing tree algorithms

An effective way to improve the performance of a program run on modern commod-

ity architectures is to vectorize the application by exploiting Single-Instruction Multiple-

Data (SIMD) instructions. By using SIMD instructions, multiple scalar operations can be

replaced with a single vector operation that acts on multiple pieces of data at once. Be-

cause SIMD extensions typically require relatively little extra hardware, exploiting SIMD

parallelism is effectively “free” from a power-consumption standpoint, making SIMD an

attractive approach to improving performance per watt on modern architectures.

While modern vectorizing compilers (e.g., Intel’s icc, IBM’s xlc, and GCC) can target

SIMD architectures, they primarily rely on identifying simple loop-based control structures

with predictable access patterns to generate effective SIMD code [31]. While these patterns

arise frequently in regular programs, which operate on dense matrices and arrays, they are

far less common when dealing with irregular programs, which operate over pointer-based

data structures. These programs are characterized by complex, data-dependent access pat-

terns, hence complicating vectorization, which requires regularizing computation so that

multiple pieces of data are simultaneously operated on by a single instruction. As a result,

vectorization of such pointer-based programs has been the province of careful, handwrit-
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ten, application-specific implementations [5, 32–38]. Generally-applicable approaches to

“SIMDization” of irregular programs are scarce.

In tree algorithms a single tree is traversed multiple times by multiple points. Hence,

if multiple points that visit the same tree node can be processed simultaneously, there will

be several common operations that differ only in the (point-specific) data they operate on,

a ripe opportunity for SIMD acceleration. In essence, a general approach to exploiting

SIMD requires carefully scheduling traversals to ensure that multiple points are at a single

tree node at once, and can be processed in a SIMD manner.

Scheduling traversals so that multiple points are visiting a node of the tree simulta-

neously is non-trivial. A natural scheduling approach is to group four points with similar

traversals into a single packet. This packet then traverses the tree in lockstep, allowing each

of the points in the packet to interact with the tree nodes the packet visits [5,32]. However,

there are two drawbacks to packetized traversals. First, writing a packet-based traversal

requires making substantial changes to the code, often in application-specific ways. Sec-

ond, packet-based approaches break down if packets of similarly-behaving points cannot

be identified, or if apparently-similar points later diverge as they traverse the tree (e.g.,

because two rays reflect off a surface in different directions). In such situations, SIMD uti-

lization (the fraction of useful operations performed during one SIMD instruction) drops,

as most SIMD instructions end up operating on fewer than four points:

In situations like physical simulation, collision detection or raytracing in scenes,

where rays bounce into multiple directions (spherical or bumpmapped sur-

faces), coherent ray packets break down very quickly to single rays or do not

exist at all. In the above mentioned tasks, packet oriented SIMD computations

is much less useful. [36]

Clearly, it is difficult to exploit this seemingly-simple source of SIMD opportunity,

even in hand-written implementations, let alone generally. As a result, most hand-written

SIMD implementations focus on highly application-specific sources of vectorization. Sim-

ilarly, prior attempts to generalize SIMDization of irregular applications have focused on

alternative sources of vectorization opportunities [34–38].
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In this dissertation, we describe generally-applicable, systematic approaches to schedul-

ing that expose SIMD opportunities and maximize utilization [8]. In fact, our approaches

enable packet-based SIMD computation even in algorithms where careful, hand-written

implementations could not exploit it.

The problem of carefully scheduling traversals to expose opportunities for SIMDiza-

tion has parallels with improving locality in tree traversal codes. The key insight is that

the aforementioned locality transformations (point blocking and traversal splicing) can be

readily adapted to both transform traversal codes so they can be SIMDized and schedule

traversals so that SIMD utilization is maximized. Point blocking can be used to transform

code to enable packetized traversals. Point blocking alone, however, is not sufficient. As

described in the quote above, the divergence of points during traversals leads packet-based

approaches to break down, producing very poor SIMD utilization. While our use of point

blocking mitigates this effect, it does not fully ameliorate it. We show how a particu-

lar aspect of traversal splicing, its ability to dynamically sort points during traversal, can

be leveraged to dramatically improve SIMD utilization. We develop an automatic trans-

formation framework called SIMTREE3 that leverages simple annotations to restructure a

tree-traversal application so it can be readily vectorized. Our transformations can deliver

significant performance gains through effective SIMDization, yielding speedups of up to

6.59 (geometric mean: 2.78).

1.4 Contributions and organization

This dissertation is the first to develop general compiler transformations and optimiza-

tions to automatically enhance the performance of tree traversal algorithms. The primary

contributions are:

1. The development of point blocking and traversal splicing two new, general trans-

formations for tree traversal codes which can effectively transform applications for

enhanced locality (Chapter 3).
3https://engineering.purdue.edu/plcl/simtree/
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2. The implementation of a transformation and tuning framework, TREESPLICER, that

can automatically transform tree traversal algorithms to apply point blocking and

traversal splicing, and autotune suitable parameters for these transformations. Ex-

perimental evidence that TREESPLICER can substantially enhance the locality and

performance of tree traversal codes (Chapter 4).

3. The development of systematic transformations to both expose SIMD opportuni-

ties, through point blocking, and enhance SIMD utilization, through traversal splic-

ing(Chapter 5).

4. The implementation of a framework, SIMTREE, for automatically restructuring traver-

sals and data layouts to enable SIMDization. Experimental evidence that tree-traversal

applications can be effectively vectorized, delivering substantial performance gains

and, in some cases, exploiting more SIMD opportunities than previous manual ap-

proaches could (Chapter 6).

We start with an overview of tree traversal algorithms in Chapter 2. Then we discuss

each of our contributions as described above. We discuss related work in Chapter 7, and

conclude in Chapter 8.

The core contributions of this dissertation has been published, or will be published at

top conferences in the area of study. Our locality work has been published at OOPSLA

2011 [6] and OOPSLA 2012 [7]. Our vectorization work will appear at PACT 2013 [8]
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2. TREE TRAVERSAL ALGORITHMS

The pattern of repeated tree traversals is a recurring theme, appearing in algorithms such

as Barnes-Hut [3], nearest neighbor [4], iterative closest point [39] and many ray tracing

algorithms [40], among others. We adopt some unifying terminology when discussing

these algorithms: points are the entities that traverse the tree (they may be astral bodies in

Barnes-Hut, rays in ray tracing, etc.), while nodes are the individual elements of the tree

data structures that are being traversed. Our definition of a tree traversal algorithm is thus:

an algorithm where each of a set of points recursively traverses a tree of nodes. Note that

the traversals in these algorithms are recursive, and hence depth-first.

To explain the behavior of tree traversal algorithms, we will use point correlation (PC)

as an example. The two-point correlation can be calculated for a set of points by determin-

ing, for each point, p, the number of other points in the set that fall within a certain radius,

r of p. PC is an important algorithm in many disciplines, such as bioinformatics and data

mining [4, 38].

The naı̈ve approach to PC would be to compare each point to every other point in the

data set, an O(n2) process. To accelerate the procedure, the standard approach is to build

a spatial structure over the points called a kd-tree [41]. This structure is built top-down: a

root node is created with a bounding box that encompasses all the points. Then a split-plane

is computed that partitions the points in the bounding box into two equal pieces, creating

two children nodes for the root, each with their own bounding box. This process is repeated

until the leaf nodes contain single points. Now PC can be performed by a recursive traversal

of the kd-tree. Each point p starts at the root and only traverses a child if the bounding box

of that child can contain points within r of p. Thus, large portions of the tree need not

be traversed, reducing the overall run time. The pseudocode for this algorithm is given in

Figure 2.1.
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1 Set<P o i n t> p o i n t s = /∗ p o i n t s ∗ /

2 Node r o o t = b u i l d T r e e ( p o i n t s ) ;

3 foreach ( P o i n t p : p o i n t s ) {

4 r e c u r s e ( p , r o o t ) ;

5 }

7 void r e c u r s e ( P o i n t p , Node n ) {

8 i f ( ! c a n C o r r e l a t e ( p , n . boundingBox ) ) {

9 re turn

10 } e l s e i f ( n . i s L e a f ( ) ) {

11 p . u p d a t e C o r r e l a t i o n ( n . g e t P o i n t ( ) ) ;

12 } e l s e {

13 r e c u r s e ( p , n . l e f t C h i l d ) ;

14 r e c u r s e ( p , n . r i g h t C h i l d ) ;

15 }

16 }

Fig. 2.1. Pseudocode of point correlation

1 Set<P o i n t> p o i n t s = /∗ p o i n t s ∗ /

2 foreach ( P o i n t p : p o i n t s ) {

3 foreach ( Node n : p . o r a c l e N o d e s ( ) ) {

4 v i s i t ( p , n ) ;

5 }

6 }

Fig. 2.2. Point correlation as doubly nested loop

2.1 An abstract model

Reasoning about codes that traverse recursive structures is difficult for a number of

reasons. First, unlike in regular applications, the structure of the key data structures is

highly input-dependent. The kd-tree generated in point correlation is dependent on the

particular locations of the points in the system. Furthermore, the data structures are dy-

namically allocated, and hence can be scattered throughout memory. Finally, the traversals

are not uniform; a traversal can be truncated (e.g., due to the distance check in line 8 of

Figure 2.1), and traversals for two different points are not necessarily similar.



11

Hereon we focus on locality in tree traversals. The abstractions and iteration spaces

presented here will be used to discuss vectorization in Chapter 5.

We can still reason about locality by considering the behavior of a traversal algorithm

in a more abstract sense. Rather than viewing a traversal as a recursive, depth-first walk of

a data structure, we can instead visualize the traversal in terms of the actual nodes touched.

Fundamentally, processing a single point requires accessing some sequence of tree nodes.

The particular arrangement within the tree of those nodes is irrelevant; all that matters is

the ultimate sequence in which the nodes are touched. If we imagine that there is an oracle

function oracleNodes that generates the sequence of nodes accessed while processing a

particular point, we can rewrite the code of Figure 2.1 as shown in Figure 2.2 (the visit

method abstracts whatever computations a point performs when it visits a node of the tree).

In other words, we can view the algorithm as a simple, doubly-nested loop. Notably, for

the purposes of locality, the behavior of the original point correlation code is equivalent to

the abstract algorithm. All that matters is the sequence of accesses; the additional compu-

tations required to determine whether to continue a traversal or not do not affect locality.

Thus, the sequences of memory accesses for the code in Figure 2.1 and Figure 2.2 are iden-

tical. Moreover, locality-enhancing transformations on the abstract code will also enhance

locality in the original code, if an equivalent transformation can be applied.

Figure 2.3(a) shows a sample kd-tree for PC, with nodes numbered in heap order, and

figure 2.3(b) shows an iteration-space diagram for one set of traversals; this will serve as a

running example throughout the paper. Each circle in the iteration space diagram represents

one dynamic instance of the loop body. The vertical axis shows the outer loop over the

points, while the horizontal axis shows which nodes are visited by each point. Note that

each point does not visit each node. We can use reuse distance [42] to analyze the locality

behavior of the algorithm. We note that each point enjoys good locality, while each tree

node has relatively poor locality: concentrating on tree node 4�, we see that between point

A’s first access to 4� and C’s reuse of 4�, we must visit all 14 other nodes of the tree before

we return to 4�. In general, the reuse distance for most nodes will be proportional to the

size of the tree.
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(a) Sample tree for point correlation (running example)
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(b) Iteration space
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Fig. 2.3. Sample tree and iteration spaces

2.2 Point sorting

While all tree traversal algorithms we consider have the same basic structure, they each

traverse their trees according to different criteria and use trees with different structures (oct-

trees for Barnes-Hut, kd-trees for nearest neighbor, bounding volume hierarchies for ray

tracing), and dynamically allocate their trees according to input data. Hence, it appears at

first glance that there may not be any unifying principles governing their locality. However,

as the same tree is traversed by each point (the outer loop in Figure 2.1), there is significant

data reuse. Points that are nearby in space are likely to perform very similar traversals of

the oct-tree, visiting the same set of tree nodes. Thus, if these traversals are performed

consecutively, the oct-tree nodes visited during the first traversal are likely to remain in

cache during the second traversal, exploiting temporal locality.
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Such a locality-exploiting order of traversals can be arranged by reordering the points,

so that consecutive points have similar traversals. Though the optimization has only been

applied to Barnes-Hut in the literature, we note that analogous transformations can be ap-

plied to any traversal code: if the points are sorted to maximize the overlap between con-

secutive traversals, locality can be improved.

Previous work has proposed sorting points a priori using application specific heuristics

(e.g., with a space-filling curve) [16, 17, 22]. In Section 5.3.1, we show how points can

be sorted dynamically, during traversal without relying on application semantics. This

dynamic sorting is often more effective than a priori sorting, because it can take advantage

of runtime information and has more flexibility to tune the sorting.

Figure 2.3(c) shows the same traversals as Figure 2.3(b), but in a different order so that

points with similar traversals are executed close together. Because points have different

traversals, this sorting can reduce reuse distance; when point A and point C are executed

consecutively, the reuse distance of tree node 4� drops to 8, and, in general, the reuse

distance for a node will be proportional to the size of a traversal.

Point sorting can have substantial impact on the performance of traversal codes. Ta-

ble 2.1 shows the runtimes, CPI and L2 miss rates of several benchmarks with and without

sorting1. Sorting dramatically reduces runtime, CPI and L2 miss rates, and it is clear that

we would like to employ point sorting whenever possible.

Unfortunately, point sorting has two downsides. First, the right execution order for

points is application-specific and can require significant programmer effort to divine. Pro-

posals that rely on point sorting adopt approaches such as using the tree-order of points [17]

or space-filling curves [16, 22]. Choosing the appropriate order for a given algorithm re-

quires deep knowledge of the algorithm’s behavior; this is especially problematic for algo-

rithms such as nearest neighbor, where different points traverse the tree in different orders.

In Section 3.2, we introduce a new locality optimization that performs this sorting “on-the-

fly” and does not require any application-specific knowledge to implement.
1Results are obtained via PAPI, with the random inputs on the Opteron II machine, described in more detail
in Section 4.6.1.
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Table 2.1
Efficacy of sorting

Benchmark Runtime (sec) CPI L2 miss rate

Unsort Sort Unsort Sort Unsort Sort

Barnes-Hut (BH) 123.6 35.3 4.47 1.25 0.501 0.005

Point Correlation (PC) 895.2 327.1 5.21 1.50 0.486 0.571

Nearest Neighbor (NN) 380.1 175.7 3.02 1.35 0.667 0.445

k-Nearest Neighbor (kNN) 818.2 273.9 6.13 2.17 0.688 0.614

Ball Tree (BT) 1102.0 423.3 3.83 1.66 0.651 0.571

Ray Tracing (RT) 166.4 104.0 2.71 1.64 0.450 0.192

Table 2.2
Limitations of sorting for large traversals

# Objects Traversal size (Bytes) L2 miss rate (%) % Improvement in cycles

10000 63, 944 21.61 67.3

100000 108, 656 44.97 45.9

1000000 139, 616 55.30 26.4

Second, the sorting optimization loses its effectiveness as the traversal sizes get larger.

With a sufficiently large traversal, the least recently visited nodes of the oct-tree will be

evicted from cache, and hence when the next point is processed those nodes will have to

be brought back in to cache, incurring additional misses. Table 2.2 shows, for several tree

sizes, the average traversal size, the L2 miss rate of an optimized implementation, and the

% improvement in cycles over an un-optimized implementation. The test system is a dual-

core Intel Pentium with 32K L1 data cache per core and 1M shared L2 cache. The efficacy

of sorting is clear for small sizes: in an input with 10,000 points, the sorting optimization

improves runtime by 67%. However, with an input of 1 million points, the sorting opti-

mization has much higher miss rates, and only improves runtime by 26% compared to the

un-optimized version. Clearly, a more sophisticated optimization is necessary to continue

exploiting locality as traversal sizes get larger.
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3. ENHANCING LOCALITY FOR TREE TRAVERSAL
ALGORITHMS

3.1 Point blocking

Though sorting is a useful optimization that reduces the reuse distance for tree nodes to

be on the order of traversal size, it loses its effectiveness when inputs, and hence traversal

sizes, get too large. In this section we introduce point blocking as a method for improving

locality for tree traversal codes when traversal sizes attenuate the benefits of sorting [6].

Given the abstract, outer-product model of traversal codes described in Figure 2.2, sev-

eral analogs of classical loop transformation techniques become apparent. For example,

loop interchange would place the traversal loop on the outside, with the point loop on the

inside. This corresponds to choosing a node of the recursive data structure, then process-

ing each point that must interact with it. However, we note that, just as the original code

suffers from poor locality if the traversal vector exceeds cache, the loop-interchanged code

will suffer from poor locality if the point vector exceeds cache. For large inputs, this is

likely1.
1In fact, for point correlation, the point vector has n elements, while the traversal vector has O(logn) ele-
ments, so the interchanged code is more likely to suffer cache misses than the original code.

1 Set<Block<P o i n t>> b l o c k s = /∗ p o i n t s ∗ /

2 foreach ( Block<P o i n t> b : b l o c k s ) {

3 foreach ( Node n : b . o r a c l e N o d e s ( ) ) {

4 foreach ( P o i n t p : b . v a l i d P o i n t s A t ( n ) {

5 v i s i t ( p , n ) ;

6 }

7 }

8 }

Fig. 3.1. Point blocked abstract code
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While loop interchange may not produce an effective implementation of a traversal

code, loop tiling holds promise. In particular, we propose tiling the point vector, which

produces the code seen in Figure 3.1. Essentially, this code breaks the points into blocks

of size B. For each block, each node of the recursive data structure is chosen, then each

point in the block is processed for the chosen node. If B is chosen correctly, the points in

a block will never leave cache. Further, regardless of how large the traversal is, each node

of the traversal will only incur a cache miss once per block2. We call this transformation

point blocking.

3.1.1 Concrete implementation of point blocking

The concrete pseudocode to realize this tiling is shown in Figure 3.2. Compared to

the base algorithm of Figure 2.1, the code is similar except the recursive method operates

over a block of points rather than a single point. Rather than finishing an entire traversal

for one point before moving on to the next point, a block of points moves through the

tree in lockstep. The block visits nodes in the tree comprising the union of its component

points’ traversals, and points within the block only interact with nodes they would have in

the original code. If none of the points in a block interact with a node, the block will skip

visiting the node. The arrows in Figure 3.3 show the new iteration order when applying

point blocking to the sorted traversals of Figure 2.3(c), with block size 3. Note that the tree

nodes enjoy improved locality: they will incur misses once per block, instead of once per

point. Further, the reuse distance of a point is on the order of the block size, so as long as

blocks are properly sized, points will suffer only cold misses.

