
Greenwich Academic Literature Archive (GALA)
– the University of Greenwich open access repository

http://gala.gre.ac.uk

__

Citation:

McManus, Kevin (1996) A strategy for mapping unstructured mesh computational mechanics
programs onto distributed memory parallel architectures. PhD thesis, University of Greenwich.

__

Please note that the full text version provided on GALA is the final published version awarded

by the university. “I certify that this work has not been accepted in substance for any degree,

and is not concurrently being submitted for any degree other than that of (name of research

degree) being studied at the University of Greenwich. I also declare that this work is the result

of my own investigations except where otherwise identified by references and that I have not

plagiarised the work of others”.

McManus, Kevin (1996) A strategy for mapping unstructured mesh computational mechanics

programs onto distributed memory parallel architectures. ##thesis _type## , ##institution##

Available at: http://gala.gre.ac.uk/6249/

__

Contact: gala@gre.ac.uk

http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

H919S2

A Strategy for Mapping Unstructured Mesh

Computational Mechanics Programs onto

Distributed Memory Parallel Architectures

Kevin McManus

A thesis submitted in partial fulfilment of the

requirements of the University of Greenwich

for the Degree of Doctor of Philosophy

25th September 1995

Revised 22nd February 1996

Centre for Numerical Modelling and Process Analysis

School of Computing and Mathematical Science

University of Greenwich

London, UK

To Libby

Acknowledgements

There are a number of people who I would like to thank for their help during the time

that it has taken me to write this thesis.

My supervisors, Professor Mark Cross and Doctor Steve Johnson for their invaluable

support and guidance.

My colleagues, Chris Bailey, Peter Chow, Nick Croft, Emyr Evans, John Ewer, Yvonne

Fryer, Cos lerotheou, Peter Lawrence, Peter Leggett, Miltos Petridis and Chris Walshaw,

for their help and patience in assisting me to write this thesis.

The staff and researchers at the School of Computing and Mathematical Science for

providing a pleasant working environment.

The Engineering and Physical Science Research Council for supplying the funding that

allowed me to escape from the pressures of industry and rediscover the world of academia.

n

Abstract

The motivation of this thesis was to develop strategies that would enable unstruc-

tured mesh based computational mechanics codes to exploit the computational advan-

tages offered by distributed memory parallel processors. Strategies that successfully

map structured mesh codes onto parallel machines have been developed over the pre-

vious decade and used to build a toolkit for automation of the parallelisation process.

Extension of the capabilities of this toolkit to include unstructured mesh codes requires

new strategies to be developed.

This thesis examines the method of parallelisation by geometric domain decomposi-

tion using the single program multi data programming paradigm with explicit message

passing. This technique involves splitting (decomposing) the problem definition into P

parts that may be distributed over P processors in a parallel machine. Each processor

runs the same program and operates only on its part of the problem. Messages passed

between the processors allow data exchange to maintain consistency with the original

algorithm

The strategies developed to parallelise unstructured mesh codes should meet a num-

ber of requirements:

The algorithms are faithfully reproduced in parallel.

The code is largely unaltered in the parallel version.

The parallel efficiency is maximised.

The techniques should scale to highly parallel systems.

The parallelisation process should become automated.

Techniques and strategies that meet these requirements are developed and tested in this

dissertation using a state of the art integrated computational fluid dynamics and solid

mechanics code. The results presented demonstrate the importance of the problem par-

tition in the definition of inter-processor communication and hence parallel performance.

The classical measure of partition quality based on the number of cut edges in the

111

mesh partition can be inadequate for real parallel machines. Consideration of the topol-

ogy of the parallel machine in the mesh partition is demonstrated to be a more significant

factor than the number of cut edges in the achieved parallel efficiency. It is shown to be

advantageous to allow an increase in the volume of communication in order to achieve

an efficient mapping dominated by localised communications. The limitation to parallel

performance resulting from communication startup latency is clearly revealed together

with strategies to minimise the effect.

The generic application of the techniques to other unstructured mesh codes is dis-

cussed in the context of automation of the parallelisation process. Automation of par-

allelisation based on the developed strategies is presented as possible through the use

of run time inspector loops to accurately determine the dependencies that define the

necessary inter-processor communication.