3.1.2 Limitations of point blocking

We note, however, that point blocking’s effectiveness relies on point sorting as a pre-

processing pass. A more precise characterization of the locality behavior of a point blocked
2In a traversal of a cyclic structure, certain nodes may be visited multiple times, and may incur misses each
time.
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1 Set<P o i n t> p o i n t s = /∗ p o i n t s ∗ /

2 Node r o o t = b u i l d T r e e ( p o i n t s ) ;

3 foreach ( Block<P o i n t> b : p o i n t s ) {

4 r e c u r s e ( b , r o o t ) ;

5 }

7 void r e c u r s e ( Block b , Node n ) {

8 Block<P o i n t> nextB ; / / p o i n t s t h a t c o n t i n u e t r a v e r s i n g

9 f o r ( i n t i = 0 ; i < b . s i z e ; i ++) {

10 P o i n t p = b . p [ i ] ;

11 i f ( ! c a n C o r r e l a t e ( p , n . boundingBox ) ) {

12 c o n t i n u e ;

13 } e l s e i f ( n . i s L e a f ( ) ) {

14 p . u p d a t e C o r r e l a t i o n ( n . g e t P o i n t ( ) ) ;

15 } e l s e {

16 nextB . add ( p ) ;

17 }

18 }

19 i f ( nextB . s i z e > 0) {

20 r e c u r s e ( nextB , n . l e f t C h i l d ) ;

21 r e c u r s e ( nextB , n . r i g h t C h i l d ) ;

22 }

23 }

Fig. 3.2. Concrete code for point blocking
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Fig. 3.3. Iteration order for point blocking

code is that a tree node suffers one miss per block that visits it. If the points are sorted, then

points that visit a particular node are likely to be collected into a relatively small number

of blocks, and hence the node will suffer few misses. If the points are unsorted, each block

will have to visit more tree nodes (as its points’ traversals will have less overlap and hence
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Table 3.1
Dependence of point blocking on point sorting

Benchmark Runtime (seconds) CPI L2 miss rate

Unsort Sort Unsort Sort Unsort Sort

BH 102.7 27.9 2.44 1.23 0.429 0.021

PC 448.0 216.9 1.70 0.85 0.385 0.043

NN 383.8 190.2 2.00 1.13 0.486 0.227

kNN 529.3 147.8 2.43 0.91 0.481 0.226

BT 687.2 245.2 2.12 0.81 0.431 0.184

RT 155.5 102.5 1.31 1.10 0.275 0.163

cover more ground). Thus, each tree node is visited by more blocks, and will suffer more

misses. Consider node 4� from our running example. In the sorted version of the point-

blocked code (Figure 3.3), all the points that visit 4� are in the same block, and 4� only

suffers a single miss. However, if we were to apply point blocking to the original order of

points from Figure 2.3(b), we note that two blocks would have to visit 4�, resulting in two

misses.

Table 3.1 shows the runtimes, CPI and L2 miss rates of several benchmarks with point

blocking, with and without sorting3. While point blocking can often improve performance

for both scenarios with and without sorting, the gap between sorted point blocking and

unsorted point blocking remains significant. Hence we would like to combine point block-

ing with point sorting to achieve the best performance. Unfortunately, as discussed before,

performing sorting requires application-specific knowledge, and a general transformation

cannot rely on having sorted inputs. In the next section, we introduce a transformation

whose performance is less dependent on the order in which points are processed, obviating

the need for application-specific sorting.
3Also with the random inputs on the Opteron II machine, as in Table 2.1.
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3.2 Traversal Splicing

This section introduces traversal splicing, a novel transformation for tree traversal al-

gorithms that addresses the shortcomings of the techniques discussed in Section 2. In

particular, it does not rely on any application-specific semantic knowledge (e.g., how to

sort points) to work effectively. In other words, traversal splicing can deliver good results

even for simple, baseline implementations, without relying on programmer intervention to

enhance locality.

The most intuitive way to visualize traversal splicing is that, rather than tiling the point

loop, as in point-blocking, it tiles the traversal loop, yielding the abstract pseudocode of

Figure 3.4(a). Thus, rather than picking a block of points and following their traversals

through the entire tree, traversal splicing takes a single point and executes a partial traver-

sal of the tree. It then takes the next point and executes a partial traversal and so on. Once

each point has executed a partial traversal, the first point’s traversal picks up from where

it left off. This process can be extended by dividing each traversal up into several partial

traversals, whose executions are interleaved. In essence, each point’s traversal is chopped

up into pieces, and the pieces are rearranged and stitched together in a different order;

hence, traversal splicing. The nodes at which the traversals are paused are called splice

nodes.

Figure 3.4(b) shows the effects that traversal splicing has on the iteration space from

Figure 2.3(b), with the iterations that visit the splice nodes ( 4�, 5�, 6� and 7�) filled in4.

Note that the partial traversals are executed in “lock-step,” and if a point does not encounter

a splice node (consider point B, which does not visit node 4� or 5�), it resumes once all

other points have arrived at the next node it should visit.

We can use the iteration space diagram to reason about the locality effects of traversal

splicing. We note that each node in the tree has good locality. The reuse distance of a tree

node is bounded by the distance between splice nodes. As long as the splice nodes are not

too far apart (i.e., each set of nodes in line 3 of Figure 3.4(a) fits in cache), we get only
4Note that this assumes that every point in the algorithm performs its depth-first traversal in the same order;
we discuss the implications of algorithms where points can visit nodes in different orders later.
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1 Set<P o i n t> p o i n t s = /∗ p o i n t s ∗ /

2 Set<Set<Node>> t r a v e r s a l s = /∗ t r e e ∗ /

3 foreach ( Set<Node> t : t r a v e r s a l s ) {

4 foreach ( P o i n t p : p o i n t s ) {

5 foreach ( Node n : p . o r a c l e N o d e s W i t h i n ( t ) {

6 v i s i t ( p , n ) ;

7 }

8 }

9 }

(a) Abstract pseudocode for traversal splicing
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(b) Iteration order for traversal splicing

Fig. 3.4. Traversal splicing

cold misses on the tree nodes. The points, however, will miss once per partial traversal

(when a point pauses at a splice node, it will not be re-accessed until every other point has

completed a partial traversal). Interestingly, the order of points is irrelevant to this locality

analysis. Hence, traversal splicing is agnostic to whether or not the points are sorted.

3.2.1 Dynamic sorting

Note that the above analysis assumes that splice nodes are not too far apart. Unfortu-

nately, the structure and size of the tree can be extremely irregular, leading to sets of nodes

(line 3 of Figure 3.4(a)) that may exceed cache. However, the partial traversals of points

(line 5 of Figure 3.4(a)) may still fit in cache. In this situation, the order of points once again

matters: points with similar partial traversals between splice nodes can enjoy good locality

if they are processed consecutively. But how can this reordering be done automatically?
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To perform this scheduling, we exploit a key insight about tree traversal algorithms.

Two points that reach the same splice node of a tree have had similar traversals up to

this point (points with substantially dissimilar traversals will have been truncated prior

to arriving at the splice node). Furthermore, their traversals’ similarity implies that the

continuations of the traversals are likely to be similar as well. We can thus use the order in

which points reach splice nodes as a proxy for the similarities of their traversals. Hence,

we will reorder the points as they arrive at splice nodes.

As an example, consider applying this strategy to the traversals of Figure 3.4(b). We

will process the points in their original order until splice node 4�. Because points B and D

did not reach node 4�, they will be reordered with respect to points A, C and E. The order

in which the points will be processed for the partial traversals between 4� and 5� is (A, C,

E, B, D). Note that this new order is precisely the order in which the points would have

been executed had they been sorted a priori (see Figure 2.3(c)).

As the traversals continue, the points arrive at 5� in their current order, so no reordering

is done. Next, the points will continue on to 6�. Note that the reuse distance for 6� is

improved: points B and D are now processed consecutively. At 6�, the points will be

reordered again, to (E, B, D, A, C), and so on. This continuous reordering has the effect

of sorting the points as they traverse the tree, so that points with similar traversals will wind

up near each other in the processing order.

3.2.2 Combining traversal splicing and point blocking

Finally, if we consider the inner two loops of Figure 3.4(a), we note that it looks like the

abstract version of the original traversal code. If the partial traversals become too large, it is

clear that applying point blocking to the inner two loops (which, recall, are now operating

over dynamically sorted points) can further enhance locality. Section 4.5 discusses how

applying point blocking to partial traversals allows our transformed code to tolerate larger

partial traversals, and hence reduces its sensitivity to splice node placement. Section 6.2
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quantifies the performance of point blocking and traversal splicing individually, and the

combination of the two.

3.2.3 More complex traversals

Matters are more complicated when traversals of points do not take the same path

through the tree. In PC, each point traverses the tree in the same order, aside from trunca-

tions; there is a single global traversal order, and each point’s traversal is a filtered subset

of that order. Figure 3.5 shows the pseudocode for nearest neighbor (NN), in which the

traversal order is not fixed. For example, at a given node, some points may visit the node’s

left child before its right, while other points visit its right child before its left.

This scenario is both a more complex challenge for traversal splicing and a more

promising opportunity. In applications like PC, each point visits the splice nodes in the

same order, though truncation may prevent it from reaching a particular splice node. In

NN, points may visit splice nodes in different orders, even disregarding the effects of trun-

cation. Because the traversals have the potential to diverge substantially, leaving the points

unsorted can yield very poor performance. Further, the exact path of each traversal may be

highly input dependent, making a priori sorting difficult.

In such a scenario, each point follows its prescribed traversal until it reaches its first

splice node, even if different points reach different splice nodes. Splicing, with reordering,

occurs as before. Then points continue on to the second splice node, and so on. Hence,

each point’s traversal is still divided into partial traversals, and the partial traversals are still

executed in lockstep.

More precisely, the computation is divided into n phases, one per splice node (and

hence one per partial traversal). In phase i, each point p executes the partial traversal

starting at the (i − 1)th splice node and ending with the ith splice node in that point’s

particular traversal. After each phase, the points at each splice node are sorted according to

their traversal history as before. Note that this phasing approach is merely a generalization
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1 Set<P o i n t> p o i n t s = /∗ p o i n t s ∗ /

2 Node r o o t = b u i l d T r e e ( p o i n t s ) ;

3 foreach ( P o i n t p : p o i n t s ) {

4 r e c u r s e ( p , r o o t ) ;

5 }

7 void r e c u r s e ( P o i n t p , Node n ) {

8 i f ( ! canBeClo se r ( p , n . boundingBox ) ) {

9 re turn ;

10 } e l s e i f ( n . i s L e a f ( ) ) {

11 p . u p d a t e C l o s e s t ( n . g e t P o i n t ( ) ) ;

12 } e l s e {

13 double s p l i t = p . v a l u e ( n . s p l i t T y p e ) ;

14 i f ( s p l i t <= n . s p l i t V a l u e ) {

15 r e c u r s e ( p , n . l e f t C h i l d ) ;

16 r e c u r s e ( p , n . r i g h t C h i l d ) ;

17 } e l s e {

18 r e c u r s e ( p , n . r i g h t C h i l d ) ;

19 r e c u r s e ( p , n . l e f t C h i l d ) ;

20 }

21 }

22 }

Fig. 3.5. Pseudocode of nearest neighbor

of the splicing procedure for applications like PC. In PC, because each point follows the

same path through the tree, every point’s ith phase ends at the same splice node.

The only complication is when a point is truncated before reaching a splice node, skip-

ping one or more splice nodes. In this case, the truncated point conceptually still partic-

ipates in that splice node’s phase, but without performing any work; the point’s traversal

will resume when the phases for any skipped splice nodes are over. Section 4.4 describes

this phasing algorithm, and how it can be scheduled efficiently, in more detail.
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3.2.4 Splice node placement

In principle, splice nodes can be located at any point in the tree. Indeed, different

points can use different splice nodes. However, there are certain principles that govern the

selection of splice nodes.

1. If different points exhibit different traversal orders, the phasing algorithm outlined

above requires that each point that will encounter a splice node in phase i encounter

that phase’s splice node at the same time. This can easily be accomplished by placing

all splice nodes at a uniform depth from the root node . Section 3.2.5 discusses how

this criterion can be relaxed.

2. The deeper in the tree splice nodes are placed, the more splice nodes, and hence

partial traversals, there are. Placing splice nodes too deep can result in high overhead

(due to the extra bookkeeping necessary to keep track of partial traversals) and poor

locality (as points incur a miss once per partial traversal).

3. Conversely, if the points are too high in the tree, then too many points will reach the

same splice nodes, reducing the efficacy of the reordering optimization. Further, the

portions of the traversal “below” the splice nodes will be large, potentially resulting

in poor locality, though this effect can be mitigated by applying point blocking, as

discussed in Section 3.2.2

Good splice node placement requires striking a balance between placing the nodes too

shallow in the tree for reordering to be useful and placing them too deep to take advantage

of reordering. Section 4.5 describes our approach to splice node selection.

3.2.5 Optimizations

Traversal splicing as described in Section 3.2 comes at a cost. It requires that traversals

be paused and resumed at splice nodes. In principle this would require maintaining the full

stack for each point’s traversal, allowing it to be paused at a splice node and its continua-

tion resumed in the next phase. Rather than storing a point’s stack in some ancillary data
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(a) Traversal with explicit and implicit splice nodes
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(b) After splice node elision

Fig. 3.6. Top and bottom phases

structure, we record the information in the tree itself. When a point is at some node n in

its traversal, each level of its stack can be stored in the appropriate ancestor of n. Hence, at

each node in the tree, we will store, per point, any information needed by the point at that

level in its recursion. This includes any local variables of the recursive method, as well as a

program counter, recording where in the recursive method the point was when it descended

from the node. This information needs to be tracked for each point, and can consume space

proportional to the depth of any traversal. Because all points are in flight simultaneously,

the amount of extra space required per point can lead to prohibitive overheads for traversal

splicing.

This section discusses optimizations that take advantage of structural characteristics of

the target tree traversal algorithm that allow traversal splicing to be implemented with far

less space overhead. In the following presentation, D refers to the depth of the splice nodes

(recall from Section 3.2.4 that we place all splice nodes at a uniform depth from the root).

Implicit splice nodes

To avoid storing stack information at every node along a point’s traversal, we note that

partial traversals that start after a splice node (e.g., the partial traversals starting after node

5� in Figure 3.4(b)) visit the entire subtree of the splice node before returning higher in the

tree. We introduce the concept of implicit splice nodes: nodes that act as splice nodes for
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the purposes of pausing and restarting traversals, but are not explicitly marked by the trans-

formation. The last node visited by any partial traversal in the subtree “below” an explicit

splice node is an implicit splice node. Figure 3.6(a) shows the resulting decomposition

of a traversal over the tree in Figure 2.3(a). The explicit splice nodes are shaded in gray,

while the implicit splice nodes are shaded with diagonal lines. We can categorize the partial

traversals as “top” traversals that traverse the top portions of the tree and end at an explicit

splice node, and “bottom” traversals that traverse the lower portions of the tree and end at

an implicit splice node. Notably, the bottom traversals are equivalent to normal recursive

traversals over the subtrees rooted at the explicit splice nodes. Therefore, we need only

track information for traversal splicing for top phases. Because any top phase is no larger

than a single path from the root to a splice node, the maximum amount of space required

to track each point is now O(D).

Reducing stack storage

With the addition of implicit splice nodes, a point’s stack only needs to be explicitly

tracked in top phases. We next aim to reduce the amount of state that needs to be saved

during the top phases. We note that tail recursion optimization is commonly performed

for recursive methods: if the last operation by a recursive method is a recursive call, then

the stack does not need to be saved upon making the call. While the recursive methods in

tree traversals tend not to be purely tail recursive (as there are recursive calls for each child

node), we can consider pseudo-tail recursive methods. A pseudo-tail recursive method is

a recursive method for traversing the tree where any recursive call within the method is

immediately followed either by another recursive call or a method exit. Because no local

variables are used between recursive calls, we need not track any information other than a

program counter for each point at each level in the recursion.

To track a point’s program counter efficiently, we group each straight-line series of

calls in a pseudo-tail recursive method into a call set. Each call set has a fixed sequence of

recursive calls (i.e., a fixed order of visiting a node’s children), so a point’s behavior at this
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node is completely determined by which call set it uses, and the call set it uses is computed

before the first recursive call.

The nearest neighbor (NN) code of Figure 3.5 shows an example of a pseudo-tail re-

cursive method with multiple call sets. Here the two possible call sets (traversal orders) are

{leftChild, rightChild} (lines 15 & 16), and {rightChild, leftChild} (lines 18 & 19), and

which call set a point will take is decided before any recursive calls are made. Thus, at

each level, a point need only track which call set it used, and where in the call set it was,

to fully reconstruct its stack. The phased nature of the traversal splicing algorithm means

that every point’s location in their respective call sets will be aligned; at any given time,

every point will be executing the first recursive call of their call set, or every point will be

executing the second recursive call of their call set, etc. Hence, at each depth we can track

a global “phase number” that maintains where in its call set each point is. A point only

needs to maintain which call set it is using at a given level.

Inferred order

We can further reduce the amount of storage required during traversal splicing by noting

that in many algorithms, the call sets of the recursive method follow a particular pattern.

Specifically, each call set makes the same number of recursive calls, and in a given phase of

the algorithm, each call set is operating on a different child. That is, there is no i such that

the ith call of two call sets are performed on the same child. Hence, at a particular level,

if we know which phase the algorithm is in (what i is) and we know which child node the

point traversed during the phase, we can infer which call set the point used at this level,

and so no longer need to record it. NN is an example of an algorithm from which order

can be inferred. The two call sets each have two calls, and in the first phase, the points in

the first call set visit leftChild, and the points in the second call set visit rightChild. In the

second phase, we know that any point that visited leftChild must now visit rightChild, and

vice versa.
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Note further that because the data structure being traversed is a tree, knowing where a

point is in the tree at any given time during execution uniquely determines the path from

the root to that point. Hence at a given level we need not store which child the point visited,

either. This eliminates the need to track any information per point aside from a global phase

number per level (shared across all points) and the current tree node the point is at. This

reduces storage needs to O(1) per point. A special case of inferred order is when there is a

single call set in a recursive method as in PC (Figure 2.1(a)).

Splice node elision

Given our policy of placing splice nodes at a fixed depth, certain top phases, which

begin just above the splice depth, will necessarily be very short. For example, the partial

traversal starting at node 5� is only one node long! To avoid the overhead of performing

splicing when it is unlikely to be effective, we elide splice nodes for short phases. That is,

if a partial traversal is likely to be short, we combine it with the following partial traversal.

In practice, for top phases that begin a short distance above the splice depth D, we do not

perform splicing and instead immediately begin a bottom phase, as shown in Figure 3.6(b).

This can be both good and bad for locality. It is good as we incur fewer misses on each

point (as we have fewer phases), but the combined bottom phase becomes larger, potentially

outstepping cache. When splice node elision is combined with point blocking, the latter

effect is mitigated. Section 4.5.2 discusses our strategy for splice node elision.
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4. AUTOMATICALLY ENHANCING LOCALITY WITH
TREESPLICER

In the previous sections we have discussed how loop transformations can significantly re-

duce cache misses in codes that repeatedly traverse trees. Realizing these transformations

is non-trivial because each point may have a different traversal (i.e., each point may require

traversing a different portion of the data structure). We must ensure that these differing

behaviors are respected by the transformation. In this section, we describe an analysis

and transformation framework, called TREESPLICER, which can apply the transforma-

tions automatically. TREESPLICER is written as a series of passes in the JastAdd frame-

work [43], which enables analysis and transformation of Java programs. We have made

the source code of TREESPLICER public at https://engineering.purdue.edu/

plcl/treesplicer/.

TREESPLICER consists of several passes, which we describe in more detail in the fol-

lowing sections:

1. Identifying repeated traversals. TREESPLICER finds possible transformation oppor-

tunities by looking for code that performs repeated traversals of recursive structures.

(Section 4.1).

2. Verifying correctness. TREESPLICER analyzes the dependences in the identified loop

to determine whether the transformations can be legally applied. (Section 4.2).

3. Applying point blocking. If the transformations are legal, TREESPLICER automati-

cally applies point blocking (Section 4.3) and/or traversal splicing (Section 4.4).
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4.1 Identifying opportunities for transformation

While recognizing a traversal code structure can be expedited with programmer annota-

tions, many traversal codes have a common algorithmic structure that does not require an-

notations to recognize. In particular, many traversal codes are written by recursive function

calls on recursive data structures. If an application performs repeated recursive traversals

of a recursive structure, TREESPLICER will identify it as a candidate for point blocking.

Thus, the first step in this phase is to determine whether an algorithm consists of a

recursive traversal of a recursive structure. Hereafter, we will use Java terminology and

refer to functions as methods, and data structures as classes. We define a recursive class

as a class with fields of its own type (which we call its children). This class represents the

nodes of the structure being traversed, and the traversal of a point is realized by recursively

calling a method on the children of a node. The recursive method has some termination

condition dependent on both the point being processed and the current node being traversed.

If the termination condition is satisfied, the recursion is stopped, and the traversal proceeds

with recursion at a previous method call. Depth-first order is maintained naturally by the

program stack.