IV

Contents

1 Introduction 2

1.1 The Nature of a Parallel Machine 2

1.2 The Nature of an Unstructured Mesh Code 5

1.3 Objectives of Parallelisation 7

1.4 Parallelisation Strategies 9

1.5 Parallelisation by Domain Decomposition 11

2 Parallel Processing 13

2.1 Processor Interconnection 14

2.2 Inter-Processor Communication 15

2.3 Communication Model 18

2.3.1 Shared Memory............................. 18

2.3.2 Message Passing 18

2.4 Code Structure 19

2.4.1 Parallel Utility Library 21

2.4.2 Parallel Communication Library 22

2.4.3 Communication Harness 22

3 Domain Decomposition 25

3.1 Representation of an Unstructured Mesh 26

3.2 Mesh Partitioning 28

3.2.1 Load Balance 29

CONTENTS

3.2.2 Communication Balance 30

3.2.3 Processor Topology Mapping 31

3.2.4 Partitioning Algorithms 34

3.2.5 Parallel Partitioning 39

3.3 Mesh Decomposition 40

3.3.1 Derive Secondary Partitions 41

3.3.2 Overlap Construction 43

3.3.3 Parallel Execution Control and Renumbering 46

3.3.4 Overlap Communication 51

4 Algorithm Decomposition 57

4.1 UIFS - Unstructured Incompressible Flow and Stress 58

4.1.1 The FV Fluid Dynamics Scheme 58

4.1.2 The FV Solid Mechanics Scheme 61

4.1.3 Integration within UIFS 66

4.2 Parallelisation of UIFS 68

4.2.1 Partitioning 69

4.2.2 Renumbering 70

4.2.3 Communication 70

4.2.4 Parallel Utilities 71

4.3 Matrix Decomposition 72

4.4 Iterative Methods 75

4.4.1 Jacobi Method 76

4.4.2 Gauss-Seidel SOR 79

4.4.3 Conjugate Gradient 81

4.4.4 Summary 83

5 Performance of the Parallel Code 85

5.1 Measuring Performance 86

5.1.1 Speed-up 87

VI

CONTENTS

5.1.2 Parallel Efficiency 88

5.1.3 Scalability 88

5.2 Irregular Shape Test Case 90

5.2.1 Fluid Dynamic Test Case 94

5.2.2 Solid Mechanics Test Case 94

5.2.3 Solidification Test Case 95

5.3 Performance on the Transtech Paramid 96

5.3.1 Fluid dynamic test case 100

5.3.2 Solid mechanics test case 103

5.3.3 Solidification test case 106

5.4 Improving Performance 109

5.4.1 Latency Reduction 109

5.4.2 Flow and Heat Solvers 109

5.4.3 Solid Mechanics Solver Ill

5.4.4 The Effect of Optimised Solvers on the Solidification Test Case . . 114

5.4.5 Asynchronous Communication 114

5.5 Summary 120

6 Automation of Parallelisation 122

6.1 Computer Aided Parallelisation Tools 122

6.1.1 Dependence Analysis 123

6.1.2 Data Partitioning 124

6.1.3 Execution Control 125

6.1.4 Communication 125

6.2 Generic Parallelisation Methods for Unstructured Mesh Codes 126

6.2.1 Application of CAPTools Structured Mesh Techniques to Unstruc-

tured Mesh Codes 128

6.2.2 Data Structures for an Unstructured Mesh 129

6.2.3 Inspector Loops 131

vn

CONTENTS

6.2.4 Partitioning 132

6.2.5 Communication Generation 133

6.2.6 Renumbering 133

6.3 Summary 136

7 Other Parallel Issues 137

7.1 Are Further Improvements Possible? 137

7.1.1 Layered Overlaps 138

7.1.2 Machine Topology Profile 138

7.1.3 Dynamic Load Balance 139

7.1.4 Other Communication Schemes 140

7.2 Difficult Problems 141

7.2.1 Inhomogeneous Problems 141

7.2.2 Adaptive Meshing 142

7.2.3 Long Range Dependencies 142

7.3 Are there any alternatives? 143

7.3.1 Parallel Mesh Generation 143

7.3.2 Parallel Visualisation 144

7.3.3 Virtual Shared Memory 144

8 Conclusions 147

8.1 Were the Objectives Met? 147

8.1.1 Objective (i) Minimise the Changes to the Original Algorithm . . 147

8.1.2 Objective (ii) Minimise the Visibility of the Parallel Code 148

8.1.3 Objective (iii) Maximise Parallel Efficiency 150

8.1.4 Objective (iv) Portability to Most DM MIMD Platforms 151

8.1.5 Objective (v) Scalability of Computation151

8.1.6 Objective (vi) Scalability of Memory 152

8.1.7 Objective (vii) Automate the Parallelisation Process 152

8.2 Summary 152

vin

CONTENTS

A Parallel Utilities 154

A.I Parallel Included Declarations 154

A.2 Parallel Utility Library 156

B Partition List 159

C Parallel Iterative Solvers 160

C.I Jacobi Solver 161

C.2 Gauss-Seidel Solver 166

C.3 Diagonally Preconditioned Conjugate Gradient Solver 168

D Modified Parallel Iterative Solvers 172

D.I Modified Jacobi Solver 172

D.2 Modified Diagonally Preconditioned Conjugate Gradient Solver 175

E Asynchronous Parallel Iterative Solvers 179

E.I Asynchronous Jacobi Solver 179

E.2 Asynchronous Diagonally Preconditioned Conjugate Gradient Solver ... 182

IX

List of Figures

1.1 Four mesh categories. 5

1.2 Automatically generated three dimensional unstructured mesh. 6

1.3 Possible data dependency stencils over an unstructured mesh. 7

2.1 Shell structure of the parallel code. 20

3.1 Entity relationship diagram for a three dimensional unstructured mesh. . 28

3.2 Example run times for two possible partitions over 5 processors. 30

3.3 Processor interconnection mapped to a pipe mesh partition. 32

3.4 Partitions of a 2D mesh into (a) ID, (b) 2D and (c) uniform topologies

with the corresponding sub-domain connectivity graphs. 33

3.5 Mesh partitioned into three parts with overlap elements applied. 40

3.6 A mesh of 28 triangles divided into two sub-domains with the overlaps

required for the flow scheme. 44

3.7 A mesh of 28 triangles divided into two sub-domains with the overlaps

required for the stress scheme. 45

3.8 A mesh of 28 triangles divided into two sub-domains showing the renum-

bering of grid points from global to local numbering. 50

3.9 A mesh of 28 triangles divided into two sub-domains showing the renum-

bering of elements from global to local numbering. 50

3.10 Overlap update communication scheme. 52

3.11 Mesh of 42 triangular elements. 54

LIST OF FIGURES

3.12 Mesh of 42 triangular elements partitioned into three renumbered sub-

domains. 55

4.1 Formation of a control volume from sub-control volumes around point P. . 63

4.2 Mapping of a finite volume element to a reference element. 64

4.3 Flowchart for UIFS. 67

4.4 Matrix form for a five point element stencil over a 4 x 4 regular mesh. . . 73

4.5 4x4 mesh operated on as 2 sub-domains showing the transfer of data into

the overlaps on each renumbered sub-domain. 74

4.6 Mesh of 42 triangular elements. 74

4.7 Mesh of 42 triangular elements partitioned into three renumbered sub-

domains. 75

4.8 Matrix for the 42 triangle mesh. 76

4.9 Matrices for the 42 triangle mesh partitioned into three sub-domains. ... 77

5.1 The number of cut edges against the number of partitions for a range of

partition strategies on the 3,034 triangle irregular shape mesh. 91

5.2 The number of cut edges against the number of partitions for a range of

partition strategies on the 10,027 triangle irregular shape mesh. 91

5.3 The number of cut edges against the number of partitions for a range of

partition strategies on the 30,064 triangle irregular shape mesh. 92

5.4 The number of cut edges against the number of partitions for a range of

partition strategies on the 60,005 triangle irregular shape mesh. 92

5.5 The number of cut edges against the number of partitions for a range of

partition strategies on the 119,822 triangle irregular shape mesh. 93

5.6 Flow vectors for the fluid dynamic test case. 94

5.7 Mesh displacement for the solid mechanics test case. 95

5.8 Residual stress contours and flow vectors for the solidification test case. . 96

5.9 Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 3,034 triangle mesh. 100

XI

LIST OF FIGURES

5.10 Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 10,027 triangle mesh. 100

5.11 Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 30,064 triangle mesh. 101

5.12 Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 60,005 triangle mesh. 101

5.13 Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 119,822 triangle mesh. 102

5.14 Best speed-up obtained for the fluid dynamic test case against the number

of processors for a range of mesh sizes. 102

5.15 Graph of speed-up for the solid mechanics test case against the number

of processors for a range of partition strategies using a 3,034 triangle mesh. 103

5.16 Speed-up for the solid mechanics test case against the number of proces-

sors for a range of partition strategies using a 10,027 triangle mesh. 103

5.17 Speed-up for the solid mechanics test case against the number of proces-

sors for a range of partition strategies using a 30,064 triangle mesh. 104

5.18 Speed-up for the solid mechanics test case against the number of proces-

sors for a range of partition strategies using a 60,005 triangle mesh. 104

5.19 Speed-up for the solid mechanics test case against the number of proces-

sors for a range of partition strategies using a 119,822 triangle mesh. . . . 105

5.20 Best speed-up obtained for the solid mechanics test case against the num-

ber of processors for a range of mesh sizes. 105

5.21 Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 3,034 triangle mesh. 106

5.22 Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 10,027 triangle mesh. 106

5.23 Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 30,064 triangle mesh. 107

xn

LIST OF FIGURES

5.24 Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 60,005 triangle mesh. 107

5.25 Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 119,822 triangle mesh. 108

5.26 Best speed-up obtained for the solidification test case against the number

of processors for a range of mesh sizes. 108

5.27 Speed-up obtained with the optimised (solid lines) and unoptimised (dashed

lines) Jacobi solver for the fluid dynamics test case with a range of mesh

sizes. 110

5.28 Graph of speed-up obtained with the optimised (solid lines) and unopti-

mised (dashed lines) conjugate gradient solver for the solid mechanics test

case with a range of mesh sizes. 112

5.29 Speed-up obtained with the optimised conjugate gradient solver using a

hypercube (solid lines) and a pipeline (dashed lines) global commutative

for the solid mechanics test case with a range of mesh sizes. 113

5.30 Speed-up obtained with the optimised solvers for the solidification test

case with a range of partition strategies using a 60,005 triangle mesh. . . 115

5.31 Mesh of 42 triangular elements partitioned into three sub-domains renum-

bered for asynchronous communication. 116

5.32 Matrices for the 42 element mesh partitioned into three sub-domains

renumbered for asynchronous communication.117

5.33 Speed-up obtained with the asynchronous (solid lines) and synchronous

(dashed lines) optimised solvers for the fluid dynamic test case with a

range of mesh sizes. 118

5.34 Speed-up obtained with the asynchronous (solid lines) and synchronous

(dashed lines) optimised solvers for the solid mechanics test case with a

range of mesh sizes. 119

xin

LIST OF FIGURES

5.35 Speed-up obtained with the asynchronous optimised solvers for the so-

lidification test case with a range of partition strategies using a 60,005

triangle mesh. 120

6.1 Four element mesh. 129

7.1 Foil mesh partitioned over four processors. 142

7.2 Foil mesh partition with solver balancing. 142

xiv

List of Tables

3.1 Partition mapping strategies provided by JOSTLE 39

3.2 Element indirection pointer arrays for the partition illustrated in Fig-

ure 3.9 51

3.3 Communication operations required for a simple chain of processors ... 53

Chapter 1

Introduction

1.1 The Nature of a Parallel Machine

The quest for greater performance has driven the development of computer technology at

an exponential rate. Clock speeds and bus widths continue to increase while low power

semiconductor technologies now permit Very Large Scale Integration (VLSI) to shrink

the Central Processing Unit (CPU) of a 64bit computer onto a single silicon substrate.

It has long been assumed that there is a fundamental limit to the performance that may

be achieved by a single processor. How small can semiconductor features be made? How

fast can a semiconductor switch operate? When does the technology reach a fundamental

limit? [MF95]

Since the 1960's pipelined or vector processors have been at the heart of many su-

percomputers. Rather than operating upon a single variable at a time, these machines

increase their computational performance by allowing a vector of data to be operated

upon simultaneously [HJ81]. The achievable performance depends upon successfully

loading the appropriate vector operands from memory [Rod82, Ier90]. Initially the vec-

torisation of code was an optimisation for the code author to implement. Subsequent

development led to the vectorising compiler which could automatically extract the vector

parallelism from the source code [DLD93].

An extrapolation of this concept led to the development of the array structured Sin-

CHAPTER 1. INTRODUCTION

gle Instruction, Multiple Data (SIMD) [Fly72] parallel machines in which whole fields

of a variable could be subjected to the same operation in parallel [HB84]. These ma-

chines possessed large numbers of small processors (64 in Illiac-IV circa 1970, 65536 in

DAP circa 1980) and gave rise to the description Massively Parallel Processing (MPP).

SIMD machines have changed little since their conception and can still sustain a credible

throughput in comparison with more modern architectures. Like the vector machines,

they rely on running a code which maps well to the machine [Par82]. In this case a reg-

ularly structured code containing few inherently serial operations is required. Unlike the

vector machines, automatic compilation of serial code for SIMD processing has not been

possible. Mapping of irregular problems to efficiently utilise the power offered by SIMD

machines has consequently been the focus of much research [Far89, FFL93, Wil91j. The

difficulties encountered in successfully programming for SIMD has contributed to the

architecture falling from popularity.

The notion that it may be more worthwhile to build a number of modest individual

computers rather than one large one is not new. Many such parallel machines have

now been successfully built, used and become obsolete [TW91]. Such machines are

categorised as Multi Instruction, Multi Data (MIMD) [Fly72], of which there are two

main variants: Distributed Memory (DM), in which each processor is equipped with its

own private memory and Shared Memory (SM), where the memory is common to all

processors [AG94]. Now that integration density can place what was until very recently

considered a supercomputer onto a single chip, and furnish it with a quantity of memory

in a similarly small space, with sufficiently low energy requirements to allow the intimate

connection of many processing elements, this makes highly parallel MIMD the probable

architecture for the next generations of supercomputers [FWM94].

The von Neumann programming model of a computer has not changed during these

developments [vN66]. Programs continue to be written as a series of instructions to

be executed in sequence. Indeed many algorithms depend upon the sequential order

of variable evaluation. A diversity of new languages and paradigms have consequently

been developed that attempt to express and exploit parallelism with concepts such as

CHAPTER 1. INTRODUCTION

Communicating Sequential Processes [Hoa86], tasks (Ada, Occam), data flow [DeC89]

and data parallelism (FortranD, HPF) [vH92, Ric95]. There exists, however, not only

a legacy of software that has been written in a simple sequential procedural manner,

but also a large base of program developers who have no interest in parallel processing.

Program developers are content with the von Neumann model as a means of algorith-

mic expression and want nothing more than a larger, faster serial processor. A means

of efficiently mapping existing and future software onto DM MIMD platforms is there-

fore required. The success of the vectorising compilers has led to an expectation that

parallelising compilers will eventually be produced [ZC90, CBB+94]. Success has been

shown with automatic parallelism for shared memory parallel MIMD systems with small

numbers of processors (Cray Y-MP, C90 (actually shared memory vector parallel), SGI

Power Challenge, Sun Sparc20MP, Digital 8400) [Sun94]. But shared memory is unlikely

to be feasible for large numbers of processors as the memory bandwidth does not scale

with the number of processors. Virtual shared memory systems that allow distributed

memory to appear as shared memory have shown some limited success (Kendall Square

KSR1, Cray T3D) but fail to reach the potential peak machine performance largely as

a consequence of the high degree of inter-processor communication required to sustain

memory/cache coherence [Bom93]. The advantage of distributed memory is freedom

from the SM bandwidth problem as the DM bandwidth scales automatically with the

number of processors. This is seen to outweigh the disadvantage of having to explicitly

express the distribution, communication and synchronisation of data between processors.

The argument for DM MIMD is essentially an economic one. An enormous amount of

development is directed towards the cost-effective high-performance workstation market.

No matter how powerful these machines become there will always exist users who seek

greater processing power. The simple interconnection of workstation technology allows

the DM MIMD parallel machine to capitalise on the economy of scale of workstation

development and provide the required power at a cost which is highly competitive in

comparison with other High Performance Computing (HPC) technologies [Smi90]. The

number of floating point operations (Flops) per dollar has become a new yardstick for

CHAFTER 1. INTRODUCTION

the performance measurement of HPC.

1.2 The Nature of an Unstructured Mesh Code

Computational Mechanics (CM) may be applied to the modelling of diverse physical

systems (structural mechanics, structural dynamics, fluid dynamics, electromagnetics,

magnetohydrodynamics, etc.). The technique of applying a system of equations over a

discretised domain leads inevitably to the concept of a mesh or grid. A mesh describes

the spatial nature of a discretisation. Wherever possible this thesis will deal with 3

dimensional space, this is however not always convenient for the purposes of illustration

or example, where 2 dimensional space will normally be used for clarity.

Figure 1.1: Four mesh categories.

The complexity of a computational mesh ranges from the simple regular structured

to fully unstructured. Structured grids, suitable for transport phenomena modelling,

were widely used in the development of Finite Volume (FV) (finite difference / control

volume) schemes for Computational Fluid Dynamics (CFD) [PatSO]. Irregular and block

CHAPTER 1. INTRODUCTION

structured grids were introduced to allow FV schemes to work with complex geometries

and a deformable mesh. The Finite Element (FE) method for structural and thermal

analysis introduced an unstructured mesh to represent arbitrarily complex geometries

[Zie77]. The desire to analyse flow in complex three dimensional geometries motivated the

development of FE-CFD codes [MSSP88]. Difficulties with continuity and convergence

in FE-CFD [Che91] led to recent work extending FV methods to unstructured grids

[Cho93] and solid mechanics [FBCL91, CBCP92]. Unstructured mesh codes are unlikely

to offer the computational efficiency of structured mesh codes. The implicit nature of a

structured mesh avoids the need for indirection in variable addressing and allows great

efficiency of coding, cache utilisation and vectorisation. But unstructured meshes provide

a far greater flexibility for the modelling of complex geometries and avoid the need for

the complexity of a block structured code. Now that automatic generation of complex

unstructured meshes has become readily available [Law94] the focus of development is

towards unstructured mesh codes.

Figure 1.2: Automatically generated three dimensional unstructured mesh.

In parallelising a program the concern is not so much with the nature of the algo-

CHAPTER 1. INTRODUCTION

rithms or intentions of the program but rather the nature of the data dependency. The

data dependency for a CM code stems from the integration stencil required for solution

of the mesh based discretisation of Partial Differential Equations (PDE's). For example,

the value of pressure in an element may be calculated from the pressure in all adjacent

elements with a four point integration stencil as in Figure 1.3a. Temperature at a node

may be expressed in terms of the temperature at all connected nodes (Figure 1.3b).

The stencil may be deeper than nearest neighbour and extend to next neighbours (Fig-

ure 1.3c). Additionally the data dependency may be more extensive than simply the

integration stencil, for instance the contribution from adjacent elements may need to be

evaluated in terms of some node based value (Figure 1.3d).

Figure 1.3: Possible data dependency stencils over an unstructured mesh.

1.3 Objectives of Parallelisation

There are a number of rudimentary objectives that whilst not mandatory would certainly

be desirable outcomes from a parallelisation strategy.

CHAPTER 1. INTRODUCTION

i) Minimise the changes to the original algorithm:

The parallel code should ideally produce identical results to the original serial

code. This can be a necessary requirement for acceptance by code users who are

familiar with the serial code and require confidence that the results generated by

the parallel code execution are every bit as reliable as those produced by the serial

code.

ii) Minimise the visibility of the parallel code:

The parallel code should be hidden from both the serial code developers and the

parallel code users. This permits transparent maintenance of the parallel code

alongside the serial code by the serial code developers. In addition this avoids

deterring users from the parallel code. Code developers and users may be safely

assumed to have no interest in parallelism and a significant interest in rapid code

execution.

iii) Maximise parallel efficiency:

The parallel code must show significant speed-up over the serial code. The primary

motivation for parallelisation is to reduce the code run-time. The parallel code

must therefore use the parallel machine efficiently, otherwise the time and money

expended on a parallel machine would be better invested on one or more serial

machines.

iv) Portability to most DM MIMD platforms:

Parallel code needs to make good use of most currently available hardware, the DM

MIMD model provides an efficient lowest common denominator hardware model. A

programming model is therefore also required to necessitate only the most primitive

platform support without loss of efficiency.

v) Scalability of computation:

DM MIMD Massively Parallel Processing (MPP) is the direction in which the high

Flop per Dollar supercomputers are being developed. Although there continues

to be much discussion concerning the implementational details of such MPP's, the

CHAPTER 1. INTRODUCTION

development of high performance, highly integrated serial processors will inevitably

lead to the interconnection of increasing numbers of such processors (Cray T3D,

Intel Paragon, IBM SP2, TMC CM5). To take advantage of the full power of MPP's

the performance of a parallel code needs to be able to scale with the number of

available processors. Doubling the number of processors should ideally halve the

run-time.

vi) Scalability of memory:

Larger machines allow larger problems to be solved. To make full use of the

distributed memory a parallel code must be able to distribute a problem over

the DM machine. Globally dimensioned data items (data objects that are not

distributed) must therefore be avoided.

vii) Automate the parallelisation process:

The human effort required to parallelise a CM code is significant. The majority

of this effort is demonstrably automatable for structured mesh codes [JICL94,

CIJL94]. A strategy is required which can minimise human intervention in the

process of parallelising unstructured mesh based codes.

1.4 Parallelisation Strategies

Why use a parallel processor? Why not simply use many serial processors? There are

two significant reasons; one is to provide a machine which can sustain a problem size

that is too large to fit onto a serial processor, an other is to reduce the critical path to

a solution. Given a set of interrelated tasks, a task interaction graph can be produced

to describe the operations required to find the solution. Tasks may be carried out in

sequence, one after the other, or some tasks may be executed in parallel as concurrent

processes. The greater the level of concurrency that can be employed the less time is

required to achieve the solution. Parallelism in computation exists in many forms and

many different approaches have been used to exploit the parallelism that can be found

in CM codes.

CHAPTER 1. INTRODUCTION

Task farming, for example, has the advantage of potentially high parallel efficiency

by keeping all processors busy. As soon as a processor completes one task another

is initiated. The technique is however, only suited to problems which present a large

number of unrelated tasks such as Monte Carlo techniques. To achieve any efficiency

the amount of data to be sent to and returned from each task must be insignificant in

comparison to the task computation, which for a CM code is unlikely.