This doubly recursive structure is illustrated for PC in Figure 2.1. The node class Node

is a recursive class with fields leftChild, rightChild that are also of type Node.

The method recurse (lines 7-16) is a recursive method that takes a recursive class as an

argument. The traversal is realized by calling recurse on the children of a node (lines

13-14). A termination condition stops the recursion if the point is far enough away from

the node (line 8).

The algorithmic structure that we want to identify must be a combination of both re-

cursive method calls and recursive structures. Recognizing each individually is trivial. A

recursive method, m, can be recognized by finding a call to itself within a method’s body1.

A recursive structure can be recognized by finding a class, c, with at least one field f of the

same class (or superclass).
1A more sophisticated approach is to look for cycles in a call graph; the simple approach here suffices for our
benchmarks.
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1 Set<P o i n t> p o i n t s = /∗ p o i n t s ∗ /

2 Node r o o t = b u i l d T r e e ( p o i n t s ) ;

3 foreach ( P o i n t p : p o i n t s ) {

4 r o o t . r e c u r s e ( p ) ;

5 }

7 c l a s s Node {

8 Node l e f t C h i l d , r i g h t C h i l d ;

9 void r e c u r s e ( P o i n t p ) {

10 i f ( ! c a n C o r r e l a t e ( p , boundingBox ) ) {

11 re turn ;

12 } e l s e i f ( i s L e a f ( ) ) {

13 p . u p d a t e C o r r e l a t i o n ( g e t P o i n t ( ) ) ;

14 } e l s e {

15 l e f t C h i l d . r e c u r s e ( p ) ;

16 r i g h t C h i l d . r e c u r s e ( p ) ;

17 }

18 }

19 }

Fig. 4.1. Passing recursive class via implicit argument

We must then determine whether the recursive method performs a recursive traversal of

any identified recursive structures. This might happen in one of two ways: (i) if m takes an

object o of class c as an argument, and passes o.f as an argument to the recursive call; or (ii)

if m is a member method of c and it performs the recursive call by invoking f.m() (in other

words, the data structure node is the implicit “this” argument). The former was illustrated

in Figure 2.1. Figure 2.1 could be re-written to Figure 4.1, where the explicit argument

child in lines 13-14 of Figure 2.1 has changed to the implicit argument in lines 15-16 of

Figure 4.1. Using implicit arguments is common programming style, and TREESPLICER

handles both cases.

Having identified a recursive traversal of a recursive structure, TREESPLICER’s next

goal is to determine if it is repeated. To do so, TREESPLICER uses a call graph analysis to

determine that the recursive method is called (either directly, or through a chain of calls)

from a loop in the application. Our transformations are useful when the traversals are
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repeated many times. If the number of loop iterations can be statically determined to be

larger than N , TREESPLICER transforms the code. If the number of loop iterations is

decided at runtime, TREESPLICER inserts run-time profiling code that uses the transformed

path if there N or more iterations. We empirically choose N = 10000. TREESPLICER

will perform the transformations for every kernel it identifies that is a repeated recursive

traversal of a recursive data structure, which satisfies the correctness conditions described

in the next section.

4.2 Correctness

As in any loop transformation in regular programs, our transformations must preserve

dependences to ensure correctness.

4.2.1 Correctness for point blocking

We will refer to the iteration space of point blocking, which was depicted in Figure 3.3.

While the transformed code walks the iteration space in a different order than the original

code, a few key aspects of the execution order are preserved. First, for a given point, nodes

are visited in the same order. Hence, intra-point dependences (dependences that point

“right” in the iteration space) are preserved. Second, if the data structure being traversed

is a tree, for a given node, points “visit” the node in the same order. Hence, while not

all inter-point dependences are respected by the transformation, intra-node dependences,

where values on a node are updated as it is visited by points, are preserved as well.

Other types of dependences are not preserved. For example, inter-point and inter-node

dependencies (e.g. processing point C at node 4� depends on processing point A at node

8�) which were legal in the original code may not be preserved in the transformed code.

Further, if i) the structure being traversed is not a tree or ii) there are multiple orders in

accessing children (as discussed in Section 4.3.2), there may be multiple paths to reach a

certain node, or a traversal may access a node multiple times; in these situations, inter-point



33

dependences (even those that are intra-node) may not be preserved by the transformation.

Section 4.2.3 discusses some of the implications of traversals of non-tree data structures.

Point blocking relies on programmer annotations which specify that the point loop is

parallelizable, as a conservative guarantee that there are no problematic inter-point depen-

dencies2. Parallelizability is a sufficient condition for point blocking to be legal, not a

necessary one; tree traversals where values on nodes are updated as points visit them can

be transformed, but not parallelized.

4.2.2 Correctness for traversal splicing

Traversal splicing is the equivalent of “tiling” the traversal loop in the doubly-nested

loop formulation of tree traversal algorithms shown in Figure 2.1(b), and the correctness

criteria for loop tiling (that the loop be fully permutable) still apply. In particular, the

order in which a point visits nodes in its traversal is unchanged, as is the order in which a

given tree node is visited by different points. Thus, traversal splicing can be performed in

the presence of intra-traversal dependences (e.g., if some data associated with the point is

updated at each leaf node of the point’s traversal) or dependences that cross traversals but

stay within the same node (e.g., if a counter at each node is updated whenever a point visits

the node).

When reordering is performed during splicing, the correctness criteria change. Each

point’s traversal still occurs in the prescribed order, and hence intra-traversal dependences

are preserved. However, because the order in which partial traversals happen can be shuf-

fled around, inter-traversal dependences are no longer guaranteed to be preserved. Point

blocking’s sufficient condition of a parallelizable point loop is also sufficient to ensure

correctness of traversal splicing, with or without dynamic sorting.
2Proving that there the point loop is parallelizable likely requires a shape analysis and is beyond the scope of
this work.
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4.2.3 Discussion: Generalization to DAGs and graphs

TREESPLICER identifies data structure traversals by looking for recursive traversals

of recursive structures. While the discussion so far has focused on TREESPLICER’s ap-

plication to traversals of trees, the framework’s identification strategy may actually flag

traversals of DAGs and general graphs as potential optimization targets, as well. Interest-

ingly, the transformations presented here can be applied directly to these more general data

structures. From the perspective of traversal algorithms, the key distinction between trees

and the more general structures is that, in the latter case, depth-first traversals may visit

the same node more than once. This means the correctness criteria are more complex than

for trees. Nevertheless, TREESPLICER’s sufficient condition of looking for parallelizable

loops means that there will be no inter-traversal dependences, so point blocking will be

correctly applied.

However the recursion unrolling of traversal splicing requires that the data structure be

a tree, and is not applicable to more general structures such as DAGs or graphs. Hence

traversal splicing relies on annotations which specify that the data structure is a tree, in

addition to point loop parallelizability for correctness. We leave the problem of checking

more complex correctness conditions, as well as an investigation of the efficacy of point

blocking for DAG and graph traversals to future work.

4.3 Implementation of point blocking

Once we have identified the recursive structures that can be transformed correctly, the

next step is to realize the transformation efficiently. This section discusses the actual imple-

mentation of point blocking. We will first explain how TREESPLICER operates in the sim-

ple case: code such as PC (Point Correlation). We will then describe how TREESPLICER

handles complications in the basic algorithmic pattern: multiple recursive calls within a

method, different arguments to recursive calls, and chains of method calls between the

loop and the recursive method.
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1 P o i n t [ ] p o i n t s = /∗ e n t i t i e s i n a l g o r i t h m ∗ /

2 O b j e c t o1 = /∗ s o m e t h i n g loo p i n v a r i a n t ∗ /

3 f o r ( i n t i = 0 ; i < p o i n t s . l e n g t h ; i ++) {

4 P o i n t p = p o i n t s [ i ] ;

5 O b j e c t o2 = /∗ s o m e t h i n g loop v a r i a n t ∗ /

6 / / do s o m e t h i n g − p r o l o g u e

7 r e c u r s e ( p , o1 , o2 , r o o t ) ;

8 / / do s o m e t h i n g − e p i l o g u e

9 }

11 void r e c u r s e ( P o i n t p , O b j e c t o1 , O b j e c t o2 , Node node ) {

12 / / do s o m e t h i n g

13 i f ( cond ) {

14 foreach ( Node c h i l d : node . c h i l d r e n ) {

15 r e c u r s e ( p , o1 , o2 , c h i l d ) ;

16 }

17 }

18 }

Fig. 4.2. Generic structure - original code

4.3.1 Basic transformation

We start with a simple, generic, repeated recursive traversal of a recursive structure as in

Figure 4.2. Our analysis will find a recursive method (lines 11-18) associated (explicitly or

implicitly) with a recursive class, and an enclosing loop (lines 3-9). There can be arbitrary

code within the enclosing loop, and arbitrary arguments can be passed to the recursive

method. The generic code shows two such arguments, one that is loop variant and another

that is loop invariant with regard to the enclosing loop. This distinction is necessary because

loop variants need to be saved in the block. The type of the arguments is irrelevant, they are

deemed Object for the sake of illustration. The transformed code of the generic recursive

structure is shown in Figure 4.3. The automatically generated block classes corresponding

to the transformed code are shown in Figure 4.4. We will now discuss the transformation

step by step.
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1 P o i n t [ ] p o i n t s = /∗ e n t i t i e s i n a l g o r i t h m ∗ /

2 O b j e c t o1 = /∗ s o m e t h i n g loo p i n v a r i a n t ∗ /

3 Block b = /∗ b l o c k i n s t a n c e ∗ /

4 B l o c k S t a c k s t a c k = /∗ s t a c k i n s t a n c e ∗ /

5 / / a u t o t u n i n g code t o be added here

6 f o r ( i n t i i = 0 ; i i < p o i n t s . l e n g t h ; i i +=B) {

7 f o r ( i n t i = i i ; i < i i + B ; i ++) {

8 P o i n t p = p o i n t s [ i ] ;

9 O b j e c t o2 = /∗ s o m e t h i n g loop v a r i a n t ∗ /

10 / / do s o m e t h i n g − p r o l o g u e

11 b . add ( p , o2 ) ;

12 }

13 s t a c k . s e t [ 0 ] . b l o c k = b ;

14 r e c u r s e ( o1 , r o o t , s t a c k , 0 ) ;

15 f o r ( i n t i = 0 ; i < B ; i ++) {

16 P o i n t p = b . p [ i ] ;

17 O b j e c t o2 = b . o2 [ i ] ;

18 / / do s o m e t h i n g − e p i l o g u e

19 }

20 b . r e c y c l e ( ) ;

21 }

23 void r e c u r s e ( O b j e c t o1 , Node node , B l o c k S t a c k s t a c k , i n t l e v e l ) {

24 B l o c k Se t b s e t = s t a c k . s e t [ l e v e l ] ;

25 Block b = b s e t . b l o c k ;

26 Block nextB = b s e t . n e x t B l o c k ;

27 nextB . r e c y c l e ( ) ;

28 f o r ( i n t i = 0 ; i < b . s i z e ; i ++) {

29 P o i n t p = b . p [ i ] ;

30 O b j e c t o2 = b . o2 [ i ] ;

31 / / do s o m e t h i n g

32 i f ( cond ) {

33 nextB . add ( p , o2 ) ;

34 }

35 }

36 i f ( nextB . s i z e > 0) {

37 s t a c k . s e t [ l e v e l + 1 ] . b l o c k = nextB ;

38 foreach ( Node c h i l d : node . c h i l d r e n ) {

39 r e c u r s e ( o1 , c h i l d , s t a c k , l e v e l + 1 ) ;

40 }

41 }

42 }

Fig. 4.3. Generic structure - transformed code
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1 c l a s s Block {

2 i n t s i z e ;

3 P o i n t [ ] p ;

4 O b j e c t [ ] o2 ;

6 void add ( P o i n t p , O b j e c t o2 ) {

7 p [ s i z e ] = p ;

8 o2 [ s i z e ] = o2 ;

9 s i z e ++;

10 }

12 void r e c y c l e ( ) {

13 s i z e = 0 ;

14 }

15 }

17 c l a s s B l o c k S e t {

18 Block b l o c k ; / / j u s t r e f e r e n c e

19 Block n e x t B l o c k = /∗ a c t u a l a l l o c a t i o n ∗ /

20 / / more n e x t B l o c k s i f n e c e s s a r y

21 }

23 c l a s s B l o c k S t a c k {

24 B l o c k Se t [ ] s e t ;

25 }

Fig. 4.4. Implementation of block classes

The first step in tiling a recursive code is to transform the enclosing loop to be over

blocks of points, rather than single points. In the original code, each point is processed

by calling recurse on the root node. In the transformed code, points will be added to

a block instead (line 11); once this block is full, a modified version of recurse will be

called on the entire block (line 14). Note that this block may contain more than just the

point; any loop-variant arguments to recurse (such as o2) are also placed in the block.

Loop invariant arguments (such as o1) are passed to recurse without change. The block

b is recycled after it has been processed (line 20). Recycling a block, simply sets its size to

0, so that the next invocation of add will overwrite previous points.
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The enclosing loop can have arbitrary code before (prologue, line 6) and after (epilogue,

line 8) the method call. This code must be split into prologues which execute for all points

in the block before recurse (lines 7-12) and epilogues which execute for all points in the

block after recurse (lines 15-19). Prologues and epilogues generalize to intermediary

methods, discussed further in Section 4.3.4.

The next step is to transform the recursive method that performs the traversals. Because

the traversals of individual points are different, a block of points must traverse a set of data

structure nodes that is the union of the traversals of all the points within the block. If a

node from this superset should not interact with a point in the block, that point should be

skipped. To ensure that points within a block skip the appropriate nodes, we must somehow

track which points should interact with which nodes. In general this would require space

per point proportional to the entire traversal, but the depth-first order allows us to use space

proportional to the depth of the traversal. This comes from the observation that once a

point is skipped for level l, it will also be skipped for all subsequent levels l + n along a

depth-first recursion path. Because a given depth-first path through the tree only accesses

one tree node per level, we need only keep track of a point’s information once at each level

of the tree, which results in one block’s worth of information per tree level.

Rather than allocate a new block at each level, it is more efficient to preallocate a block

stack, which has a block set per level. Each set has a reference to the current block for

the level, and allocated space for any block(s) that might be needed for the next level. The

block stack and the current level of the traversal, are passed to the recursive method. The

method is executed for each point in the current block; recursive invocations in the original

code are replaced, and instead add points to the next level’s block(s). Once each point has

been processed for the current level, the method is called on the next level’s block(s).

Figure 4.4 shows the implementation of the automatically generated block classes cor-

responding to Figure 4.2. The Block class allocates space for the loop variant arguments

passed to the recursive method, as well as the return values of all intermediary methods.

The BlockSet class has a reference to the current block, and allocates space for the next

blocks of the next level. The BlockStack class is simply an array of BlockSets.
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4.3.2 Handling multiple recursive calls

Interestingly we may need multiple blocks for the next level. This is because in some

algorithms, points access children in different orders during their depth-first traversal. For

example, this situation arises in the Nearest Neighbor benchmark, and is illustrated in Fig-

ure 4.5. Figure 4.5(a) shows the original recursive method, and Figure 4.5(b) shows how it

should be transformed. The order in which the children are processed can be either left first

then right, or right first then left, depending on the point. The transformed code must honor

both orders, by having two next blocks. Points that take the first traversal order are added

to the first block, while those that take the second traversal order are added to the second

block. At the end of the current level, both next blocks are processed in the appropriate

order.

It may seem that we should have a next block for each recursive invocation in the

transformed method. For example, in the generic code of Figure 4.2, where there are an

arbitrary number of children, it seems that we might need an arbitrary number of blocks.

The crucial difference between the scenario in Figure 4.2 and the scenario of Figure 4.5 is

that the latter has a divergence of control flow dependent on the point’s properties. Hence,

the traversal orders may differ on a point-by-point basis, and separate blocks are necessary

to differentiate between the orders. In the generic scenario, lines 14–16 in Figure 4.2 will

be executed for all points in the block, hence it can be replaced with a single block add call

(line 33 of Figure 4.3).

TREESPLICER decides the number of next blocks required by starting at each recursive

method call site within the recursive method body, and expanding the call site to the largest

control flow block that is control independent of the point. Each expanded call site requires

its own next block. The required number of next blocks is synthesized in the block set

class (Figure 4.4), and each expanded call site is replaced with a call to add points to the

associated next block. At the end of the recursive method, each next block is recursed upon

if not empty.
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1 void r e c u r s e ( P o i n t p , Node n ) {

2 boolean cond = /∗ s o m e t h i n g d e p e n d e n t on p ∗ /

3 i f ( cond ) {

4 r e c u r s e ( p , n . l e f t ) ;

5 r e c u r s e ( p , n . r i g h t ) ;

6 } e l s e {

7 r e c u r s e ( p , n . r i g h t ) ;

8 r e c u r s e ( p , n . l e f t ) ;

9 }

10 }

(a) Original code

1 void r e c u r s e ( Node n , B l o c k S t a c k s t a c k , i n t l e v e l ) {

2 B l o c k Se t b s e t = s t a c k . s e t [ l e v e l ] ;

3 Block b = b s e t . b l o c k ;

4 Block nextB = b s e t . n e x t B l o c k ;

5 Block nextB2 = b s e t . n e x t B l o c k 2 ;

6 nextB . r e c y c l e ( ) ;

7 nextB2 . r e c y c l e ( ) ;

8 f o r ( i n t i = 0 ; i < b . s i z e ; i ++) {

9 P o i n t p = b . p [ i ] ;

10 boolean cond = /∗ s o m e t h i n g d e p e n d e n t on p ∗ /

11 i f ( cond ) {

12 nextB . add ( p ) ;

13 } e l s e {

14 nextB2 . add ( p ) ;

15 }

16 }

17 i f ( nextB . s i z e > 0) {

18 s t a c k [ l e v e l + 1 ] . b l o c k = nextB ;

19 r e c u r s e ( p , n . l e f t , l e v e l + 1 ) ;

20 r e c u r s e ( p , n . r i g h t , l e v e l + 1 ) ;

21 }

22 i f ( nextB2 . s i z e > 0) {

23 s t a c k [ l e v e l + 1 ] . b l o c k = nextB2 ;

24 r e c u r s e ( p , n . r i g h t , l e v e l + 1 ) ;

25 r e c u r s e ( p , n . l e f t , l e v e l + 1 ) ;

26 }

27 }

(b) Transformed code

Fig. 4.5. Traversing different orders of children
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4.3.3 Handling different arguments

So far the transformation has assumed that recursive calls have identical arguments

other than the node argument. In general, recursive calls can have different arguments as

in Figure 4.6. The first recursive call takes o1 as the last argument (line 6), and the second

recursive call takes o2 (line 7), and both o1 and o2 are dependent on the point. In this case,

both o1 and o2 must be saved into the next block (line 15), and an additional callIndex

argument is passed to decide which of o1 and o2 to use (lines 9–10).

4.3.4 Handling intermediary methods

In general, there can be an arbitrary number of intermediary methods from the enclosing

loop to the recursive method. Handling intermediary methods in point blocking requires

splitting each such method into prologues and epilogues, and saving local variables defined

in the prologue and used in the epilogue.

The original and transformed code for a recursive structure with one intermediary

method foo is shown in Figures 4.7- 4.8. The recurse method is the same as in Fig-

ure 4.2. The intermediary method foo has two local variables for illustration, o3 which is

defined in the prologue and used in the epilogue, and o4 which is not used in the epilogue.

Because the epilogue is executed after the prologue for all points in the block, local vari-

ables declared in the prologue and used in the epilogue must be saved in additional space

proportional to block size. This is realized by an IntermediaryState class which is

passed as an argument to the intermediary methods. Saving intermediary state is done at the

end of each prologue, and loading intermediary state is done at the start of each epilogue.

While Figure 4.7 shows a single intermediary method, the transformation generalizes to an

arbitrary number of such methods.