Algorithmic parallelisation involves each processor operating on different parts of a

algorithm. For example solving flow in three dimensions could be achieved by solving for

each dimension on differing processors. Taking the example further other computed vari-

ables could be distributed over a set of processors. Each processor calculates its variable

and hands the problem to the processor computing the next stage in the algorithm. This

scheme has little to commend it as it suffers from a high communication requirement

and poor efficiency as each stage in the calculation will take a different amount of time

leaving most of the processors waiting for data.

Geometric decomposition partitions the problem space over a set of processors. Each

processor executes the same algorithm on their own section of the problem. This method

has the advantage of flexibility to allow variations on the decomposition strategy to be

used to minimise the communication and maximise processor utilisation. Partitioning

may be based on the mesh geometry or topology, or on the distribution of computational

effort within the algorithms used in the code. For example computational partitioning of

a CM code based around a direct solver may be dominated by the solver which dictates

the decomposition of the problem. Often a wraparound partition of a matrix (i.e. with

processors, processor owns matrix rows) may be required to

keep the processors busy in the solver. This can also determine how other parts of the

mesh are to be distributed. For example in the FAMCALC parallelisation [JAC92] the

finite elements are distributed in a wraparound fashion according to their inclusion in

the system matrix. In this case a large communication overhead is incurred to allow

satisfactory processor utilisation. As is often the case with CM codes based on short

range interactions communication can be minimised and processor utilisation maximised

10

CHAPTER 1. INTRODUCTION

by a domain decomposition based on the geometry (topology) of the mesh.

1.5 Parallelisation by Domain Decomposition

Domain Decomposition (DD) is a generic name given to a variety of computational

activities which involve the division of a problem space into two or more parts that

may be operated on separately to some advantage. Such is the interest in DD that

there is an annual conference devoted to domain decomposition methods in all their

diversity [KX93]. Originally developed as a means of solving engineering problems that

were too large to fit into machine memory [Kro63], there has been a revival of interest

in domain decomposition as a means of mapping CM codes onto parallel computers

[Wil90, BCG93]. Parallelisation by DD is a divide and conquer strategy in which a

problem domain is decomposed into a set of sub-domains which can then be operated

on in parallel. Attempts have been made at new parallel algorithms which seek to find a

partial solution for each sub-domain and then reconcile the partial solutions across the

sub-domain interfaces [FXR92, Lai95j. This runs contrary to the strategies discussed in

this thesis which should meet objective (i) (and (ii)) and maintain as far as possible the

integrity of the original algorithm across the partitioned domain. This thesis is concerned

only with geometric DD as a method for the direct parallelisation of unstructured mesh

based CM codes for DM MIMD computers. This is a technique that is well suited to the

short range dependence typical of a CM iterative method (Section 1.2).

The initial step in applying DD to an unstructured mesh based code is to obtain a

partition of the mesh that allows the problem to be distributed amongst the available

processors in such a way as to equally apportion the computation time on each of

processors. If this process is 100% efficient then the processing time for a problem may

be divided by To achieve a high parallel efficiency with a large has consequently

become the subject of much research. Much success has been shown with the paral-

lelisation of structured grid codes using DD with message passing [JC91, GCC+93] ,

wherein the partition of the mesh is closely mapped onto the processor interconnection

11

CHAPTER 1. INTRODUCTION

topology in order to minimise the inter-processor communication. Some work on un-

structured mesh codes following the same topology mapping principle has shown success

[RL90]. A generic method that can provide good performance without requiring an ab-

solute adherence to the processor topology is needed to allow automated decomposition

of unstructured meshes with scalability and efficient portability.

A number of languages and environments have been developed for the generation of

code which may be automatically parallel. Parallel languages have much to offer, but

are of limited use for 'dusty deck' codes and more importantly of little interest to serial

code developers. It is simply not acceptable to require code authors to learn new skills

in order to be able to use parallel machines. It is a hard enough task to author a CM

code in the first instance without having to spend more time and effort in persuading

the code to run on a parallel machine. Environments and libraries for parallelisation

may point the way for development of parallel code that is transparent to both the code

developers and the code users, but they fall a long way short of addressing the entire

parallelisation problem. The Computer Aided Parallelisation Tools project (CAPTools)

at the University of Greenwich [JICL94, CIJL94] seeks to resolve the parallelisation of

structured mesh Fortran codes through the use of an toolkit based on highly

sophisticated interprocedural dependence analysis. It is hoped that the strategies devel-

oped in this thesis will extend scope of the CAPTools package towards the parallelisation

of unstructured mesh codes.

12

Chapter 2

Parallel Processing

A Distributed Memory Multi-Instruction Multi-Data (DM-MIMD) parallel computer

is, in the simplest of terms, a number of interconnected processors, each of which is

equipped with a quantity of memory. The combination of processor and memory is re-

ferred to as a Processor Element (PE). Programs (processes) running on the processors

can communicate with each other in what has been described and formalised as concur-

rent communicating sequential processes [Hoa86]. In this way the processors operate in

unison to provide a high overall rate of computation.

Many different approaches to programming for a DM-MIMD parallel machine have

been explored [Kri89, LC90]. The parallel programming strategy used in this thesis is a

Single Program Multi Data (SPMD) message passing paradigm. Each processor runs the

same program (process) on its part of the data set communicating with other processors

through the exchange of messages. The terms processor and process for the purposes

of this thesis are consequently interchangeable. This strategy has similarities with the

data parallel strategy [Hil94] but uses an explicit derivation the data partition based on

the mesh. The strategy is actually a master slave scheme during input/output processes

in that one processor is the designated master simply because it has control of the i/o

processes. Parallel i/o hardware is still uncommon and any dependency on such platform

specific features would pose a significant barrier to portability.

Any time spent in communication between the processors is an overhead not incurred

13

CHAPTER 2. PARALLEL PROCESSING

with serial processing and so to use a parallel machine efficiently the inter-processor com-

munication must be minimised. Successful inter-processor communication requires a high

degree of synchronisation between the processes [Val90]. Successful parallel processing

requires that no processor needs to idle whilst waiting to synchronise with other pro-

cessors. To achieve an efficient parallel implementation the workload must therefore be

balanced amongst the processors.

2.1 Processor Interconnection

There are many varied and novel methods by which processing elements may be inter-

connected. The relative merits of the differing interconnection strategies are discussed

at length by several authors [TW91, AG94, FWM94]. A number of interconnection

topologies have been tried. The richly connected hypercube (nCUBE 2s), two and three

dimensional arrays, often looped into a ring or torus connection (Intel Paragon, Cray

T3D) and other connections such as fat trees (Thinking Machines CMS) have also been

used [vanderSteen94]. The advent of the INMOS transputer [Inm89c, Inm89a] with four

high speed serial communication ports integrated into a single chip CPU popularised the

scheme of a simple interconnected mesh of relatively low cost, highly integrated PE's

[HJ88]. The companion chip to the transputer family, the Inmos C004 32-way crossbar

switch [Inm89c, Inm89b] provides at low cost a means of reconfiguring the intercon-

nection topology of an array of transputers. This model has persisted into many new

designs, most probably as a result of the low cost of implementation coupled with a po-

tentially high performance. Different switching technologies have been employed (IBM

SP2, NEC Cenju-3, Meiko Computing Surface) but the reconfigurable interconnection

model remains largely similar. Consequently this is the model of PE interconnection that

this thesis will focus upon. Because this model of a parallel machine relys upon no special

features the concepts discussed will be applicable to the majority of DM-MIMD plat-

forms. Highly sophisticated and complex processor interconnections suffer significantly

from the high cost of implementation. To remain cost effective the interconnection cost

14

CHAPTER 2. PARALLEL PROCESSING

must be small in comparison with the PE cost. Additionally the reliance upon machine

specific features in programming may provide a good performance on one platform but

can result in restricted portability. Advanced interconnection features may be imple-

mented on simple platforms through the use of a software communication harness, but

with consequent performance degradation. To achieve a cost effective parallel machine

the investment in processor interconnection must result in a well balanced ratio between

the communication performance and the calculation performance of the individual PE's.

2.2 Inter-Processor Communication

The key parameters for communication between processors are the bandwidth of the

communication channels and the startup latency time to send a message.

The bandwidth is the rate at which a data packet of length may be transferred

between two processors, normally measured in millions of bytes (Megabytes) per second

(MBs" 1). Typical bandwidths may be l.TMBs" 1 per connection for the T800 trans-

puter up to ITOMBs" 1 per connection in the Intel Paragon. For clusters of workstations

connected by ethernet TCP/IP the bandwidth is more like O.QMBs"1 [DD95]. This

bandwidth cannot however be shared simultaneously by all of the processors as they all

share the same ethernet connection. A more meaningful measure of interconnect band-

width may be to divide the sum of the bandwidth of all interconnects in the machine

by the number of PE's to give the bandwidth per processor. Clearly the bandwidths

provided by different parallel systems ranges dramatically over two orders of magnitude.

This spread in performance is even wider if the bandwidth per processor is considered.

The definition of latency varies but should give some measure of the time that it

takes for a communication or message to begin transmission [CDJ95]. Latency is usually

measured in microseconds (//s)and varys markedly from around 3/^s in the Cray T3D up

to 900//S for ATM-100 TCP/IP [DD95].

Measurement of the peak achievable communication performance for a platform can

be misleading. The nature of a parallel code is that execution is synchronised in data

15

CHAPTER 2. PARALLEL PROCESSING

exchanges [Val90]. Ergo the critical communication is not with one individual message

in the machine but with every processor involved in communication. The effect of this on

the actual communication performance is highly dependent upon the machine hardware

implementation. None of the DM machines offer a totally interconnected processor

network and hence the interconnection bandwidth is shared amongst the processors. A

more meaningful measure of latency and bandwidth can be obtained with the processor

interconnects saturated as this reflects more accurately the communication of a typical

code execution [MWC + 95]. It is possible to saturate the interconnects with either local

(near neighbour) or distant (non adjacent) traffic which will give differing measures of

communication performance. The degree to which this will affect measurement is of

course system dependent.

The number of processors (hops) between the source of a message and its destination

affects the time for a message to complete. Jack Dongarra [DD95] considers the per hop

delay to be a linear function of distance and so gives a model of the time required to

transmit bytes of data as:

(2.1)

With start up time (latency) a, per byte time /?, per hop delay 7 and number of hops

The bandwidth of the system can therefore be expressed as:

Hence the peak bandwidth of a system is therefore expressable as:

roc = i (2.3)

A popular measure of the communication performance that combines latency with

bandwidth is the bisection bandwidth denned as the message length at which half

of the peak bandwidth is reached (perhaps better described as the bisection message

length). For a single hop message this reduces to being simply the ratio of latency to

peak bandwidth:

" = (2.4)

16

CHAPTER 2. PARALLEL PROCESSING

It can be useful to consider whether bandwidth or latency is the bound on the per-

formance of a code on a particular platform. The latency is often large in comparison

with the time to transmit an individual data item. Given that the most obvious op-

timisation is to communicate only the data that is absolutely necessary, the next step

is to minimise the number of transmissions that need to be made. Bundling the data

to be communicated into large packets that require infrequent transmission reduces the

latency overhead but incurs the overhead of copying data into buffer space. The extent

to which communication may be buffered depends upon the individual code.

A parallel machine may be characterised by the communication to calculation ratio.

This is sometimes given as the ratio of the time to send a one word message to the time

for a floating point operation [FJL+88]. The notion being that a machine is well bal-

anced if this ratio is less than unity. The actual MFlop performance is seldom maximal.

As processor clock speeds increase to rates well beyond the access times for Dynamic

Random Access Memory (DRAM) cache success rate begins to dominate the returned

processing speed. Communication performance is both code and problem dependent as

to whether latency or bandwidth form the limit. The computation to communication

ratio is consequently somewhat arbitrary and subjective but if considered carefully can

give a reasonably meaningful comparison of machine performance [AG94, FWM94]. A

high ratio is likely to give poor parallel performance, the inter processor communication

causing a processing bottleneck. A very low ratio would suggest that the investment

in communication outweighs the investment in processing. Isolated consideration of the

achievable parallel efficiency or speed-up of an application may give a misleading im-

pression of the machine performance. The users (purchasers) viewpoint is usually more

pragmatic involving wall-clock and dollars [FJL+88j.

17

CHAPTER 2. PARALLEL PROCESSING

2.3 Communication Model

2.3.1 Shared Memory

Prom a programming viewpoint the simplest communication model is the shared memory

model in which the entire machine memory is considered to be shared by all processors.

For a DM-MIMD machine this leads to a locality dependent Non-Uniform Memory Ac-

cess (NUMA) which can be handled to a some extent by advanced compiler techniques

[LP92]. Whilst this presents an attractive model for programming and is amenable to

automatic parallelisation it is an inefficient model for communication, giving rise to many

small communications and hence tending to be latency bound. Nevertheless this can be a

moderately successful communication model for small to medium scale parallelism (2-16

processors) and low latency platforms.

2.3.2 Message Passing

Message passing provides an explicit control of the inter-processor communication in

which data to be transmitted is considered to be a messsage sent to a destination pro-

cessor. This allows greater optimisation of the inter-processor communication and con-

sequently is the communication model adopted in this thesis.

A communication harness of some description is normally used to implement mes-

sage passing. At its most primitive the harness allows message passing between directly

connected processors. More usually some form of 'wormhole' routing is provided that

allows messages to be sent from any processor to any other processor hiding the under-

lying processor interconnection from the programmer [NM93]. A per-hop cost penalty

on non local message passing as discussed in Section 2.1 means that messages should be

wherever possible nearest neighbour (localised) to maximise efficiency. Implementational

details of the message passing paradigm vary greatly but may be contrived to provide a

uniform view of the parallel machine across a wide range of platforms (Section 2.4.2). It

is now widely accepted that shared memory offers a simple port to serial codes to attract

code developers and users to parallel processing but cost effective efficiency can only be

18

CHAPTER 2. PARALLEL PROCESSING

obtained from low latency, high bandwidth, localised message passing.

2.4 Code Structure

Implementation of a message passing parallelisation into an unstructured mesh code

must be largely hidden in order to comply with objective (ii). A structured approach to

the parallel implementation can go a long way towards achieving this aim. The SPMD

paradigm is used in this thesis as it allows a single source code parallel program to be

developed which may be maintained as a serial code by the original code authors. The

DD method adopted requires extension of existing data structures and additional data

structures to define the mesh decomposition and inter-processor communication. These

additional data structures need to circumvent the subroutine parameter lists to remain

hidden. Include files containing common data areas provide a reasonably convenient

way to manage these variables. Mapping of the partitioned mesh to the original mesh

(required to rebuild partioned data for output) requires a global sized data structure

that has to be distributed among the processors in order to remain scalable (objective

In this parallelisation strategy a shell structure illustrated in Figure 2.1 has been

used to build layers of (in) visibility within the code. Around the outside of the shell are

the majority of the original routines which remain unchanged.

At the next level in are the routines from the original code that have been modified to

function in parallel. Most of these routines are changed only slightly in that additional

subroutine calls have been included and some array dimensions and loop lengths are

changed. The i/o routines unfortunately require extensive modification and remain a

difficult area of code to successfully parallelise. Parallel i/o hardware is uncommon and

so a serial pipelined approach has been adopted.

The visible parallel routines are provided by a parallel utilities library which provides

routines that are locationless and directionless and so form a barrier to the visibility of

the parallel implementation. At this level there is no concept of master or slave processor

19

CHAPTER 2. PARALLEL PROCESSING

or indeed processor number, position or communication channel. It is felt that the serial

code developers should have no problem with this view of parallelism.

The communication library provides a barrier to the visibility of the parallel machine.

The communication library consists a very simple set of communication routines used by

the utility library to present a uniform functionality on all machines. This layer provides

a portability interface and provides similar functionality to the many popular high level

parallel communication harness' such as PVM or MPI.

The innermost level is the native communication harness provided for the parallel

machine. Only the most primitive send and receive functions are necessary at this level

thereby guaranteeing portability to most hardware platforms. Higher level communica-

tions at this level may however be used to simplify or improve the implementation of the

communication library.

Figure 2.1: Shell structure of the parallel code.

CHAPTER 2. PARALLEL PROCESSING

2.4.1 Parallel Utility Library

Routines in the utility library are visible at the serial code level and must attempt

to hide the parallel implementation whilst providing a parallel functionality which is

conceptually straightforward. Simplicity of calling is of paramount importance in the

library routines to achieve objective (ii). The routines in the library are described in

Appendix A along with the parallel data declarations. The library is currently written

in terms of the data structures used by the code being parallelised and hence is specific

to that code. This library could however be made general purpose by adoption of a

generic data structure for the utilities, this is discussed further in Chapter 6. The

mesh decomposition routines at this level require extensive data structures and globally

dimensioned variables. Embedding of these routines in the parallel code is not always

possible, mainly due to memory restrictions. In which case they may be used to pre-

process the serial problem files into a domain decomposed problem file that can then be

used by the parallel program in place of the original problem specification. This process

can be made reasonable seamless from the viewpoint of a code user.

Similar functionality has been developed for the Bulk Synchronous Parallel (BSP)

[MR93] package and the Oplus package both from The Oxford Parallel group at the Ox-

ford Computer Laboratory, LOCO from Katholieke Universiteit Leuven, PLUMP from

CSCS in Switzerland [CDE+94] and DIME from Caltech [FWM94]. These packages offer

a range of attractive features for portability, adaptive gridding and dynamic load balanc-

ing. The significant difference between their work and the work presented in this thesis

is that they provide an environment and data structure that supports the of

codes to handle irregular problems so that parallelisation of the code becomes more or

less automatic. CM programmers cannot be expected to take on-board the overhead of

authoring parallel code. This thesis therefore attempts a strategy for the parallelisation

of codes for irregular problems with the intention of developing a methodology

for automation of the parallelisation of old and new codes.