The last intermediary method, which calls recurse, saves the points and any loop

variant arguments to the block. Loop variant arguments at the enclosing for loop propagate

to intermediary methods. For example in foo, a local variable pp is dependent on p which
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1 void r e c u r s e ( P o i n t p , Node n , O b j e c t o ) {

2 O b j e c t o1 = /∗ s o m e t h i n g d e p e n d e n t on p ∗ /

3 O b j e c t o2 = /∗ s o m e t h i n g d e p e n d e n t on p ∗ /

4 boolean cond = /∗ s o m e t h i n g d e p e n d e n t on p ∗ /

5 i f ( cond ) {

6 r e c u r s e ( p , n . l e f t , o1 ) ;

7 r e c u r s e ( p , n . r i g h t , o2 ) ;

8 }

9 }

(a) Original code

1 void r e c u r s e ( Node n , B l o c k S t a c k s t a c k , i n t l e v e l , i n t c a l l I n d e x ) {

2 B l o c k Se t b s e t = s t a c k . s e t [ l e v e l ] ;

3 Block b = b s e t . b l o c k ;

4 Block nextB = b s e t . n e x t B l o c k ;

5 nextB . r e c y c l e ( ) ;

6 f o r ( i n t i = 0 ; i < b . s i z e ; i ++) {

7 P o i n t p = b . p [ i ] ;

8 O b j e c t o ;

9 i f ( c a l l I n d e x == 0) o = b . o1 [ i ] ;

10 e l s e o = b . o2 [ i ] ;

11 O b j e c t o1 = /∗ s o m e t h i n g d e p e n d e n t on p ∗ /

12 O b j e c t o2 = /∗ s o m e t h i n g d e p e n d e n t on p ∗ /

13 boolean cond = /∗ s o m e t h i n g d e p e n d e n t on p ∗ /

14 i f ( cond ) {

15 nextB . add ( p , o1 , o2 ) ;

16 }

17 }

18 i f ( nextB . s i z e > 0) {

19 s t a c k [ l e v e l + 1 ] . b l o c k = nextB ;

20 r e c u r s e ( p , n . l e f t , l e v e l + 1 , 0 ) ;

21 r e c u r s e ( p , n . r i g h t , l e v e l + 1 , 1 ) ;

22 }

23 }

(b) Transformed code

Fig. 4.6. Handling different arguments
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1 P o i n t [ ] p o i n t s = /∗ e n t i t i e s i n a l g o r i t h m ∗ /

2 O b j e c t o1 = /∗ s o m e t h i n g loo p i n v a r i a n t ∗ /

3 f o r ( i n t i = 0 ; i < p o i n t s . l e n g t h ; i ++) {

4 P o i n t p = p o i n t s [ i ] ;

5 O b j e c t o2 = /∗ s o m e t h i n g loop v a r i a n t ∗ /

6 / / do s o m e t h i n g − p r o l o g u e

7 O b j e c t r e t = foo ( p , o1 , o2 ) ;

8 / / do s o m e t h i n g − e p i l o g u e

9 }

11 O b j e c t foo ( P o i n t p , O b j e c t o1 , O b j e c t o2 ) {

12 O b j e c t o3 = /∗ d e f i n e d i n p r o l o g u e and used i n e p i l o g u e ∗ /

13 O b j e c t o4 = /∗ d e f i n e d i n p r o l o g u e b u t n o t used i n e p i l o g u e ∗ /

14 O b j e c t pp = /∗ s o m e t h i n g d e p e n d e n t on p ∗ /

15 O b j e c t oo1 = /∗ s o m e t h i n g d e p e n d e n t on o1 ∗ /

16 Node r o o t = /∗ s o m e t h i n g loop i n v a r i a n t ∗ /

17 / / do s o m e t h i n g − p r o l o g u e

18 r e c u r s e ( pp , oo1 , o2 , r o o t ) ;

19 / / do s o m e t h i n g − e p i l o g u e

20 re turn r e t ;

21 }

Fig. 4.7. Intermediary methods - original code
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1 P o i n t [ ] p o i n t s = /∗ e n t i t i e s i n a l g o r i t h m ∗ /

2 O b j e c t o1 = /∗ s o m e t h i n g loo p i n v a r i a n t ∗ /

3 Block b = /∗ b l o c k i n s t a n c e ∗ /

4 B l o c k S t a c k s t a c k = /∗ s t a c k i n s t a n c e ∗ /

5 I n t e r m e d i a r y S t a t e i n t e r S t a t e = /∗ i n t e r m e d i a r y s t a t e i n s t a n c e ∗ /

6 i n t e r S t a t e . b l o c k = b ;

7 / / a u t o t u n i n g code t o be added here

8 foo map ( o1 ) ;

9 f o r ( i n t i i = 0 ; i i < p o i n t s . l e n g t h ; i i +=B) {

10 f o r ( i n t i = i i , i n t e r S t a t e . i n d e x = 0 ; i < i i + B ; i ++ , i n t e r S t a t e . i n d e x ++) {

11 P o i n t p = p o i n t s [ i ] ;

12 O b j e c t o2 = /∗ s o m e t h i n g loop v a r i a n t ∗ /

13 / / do s o m e t h i n g − p r o l o g u e

14 f o o p r o l o g u e ( p , o1 , o2 , r o o t , i n t e r S t a t e ) ;

15 }

16 s t a c k . s e t [ 0 ] . b l o c k = b ;

17 r e c u r s e ( Block . oo1 , Block . r o o t , b ) ;

18 f o r ( i n t i = 0 , i n t e r S t a t e . i n d e x = 0 ; i < B ; i ++ , i n t e r S t a t e . i n d e x ++) {

19 P o i n t p = b . p [ i ] ;

20 O b j e c t o2 = b . o2 [ i ] ;

21 O b j e c t r e t = f o o e p i l o g u e ( p , o1 , o2 , r o o t , i n t e r S t a t e ) ;

22 / / do s o m e t h i n g − e p i l o g u e

23 }

24 b . r e c y c l e ( ) ;

25 }

27 void f o o p r o l o g u e ( P o i n t p , O b j e c t o1 , O b j e c t o2 , Node r o o t , I n t e r m e d i a r y S t a t e i n t e r S t a t e ) {

28 O b j e c t o3 = /∗ d e f i n e d i n p r o l o g u e and used i n e p i l o g u e ∗ /

29 O b j e c t o4 = /∗ d e f i n e d i n p r o l o g u e b u t n o t used i n e p i l o g u e ∗ /

30 O b j e c t pp = /∗ s o m e t h i n g d e p e n d e n t on p ∗ /

31 O b j e c t oo1 = /∗ s o m e t h i n g d e p e n d e n t on o1 ∗ /

32 Node r o o t = /∗ s o m e t h i n g loop i n v a r i a n t ∗ /

33 / / do s o m e t h i n g − p r o l o g u e

34 i n t e r S t a t e . b l o c k . add ( pp , o2 ) ;

35 i n t e r S t a t e . s a v e f o o o 3 ( o3 ) ;

36 }

38 O b j e c t f o o e p i l o g u e ( P o i n t p , O b j e c t o1 , O b j e c t o2 , Node r o o t , I n t e r m e d i a r y S t a t e i n t e r S t a t e ) {

39 O b j e c t o3 = i n t e r S t a t e . l o a d f o o o 3 ( ) ;

40 / / do s o m e t h i n g − e p i l o g u e

41 re turn r e t ;

42 }

Fig. 4.8. Intermediary methods - transformed code
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(b) Iteration space, post-blocking

Fig. 4.9. Iteration space of prologues and epilogues

was loop variant at the enclosing for loop. Hence pp is also considered loop variant (with

regard to the enclosing for loop), and added to the block.

The actual recurse call is invoked at the level of the enclosing for loop. Loop in-

variant arguments to recurse may not be available at this level. Such arguments can

be identified by following a chain of transformed, loop invariant intermediary methods up

to the recurse call. These transformed methods have only statements which are loop

invariant, and suffice to save loop invariant arguments oo1 and root which are necessary

to invoke recurse. Since any loop variant arguments will have been saved in the block,

the combination comprises the entire recurse call. In our example foo map is called

with the loop invariant argument o1 (line 8). This records the loop invariant arguments

oo1 and root, which are passed directly to recurse (line 16).

A graphical depiction of an iteration space with intermediary methods is shown in Fig-

ure 4.9 for a block size of 3. There are three intermediary methods, and the prologues are

denoted P1-P3, epilogues E1-E3 and the recursion R. Originally, the order of execution

is prologues, recursion, and epilogues, for each point. In the blocked iteration space, the

prologue is executed for all points in the block, then the recursion is executed on the block.

When the recursion returns, the epilogue is executed for all points in the block
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1 Set<P o i n t> p o i n t s = /∗ p o i n t s ∗ /

2 Node r o o t = b u i l d T r e e ( p o i n t s ) ;

3 mapTree ( r o o t ) ;

4 a l l o c B u f f e r s ( ) ;

5 foreach ( Phase p : u n r o l l R e c u r s i o n ( ) ) {

6 t o p P h a s e ( p . dep th , p . phase ) ;

7 bo t tomPhase ( ) ;

8 }

Fig. 4.10. High level view of traversal splicing

4.4 Implementation of traversal splicing

This section discusses how to realize the abstract concept of traversal splicing in actual

code, how the “on the fly” sorting is implemented, and how splicing can be applied and

tuned automatically. The splice depth is denoted D.

Figure 4.11 is a template customized based on the optimization levels which is plugged

in to the transformed code. Figure 4.13 is constructed by making a duplicate of the original

recursive method, stripping all calls other than the first call of each call set, and adding

code to save points and call set ids. Intermediary methods are split around the call path to

the recursive method, into prologues and epilogues. Code is added to save any local state

which persists from prologue to epilogue, and local variables within the recursive method

which is passed as an argument to recursive calls. Autotuning code is added before any

splicing setup is done (before line 3 of Figure 4.11), as the setup requires the splice depth,

which is determined by the autotuner. Points consumed for autotuning are skipped in the

point loop (lines 5-7).

4.4.1 A high level overview

Figure 4.10 shows a high level view of how traversal splicing is implemented. Recall

that traversal splicing chops up a point’s traversal into many partial traversals that are split at

splice nodes, both explicit and implicit (Section 3.2.5). Bottom phases start at the children
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of the explicit splice nodes (nodes at depth D + 1), but top phases start immediately after

bottom phases complete. To find the nodes at which phases must begin, we map the top of

the tree up to (and including) the children of splice nodes (line 3). Each of these nodes can

be the start of a new top or bottom phase. For each of these nodes we allocate buffers into

which points can be saved, so they can be resumed by top phases. We also allocate a buffer

which can save D + 1 call set ids for each point (line 4).

The partial traversals are executed as pairs of top and bottom phases as described in

Figure 3.6(a). Because a top phase can start at any node up to the splice depth, there are

2 × pD phases (where p is the maximum number of recursive calls within a call set, and 2

is for top and bottom each); unrollRecursion identifies each phase. Each top phase

(line 6) executes a single path through the tree to an explicit splice node, saving points and

call set ids into the buffers, so that traversals can be resumed by later phases. Each bottom

phase (line 7) executes all paths of the subtree rooted at an explicit splice node, without

saving points and call set ids. The last node visited in the bottom phase is by definition an

implicit splice node.

The first top phase starts every point at the root of the tree. Subsequent top phases and

bottom phases gather points saved into buffers from previous top phases, and resume them

at appropriate nodes based on the call set id. Bottom phases resume only points paused at

explicit splice nodes, whereas top phases also resume points saved above splice nodes due

to truncation. Hence top phases gather points from multiple nodes, and dynamic sorting

(described in Section 5.3.1) arises naturally as points are reordered based on the node they

were saved at. There is no dynamic sorting at bottom phases, as they gather points from a

single node.

4.4.2 Setup and recursion unrolling

In the actual implementation, the high level view of Figure 4.10 is moved to lines 1-8

of Figure 4.11. We map the top of the tree and save the nodes into an array based on a heap

ordering of the tree as in Figure 2.3(a). Non-existent nodes are marked null in the array.
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1 Set<P o i n t> p o i n t s = /∗ p o i n t s ∗ /

2 Node r o o t = b u i l d T r e e ( p o i n t s ) ;

3 mapTree ( r o o t ) ;

4 a l l o c B u f f e r s ( ) ;

5 foreach ( P o i n t p : p o i n t s ) {

6 r e c u r s e S p l i c e ( p , r o o t , 0 ) ;

7 }

8 u n r o l l R e c u r s i o n ( 0 , 0 , 0 , 0 ) ;

10 void a l l o c B u f f e r s ( ) {

11 numLeafNodes = power ( maxChi ldren , D + 1 ) ;

12 numNodes = numLeafNodes ∗ maxChi ld ren ;

13 f o r ( i n t i = 1 ; i < numNodes ; i ++) {

14 i f ( t reeMap [ i ] != n u l l ) a l l o c P o i n t B u f f e r s ( i ) ;

15 }

16 a l l o c C a l l S e t I d B u f f e r ( ) ;

17 }

19 void u n r o l l R e c u r s i o n ( i n t d1 , i n t p1 , i n t d2 , i n t p2 ) {

20 i f ( d2 < D) {

21 f o r ( i n t i = 0 ; i < maxPhases ; i ++) {

22 i f ( i == 0) u n r o l l R e c u r s i o n ( d1 , p1 , d2 + 1 , i ) ;

23 e l s e u n r o l l R e c u r s i o n ( d2 + 1 , i , d2 + 1 , i ) ;

24 }

25 } e l s e {

26 i f ( d1 != 0) t o p P h a s e ( d1 , p1 ) ;

27 bo t tomPhase ( ) ;

28 }

29 }

Fig. 4.11. Pseudocode of recursion unrolling

Point buffers into which points can be saved are allocated for all non-null nodes. Both the

tree map and point buffers are indexed from 1 (the root) to CD+2 − 1 (the rightmost leaf),

where C is maxChildren, and D is the splice depth. Point buffers need to accommodate

an arbitrary number of points and are implemented as ArrayLists. The call set id buffer is

a two dimensional array of size P ×D (P is the number of points).

The partial traversals of all points are executed by pairs of top and bottom phases. While

bottom phases are equivalent to normal recursive traversals, top phases execute a path
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1 void t o p P h a s e ( i n t depth , i n t phase ) {

2 i n t s t a r t = power ( maxChi ldren , d e p t h ) ;

3 i n t end = s t a r t ∗ maxChi ld ren ;

4 f o r ( i n t i = s t a r t ; i < numNodes ; i ++) {

5 s w a p P o i n t B u f f e r s A n d C l e a r D e s t ( i ) ;

6 }

7 f o r ( i n t i = s t a r t ; i < end ; i ++) {

8 i n t s u b s t a r t = i ;

9 i n t subend = i + 1 ;

10 whi le ( s u b s t a r t < numNodes ) {

11 f o r ( i n t j = s u b s t a r t ; j < subend ; j ++) {

12 foreach ( P o i n t p : g e t P o i n t s A t N o d e I n d e x ( j ) ) {

13 Node n = nextNode ( p . g e t C a l l S e t ( d e p t h ) , phase ) ;

14 r e c u r s e S p l i c e ( p , n , d e p t h ) ;

15 }

16 }

17 s u b s t a r t ∗= maxChi ld ren ;

18 subend ∗= maxChi ld ren ;

19 }

20 }

21 }

23 void bo t tomPhase ( ) {

24 f o r ( i n t i = numLeafNodes ; i < numNodes ; i ++) {

25 foreach ( P o i n t p : g e t P o i n t s A t N o d e I n d e x ( i ) ) {

26 f o r ( i n t j = 0 ; j < maxPhases ; j ++) {

27 Node n = nextNode ( p . g e t C a l l S e t (D) , j ) ;

28 r e c u r s e ( p , n ) ;

29 }

30 }

31 }

32 }

Fig. 4.12. Pseudocode of top and bottom phases

through the tree down to the splice depth, and needs to save additional state so that traver-

sals can be resumed. Figure 4.13 shows a transformed recursive method, recurseSplice,

to realize top phases for the pseudocode for the nearest neighbor code of Figure 3.5.

recurseSplice performs only the first traversal of each call set, later traversals in the

call sets will be directly called (on the appropriate child) in subsequent phases. Points that



50

1 void r e c u r s e S p l i c e ( P o i n t p , Node n , i n t d e p t h ) {

2 i f ( ! canBeClo se r ( p , n . boundingBox ) ) {

3 n . s a v e P o i n t ( p ) ;

4 re turn ;

5 } e l s e i f ( n . i s L e a f ( ) ) {

6 p . u p d a t e C l o s e s t ( n . g e t P o i n t ( ) ) ;

7 n . s a v e P o i n t ( p ) ;

8 } e l s e {

9 double s p l i t = p . v a l u e ( n . s p l i t T y p e ) ;

10 i f ( s p l i t <= n . s p l i t V a l u e ) {

11 i f ( d e p t h < D) {

12 r e c u r s e S p l i c e ( p , n . l e f t C h i l d , d e p t h + 1 ) ;

13 } e l s e {

14 n . l e f t C h i l d . s a v e P o i n t ( p ) ;

15 }

16 p . s a v e C a l l S e t ( depth , 0 ) ; / / c a l l s e t 0

17 } e l s e {

18 i f ( d e p t h < D) {

19 r e c u r s e S p l i c e ( p , n . r i g h t C h i l d , d e p t h + 1 ) ;

20 } e l s e {

21 n . r i g h t C h i l d . s a v e P o i n t ( p ) ;

22 }

23 p . s a v e C a l l S e t ( depth , 1 ) ; / / c a l l s e t 1

24 }

25 }

26 }

Fig. 4.13. Transformed recursive method for top phases

reach the splice depth are saved into the node at which they should be resumed (not the

node at which the point is paused) (lines 14 and 21), and points that are truncated before-

hand are saved into the node at which they are truncated (lines 3 and 7). The call set id is

saved per point per depth (lines 16 and 23).

Because the transformed code performs only the first traversal of a call set, subsequent

partial traversals of the tree above the splice nodes are performed by later top phases. Top

phase traversals are paused at explicit splice nodes, and the traversal is resumed by bottom

phases that continue the traversal to the implicit splice node. The order of phases can be

determined by partially unrolling the recursive traversal (unrollRecursion in lines 19-
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29 in Figure 4.11), which basically expands the remaining top phases and appends a bottom

phase after each top phase. The first top phase is started by calling recurseSplice

for all points (line 6 of Figure 4.11. The depth of the nodes at which to resume and the

phase number are passed as arguments to the top phase. For a bottom phase, the depth

argument will always be D + 1, and all phase numbers are iterated upon. For our running

example (Figures 3.4 and 3.6(a), D = 2, root is depth 0), the order of phases is T0-0 (top

phase at depth 0, traversal phase 0), B (bottom phase), T2-1, B, T1-1, B, T2-1, B (as in

Figure 3.6(a)). The first top phase always performs traversal phase 0 (the first traversal),

and because our example has two phases per call set, all other top phases start with the

second traversal in the set.

4.4.3 Dynamic sorting

In our implementation the dynamic sorting comes naturally, as points are reordered

during top phases based on the node they were saved at. At each top phase, we gather all

points which should execute in this phase (i.e., all points that have not been truncated above

the level of the top phase), and resume them at the appropriate node based on the point’s

call set id (lines 37-50 of Figure 4.11). For example at T2-1, we will gather points that

have been paused or truncated at nodes 4�– 15�, and resume at nodes 4�– 7�. At T1-1 we

will gather points at nodes 2�– 15�, and resume at nodes 2� and 3�.

More specifically for our particular example of NN, at T2-1, we will gather points at

nodes 4�, 8�, 9� and resume at node 5�, because these points have visited {leftChild}

and should now visit {rightChild}. The points which resume at 5� are better sorted now

because they are in order of truncation at 4�, reach 8� first, and reach 9� first. Similarly,

points at nodes 5�, 10�, 11� resume at node 4�, points at nodes 6�, 12�, 13� resume at node 7�,

and so on.