21

CHAPTER 2. PARALLEL PROCESSING

2.4.2 Parallel Communication Library

The parallel communication library imparts portability to the code by providing an in-

terface between the parallel utility library and the machines' communication harness.

Porting the parallel code to a new platform (harness) requires re-writing only the com-

munication library. The library used for this thesis is the CAPLib library developed as

part of the Computer Aided Parallelisation Tools project (CAPTools) at the University

of Greenwich [CIJL94]. This library is constructed in two layers; CAPLib for high level

routines and CAPLow for the low level portability shell. This further simplifies the porta-

bility of code using the CAP library system as only CAPLow requires porting. CAPLib is

currently available for C Toolset on the Transtech Paramid, 3L Fortran on transputers,

PVM2, PVM3 and MPI with Cray shared memory under development.

2.4.3 Communication Harness

A communication harness is in many ways analogous to an operating system in that it

provides a means of loading an executable code onto the processors with a number of

system facilities such as input/output. Most notably a parallel communication harness

provides a means of inter-processor (inter-process) communication. Some manufacturers

refer to their harness as a parallel operating system (Helios, Genesys, Parix) whilst oth-

ers describe it more in terms of a loader or server program. In actuality it is usually a bit

of both. Networks of workstations running UNIX can be configured as a Parallel Virtual

Machine by using the popular PVM package or one of the more recently developed Mes-

sage Passing Interface (MPI) packages. Some of the larger parallel machines use UNIX

as the communication harness which then provides direct support for communication

packages such as PVM or MPI but at the cost of a memory and processing overhead.

Communication Packages

The communication harness in Figure 2.1 may be implemented as any of a wide range of

communication packages. There are almost as many different communication packages

as there are parallel machines. An incomplete list of some of the most popular and

CHAPTER 2. PARALLEL PROCESSING

persistent of the packages is given here:

C Toolset - Inmos [Inm92]

PVM - Parallel Virtual Machine - Oak Ridge National Laboratory. [GBD+94]

MPI - Message Passing Interface - An international consortium coordinated through the

University of Tennessee, Knoxville. [For94]

Parmacs - Parallel Macros for Fortran - Argonne/GMD. [Hem91]

CHIMP - Common High-level Interface for Message Passing - Edinburgh Parallel Com-

puting Centre. [CTHW91]

PICL - Portable Instrumented Communication Library - Oak Ridge National Labora-

tory. [GHPW90]

Express - ParaSoft Corporation. [Par92]

MPL - Message Passing Library for the IBM SP2.

At the most fundamental level these packages provide a means of explicitly sending

a message from one process (processor) to another. This simple message passing is all

that is necessary for CAPLib to be ported to a communication package. Many of the

packages provide more sophisticated features such as global commutative operations and

asynchronous communications. Such features often rely on hardware specific calls for

their successful implementation. Where available such features can be used directly by

CAPLib to provide the functionality with consequent improved performance.

23

CHAPTER 2. PARALLEL PROCESSING

Communication Primitives

To achieve parallel message passing only a small number of communication primitives

are required from the communication harness. Only Initialise, Send and Receive are ac-

tually required to implement a usable communication library. High level communication

routines such as broadcast and global commutative operations can be built from these

simple primitives. More efficient implementations of higher functions may be provided

as primitives on some platforms and harness'. Some of the more sophisticated functions

such as asynchronous communication must however be supported as primitives and can-

not be built from synchronous communications. Primitive calls provided by the harness

take many varied forms, some of the terms used to describe the routines are outlined

below.

 synchronous (blocking) communication: returns when the operation is complete

and data resources used in the call are available for re-use.

 asynchronous (non-blocking) communication: returns before the operation is com-

plete and data resources used in the call are not available for re-use.

 broadcast: sends a data item to all processes

 reduction: performs a commutative arithmetic or logical operation on all processes.

 scatter: distribute a data item amongst the processes.

 gather: rebuild a data item using components from many processes.

24

Chapter 3

Domain Decomposition

Decomposition of a mesh based domain into a set of 5 sub-domains that may be allocated

to a set of processors involves finding a partition of the mesh so that the amount

of compute time on each processor is very nearly equal. Two schemes are popularly

used. One is to divide the problem into as many sub-domains as there are processors,

i.e. = P, so that each processor is allocated one sub-domain. The other scheme is to

divide the problem into more sub-domains than there are processors, P, so that each

processor operates on one or more sub-domains. This latter scheme has some advantages

for targeting an inhomogeneous compute platform such as a network of workstations, in

which the PE's are workstations which may have not only differing characteristics, but

may also be subject to other workloads. Such a scheme can provide an effective coarse

grained dynamic load balancing mechanism necessary for successful use of shared facility

networks [MJ95]. Such networks tend to be reasonably small scale (~ 32), in which

case the overhead of dynamic sub-domain allocation may allow an effective speed-up.

This thesis attempts to propose a scheme which will scale to a highly parallel (~ 64)

homogeneous DM MIMD processor array and so the former scheme is advocated.

The simpler scheme carries a lower sub-domain allocation overhead and so may

achieve a greater overall efficiency. Also there is an overhead incurred for each cut edge

of the mesh which is minimised by keeping Edge is used here in a graphical sense

meaning a relationship between mesh entities that is cut if the entities are in different

25

CHAPTER 3. DOMAIN DECOMPOSITION

sub-domains. Dynamic load balancing schemes may still be implemented as fine grained

migration of the mesh entities between the sub-domains.

Partitioning of a mesh is a reasonably straightforward procedure of cutting

the mesh along the grid lines (2D) or planes (3D) [JC91]. Achieving a precise load balance

in this instance requires that the mesh size along the partitioned axis is a multiple of the

required number of partitions. Obtaining a balanced partition of an unstructured mesh

is potentially a more complex problem and the focus of considerable research.

In order to solve for the nodes and elements around the edge of each sub-domain

data is required from the neighbouring sub-domains according to the stencil of data

dependency as discussed in Section 1.2. This data may be communicated as required

from the processor on which the neighbouring domain is calculated, but this can lead

to an unnecessarily large number of small communications. The strategy adopted in

this thesis is to extended each sub-domain to overlap its adjacent sub-domains. This is

discussed in more detail in Section 3.3. Each processor can then solve for the problem

inside its sub-domain using the variables held in the overlap layer. Variables in the

overlaps are updated from variables calculated on other processors to maintain a solution

consistent with the original serial code.

3.1 Representation of an Unstructured Mesh

An unstructured mesh is specified as a hierarchy of components or mesh entities, each

of which may be regarded as a data object or structure which can be used to provide

a spatial, geometric or topological reference to the variables used in a computational

mechanics code.

The definition of an unstructured mesh begins with a set of grid points or nodes, each

of which is defined by set of spatial coordinates. The grid points describe the geometric

shape and physical size of the mesh. Points are also convenient to provide a spatial

reference for dimensionally independent variables such as temperature or pressure.

Points can be connected to form a set of edges, faces or both edges and faces. In

CHAPTER 3. DOMAIN DECOMPOSITION

three dimensions edges can be connected to form a set of faces. Edges in 2D and faces in

3D may be used to provide a spatial reference for flux variables such as current density.

The space enclosed by a set of edges or faces describes an element. Elements have

a volume and may be used as a spatial reference for volumetric entities such as mass or

heat.

The perimeter or surface of a mesh defines a boundary which can be usefully asso-

ciated with some boundary condition. Boundaries may also be defined internally to a

mesh.

A defined volume or area within the mesh can be defined as a domain which is subject

to certain conditions such as being of a material with specified physical characteristics.

The entity relationship diagram for a three dimensional unstructured mesh as shown

in Figure 3.1 has only these few components and yet the web of relationships is highly

interconnected. In two dimensions there is no definition of a face and so the relationships

are a little more straightforward. Not all of the entities or the relationships are mandatory

and the relationships may be explicit or implicit. The actual entities and relationships

used varies from code to code.

The connectivity or topology of the mesh is explicitly expressed as relationships

between like or differing mesh entities. For example the elements may be described in

terms of their nodes as a list of node numbers for each element. From this information

the element connectivity (adjacency) may be derived as a list of element numbers for

each adjacent element. There is a trade off to be made between the memory used

for the storage of these relationships against the ease of calculation required within

the code. The nature of the integration employed by CM codes is nearest neighbour.

Evaluation of an element based variable may for example require the variable values for

all neighbouring elements and the coordinates of the points that comprise those elements

(see Figure 1.3 d). This example would require the element to element connectivity to

find the neighbouring elements and the element to node relationship to find the nodes

of the adjacent elements.

27

CHAPTER 3. DOMAIN DECOMPOSITION

Figure 3.1: Entity relationship diagram for a three dimensional unstructured mesh.