To separate the points saved in the previous phase which need to be processed, and the

points being saved in this phase, we use a toggle mechanism with two point buffers per

node. At the start of a top phase, all point buffers below the depth argument are swapped,
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so the previous destination buffer is the source buffer and vice versa (lines 34-36). Then

the new destination buffer is cleared, and points will be saved to it during this phase. This

is only done for top phases, as bottom phases do not save state.

For each bottom phase, all points that were paused at the explicit splice nodes (and

saved into the children of explicit splice nodes, nodes 8�– 15�) will traverse the appropriate

subtrees below the splice nodes according to their call set id (lines 54-61). There is no

sorting at bottom phases as points are gathered from a single node.

4.4.4 Optimizations

For inferred order algorithms, as in nearest neighbor, the call set id is unnecessary, and

the next node can be determined completely by the previous node the point was at, and the

phase number. Hence i can replace p.getCallSet() (lines 43 and 57 in Figure 4.11),

and loop invariant statements can be hoisted out of the loop.

For single call set algorithms, recursion unrolling can be simplified even further. We

need not scan through multiple subtrees as only a single path from the root will have saved

points at a time. Hence unrollRecursion can pass a nodeIndex to both the top and

bottom phases to indicate where to look for points. Furthermore, we need only one point

buffer per level, instead of one point buffer per node.

Splice node elision can be realized by executing a merged bottom phase at line 23

of Figure 4.11, if the depth is a fixed distance from D. The merged bottom phase uses

the code for topPhase but doesn’t swap point buffers and calls recurse instead of

recurseSplice.

4.4.5 Local variables and intermediary methods

Because traversal splicing entails chopping up the recursion, it also requires that all

methods surrounding the recursive method be split into prologues and epilogues. All pro-

logues are executed before the first top phase, and all epilogues are executed after the last

bottom phase. This requires that any local variables which are defined in the prologue(s)
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and used in the epilogue(s) be saved in additional space allocated per point. Further, any

local variables within the recursive method passed as an argument to subsequent recursive

calls must also be saved for all points at all depths. This can contribute significantly to heap

usage as shown in Section 4.6.2.

4.4.6 Discussion

Some algorithms dynamically generate new points. An example would be mirror rays

in ray tracing, which we do not currently consider. One possible solution to handle this

is to create an outer loop over the point set, and defer dynamically generated points to

a subsequent outer-loop iteration. Very large number of points can require prohibitive

amounts of memory, as the memory overhead of splicing increases proportionally to the

number of points. For very large number of points it would be necessary to split the points

into smaller groups, and apply splicing on a group at a time. We currently do not implement

these features.

4.5 Autotuning

In the previous section, we have presented an approach to identify recursive structures

in tree traversal algorithms that can be transformed correctly, and a systematic method to

transform the program to enhance locality. Critical to the performance of the transfor-

mation is the block size B and splice depth D. These parameters are dependent on both

machine parameters (e.g., L1, L2 cache size) and algorithmic characteristics (e.g., density

of a block at different depths, average traversal size). The notion of optimization parame-

ters affecting the performance of transformations is well known. In recent years, there has

been a large amount of research on autotuning, where a compiler automatically selects the

best optimization parameters for a particular scenario [28–30]. In this section, we describe

autotuning methods that automatically select a good block size to use for the transformed

algorithm.
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Many autotuners can operate at compile time. For example, in dense linear algebra,

tile size is dependent on machine parameters but independent of input characteristics and

hence can be determined when the library is compiled [30]. Because the optimal parameters

for point blocking and traversal splicing are dependent on input characteristics as well as

machine parameters, TREESPLICER’s autotuners must operate at run-time, when the input

is available.

4.5.1 Tuning for point blocking

In order to autotune point blocking to choose the best size, we must have some idea of

the behavior of different block sizes. Figure 4.14 shows the runtimes of point blocking with

varying block sizes for three benchmarks, with and without the point sorting optimization

(as described in Section 2.2)3. Intuitively, we would expect that a block size that is too small

would perform poorly due both to the additional instruction overhead incurred by point

blocking and to the fact that misses in the tree are incurred for every block (as discussed

in Section 3.1)—more blocks will result in more misses in the traversal. However, if the

block becomes too large to fit in cache, then we will begin to incur misses on the points

instead. We thus expect there to be a “sweet spot,” where the blocks are large enough to

avoid most misses in the tree, but small enough to fit in cache, an expectation borne out by

the results. In each figure, the best block size is highlighted, and is surrounded by block

sizes that perform worse. The best block size is larger when the point sorting optimization

is not performed, because points’ traversals diverge, and the effective block size becomes

small quickly.

We adopt a “guess and check” approach for autotuning, where a small portion of the

points are consumed to test various block sizes, and the best block size is used for the

remaining points. There should be a limit on the number of points used for autotuning to

keep its overhead from becoming too high. We set the limit to up to 5% of the total points4.

We start with a block size of 8, and run each block size 5 times to average out irregularities.
3These results are with the random inputs on the Opteron I system described in Section 4.6.1
4We found a 5% autotuning portion to deliver better performance than 1% as used in prior work [6].
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(d) Point Correlation, sorted
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(e) Nearest Neighbor, unsorted
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(f) Nearest Neighbor, sorted

Fig. 4.14. Runtime of point blocking with varying block sizes

For one million points, this allows us to test up to a block size of 4096. We also test the

base case (the original code path), to check if we should be applying our transformation at

all.

Complicating matters, the irregular nature of the algorithms means that different regions

of the data structure might exhibit widely differing characteristics (e.g., the traversals of

points that walk one part of a tree might be much shorter than those that walk a different

part of the tree). An autotuner that investigates various block sizes only using points from

early in the execution may not see the full range of possible behaviors. A common approach

to account for this variability is to use random sampling. Randomly selecting the test

points from among all the points provides on average the best representative of the entire

set attainable. Because the points may have been sorted so that consecutive points have

similar traversals and enjoy temporal locality, we would like to take random samples of
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(b) Point Correlation (PC)
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(c) Nearest Neighbor (NN)

Fig. 4.15. Runtime with varying block sizes and splice depths

blocks. When testing a block size of 8, we choose a random sequence of 8 consecutive

points, rather than constructing the block from 8 randomly sampled points

The irregular nature also means that different points (and hence different blocks) will

do different amounts of work (i.e., traverse different numbers of nodes). We normalize

recorded runtimes to the actual work done for a fair comparison. The actual work done is

profiled by recording the block size at the start of each recursive method call. The auto-

tuning phase executes a different code path, so that this profiling overhead is not incurred

during the main phase.

An important correctness condition is that sampled points must be skipped in the point

loop after the autotuning phase. This is because processing a point can have side-effects,

and processing a point twice can be incorrect. The transformed code maintains a boolean

array to mark sampled points, and skips sampled points in the main loop.

4.5.2 Tuning for traversal splicing

Critical to the performance of splicing is selecting a good splice depth, D. For point

blocking, we proposed an autotuning technique for selecting block size where a small por-

tion of the input points are used to construct blocks of varying sizes, and the best performing
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block size is chosen as the transformation parameter. A similar approach is infeasible for

splicing, because we would like to apply splicing over the full set of points. In principle, we

would like to choose the splice depth, D, such that each partial traversal completely fits in

cache. In practice, because tree topology is unpredictable, and the size of partial traversals

is input and algorithm dependent, finding a suitable D is difficult.

Recall that in Section 3.2.2, we observed that point blocking can be applied on top of

traversal splicing to mitigate the effects of large partial traversals. Figure 4.15 shows the

runtime of three benchmarks with varying block sizes and splice depths (on the Opteron

system described in Section 4.6.1). The five lines compare splicing only, to splicing with

blocking applied to the bottom phases5 with block size 32–1024. We note that point block-

ing reduces traversal splicing’s sensitivity to D for BH and PC, which have large bot-

tom phases, and does not harm the performance of NN, which has small bottom phases.

Serendipitously, this means that by combining splicing and blocking, we need not be as

careful about choosing D. Empirical results suggest that a depth at half of the average

reach (the depth of the nodes where a point’s recursion is stopped) is a good splice depth.

We record the average reach of all points in the test blocks. If we are not applying

blocking, we use 10 randomly selected points to compute the reach. We set D as half of the

average reach. We also determined empirically that splice node elision (see Section 3.2.5)

should be performed if a top phase begins fewer than D/2 levels above D.

4.5.3 Autotuned parameters

Table 4.1 shows the autotuned parameters averaged (and rounded to the first digit)

across the recorded serial runs on the benchmarks and systems described in Section 6.2.

Block sizes are shown for point blocking without sorting (Block) and with sorting (Sort+Block).

The autotuned block sizes when traversal splicing is combined are similar. The maximum

block size is limited to 0.5% of the total points, so that each block size can be tested 5

times, and the autotuning overhead limited to 5% of the points. When points are not sorted,
5We only apply blocking to bottom phases because top phases take a single path through the tree, and will be
at most D nodes long.
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Table 4.1
Autotuned parameters

Benchmark Input Block Sizes Splice Depths

Block Sort+Block Splice

Opt I Opt II Opt III Xeon Opt I Opt II Opt III Xeon Opt I Opt II Opt III Xeon

BH Random 4096 4096 4096 4096 512 853 427 427 4 4 4 4

Plummer 4096 4096 4096 4096 256 256 256 512 5 5 5 5

PC Random 4096 4096 4096 4096 683 512 4096 1877 10 11 11 10

Covtype 512 512 512 512 512 512 512 213 9 9 9 9

Mnist 512 512 512 512 512 512 512 512 9 9 9 9

NN Random 4096 4096 4096 4096 3413 4096 4096 4096 9 9 9 9

Covtype 512 512 512 512 512 512 427 512 9 9 9 9

Mnist 512 512 512 512 512 512 512 512 9 9 9 9

kNN Random 4096 4096 0 4096 4096 4096 4096 4096 10 10 10 10

Covtype 512 512 0 512 512 512 427 512 9 9 9 9

Mnist 512 512 0 512 512 512 512 512 9 9 9 9

BT Random 2048 2048 2048 2048 2048 2048 2048 2048 8 8 8 8

Covtype 512 512 512 512 512 512 512 512 8 8 8 8

Mnist 512 512 512 512 512 512 427 512 8 8 8 8

RT Random 8192 8192 8192 8192 6827 8192 5461 6827 10 10 10 10

the selected block sizes are often capped at the maximum (4096 for random inputs with one

million points, and 1024 for real inputs with 200, 000 points, 8192 for RT with 223 points),

because the blocks become sparse quickly. For kNN the divergence is worse enough that

sometimes the autotuner decides not to do point blocking. The selected block sizes are

smaller when sorting is performed.

Splice depths are shown for pure traversal splicing (Splice). The autotuned splice

depths when point blocking is combined are similar. Splice depths are determined by the

average reach of points, and is machine independent and sorting independent (i.e., cache

size or point order does not change average reach). Slight differences are due to the ran-

dom sampling of points for autotuning. BH has a smaller depth because it is an octtree.

For other benchmarks, random inputs have larger depths than real inputs, because there are

more points, and the tree is larger.

4.6 Evaluation

This section presents our experimental evaluation. We start with evaluation method-

ology, then explore the memory overheads of our transformations. Next we discuss ex-
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perimental results for serial runs of each of our benchmarks, and examine the instruction

overheads and locality benefits through performance counters. Finally we discuss parallel

results and demonstrate that the improvements from our transformations scales to many

threads.

4.6.1 Evaluation methodology

To demonstrate the efficacy of TREESPLICER, we evaluate it on six tree traversal al-

gorithms, from various domains ranging from scientific applications to data-mining and

graphics.

• Base: the baseline described for each benchmark below.

• Block: automatic point blocking as described in Sections 3.1 and 4.3.

• Splice: automatic traversal splicing as described in Sections 3.2 and 4.4.

• Block+Splice: automatic traversal splicing combined with automatic point blocking

for bottom phases.

We add application-specific a priori point sorting to each above version, to get eight

versions. Sorting is done in tree order [17] for all benchmarks other than RT. For RT, the

unsorted baseline uses the default ordering, where shadow rays are processed in the order

they are produced (i.e., in the order of the initial eye rays), while the sorted version groups

shadow rays according to their light source. Sorting time is included for NN, kNN and BT

where sorting has additional overhead , amounting to between 0.3%–5.8% of the traversal

time.

The benchmarks were written in Java and executed on the HotSpot VM 1.7 with 12GB

heap. Each configuration was run 8 times in a single VM invocation, the first run and the

min/max runs dropped, and the mean of 5 runs was recorded. We enforced a coefficient of

variation6 of 0.05 by extending the number of runs until steady state if necessary, and this

yields errors of at most ±6.21% of the mean with 95% confidence [44].
6CoV is the sample standard deviation divided by the mean.
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Benchmarks

Barnes-Hut (BH) is a scientific kernel for performing n-body simulation [3]. All n

bodies are placed into an oct-tree. Each body traverses the tree to compute the force(s)

acting upon it. In the terminology of our optimization classes from Section 3.2.5, BH is

an inferred order algorithm with a single call set. We use the implementation from the

Lonestar benchmark suite [45] with a single iteration, and two inputs. Random is one

million randomly generated bodies. Plummer is the class C input from the Lonestar suite,

with one million bodies generated from a Plummer model.

Point Correlation (PC) is described in detail in Section 2. PC is an inferred order al-

gorithm with a single call set. We use three inputs. Random has one million randomly

generated points in 3 dimensions. Covtype is real data on forest cover type with 580,000

points in a 54-dimensional space [46]. We reduced the dimensionality to 7 via random

projections [47], and took 200,000 points in random order. Mnist is real data on handwrit-

ten digits with 8,100,000 points in a 784 dimensional space [48]. We again reduced the

dimensionality to 7, and took 200,000 points.

Nearest Neighbor (NN) is described in Section 3.2.3. This implementation saves a

bounding box of all points within each node of the kd-tree, and splits nodes until there

are four points or fewer in the leaf nodes. NN is an inferred order algorithm, but has two

call sets. We use three inputs with separate training and test sets. For each point in the test

set, we find the nearest neighbor in the training set. Random has a training set and test

set of one million points each, randomly generated in a 7-dimensional space. We also used

the Covtype and Mnist inputs described above, with a training set and test set of 200, 000

points each.

k-Nearest Neighbor (kNN) is an optimized k-nearest neighbors benchmark, using a dif-

ferent kd-tree variant than NN. This implementation does not save a bounding box per

node. Instead it uses the difference between the split plane and the query point’s corre-
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sponding dimension value as a termination condition. This condition is less aggressive in

pruning nodes than the bounding box, but requires less computation. This implementation

also saves the median point in non-leaf nodes, providing further speedup by reducing the

number of nodes traversed. kNN is an inferred order algorithm with two call sets. We use

the same three inputs as for NN, with k = 5.

Ball Tree (BT) is a nearest neighbor benchmark using a ball tree [49]. We use the imple-

mentation from the WEKA data mining software [50]. For efficiency reasons, our baseline

uses an optimized distance computation that is tailored to our inputs. However, we did

not alter the data structure or the actual traversal code; TREESPLICER was applied to the

“out of the box” traversal algorithm. The distance computation kernel we modified is not

touched by our transformations. BT is an inferred order algorithm with two call sets. We

use the same three input sets as for NN, with Random having 600, 000 instead of one

million points.

Ray Tracing (RT) can be accelerated with tree-structured bounding volume hierarchies

(BVHs) that accelerate ray-object intersection tests. Our benchmark is extracted from the

BVH-based ray tracer of Walter et al. [40]. Ray tracing is the most general benchmark we

tackle, as it is not an inferred order algorithm and has four call sets, and hence we must

track each call set explicitly7. However, it is pseudo-tail recursive. The input is a randomly

generated scene with four million triangles. We rendered a single frame with 512 × 512

eye rays and 32 lights (hence, 32 shadow rays per eye ray).

Platforms

We evaluate our benchmarks on four systems with different cache configurations.

• Opteron I runs Linux 2.6.24 and contains two dual-core AMD Opteron 2222 chips.

Each chip has 128K L1 data cache per core and 1M L2 cache per core.
7The non-inferred order with four call sets is due to the implementation we use. It is not a fundamental
limitation of the BVH algorithm.
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Table 4.2
Transform time, traversal time and heap usage

Benchmark Lines Transform Input Traversal Traversal Heap usage

of code time (ms) time % time (s) Base (MB) Splice (% increase)

-O0 -O1 -O2

Barnes-Hut 466 1045 Random 85.3 222.3 210 127.6 46.7 18.6

Plummer 90.5 427.8 210 90.5 31.4 18.1

Point Correlation 396 1037 Random 99.4 791.1 188 132.4 21.3 2.1

Covtype 98.9 885.8 59 96.6 18.6 8.5

Mnist 95.3 221.9 56 107.1 21.4 5.4

Nearest Neighbor 450 1004 Random 98.0 314.9 390 47.2 2.6

Covtype 96.5 467.1 72 70.8 9.7

Mnist 96.6 593.1 74 60.8 2.7

k-Nearest Neighbor 378 1114 Random 99.9 739.8 478 72.8 59.4

Covtype 88.2 117.5 92 78.3 52.2

Mnist 93.3 268.4 92 72.8 50.0

Ball Tree 6199 2060 Random 98.6 969.1 316 51.3 39.2

Covtype 92.8 268.0 84 90.5 76.2

Mnist 96.8 741.5 84 92.9 76.2

Ray Tracing 3988 1960 Random 55.1 251.5 781 159.9

• Opteron II runs Linux 2.6.32 and contains four twelve-core AMD Opteron 6176

chips. Each chip has 64K L1 data cache per core, 512K L2 cache per core, and two

6M shared L3 caches.

• Opteron III runs Linux 2.6.32 and contains four sixteen-core AMD Opteron 6282

chips. Each chip has 16K L1 data cache per core, 2M L2 cache per two cores, and a

16M shared L3 cache.

• Xeon runs Linux 2.6.32 and contains four eight-core Intel Xeon E5-4650 chips. Each

chip has 32K L1 data cache per core, 256K L2 cache per core, and a 20M shared L3

cache.



63

Traversal times

For each of our benchmarks, we measure the amount of time spent in traversals, as

this is the portion of code our transformations change. RT has two traversal phases, the

first where initial rays are cast, and the second where shadow rays are traced. Because

the initial rays in the first phase are sorted inherently, we measure the second phase to

demonstrate the efficacy traversal splicing on unsorted points8. Column 5 of Table 4.2

shows the percentage of total time spent in traversals for each baseline benchmark/input on

the Opteron I system. It can be seen that the traversal time is the dominant component of

the total runtime. The exception in RT is because the BVH tree takes considerable time to

build. We note that for real applications the same BVH will be used for multiple frames,

making the traversal time dominant. Hereafter we will discuss the performance only of the

traversal portions of the benchmarks.

Transformation times

Columns 2–3 of Table 4.2 shows the lines of code and transformation times for our

benchmarks9. Our transformations are very quick, amounting to less than two seconds.

4.6.2 Heap usage and optimizations

Both point blocking and traversal splicing process multiple points simultaneously and

require additional space to save state of paused points. This additional state overhead is

proportional to the block size for point blocking, and is insignificant as the block size is

much smaller than the total number of points. The overhead can be significant for traversal

splicing, as all points are in-flight simultaneously. Columns 7–10 of Table 4.2 shows the

heap usage of the baseline algorithms, and the percentage increase of the transformed,

spliced implementations (with splice node elision) at three optimization levels:
8The second phase accounts for 92.3% of the overall traversal time.
9Transformation times are on an Intel Core 2 Duo with blocking, splicing, and all optimizations applied.
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• -O0 is the default spliced implementation for pseudo-tail recursive codes (Section 3.2.5).

• -O1 is an optimized spliced implementation which exploits inferred order (Sec-

tion 3.2.5).

• -O2 is an optimized spliced implementation for codes with a single call set (Sec-

tion 4.4.4).

The percentage increase is left blank when the optimization level is not applicable to

the algorithm. The memory overheads of splicing comes from extra state used to save four

types of data: (i) paused points; (ii) call set ids for non-node-inferred-order algorithms;

(iii) local variables in intermediary methods; and (iv) local variables within the recursive

method. Type (i) is proportional to P (the number of points) and is always incurred for

traversal splicing. -O2 reduces the overhead of (i) by having a point buffer per level instead

of a point buffer per node for -O1. (ii) is proportional to P×D and is incurred for -O0. (iii)

is proportional to P and is incurred for BH, BT and RT. (iv) is proportional to P ×D and

is incurred for kNN. Hence we find that PC and NN at -O2 which incur only (i) have the

smallest heap increases, and RT which incurs (i), (ii) and (iii) has the largest heap increase.

Note that the % increase depends on the size of points and local variables compared to the

entire application footprint, so a direct comparison across benchmarks is difficult.

Table 4.3
Geometric mean of serial speedups

System Cache size Mean speedup

L1 L2 L3 Block Splice Block+Splice Sort Sort+Block Sort+Splice Sort+Block+Splice

Opteron I 128K 1M 2.45 3.09 4.35 1.51 4.67 4.00 4.89

Opteron II 64K 512K 6M 1.53 2.06 2.16 1.60 2.27 2.19 2.33

Opteron III 16K 2M 16M 1.44 1.82 1.92 1.43 2.00 1.89 2.07

Xeon 32K 256K 20M 1.55 2.05 2.08 1.78 2.16 2.14 2.20

Mean 1.70 2.21 2.48 1.57 2.60 2.44 2.68
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Fig. 4.16. Serial improvements: Speedup over Base

4.6.3 Serial results

Figure 6.3 show speedups of Block, Splice, Block+Splice, Sort, Sort+Block, Sort+Splice

and Sort+Block+Splice over Base for each benchmark/input pair, for the four systemsThe

geometric mean of the speedups across all benchmark/input pairs on each system and across

all four systems are summarized in Table 4.3. The speedups are markedly larger on Opteron
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Fig. 4.17. Performance counters on Opteron II

I which has the smallest cache. A smaller cache results in the baseline having poor locality

to start with, and leaves more room for our transformations to enhance locality. Overall the

speedups are 1.70, 2.21, 2.48 for Block, Splice and Block+Splice respectively. Adding a

priori point sorting increases speedups to 1.57, 2.60, 2.44 and 2.68 for Sort, Sort+Block,

Sort+Splice and Sort+Block+Splice respectively.

We see that point blocking is often an effective optimization, even without an a priori

sorting pass (1.70 speedup), but performs much better when combined with point sort-

ing (2.60 speedup), as discussed in Section 3.1.2. Traversal splicing is less dependent on

sorting, due to its ability to reorder points on the fly (2.21 speedup without sorting, 2.44

speedup with sorting). Traversal splicing consistently outperforms point blocking, often
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by significant amounts when the points are unsorted, and is on average as good as point

blocking when the points are sorted.

The efficacy of manual, a priori sorting compared to traversal splicing varies with

benchmark and system. Manual sorting is particularly effective for BH, whereas it is partic-

ularly ineffective for kNN. Overall a fully automatic transformation, Block+Splice at 2.48

speedup, is competitive with the best configuration including application specific manual

sorting, Sort+Block+Splice at 2.68 speedup, hence in many cases manual sorting is no

longer necessary.

4.6.4 Performance counters

Figure 4.17 shows performance counter results on the Opteron II collected with PAPI [51].

The geometric means are summarized in Table 4.4. The geometric mean of the L2 miss

rate is 0.618 for Base. Applying point blocking in Block reduces this to 0.258. Apply-

ing traversal splicing in Splice independently brings the mean L2 miss rate to 0.208 and

combining both point blocking and traversal splicing in Block+Splice reduces this to 0.117

which is less than a fifth of the baseline L2 miss rate. Further applying sorting brings the

L2 miss rates down to 0.385, 0.098, 0.114 and 0.083 for Sort, Sort+Block, Sort+Splice

and Sort+Block+Splice respectively.

Because the Opteron II has a large L3 cache, CPI (cycles per instruction) can be a more

comprehensive indicator of locality. The enhanced locality is reflected in the CPI, which

on average is 3.31 for Base, but is reduced to 1.32, 1.15 and 0.94 for Block, Splice and

Block+Splice respectively. Further applying sorting brings the CPI down to 1.59, 0.91,

1.07 and 0.89 for Sort, Sort+Block, Sort+Splice and Sort+Block+Splice respectively.

Figure 6.4(a) shows the instruction increase of our transformations compared to Base.

Point blocking often has substantial instruction overhead (1.33), because highly divergent

points result in sparse blocks. This overhead is reduced when the points are sorted and the

blocks are denser (1.20). The dynamic sorting of traversal splicing also makes the blocks

denser, and reduces the instruction overhead of point blocking (1.17). Traversal splicing
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Table 4.4
Geometric mean of performance counters on Opteron III

Mean values

Base Block Splice Block+Splice Sort Sort+Block Sort+Splice Sort+Block+Splice

L2 miss rate 0.618 0.258 0.208 0.117 0.385 0.098 0.114 0.083

CPI 3.31 1.32 1.15 0.94 1.59 0.91 1.07 0.89

Instruction increase 1.33 1.00 1.17 1.02 1.20 1.02 1.17

itself has negligible overhead. Overall these slight instruction increases are well justified by

the enhanced locality of our transformations, resulting in the substantial speedups discussed

in the previous section.

4.6.5 Input sizes

Figure 4.18 shows the speedup of Block, Splice, Block+Splice and Sort for varying

input sizes of the Random input of each benchmark. 1 is the reference input size as dis-

cussed in Section 4.6.1, and the input size is varied from 4× smaller to 4× larger than

the reference. We expect larger inputs to have more speedup, as the baseline suffers from

worse locality, and there is more room for locality improvement. This expectation is borne

out by the results.

Note that the increase in improvements as input sizes increase are gradual, whereas

such graphs for regular programs (e.g., matrix multiply) would have sharp drop-offs at

cache size boundaries. This is due to the irregular nature of tree algorithms: larger input

sizes gradually increase the likelihood that a traversal will outstep cache, instead of causing

all traversals to outstep cache at a fixed threshold.
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Fig. 4.18. Speedup for different input sizes on Xeon

4.6.6 Parallel improvements

TREESPLICER takes sequential code as input, and outputs sequential code10. To test our

benchmarks on multicores, we manually parallelized each benchmark, with Java threads.

Each version was parallelized by statically and uniformly distributing the points among

threads. We present results up to 64 threads for the Opteron III, and up to 32 threads

on the Xeon. In the interests of brevity, we present results for the random inputs for all

benchmarks.

We first present the scalability of the benchmark baselines in Figures 4.19(a) and 4.19(b),

to show that the baselines do indeed scale. Due to lack of space we show parallel improve-

ments for four versions: Splice and Block+Splice as fully automatic transformations, Sort

as prior work exploiting semantic information, and Sort+Block as a combination of au-

tomatic transformations and semantic information. Figures 4.20 and 4.21 show parallel

improvements of these versions over Base for each benchmark.

Locality is important for parallel scalability because multicores have limited bus band-

width, and too many cache misses can saturate the bus. Enhanced locality means fewer
10TREESPLICER could automatically transform parallel code and apply the appropriate parallelization strat-
egy, if a particular parallelization scheme were integrated into it. We currently do not implement this.
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Fig. 4.19. Scalability of Base

cache misses and reduced bus pressure. Hence the optimized versions can perform more

operations before saturating the bus. We expect that the optimized versions will perform

better compared to the baseline when the baseline is saturated, but the optimized versions

are not. However eventually even the optimized versions can become saturated, at which

point the relative improvement declines.

There are two factors which diminish the improvements of our transformations at scale.

First, autotuning is currently done sequentially and limits speedup according to Amdahl’s

law. While we have limited the autotuning portion of point blocking to 5% for the serial

case, parallelization can increase its overhead to up to 77% for 64 threads. This overhead

reduces the improvement of Block+Splice and Sort+Block as the number of threads in-

crease. Autotuning for traversal splicing uses 10 points to compute the average reach, and

its overhead is negligible. Second, splicing’s dependence on exploring large numbers of

points to exploit reordering means that its relative improvement drops as scale increases, as

each thread processes fewer points. This effect should be mitigated for larger inputs, where

each thread will receive more points.

These trends combined can be seen in the results. The efficacy of Sort varies per

benchmark, but Splice consistently delivers good performance at all scales, often signif-

icantly larger improvements at 32–64 threads because the improved locality reduces bus

pressure, whereas the baseline is bus saturated.
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Fig. 4.20. Speedup of transformed versions on n threads over Base on n
threads on Opteron III
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5. VECTORIZATION OF TREE TRAVERSAL ALGORITHMS

5.1 Scheduling transformations

In Section 3, we showed that tree algorithms have a common structure, and that this

structure, despite its seeming irregularity, nevertheless enabled general scheduling trans-

formations that rearrange accesses and improve locality. We developed a pair of trans-

formations, point blocking [6] and traversal splicing [7], that can be applied to irregular

tree-traversal algorithms to promote locality of reference. We explained these transforma-

tions in terms of loop tiling, a traditional locality optimization for regular programs that

operate over dense arrays and matrices. Here, we present an alternate interpretation of

these transformations that makes their applicability to SIMDization more clear.

In the abstract, we can think of each traversal in a traversal algorithm as being executed

by a separate thread. The problem we must tackle is how to schedule the execution of

these threads on a single processor. The original schedule of execution runs an entire

thread (traversal) to completion before switching execution to the next thread. There are

no context switches between threads. Even this simple schedule gives us some flexibility:

after a thread finishes executing, we can choose any of the remaining threads to execute

next. If we choose a thread whose traversal is likely to touch similar portions of the tree as

the just-finished traversal, those parts of the tree are likely to still be in cache, improving

locality. This is equivalent to sorting the points before execution so that points with similar

traversals will be executed consecutively [17, 22].

5.1.1 Point blocking

When a thread’s traversal gets too large to fit in cache, point sorting no longer suffices;

even if the next thread’s traversal is exactly the same, the nodes of the traversal will already
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have been evicted from cache. We proposed point blocking to ameliorate this effect [6].

Intuitively, point blocking (and traversal splicing, as we shall see next) no longer executes a

single thread to completion before running the next thread. Instead, point blocking context

switches between threads to improve locality in the tree.

In point blocking, threads are grouped into blocks. A thread visits a single node of the

tree (i.e., it executes the body of the recursive method), but immediately after recursing

down a child, control is transferred to another thread in the block that is at the same tree

node, where the process repeats. If a thread in the block does not visit a particular tree

node, its turn is “skipped.” It will next execute when the threads in the block return to next

tree node that its traversal would visit. Thus, all of the threads that must access a particular

tree node access that node consecutively, giving good locality in the tree regardless of the

size of the threads’ traversals.

Constant context switches to achieve this scheduling would have high overhead. Hence,

point blocking implements the schedule statically: points are grouped into blocks, and

entire blocks traverse the tree, visiting a node if any of the points in the block want to

visit it. Figure 3.2 showed how the code of Figure 2.1 is transformed to implement point

blocking.

We note three salient facts. First, the transformation is straightforward: all returns in

the main body of the loop are replaced with continues, and points that continue recursion

are deferred until all the points have processed the current node. Second, if no points want

to continue recursion, the “next” block is empty, so recursion stops; the block traverses the

union of the sets of tree nodes that would have been visited by its constituent points. Finally,

and most importantly, the main body of the recursive function now contains a simple for

loop over a dense block of points (line 9). Each iteration of that loop performs the same set

of instructions (disregarding any truncation), and the memory accesses within the loop are

predictable: there is no pointer chasing involved. As Section 5.2 discusses, point blocking

naturally enables SIMD execution.
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5.1.2 Traversal splicing

Traversal splicing is an alternate approach to scheduling traversal codes to improve

locality [7]. Intuitively, while point blocking interleaves traversals at the granularity of

individual tree nodes, context switching between threads in a block at every instance of the

recursive function, traversal splicing performs its context switching at a coarser granularity.

In traversal splicing, various nodes in the tree are marked as splice nodes. A thread executes

until its traversal reaches one of the splice nodes, or until its traversal truncates at a node

that is an ancestor of the splice node. Then control is transferred to another thread, which

similarly executes until it reaches the splice node. This process continues until all threads in

the program have been “paused” at the splice node or truncated. Then control transfers back

to the first thread, and execution continues until the next splice node, and so on. Hence,

threads are interleaved at the granularity of “partial traversals” that traverse between splice

nodes.

Though traversal splicing is more complicated than point blocking, it has a few advan-

tages. Context switches in point blocking can only switch between threads in the same

block of points. This restriction is good for locality: if control could switch between arbi-

trary threads, then thread-local (i.e., point-specific) data may fall out of cache. However,

it means the schedule is less likely to find points that will visit the same node in the tree.

Because traversal splicing context switches between all threads in the traversal algorithm,

if any threads visit the same node, they will be found and their accesses to the node will

happen in close succession. Traversal splicing can also be combined with point block-

ing: while executing a partial traversal, multiple threads can be blocked and interleaved

according to the point blocking strategy.

In addition to the locality-enhancing scheduling described above, traversal splicing al-

lows a schedule to be dynamically tuned. When context switching between threads, it is

useful if the next thread that is executed will have similar behavior as the previous thread

(recall the purpose of sorting the points). Because threads are interleaved at the granularity

of splice nodes, the scheduler can take the opportunity, at each splice node, to adjust the
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interleaving order based on the previous history of each thread’s execution. Threads that

have behaved similarly up until a particular splice node are likely to behave similarly in

the future, and can hence be reordered to execute consecutively. This technique is called

dynamic sorting.

Interestingly, our prior investigations found that dynamic sorting does not improve lo-

cality significantly; because partial traversals tend to be small, the precise order of threads

within those traversals tends not to matter. In this paper, we capitalize on a key insight:

while dynamic sorting may not improve locality, it does improve the similarity of consecu-

tive threads’ traversals. As Section 5.3 elaborates, this can dramatically improve a traversal

algorithm’s SIMD potential.

5.2 Point blocking to enable SIMD

As described in Section 5.1.1, applying point blocking exposes a simple for loop over

the block of points within the recursive function. Each iteration of that loop performs the

same set of instructions, exposing an opportunity for SIMD execution. Point blocking with

a block size of S (where S is the SIMD width) is directly analogous to packet-based SIMD

approaches [5,32]. A point block, or packet, traverses the tree, and the algorithm moves on

to the next packet after the traversal of the previous packet is complete.

Packet-based approaches break down when the points in the packet behave differently.

For example in Nearest Neighbor (NN) each point traverses either the left child or right

child of a tree node first based on properties of the point and the node. Hence, traversals

diverge, and a packet of S points can quickly degenerate into a single point after a few steps,

in which case SIMD execution is no longer beneficial. This effect can be ameliorated by

having multiple packets traverse the tree simultaneously, and compacting packets at each

level to repopulate sparse packets and increase SIMD utilization.

While multi-packet traversal and compaction sounds like a complicated optimization,

a simple modification of point blocking achieves this goal. Rather than applying point-

blocking with a block size of S, we can apply point blocking with a larger block size, and
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1 void p r o c e s s P o i n t ( Block block ,

2 Block nex tBlock , i n t bi , TreeNode n ) {

3 P o i n t p = b l o c k . p [ b i ] ;

4 i f ( t r u n c a t e ( p , n ) ) {

5 u p d a t e P o i n t ( p , n ) ;

6 re turn ;

7 }

8 n e x t B l o c k . add ( p ) ;

9 }

11 void r e c u r s e ( Block block , TreeNode n ) {

12 Block n e x t B l o c k ;

13 i n t s i = 0 ;

14 f o r ( ; s i < b l o c k . s i z e − S + 1 ; s i += S ) {

15 f o r ( i n t b i = s i ; b i < s i + S ; ++ b i ) {

16 p r o c e s s P o i n t ( b lock , nex tBlock , bi , n ) ;

17 }

18 }

19 f o r ( i n t b i = s i ; b i < b l o c k . s i z e ; ++ b i ) {

20 p r o c e s s P o i n t ( b lock , nex tBlock , bi , n ) ;

21 }

22 i f ( ! n e x t B l o c k . i sEmpty ( ) ) {

23 r e c u r s e ( p , n . c h i l d 1 ) ;

24 r e c u r s e ( p , n . c h i l d 2 ) ;

25 }

26 }

Fig. 5.1. Stripmined point blocking

then strip mine the resulting loop, adding an inner loop of S iterations. This inner loop

can be SIMDized as a single packet, while at each step of the block’s traversal, any non-

truncated points can be compacted into full packets at the next level. The compaction is

implemented by copying points from the current block into a “next block” that visits the

children; points in this next block will be contiguous.

Figure 5.2 shows the result of SIMDizing the strip-mined loop, with S = 4. Note that

in place of the inner (strip-mined) loop, we use a call to to processVec (line 17) that

operates on the S points within the packet simultaneously with SIMD instructions (line 1).

Within processVec, control flow is converted into masking operations represented by



77

1 void p r o c e s s V e c ( Block block , Block

2 nex tBlock , i n t s i , TreeNode n , i n t mask ) {

3 m128 v e c v a l i d ;

4 t r u n c a t e V e c ( b lock , s i , n , v e c v a l i d ) ;

5 u p d a t e P o i n t V e c ( b lock , s i , n , v e c v a l i d ) ;

6 mask = mm movemask ps ( v e c v a l i d ) & mask ;

7 i f ( mask & 0x1 ) n e x t B l o c k . add ( b lock , s i ) ;

8 i f ( mask & 0x2 ) n e x t B l o c k . add ( b lock , s i + 1 ) ;

9 i f ( mask & 0x4 ) n e x t B l o c k . add ( b lock , s i + 2 ) ;

10 i f ( mask & 0x8 ) n e x t B l o c k . add ( b lock , s i + 3 ) ;

11 }

13 void r e c u r s e ( Block block , TreeNode n ) {

14 Block n e x t B l o c k ;

15 i n t s i = 0 ;

16 f o r ( ; s i < b l o c k . s i z e − S + 1 ; s i += S ) {

17 p r o c e s s V e c ( b lock , nex tBlock , s i , n , 0 x f ) ;

18 }

19 i n t mask = ge tVa l idMask ( s i , b l o c k . s i z e ) ;

20 i f ( mask > 1) {

21 p r o c e s s V e c ( b lock , nex tBlock , s i , n , mask ) ;

22 } e l s e i f ( mask == 1) {

23 p r o c e s s P o i n t ( b lock , nex tBlock , s i , n ) ;

24 }

25 i f ( ! n e x t B l o c k . i sEmpty ( ) ) {

26 r e c u r s e ( nex tBlock , n . c h i l d 1 ) ;

27 r e c u r s e ( nex tBlock , n . c h i l d 2 ) ;

28 }

29 n e x t B l o c k . copyUp ( b l o c k ) ;

30 }

Fig. 5.2. SIMDized point blocking

vec valid. vec valid is passed to truncateVec and updatePointVec so that

operations are correctly applied according to the original loop’s control flow. Finally, any

non-truncated points are added to the next block.

Note that strip-mining introduces cleanup code (lines 19–24) that operates over less

than a full packet of points. However, as long as there is more than one point, it is still prof-

itable to use SIMD execution. getValidMask computes a mask where the bits of valid
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Fig. 5.3. SIMD utilization versus block size (S = 4)

points are set. This mask is passed to processVec to ensure that only valid points are

added to the next block. If the cleanup loop only has one point, we call processPoint

instead.

The process of replacing the strip-mined inner loop with a SIMD implementation is that

of vectorizing a dense loop using techniques such as if-conversion. These transformations

can be performed by vectorizing compilers [31].