3.2 Mesh Partitioning

The problem of partitioning an unstructured mesh has attracted the imaginations of

many workers for more than twenty years [KL70] [PSL89] [BS93]. It is after all an

interesting problem and one which at first sight at least seems well defined and self

contained. A good mesh partition is one which divides the computational load equally

amongst the sub-domains and minimises the amount of communication required between

sub-domains. For many meshes it can be computationally prohibitive to find an optimal

partition and computationally expensive to find a near optimal partition. On the other

hand a reasonable partition may be calculated with little effort. The search for the 'best'

partitioning algorithm has led to exploration of the middle ground, trading partition

quality with the order of the partitioning routine.

Partitioning may be based on any of the mesh entities, usually either the elements or

nodes of the mesh. A sensible choice is to partition according to the structure associated

with the greatest amount of computation in the computational mechanics code. For

CHAPTER 3. DOMAIN DECOMPOSITION

example a flow code dealing with element based variables would be partitioned according

to elements whereas a stress code using node based variables would be partitioned as

grid points. In actuality an element based code integrates over each face of each element

and so a face based partition may be more appropriate. Similarly a node based code

may integrate over each edge of the mesh and so an edge based partition may be more

appropriate. The actual basis for partition chosen is not however of great consequence

providing that the resulting mesh partition is balanced. This thesis will for simplicity

normally refer to an element based partition. A mesh partition may be expressed in any

of a number of ways, the method adopted is a simple list of the partition number for

each element (entity). (Appendix B)

3.2.1 Load Balance

A fundamental objective in finding a partition is to balance the computational effort or

load required in each sub-domain. The simplest approach is to assume that the load

per element is homogeneous throughout the mesh. In this case the partition should

have as near equal numbers of elements per partition as possible. Should the load be

inhomogeneous then a weight or cost function may be applied to the elements to achieve a

cost balanced partition. For example the computational effort required for each element

may be proportional to the number of faces the element possesses. So tetrahedra will

incur a cost of 4, bricks a cost of six and so on. An important consideration in load

balancing is that it is not so much essential to achieve a totally uniform balance of load

but rather that no one processor should have significantly more than average load. Any

processor with an exceptional work load will cause all other processors to incur idle time

with resultingly poor parallel performance. Should any one processor have too little work

this will not hold up any other processors and have a correspondingly less detrimental

effect on overall performance. This is illustrated in Figure 3.2 where the overall run time

for partition A is longer than the overall run time for partition B despite the greater

imbalance between the individual processor run times for partition B. The definition of

a good load balance must reflect this effect. What is required is not a small deviation of

CHAPTER 3. DOMAIN DECOMPOSITION

any load from the average load. Nor a small maximum to minimum load difference, but

a small maximum to average difference.

9-

Processorl Processor2 Processors Processor4 Processors

Figure 3.2: Example run times for two possible partitions over 5 processors.

3.2.2 Communication Balance

The perimeter interfaces between the sub-domains should be as short as possible to re-

duce the communication overhead between the sub-domains. Again an optimal solution

is expensive to compute and a near optimal solution is sufficiently good. Reducing the

number of adjacent sub-domains reduces the amount of messages that require trans-

mission again reducing the communication overhead. It is also important to have some

degree of balance in the communication, especially that no one sub-domain interface is

unduly larger than the average. Again any exceptionally large interface will delay the

overall parallel execution. These requirements paint a picture of partitions that are low

order, to reduce the number of interfaces and reasonably regular, to present uniform

smooth perimeters.

CHAPTER 3. DOMAIN DECOMPOSITION

3.2.3 Processor Topology Mapping

The complexity and therefore the cost of building a totally interconnected non-blocking

processor array is significant and so some form of interconnection map is generally

favoured. As discussed in Section 2.1 this may be anything from a simple ID or 2D

array up to a 3D torus array or a fat tree structure. Many transputer based systems

employ the Inmos C004 32 channel crossbar switch programmable link router chip al-

lowing reconfigurable topologies to be constructed from a set of compute nodes. The

IBM SP2 and the NEC Cenju3 use 4x4 switches to similar effect. A more detailed de-

scription of a number of popular and esoteric hardware architectures may be found in

[vdS94, TW91]. In spite of what hardware manufacturers may claim there will always

be a distance related communication cost. This cost becomes more significant as the

number of processors increases. No matter how the processor interconnection is realised,

a parallel processor platform will incur some form of topological communication cost. It

is inevitable that it is more efficient to communicate with neighbouring processors than

with distant processors. Robinson and Lonsdale [RL90] suggest that communication

costs may be reduced by interconnecting the processors to reflect the mesh partition

as illustrated in Figure 3.3. It may not however be possible or practical to reconfig-

ure a processor array to suit a given partition. A more generic, flexible and scalable

scheme is to consider the processor topology to be fixed as, for example, a 2D or 3D

grid. This processor interconnection topology can then be reflected in the mesh par-

tition. A transputer based platform, for example, would require the partition to limit

the number of adjacent sub-domains to four (a 2D grid or 4 dimensional hypercube),

as this is the number of communication links on each transputer. To this end weights

can be applied to the partition to discourage the separation of neighbouring elements

onto non-neighbouring processors [Jon94, Wal95j. In practice it can prove impossible

to force a partition to adhere to a processor map, but the closer the partition reflects

the processor map the greater the potential efficiency of the partition. A number of

workers attempt to incorporate the underlying machine topology into the partitioning

process in order to produce a partition that can provide improved parallel performance

31

CHAPTER 3. DOMAIN DECOMPOSITION

Figure 3.3: Processor interconnection mapped to a pipe mesh partition.

[Far89, WCE+95, Har94, MWC+95]. Figure 3.4 shows a mesh partitioned (using the

JOSTLE code discussed in Section 3.2.4) into 16 sub-domains using three different par-

titioning strategies along with the corresponding processor interconnection graphs.

Regardless of how the mesh partition is calculated one is faced with the problem

of mapping partitions onto processors () [SE87, SER90, BA92, HS92].

If is small then all combinations may be tried to rind the optimal mapping, that

is the mapping which minimises the number of partition boundaries that do not align

with processors interconnections. The combinations of mappings increase as factorial

which makes this impractical for even modest sizes of A simple scheme to obtain

a mapping for little cost is to loop over all partitions in an initially arbitrary mapping

looking for a partition which can be swapped so that communication cost reduction is

maximised. This loop is iterated until no further cost reduction is found. Schemes such

as this are prone to local minima traps but can give a useful mapping with little overhead

[WCE+95].

CHAPTER 3. DOMAIN DECOMPOSITION

Figure 3.4: Partitions of a 2D mesh into (a) ID, (b) 2D and (c) uniform topologies with

the corresponding sub-domain connectivity graphs.

CHAPTER 3. DOMAIN DECOMPOSITION

3.2.4 Partitioning Algorithms

Some partitioning algorithms operate on the geometric mesh coordinates. Others treat

the mesh as a graph of nodes and edges. Graph based techniques have the

advantages of dimensional independence and a true representation of the connectivity

of the mesh in the partioning process. This is demonstrated by Nick Floros and Jeff

Reeve to be of particular importance when partitioning highly complex shapes [FR94].

The graph to be partitioned may be simply the grid points (nodes) of the mesh or a

dual graph of the mesh with the graph nodes representing for example elements and the

graph edges representing the element adjacency. If the graph is based on elements of

the same shape then the node degree (number of edges on each node) in the graph is

more or less constant (nodes at the boundaries are of reduced degree). Partitioning to

achieve an equal number of nodes in each sub-domain may achieve a good load balance.

If however the graph is based on grid points, or the mesh is of mixed element shapes the

node degree in the graph is variable. Partitioning a graph to achieve an equal number

of edges (rather than nodes) in each partition may, in some cases, be more appropriate

for load balance. Other factors may affect the computational load at each node of

the graph, perhaps different materials, or phases for instance are associated with each

node. Applying a weight to the nodes (perhaps based upon the number of connected

elements and/or some other parameter) and then partitioning the weighted list can give

an improved load balance. In practice it can prove difficult to accurately predict the

computational load in each sub-domain.

Many of the schemes involve recursive bisections, variations on the bisection schemes

involve cutting the mesh into more than two partitions at each step. This allows the

algorithms to provide numbers of partitions other than 2n.

What is required of a mesh partitioning algorithm is a high quality of partition

at a low cost. The time required to calculate the partition must be insignificant in

proportion to the time for the CM code to execute. High quality means a balanced load,

short interfaces and a small number of interfaces. This paints a picture of partitions as

uniform packed bubbles, shapes of minimum surface energy. Much of the current research

CHAPTER 3. DOMAIN DECOMPOSITION

centres on hybrid approaches with graph reduction techniques and multilevel schemes

to reduce the order of the problem [Jon94, WCE+95, HL93, VK95, DMM95, KK95].

A good but incomplete review of partitioning algorithms has been compiled by Chris

Geenough [GF94] and Dirk Roose [RVD93]. A number of the algorithms have been

collected into a package called RalPar [FG94]. Some of the more important techniques

are covered in detail by Beryl Jones in her thesis [Jon94]. There follows a brief summary

of many of the better known algorithms.