SIMD utilization

We have referred to the concept of SIMD utilization in prior sections; here we formally

define it. Let W be the total amount of work (i.e., the total number of nodes accessed

by all the points). Let Ws be the the amount of work done in full SIMD packets (i.e., S

times the number of calls to processVec in line 17). We can define SIMD utilization

U = Ws/W 1. If all points follow the exact same traversal, there will be no divergence and

all points can be processed as part of a full SIMD packet; hence, U = 1. Figure 5.3 shows

the SIMD utilization for five tree traversal algorithms2. A larger block size results in better

SIMD utilization as there are more points to search through to create full SIMD packets.

Note that a block size equal to the total number of points yields the maximum, ideal,

SIMD utilization. This schedule of computation extracts the most SIMD potential from the
1Note that it is also possible to exploit SIMD in the cleanup loop when it has two or more points; we focus
on full SIMD utilization for simplicity.
2The Dragon input is used for PM, and Random inputs are used for the other benchmarks (see Section 6.2).
Each input has one million points.
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algorithm and input, producing as many full SIMD packets as possible. This ideal utiliza-

tion measures inherent properties of the algorithm and input. Some algorithms feature so

much divergence between traversals that even with extremely large block sizes, it is diffi-

cult to find full SIMD packets to process. For example, in NN, the ideal utilization reaches

only 0.8. This is because the algorithm itself is highly divergent, and there are many nodes

in the tree that fewer than 4 points ever access.

It is clear that in order to maximize SIMD utilization we would like to use a large block

size. However a block size that is too large has adverse effects on locality [6] (by way

of analogy, think of choosing an overly-large tile size for tiled matrix multiply). Unfor-

tunately, the block sizes at which maximum SIMD utilization is attained feature exactly

this poor locality. SIMD cannot help us when the program is memory bound and stalled

on load/stores, so poor locality directly counteracts any benefits from vectorization. A

schedule that can attain SIMD utilization without compromising locality is necessary.

5.3 Traversal splicing to enhance utilization

In Section 5.1, we described how locality in tree traversals can be cast as a thread

scheduling problem, where we would like to schedule threads which access similar tree

nodes consecutively for better locality. The same scheduling problem arises in maximizing

SIMD utilization. We would like to schedule multiple threads to access the same tree node

consecutively so that they can be executed simultaneously with SIMD instructions.

We refer to an example for illustration. Figure 5.4(a) shows an iteration space diagram

for two SIMD packets of four threads (i.e., points) each (for the tree in Figure 2.3(a)). Each

thread accesses a different set of nodes. For example thread A accesses the entire subtree

rooted at 2�, but is truncated at 3� (due to truncation condition at line 8 of Figure 2.1),

and does not traverse further to 6� or 7�. There are three distinct sets of traversals, with

different behaviors: threads {A, C, F , H}, {B, D, G}, and {E}.
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(b) Iteration space, post-dynamic-sorting

Fig. 5.4. Iteration space of dynamic sorting

SIMD utilization is poor because these distinct traversals are interleaved. At 8�, both

packets have two points. If the threads were scheduled so that A, C, F , H are executed

consecutively, 8� could be processed with a single full packet of four points.

Prior work has used various sorting heuristics to schedule similar traversals together [17,

22]. Unfortunately such a priori sorting is highly application specific and can require not

only semantic information but substantial programmer effort. We would like an application-

agnostic scheduling technique.

5.3.1 Dynamic sorting

As described in Section 5.1.2, traversal splicing enables dynamic sorting that uses a

thread’s past behavior, rather than semantic knowledge, to continuously reorder threads

so those with similar traversals will be grouped together. Figure 5.4(b) shows how this
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Fig. 5.5. SIMD utilization with dynamic sorting for Nearest Neighbor

dynamic sorting can be applied to the iteration space of Figure 5.4(a). We designate 4�

and 6� as splice nodes, at which each thread should be paused and reordered. Two SIMD

packets traverse up to the first splice node 4� in their original order. At 4�, the threads are

reordered based on which node each thread last reached. Threads A, C, E, F and H , which

reached 4�, are moved to the front, and threads B, D and G, which were truncated at 2�,

are moved to the end. These threads form two new SIMD packets which traverse up to the

second splice node 6�. Then all threads are reordered again, with threads E, B, D and G,

which reached 6�, moved to the front. These threads again form a new SIMD packet.

Dynamic sorting naturally groups threads with similar traversals together. For example

at 7�, whereas previously we had two partial SIMD packets of two points each, we now

have a single full SIMD packet of four points, and hence more efficient SIMD execution.

This can be generalized beyond packet-based SIMD to point blocking with a block size

larger than 4. Dynamic sorting groups similar points together so that more points can

be compressed to yield more full SIMD packets. Crucially, this scheduling is performed

without any application-specific knowledge.

The primary advantage to using dynamic sorting to maximize SIMD utilization is that

during the sort phase at each splice node, all points can be examined to rearrange the

traversals, not just those in a particular block. This yields the same benefits as performing

compaction on a very large block of points. However, because splicing only performs this

reordering at splice nodes, locality is not harmed. Between splice nodes, smaller block

sizes yield good locality.



82

!"
!#$"
!#%"
!#&"
!#'"
("

)*+,-." )*+/01" /2+,-." /2+234" /2+5.6" /2+783" 99+,-." 99+234" 99+5.6" 99+783" :/+,-." :/+234" :/+5.6" :/+783" /5+;<-" /5+2=<" /5+2->"
?
@0
6A-

@3
." )-B806.8"

C"/<63<6"D3<E"

;F.-G6H"D3<E"

IJ8-0"

Fig. 5.6. Comparison of SIMD utilization

5.3.2 Improved SIMD utilization

Recall that ideal SIMD utilization is defined as the utilization achieved when all threads

are available for scheduling at each tree node. Figure 5.5 shows the SIMD utilization

for pure point blocking (N/A), and point blocking combined with traversal splicing with

splice nodes placed at various uniform depths3 in the tree for Nearest Neighbor (NN). The

dynamic sorting of traversal splicing can significantly improve utilization, so that we need

not use as large a block size to get close to ideal. By using traversal splicing, utilization

can be improved without sacrificing locality.

Figure 5.6 compares the SIMD utilization of various implementations of our bench-

marks (see Section 6.2 for a description of the benchmarks and inputs). We compare the

baseline utilization to the utilization of three variants: (i) application-specific, a priori sort-

ing4; (ii) automatic, dynamic sorting using traversal splicing5; and (iii) ideal utilization.

The baseline and variants (i) and (ii) use a block size of 512 (a reasonable size to maintain

locality).

It is apparent that dynamic sorting substantially improves SIMD utilization from the

baseline, and is competitive with a priori sorting. For Vantage Point (VP), dynamic sorting

is substantially better than a priori sorting, illustrating the advantages of traversal splicing.

Most importantly, for most benchmarks dynamic sorting nears ideal utilization. In other
3While arbitrary splice node placement is possible, we consider only uniform depth placement as it can be
implemented more efficiently.
4Photon Mapping (PM) is naturally sorted in order of light source, so there is no separate a priori configura-
tion
5Using empirically determined optimal splice depths as shown in Table 6.1 for Opteron.
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words, dynamic sorting can automatically extract almost the maximum amount of SIMD

utilization from our benchmarks.

5.3.3 Extensions to traversal splicing

In Section 3.2, we found that combining point blocking and traversal splicing was fre-

quently not useful for locality; as a result, point blocking was not applied to all partial

traversals in traversal-spliced code. Because our goal is to SIMDize applications, we ex-

tend traversal splicing to support applying blocking to all phases.

Some algorithms dynamically generate new points, such as reflected and refracted pho-

tons in Photon Mapping. We handle these new points by deferring them to a subsequent

outer-loop iteration. Essentially, we treat the root node of the tree as another splice node:

as new points visit the root, they are paused until all earlier phases of the computation have

finished, after which any points paused at the root begin traversing again. Dynamically

generated points tend to have worse coherence than initial points, and dynamic sorting can

be even more effective in increasing utilization for such points.



84

6. AUTOMATIC VECTORIZATION WITH SIMTREE

We implemented our transformations in a source-to-source C++ compiler called SIMTREE1.

SIMTREE is built on top of the ROSE compiler infrastructure2.

6.1 Implementation of transformation

SIMTREE applies point blocking and traversal splicing as in the Java transformation

framework, TREESPLICER3, with the extensions described in Section 5.3.3. A key addition

in SIMTREE to the features implemented in TREESPLICER is a layout transformation to

facilitate SIMDization that changes the layout of the points within a block from an array of

structures (AoS) to a structure of arrays (SoA). SoA layout has two advantages: (i) vector

load/stores (with SIMD instructions) can be used on packed data; and (ii) packed data has

better spatial locality. The disadvantage is that adding points to a point block (e.g., lines 7–

10 in Figure 5.2) has higher instruction overhead, as the actual point data must be copied,

instead of just a pointer to the point structure.

A whole-program AoS-to-SoA layout transformation is challenging to automate in gen-

eral, because it is difficult to ensure correctness in the presence of arbitrary aliasing. We

overcome this difficulty by limiting the scope of the layout transformation to the traversal

code only, copying point data in to SoA-formatted blocks before the traversal and copying

from those blocks back to the original layout for the remainder of the code. We need not

consider aliasing between points, as the parallel point loop precludes destructive aliasing.

SIMTREE uses an inter-procedural, flow-insensitive analysis to identify which fields

must be part of the SoA-formatted block. The necessary fields are those transitively ac-

cessed through loop-variant arguments to the recursive call in the enclosing point loop. For
1https://engineering.purdue.edu/plcl/simtree/
2http://rosecompiler.org
3https://engineering.purdue.edu/plcl/treesplicer/
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example, in Figure 6.1, the first argument to recurse in line 23 is loop variant, and hence

a point argument, while the second is not. SIMTREE identifies f1 and f2 as point fields

(as they are accessed through point argument p in lines 11 and 16 respectively), but not

f3. SIMTREE allocates space in the SoA block for the point fields (Figure 6.2(b)) and

transforms the corresponding field accesses in the recursive code to access the data in SoA

form.

Because the point data is copied to new storage during the traversal, incorrect values

may be computed if there are alternate access paths to access the point data that are not

transformed to use the copied data. Rather than performing a complex alias analysis to

identify and transform all such access paths, SIMTREE adopts a conservative, field based

approach. The copy-in/copy-out approach is safe as long as (i) point fields read during

traversal are not written via other access paths and (ii) point fields written during traversal

are not read or written via other access paths.

SIMTREE uses the same field analysis to identify any fields accessed via non-point-

based access paths in the recursive code. In Figure 6.1, f1 is read via a non-point argument

in line 11, while f3 is read via a non-point argument in line 16. SIMTREE deems the

transformation safe as the only field accessed both through points and non-points, f1, is

read-only.

If there is a conflict between the field accesses, SIMTREE does not apply the SoA

transformation. For example, if line 17 in Figure 6.1 were uncommented, then the SoA

transformation may not be safe: while the write to f3 in line 17 through p will access the

SoA block, the untransformed read of f3 in line 16 will access the original storage. If there

is aliasing between the point field of TreeNode and any of the Points in the array,

these reads and writes may be inconsistent. While a more complex alias analysis [52] may

more precisely determine the safety of SIMTREE’s SoA transformation, this conservative

approach is sufficient to prove the transformation safe in all of the applications we have

studied.

Figures 6.2(a) and 6.2(b) show concrete code for the block before and after SIMTREE’s

SoA transformation. In addition to the new arrays for the point fields, the block has two
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1 s t r u c t P o i n t {

2 f l o a t f1 , f2 , f3 ;

3 }

5 s t r u c t TreeNode {

6 TreeNode ∗ c h i l d 1 , ∗ c h i l d 2 ;

7 P o i n t ∗ p o i n t ;

8 }

10 boo l t r u n c a t e ( P o i n t ∗p , TreeNode ∗n ) {

11 i f ( p−>f1 == n−>p o i n t−>f1 ) re turn true ;

12 re turn f a l s e ;

13 }

15 void u p d a t e P o i n t ( P o i n t ∗p , TreeNode ∗n ) {

16 p−>f2 += n−>p o i n t−>f3 ;

17 / / p−>f 3 = n−>p o i n t−>f 1 ;

18 }

20 TreeNode ∗ r o o t ;

21 P o i n t ∗ p o i n t s [N ] ;

22 f o r ( i n t i = 0 ; i < N; ++ i )

23 r e c u r s e ( p o i n t s [ i ] , r o o t ) ;

25 void r e c u r s e ( P o i n t ∗p , TreeNode ∗n ) {

26 i f ( t r u n c a t e ( p , n ) ) {

27 u p d a t e P o i n t ( p , n ) ;

28 re turn ;

29 }

30 r e c u r s e ( p , n−>c h i l d 1 ) ;

31 r e c u r s e ( p , n−>c h i l d 2 ) ;

32 }

Fig. 6.1. Concrete example traversal code

add functions. The first copies point data to the top level block prior to the traversal (the

initial translation from AoS to SoA), and the second adds to the “next block” prior to a

recursive call (lines 7–10 of Figure 5.2). This second add tracks the index of the source

block in a map array so that as recursive calls return, writes can be correctly propagated

back up the stack by calling copyUp (line 29 of Figure 5.2). copyUp uses map to copy
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1 s t r u c t Block {

2 P o i n t ∗p [ maxSize ] ;

3 i n t s i z e ;

4 void add ( P o i n t ∗ p o i n t ) {

5 p [ s i z e ++] = p o i n t ;

6 }

7 }

(a) Block as array of structures

1 s t r u c t Block {

2 P o i n t ∗p [ maxSize ] ; / / a l l o c a t e d f o r t o p l e v e l o n l y

3 f l o a t f1 [ maxSize ] ;

4 f l o a t f2 [ maxSize ] ;

5 i n t map [ maxSize ] ;

6 i n t s i z e ;

7 void add ( P o i n t ∗ p o i n t ) {

8 p [ s i z e ] = p o i n t ;

9 f1 [ s i z e ] = p o i n t−>f1 ;

10 f2 [ s i z e ] = p o i n t−>f2 ;

11 ++ s i z e ;

12 }

13 void add ( Block ∗upBlock , i n t i ) {

14 f1 [ s i z e ] = upBlock−>f1 [ i ] ;

15 f2 [ s i z e ] = upBlock−>f2 [ i ] ;

16 map [ s i z e ] = i ;

17 ++ s i z e ;

18 }

19 void copyUp ( Block ∗upBlock ) {

20 f o r ( i n t i = 0 ; i < s i z e ; ++ i ) {

21 upBlock−>f2 [ map [ i ] ] = f2 [ i ] ;

22 }

23 }

24 void copyBack ( ) {

25 f o r ( i n t i = 0 ; i < s i z e ; ++ i ) {

26 p−>f2 = f2 [ i ] ;

27 }

28 }

29 }

(b) Block as structure of arrays

Fig. 6.2. Block code
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written fields (e.g., f2) up the stack. f1 need not be copied back as it is only read. At

the top level, copyBack (inserted after line 5 of Figure 3.2) copies the block back to the

original point storage (translating from SoA back to AoS).

6.2 Evaluation

To demonstrate the efficacy our SIMD transformations, we study five tree traversal

algorithms from various domains ranging from scientific applications to data-mining to

graphics4. The benchmarks are:

1. Barnes-Hut (BH) (413 LoC (lines of code)) is a scientific kernel for performing n-

body simulation [3]. We use two inputs. Random is one million randomly generated

bodies. Plummer is one million bodies generated from a Plummer model.

2. Point Correlation (PC) (285 LoC) is a data mining kernel for finding the number of

pairs of points in a dataset that lie within a given radius of each other [38]. We use

four inputs. Random has 1,000,000 randomly generated points in 3 dimensions. Cov-

type is forest cover data, and Mnist is handwritten digits data [46], each with 200,000

points reduced by random projections to 7 dimensions. Geocity is city coordinates

data with 200,000 points in 2 dimensions.

3. Nearest Neighbor (NN) (327 LoC) is a data-mining kernel for finding closest points

in metric spaces. We use the same inputs as PC, with separate training and test sets

of 200,000 points each.

4. Vantage Point (VP) (262 LoC) is nearest-neighbor using a vantage-point tree [53]

rather than a kd-tree. We use the same inputs as NN.

5. Photon Mapping (PM) (8498 LoC) is described in detail in Section 2. We use three

inputs: Dragon has 100,000 triangles, Christmas has 1,091,067 triangles and Cabin
4We do not use exactly the same benchmarks as in our prior work [6,7], as SIMTREE targets C++ rather than
Java.
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has 422,735 triangles. Each scene was rendered with 10 lights, and 100,000 photons

per light.

BH, PC and NN are adapted from the Lonestar suite [45], and VP5 and PM6 are adapted

from open source implementations. We evaluate seven variants of each benchmark:

1. Base: the baseline described for each benchmark above.

2. Block4: point blocking with a block size of 4.

3. Block4+SIMD: packet based SIMD traversals [5,32]. This is equivalent to SoA and

SIMD applied to Block4.

4. Block: point blocking with an autotuned block size [6]7.

5. Block+SIMD: SoA and SIMD applied to Block.

6. Block+Splice: traversal splicing with dynamic sorting applied to Block [7]. We

place splice nodes at an empirically determined optimal splice depth for each appli-

cation/input/platform combination as given in Table 6.1.

7. Block+SIMD+Splice: SoA and SIMD applied to Block+Splice.

Our baseline benchmarks are true baselines: no a priori sorting is performed. SIMDiza-

tion is performed manually, using standard techniques such as if-conversion. While the

SIMDization can be done automatically by a vectorizing compiler, such compilers may

miss readily-exploitable SIMD opportunities [31], as discussed in Section 6.2.5.

The benchmarks were written in C++ and compiled with gcc 4.4.6 with -O3. Each con-

figuration was run 4 times enforcing a coefficient of variation8 less than 0.02, by extending

the number of runs until steady state if necessary. This yields errors of at most ±3.18% of

the mean with 95% confidence.
5http://stevehanov.ca/blog/index.php?id=130
6http://code.google.com/p/heatray
7We use 1% of the points to test various block sizes 5 times each, and choose the best block size. This results
in a block size of 128 for the Covtype, Mnist and Geocity inputs, and a block size of 512 for all other inputs.
8CoV is the sample standard deviation divided by the mean.
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Benchmark Input Average Splice Depth

Reach Xeon Opteron Auto-0.5

Barnes-Hut Random 5.88 2 2 3

Plummer 6.88 3 3 3

Point Correaltion Random 17.78 8 8 9

Covtype 15.86 7 8 8

Mnist 15.23 7 7 8

Geocity 15.94 9 8 8

Nearest Neighbor Random 14.82 9 9 7

Covtype 14.95 9 9 7

Mnist 14.88 9 9 7

Geocity 15.86 8 7 8

Vantage Point Random 19.62 9 10 10

Covtype 17.39 9 9 9

Mnist 17.40 9 9 9

Geocity 17.19 8 8 9

Photon Mapping Dragon 9.13 7 8 5

Christmas 12.55 15 13 6

Cabin 13.14 17 18 7

Table 6.1
Optimal and autotuned splice depths

We used two platforms for evaluation:

• Xeon runs Linux 2.6.32 and contains four eight-core Intel Xeon E5-4650 chips.

• Opteron runs Linux 2.6.32 and contains four sixteen-core AMD Opteron 6282 chips.

6.2.1 Speedups compared to baseline

We will first examine the single-thread speedups of our transformed versions compared

to the baseline, shown in Figure 6.3. The rightmost bars are the geometric means of all 17

benchmark/input sets. We also measured multi-thread runs where both SIMD and threads

are utilized, and found that SIMD improvements scale well with multiple threads: SIMD

augments the parallelism achievable from multithreaded execution. We do not show these

results due to space limitations.
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Fig. 6.3. Speedup over Base

Block4 and Block4+SIMD perform similarly or worse than the baseline. This is be-

cause a block size of 4 does not improve locality and only adds additional overhead for

point blocking. Applying SIMD fails to provide improvements because the naı̈ve packet

based SIMD implementation has poor utilization as illustrated in Figure 5.3. Block is able

to provide small speedups from enhanced locality—on average, 1.127 and 1.154 on Xeon

and Opteron, respectively. Block+SIMD provides additional gains for speedups of 1.188

and 1.266 respectively. This is because point blocking with compression improves utiliza-

tion so that SIMD execution is profitable.

Block+Splice adds the locality benefits of traversal splicing to Block and results in

larger speedups of 1.920 and 1.783. Block+SIMD+Splice adds SIMD to Block+Splice for

substantially larger speedups of 2.689 and 2.864. The average improvement from adding

SIMD to Block+Splice is much larger than from adding SIMD to Block, because the

dynamic sorting of traversal splicing dramatically improves utilization, as illustrated in

Figure 5.6. For example in NN-Random, adding SIMD to Block degrades performance

because SIMD execution is unable to make up the instruction overhead of the structure-of-

arrays layout transformation. This is unsurprising as SIMD utilization is only 0.052 even
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Fig. 6.5. Improvement in SIMD performance from dynamic sorting

for a block size of 512. However dynamic sorting improves utilization to 0.716, making

SIMDization of Block+Splice profitable.

6.2.2 Performance counters

Our optimizations achieve speedups because the locality and SIMD execution benefits

they provide outweigh the costs incurred by our scheduling and layout transformations. To

analyze this cost-benefit tradeoff in more detail, we collected performance counter results

on Opteron with PAPI9.
9http://icl.cs.utk.edu/papi/
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One indicator of the effectiveness of SIMDization is instruction count reduction. Fig-

ure 6.4(a) shows the instruction counts normalized to the baseline. BlockSOA denotes the

structure of arrays (SoA) transformation added to Block. On average, point blocking re-

sults in instruction overhead of 1.266. The SoA transformation increases this overhead to

1.617. Adding SIMD decreases instruction overhead to 1.204 (as SIMD replaces multiple

instructions with a single instruction). Adding traversal splicing to point blocking reduces

instruction overhead to 1.079 (from 1.266), because the dynamic sorting makes the blocks

denser and results in fewer blocks traversing the tree. Finally adding SoA increases the

instructions to 1.380, but then adding SIMD halves it to 0.643.

The savings in instruction overhead from adding SIMD is much larger with traversal

splicing (2.14×) than without (1.34×), as traversal splicing significantly enhances SIMD

utilization. We do not expect instruction counts to decrease by a full-SIMD-width fac-

tor of 4 because: (i) we measure instruction counts for the whole traversal, while SIMD

only affects the computation portion; (ii) SoA adds instruction overhead; and (iii) SIMD

utilization is less than 1.

Figure 6.4(b) shows the cycles per instruction (CPI) of the transformations with and

without SoA layout and/or traversal splicing. CPI is a proxy for locality: a program with

poor locality will have higher CPI10. The average baseline CPI is 2.243. Point blocking and

traversal splicing reduce this to 1.563 and 1.170 respectively through enhanced locality.

The SoA layout also improves spatial locality as the point data is packed into the blocks

instead of being spread out over the heap. This further reduces CPI to 1.349 and 1.043 when

applied on top of point blocking and traversal splicing respectively. Hence, a combination

of instruction decrease through SIMD execution, and enhanced locality through SoA layout

accounts for our performance improvements.
10This CPI comparison does not use SIMD; we expect BlockSOA and BlockSOA+SIMD to have similar
locality.
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6.2.3 SIMD performance improvement from dynamic sorting

Because traversal splicing provides both locality benefits and SIMD utilization benefits,

we isolate how much dynamic sorting in particular improved SIMD performance. Let

us define the speedups of Block, Block+SIMD, Block+Splice and Block+SIMD+Splice

compared to the baseline as Bb, Bbs, Bbp and Bbsp respectively (where p is used for Splice).

The benefit of applying SIMD to Block and Block+Splice can be defined as Sb = Bbs/Bb

and Sbp = Bbsp/Bbp, respectively. The ratio of SIMD performance improvements in both

cases, D = Sbp/Sb, lets us quantify how much dynamic sorting improves SIMD quality

independent of locality effects (which apply to both SIMD and non-SIMD variants).

Figure 6.5 shows D in % improvement for the two systems. Dynamic sorting is inef-

fective for BH-Plummer because the baseline has a high utilization of 0.779, and dynamic

sorting is able to improve that only to 0.882 (Figure 5.6). Dynamic sorting is very effective

for NN-Geo because the baseline has a utilization of 0.747 which dynamic sorting improves

to 0.995, nearly perfect utilization. On average D in % improvement is 33.0% and 46.4%

respectively for Xeon and Opteron.
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Fig. 6.8. Performance at automatically selected splice depth normalized to
performance at optimal splice depth
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Fig. 6.9. SIMD speedup from automatic vectorization

6.2.4 Automatically selecting splice depth

The results discussed thus far have used an autotuned block size with an empirically

determined optimal splice depth. We would like to automatically select the splice depth as

well, to fully automate our transformation.

While a good block size can be autotuned by using a small portion (1%) of the points

to test blocks of varying sizes, and choosing the best performing block size [6], a similar

approach is infeasible for traversal splicing because we would like to apply splicing over

the full set of points.

When considering locality, there is a tradeoff in splice depth placement: placing splice

nodes too shallow or too deep results in worse locality, and there is a sweet spot in the
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middle [7]. On the other hand, utilization increases almost monotonically with splice depth,

as deeper and more numerous splice nodes allow for more dynamic sorting11. Figure 6.6

shows utilization for varying splice depths, with a fixed block size of 512 (using the same

inputs as in Figure 5.3). We expect to see the best performance when striking the right

balance between locality and SIMD utilization.

Figure 6.7 shows the performance at varying splice depths normalized to the perfor-

mance obtained with the optimal splice depth for each benchmark. We see a clear peak

where utilization and locality strike a good balance, surrounded by splice depths which

perform worse.

In prior work we demonstrated that combining point blocking with traversal splicing

reduces a program’s sensitivity to splice depth, and found empirically that a depth at half

of the average reach (the depth of the nodes where a point’s recursion is stopped) is a good

splice depth [7]. We evaluate a range of parameters for splice depth, ranging from 0.3 to 0.7

times the average reach. Figure 6.8 shows the performance of these parameters compared

to the performance at an optimal splice depth. Table 6.1 shows the average reach of each

benchmark/input, the optimal depth on each system, and the automatically selected depth

at half of the average reach. It can be seen that Auto-0.5 performs best, attaining 95% of

optimal performance on average on both systems.

6.2.5 Automatic vectorization with icc

SIMTREE does not generate SIMD code. As described previously, SIMTREE’s goal

is to generate vectorizable code; the resulting inner loop (line 17 of Figure 5.2) must be

vectorized in a separate pass. To extract maximum SIMD performance in our results, we

vectorized this loop by hand. We also investigated the ability of icc (the Intel compiler) to

do the vectorization. Because the presence of any non-vectorizable code or nested loops

precludes vectorization by icc [31], we applied a combination of loop distribution and in-

terchange to split the target loop into a series of icc-vectorizable loops (this process can
11Utilization can decrease if the splice depth is deeper than the tree itself.
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be readily automated as the target loop is fully parallel). Figure 6.9 shows the perfor-

mance of icc-vectorized code and hand-vectorized code for the main SIMD loop (ignoring

the cleanup loop), relative to the SIMTREE-transformed baseline (which applies blocking,

splicing and SoA) on Xeon. We see that auto-vectorization attains a 1.354 speedup, while

our hand vectorization attains a 1.618 speedup; auto-vectorization attains on average 84%

of the hand-vectorized performance.
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7. RELATED WORK

7.1 Locality in non-tree irregular algorithms

Much of the work on optimizing locality in irregular algorithms has focused on schedul-

ing computation so that tasks likely to access similar data are scheduled in close succession

to exploit temporal locality. This has been the strategy of choice for optimizing sparse-

matrix algorithms [25–27], where most approaches use an inspector-executor approach to

scheduling. The structure of the computational tasks is found in an inspection phase, which

rearranges them to improve locality. The rearranged schedule is then executed. Inspector-

executor approaches are less useful for tree traversal codes, as the inspection phase requires

performing the traversals, incurring all the misses we hope to avoid.

7.2 Point sorting

Scheduling approaches for tree traversals (the “sorting” optimizations we discuss in

Section 2.2) have instead used semantic knowledge to schedule the points without per-

forming the traversals, often with space filling curves [16, 22]. Salmon used Orthogonal

Recursive Bisection [54] to directly partition the point space to provide physical local-

ity [55]. Singh et al. recognized that N-body problems already have a representation of

the spatial distribution encoded in the tree data structure and partitioned the tree instead of

partitioning the point space directly [17]. Mansson et al. propose various sorting optimiza-

tions for reflected rays in ray tracing [19]. In fact sorting for ray tracing is difficult and

important enough that Moon et al. first construct and traverse a simplified scene, and sort

rays based on hit points of the simplified scene [22].
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7.3 Application specific work similar to point blocking

There have been a few application-specific, manual approaches similar to point block-

ing and traversal splicing. Point blocking-like approaches arise in vectorization where a

block, or vector, of points are processed simultaneously on vector hardware. Hernquist

vectorized Barnes-Hut across nodes of the tree, so that each point traverses all nodes at

the same level simultaneously [56]. This approach effectively changes the order of the tree

traversal from depth-first to breadth-first. This has two drawbacks. First, it changes the

traversal order of the tree, affecting the result in the presence of non-commutative opera-

tions (such as floating-point addition). Second, there typically are not many nodes per tree

level, leading to short vectors (and less parallelism). Makino vectorized the tree traversal

across points, instead, leading to a per-point parallelization similar to the loop interchanged

implementation described in Section 2.1 [57]. However, there are a few key points to note.

First a simple loop interchange does not suffice to exploit locality. Second, Makino’s trans-

formation relies on a pre-computed traversal of the tree, and changes the order in which

particular tree nodes are visited by different points, reducing the generality of his trans-

formation. Wald et. al. presented an interactive ray tracer by constructing packets (i.e.,

blocks) of four rays (i.e., points), and using SIMD traversals on packets instead of individ-

ual rays [5]. Their approach is equivalent to point blocking with a block size of 4.

7.4 Application specific work similar to traversal splicing

Application-specific, manual approaches similar to traversal splicing, have mostly tar-

geted locality for ray tracing. Pharr et al. partition the scene into a uniform grid of “vox-

els” [20]. As rays traverse a scene, they pause at the boundaries of voxels and are resumed

later. By processing rays on a per-voxel basis, locality is improved. They schedule voxels

based on a cost-benefit heuristic which considers the amount of geometry already cached

and the number of the rays paused at the voxel. Navrátil et al. pause traversals at “queue

points” (akin to splice nodes) in the tree [21]. Queue points are placed so that its subtree fits

entirely in L2 cache. Navrátil’s thesis focuses on dynamic scheduling of rays to enhance lo-
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cality for memory efficiency and scalability across thousands of distributed processors [1].

Aila and Karras extend Navrátil et al.’s work to hierarchical queue points and massive par-

allelism [23]. They use dynamic programming to place treelets (subtrees at which rays

are paused) with balanced surface area, hence minimizing treelet transitions per ray, and

discuss considerations for a dedicated GPU architecture which supports efficient pausing

and resuming of rays. These approaches are able to make smarter decisions on splice node

placement and point scheduling (e.g., next voxel to process) with semantic knowledge of

the algorithm. We believe TREESPLICER could potentially make such smart decisions au-

tomatically without semantic knowledge, through a dynamic analysis of traversal patterns

at runtime.

Outside the graphics domain, Ghoting et al. propose path tiling for frequent pattern

matching, where the tree is partitioned into tiles, and computation is paused at tile bound-

aries (i.e., splice nodes) to enhance temporal locality [24]. Pingali et al. propose compu-

tation reordering, whereby an individual computation can be paused during its execution

and coalesced with other computations that are accessing the same part of the data struc-

ture [18]. However, computation reordering is more a set of principles for optimization

than an optimization itself: correctly applying reordering requires manually transforming

algorithms in application-specific ways. Point blocking and traversal splicing can be seen

as a special, disciplined case of computation reordering, applying to tree traversals, that

can be implemented automatically and efficiently.

7.5 Analyses for tree codes

Aluru et al. discussed changing the tree structure of Barnes-Hut to improve perfor-

mance [58]. We note that our transformations are independent of the type of tree used (in-

deed, the tree in raytracing is different from that in Barnes-Hut), and hence our approach

can apply to their algorithm as well. Rinard and Diniz used a commutativity analysis to

parallelize an N-body code in a unique manner [59]. Rather than distributing the points

among threads, they are able to prove through compiler analysis that updates to the points
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commute, and hence multiple threads can update points simultaneously. This is akin to

parallelizing the traversal loop in our abstract model, rather than the point loop. Ghiya et

al. proposed an algorithm to detect parallelism in C programs with recursive data struc-

tures [60]. These tests rely on shape analysis to provide information on whether the data

structure is a tree, DAG or general graph, and apply different dependence tests depending

on data structure shape. Their analyses focus on parallelization and do not consider local-

ity, but we believe their approaches might inform an automatic transformation framework

that implements our techniques.

7.6 Spatial locality in irregular algorithms

A large number of prior studies have investigated improving spatial locality in irregular

algorithms. Truong et al. propose ialloc to facilitate programmer driven field reorganiza-

tion and instance interleaving, where frequently used “hot” fields of many instances are

interleaved, so that “cold” fields do not occupy the same cache line as hot fields [11].

Chillimbi et al. automate this process for Java programs with a profiling and program

transformation tool, and automatically generate field reordering recommendations for C

programs [13]. Separate work by Chillimbi et al. propose ccmorph to reorganize memory

layout of trees and ccmalloc to collocate objects based on programmer provided hints [12],

and perform relayout during garbage collection [10]. Lattner and Adve use a context-

sensitive pointer analysis to segregate distinct instances of heap allocations into separate

memory pools, and thereby enhance locality at the macroscopic level of entire data struc-

tures [14]. Wang et al. also aggregate affinitive heap objects into dedicated memory re-

gions, but do so dynamically without access to the source code [15]. Because these ap-

proaches focus on data layout, they do not target temporal locality, as the transformations

presented in this paper do. We expect our transformations to be complementary to these

spatial-locality-enhancing approaches.
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7.7 Vectorization of tree traversals

Much of the work on using SIMD for tree traversals has come from the graphics do-

main. Prior work proposes various techniques for manual, application specific SIMDiza-

tion of ray-object intersection test traversals. Wald et. al. present an interactive ray tracer

by using packet-based SIMD traversals on packets of four rays [5]. Such packet-based

SIMD traversals work well for coherent eye rays, but break down for secondary rays,

which are necessary to model realistic lighting effects. To circumvent this incoherency

issue, subsequent work has looked to other sources of SIMD. Dammertz et. al. use a quad-

BVH (bounding volume hierarchy with four children per node) and SIMDize computation

across the four children for each individual ray [34]. Pixar used SIMD to test all three

dimensions (x, y, z) of a bounding box at once in rendering the movie “Cars” [35]. Havel

and Herout propose a modified ray-object intersection algorithm which is better suited for

SSE4 which supports a SIMD dot product instruction [36]. They note that applying SIMD

to individual rays get only 10-25% improvement whereas applying SIMD to coherent pack-

ets can get 300%. Our dynamic sorting can make incoherent packets coherent, and opens

up opportunities for substantial performance gains in the ray tracing domain. Furthermore

our technique can be applied automatically.

In the database domain, Kim et. al. propose FAST (Fast Architecture Sensitive Tree)

to accelerate index searches by using SIMD to compare a search value to N keys at once,

where N is the number of keys that can fit in a SIMD register [32]. For example, with

N = 4, a point can compare with a node, the node’s left child, and the node’s right child

at once, and decide which grandchild to move on to. Yamamuro et. al. extend FAST by

compressing keys at lower depths so that more keys can be compared at once [33]. These

techniques capitalize on specific properties of index search: that each point takes a single

path from root to leaf, and that the point-key comparison can be done at multiple levels

simultaneously. For point correlation, Chhugani et. al. propose a novel SIMD friendly

histogram update algorithm, exploiting an alternate source of SIMD instead of vectorizing

the traversals themselves [38].
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Ren et. al. focus on applications where points traverse many pointer based data struc-

tures (e.g., random forests, regular expressions), and manually SIMDize a single point vis-

iting nodes of many structures [37]. Kim and Han propose techniques for efficient SIMD

code generation for irregular loops with array indirection [61]. Barthe et. al. synthe-

size SIMD code given pre/post conditions for irregular loop kernels in C++ STL or C#

BCL [62]. The latter two works do not consider pointer-based irregular structures.

Nuzman and Zaks examine a direct unroll-and-jam approach for vectorization of outer

loops which could help auto-vectorize our transformed point loop [63]. Maleki et. al.

perform a thorough study of modern vectorizing compilers [31]. They find that current

compilers are still lacking: xlc, icc and gcc are able to individually vectorize only 18-

30% of loops extracted from real codes, while they can collectively vectorize 48%. In

particular, they note that traditional vectorizing compilers primarily target regular loops;

our transformations hence open traversal codes to automatic vectorization.
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8. CONCLUSIONS

This dissertation is the first to develop general compiler transformations and optimizations

to automatically enhance the performance of tree traversal algorithms. We investigated

two sources of performance improvement: locality enhancement and vectorization. We

have developed techniques for both sources, and demonstrated that these techniques can

be automatically applied by an optimizing compiler, delivering substantial performance

improvements, hence relieving programmers of manual, error-prone, application-specific

effort.

8.1 Enhancing locality

We presented point blocking and traversal splicing, two comprehensive, general, auto-

matic transformations that applies to tree traversal codes such as Barnes-Hut and nearest

neighbor. These transformations are analogs of the classical loop tiling transformations for

tree traversal algorithms: point blocking is equivalent to tiling the point loop so that a point

block stays in cache, and traversal splicing is equivalent to tiling the traversal loop so that

a partial tree stays in cache.

Point blocking works well when combined with a manual, application specific sorting

optimization. Traversal splicing exploits the insight that during a point’s traversal of a tree,

its remaining traversal structure can be predicted from its past behavior, and performs a se-

mantics oblivious dynamic sorting on the fly. Hence the effectiveness of traversal splicing

is not dependent on first performing any application-specific, semantics-aware hand trans-

formation. Often the best performance is attained by combining both point blocking and

traversal splicing.

We presented TREESPLICER, a compiler framework which can automatically apply

point blocking and/or traversal splicing. TREESPLICER uses autotuning techniques to se-
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lect suitable parameters (e.g., block size, splice depth) for our transformations. We demon-

strated that for six benchmark algorithms, a combination of point blocking and traversal

splicing can deliver single-thread speedups of up to 8.71 (geometric mean: 2.48) over

baseline implementations, just from better locality.

8.2 Vectorization

We presented automatic transformations to reschedule tree traversal algorithms to ef-

fectively SIMDize them. Our scheduling techniques build on aforementioned techniques

which enhanced locality for these algorithms. Point blocking exposes a loop structure

within the traversal function which can be SIMDized (as in manually transformed packet-

based SIMD traversals), and compacts points to improve SIMD utilization. Traversal splic-

ing pauses points at predesignated nodes, and reorders the points based on their past traver-

sal history. This dynamic sorting groups points with similar traversals together so that

SIMD utilization is further enhanced.

We demonstrated that dynamic sorting dramatically improves SIMD utilization to the

point that it is very close to ideal. This enhanced utilization results in significantly better

SIMD performance, yielding speedups of up to 6.59 (geometric mean: 2.78). Our tech-

niques can deliver SIMD speedups even in algorithms where the incoherency of points

have previously forced researchers to look for other sources of SIMD.
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