Recursive coordinate bisection

Recursive Coordinate Bisection (RGB) [Fox88] is a simple geometric scheme in which the

grid points of the mesh are sorted into order along one axis (normally the longest) and

then bisected. This process is repeated recursively on each partition until the required

number of partitions is obtained. This gives rise to thin strip partitions with long

interfaces. A variant of the scheme is Orthogonal Coordinate Bisection (OCB) in which

the sort axis is alternated at each recursion. The resulting partitions are consequently

more checkerboard in shape. An improvement is to bisect each partition along longest

axis, which is not necessarily the same for each partition.

Recursive inertial bisection

Recursive Inertial Bisection (RIB) is similar to RGB but bisects the geometric coordinates

along the line of principal inertia [RVD93]. It can be expected that the line of principal

inertia is aligned with the length of the mesh and the narrowest part of the mesh will be

orthogonal to it. Whilst RIB is more expensive than RGB or OCB it is still a 'cheap'

method and gives better results with concave geometries. RIB is still popularly used as

it is fast and reliable.

Greedy

The greedy method is a graph based technique which begins with a node of minimum

degree (minimum number of connected edges) and 'bites' level sets from the graph [Far

35

CHAPTER 3. DOMAIN DECOMPOSITION

until the appropriate number of nodes (^) have been 'eaten'. This process is repeated

on the remaining graph until all of the graph has been consumed. This is an extremely

cheap method (O(AT)) which produces mostly good partitions but is liable to leave some

disconnected partitions (i.e. partitions that are split into two or more pieces).

MINCUT

MINCUT [KL70] employs heuristics to optimise a partition by swapping vertices of the

graph between partitions to find the swap that minimises cost. "The general idea is to

perturb the locally optimal solution in what we hope is an enlightened manner, so that

an iteration of the process on the perturbed solution will yield a further reduction in the

total cost." A logical exchange of all vertex pairs in the graph is performed and the effect

of each exchange on the partition cost calculated. All exchanges up to the exchange that

produces the minimum cost are then committed as actual exchanges. This process is

repeated until no reduction in cost is obtained. This method attempts to climb out of a

local mina trap but is not always successful.

Recursive graph bisection

Recursive Graph Bisection (RGB) [Sim91] is similar to RGB and RIB but operates on

the graph of the mesh. A diameter of the graph is found and starting from one end

of the diameter level sets are removed from the graph until the graph is bisected. The

process is repeated recursively on each partition.

Recursive spectral bisection

Recursive Spectral Bisection (RSB) [PSL89] represents the graph with its Laplacian

matrix L. The method recursively partitions the graph by finding x which minimises

xTLx. The eigenvector that corresponds to the second smallest eigenvalue (the first

eigenvalue is trivial) is sorted and bisected to give a partition of the graph. This is

a sophisticated and expensive method that provides a high quality partition that is

especially suitable for complex geometries. Hendrickson and Leland [HL92] extended

CHAPTER 3. DOMAIN DECOMPOSITION

the method to allow weighting of the nodes and edges and cutting into more than two

partitions at each step. Multilevel Recursive Spectral Bisection (MRSB) dramatically

speeds up the algorithm by coarsening the graph with clustering and using RSB on the

coarsened graph [BS93]. This is a highly elaborate technique that provides the high

partition quality of RSB at less cost.

Tabu search

Tabu search (TS) [Glo89, Glo90] is a combinatorial optimisation based iterative im-

provement technique that tries to avoid local minima traps by temporarily accepting

unprofitable changes to the partition. Cycling in the search trajectory is avoided by

keeping a history of the most recent changes, making further changes of the most re-

cently moved nodes 'taboo'. Some open problems of TS are the determination of an

appropriate 'prohibition period' and the robustness of the technique for a wide range

of different problems. Some of the limitations of TS have been overcome in Reactive

Tabu Search (RTS) [BT94] in which the appropriate size of the prohibition list is learned

automatically by reacting to the occurrence of cycles.

Simulated annealing

Simulated Annealing (SA) is a generalised optimisation method that borrows ideas from

a statistical mechanics approach to annealing in a cooling solid [KJV83, vLA87]. A

parameter analogous to temperature is reduced during the course of the calculation.

For each temperature a number of modifications to the current solution are tested. If

a modification reduces the cost function the modification is accepted, otherwise the

modification is accepted according to a probability function based on the exponent of

the ratio of cost function to temperature. As the temperature cools the algorithm is

less likely to accept a change that increases the cost. With a slow 'cooling' rate this

method can produce good partitions but is computationally expensive. Developments of

the basic ideas of SA have led to Mean Field Annealing (MFA) which combines SA type

strategies with Neural Network techniques[BA92].

CHAPTER 3. DOMAIN DECOMPOSITION

JOSTLE

JOSTLE [Wal95, WCE+95, MWC+95] is the code used to produce the partitions used in

this thesis. The JOSTLE strategy is to derive an initial partition as quickly and cheaply

as possible and then use optimisation techniques to improve the quality of the partition.

Two alternative methods are provided to produce the initial partition. One method is a

variation of the Greedy algorithm, in this case a graph based variant on the original mesh

based algorithm proposed by Charbel Farhat [Far88]. The other method is geometric

sorting which operates in a similar manner to OCB. This method provides a crude map-

ping to a x processor grid The nodes are sorted on the longest axis and split

into sets of The nodes in these sets are then sorted in the orthogonal axis and split

into sets of Having used one of the above methods to obtain an initial partition

one of two optimisation methods can be applied to the improve the partition. Uniform

optimisation is a technique in which each partition attempts to minimise its own surface

energy analogous to the way that bubbles pack together. The technique works by calcu-

lating the centre of each partition in a graphical sense and determining the radial distance

of each node from the centre. Nodes that are most distant from the centre can then be

migrated between neighbouring partitions. Grid optimisation is a similar technique to

uniform optimisation except that nodes are allowed to migrate only between neighbours

in the processor grid. Four partitioning (mapping) strategies are provided by JOSTLE.

partitioning ignores the processor interconnection topology throughout the

entire partitioning process. A partition is an unmapped partition that has

been mapped to the processor topology with a simple mapping algorithm applied post

partitioning. The partition begins with a partition that is crudely mapped to

the processor topology and then is optimised ignoring the processor topology to minimise

the number of cut edges. The partition acknowledges the processor topology

throughout the partitioning process. Some partitions produced by JOSTLE can be seen

in Figure 3.4.

CHAPTER 3. DOMAIN DECOMPOSITION

Strategy

Unmapped

Postmapped

Premapped

Mapped

Initial partition

Greedy

Greedy

Geometric sort

Geometric sort

Optimisation

Uniform

Uniform

Uniform

Grid

Processor allocation

No

Yes

No

No

Table 3.1: Partition mapping strategies provided by JOSTLE

3.2.5 Parallel Partitioning

Ideally the partition of the mesh should be carried out at run time in parallel. As and

increase an partitioning algorithm may become unacceptable for a solver running

at Few of the available partitioning algorithms are suitable for parallel

implementation. The work of Chris Walshaw [Wal95] and Ralf Diekmann [DMM95]

aims to provide paralleliseable routines that can be used to partition and also re-partition

meshes in a dynamic load balancing scheme. This strategy relies on obtaining a rapid

initial mesh partition to crudely distribute the mesh across the processors and then

operate on the partitions in parallel to optimise the partitions. Difficulties arise when

the size of the mesh becomes too great to fit onto one processor. This is a natural

consequence of massively parallel processing where the capacity of the whole machine

may be orders of magnitude greater than the capacity of a single node. In such an

instance the partitioning algorithm may have to begin by taking an arbitrary partition

of the mesh as it is read in from file and distributed in sequence to a number (not

necessarily all) of the processors. A high level of communication will then be required to

re-distribute the mesh amongst all of the processors to provide a crude initial partition.

If the partitioning strategy is, for example, to be the mapped JOSTLE scheme this will

be a reasonably successful process. Geometric sorting will be a reasonably simple and

cheap algorithm to implement as a parallel initial partition scheme.

39

CHAPTER 3. DOMAIN DECOMPOSITION

3.3 Mesh Decomposition

Having obtained a partition of the mesh into parts the partition is used to decompose

the mesh into sub-domains that can be allocated one per processor. The elements,

nodes and faces that are allocated uniquely to a processor are referred to in this thesis

as the core mesh components. These components are said to be 'owned' by a processor.

Each sub-domain is extended with a layer of points and elements which overlap the sub-

domains along the inter-processor boundaries as illustrated in Figure 3.5. These overlap

or halo regions carry variable values from neighbouring sub-domains that are required

for the solution of variables inside the sub-domain.

Figure 3.5: Mesh partitioned into three parts with overlap elements applied.

Decomposition of the mesh into a set of extended sub-meshes consists of five essential

steps;

i) Find a partition of the mesh (primary).

ii) Derive secondary partitions from the primary partition.

CHAPTER 3. DOMAIN DECOMPOSITION

iii) Determine the mesh overlaps to the neighbouring sub-domains.

iv) Re-number the mesh in each sub-domain.

v) Construct a template for overlap data exchange.

3.3.1 Derive Secondary Partitions

As mentioned in Section 3.2 the mesh entity that provides the dominant spatial reference

used by the code to be parallelised is ordinarily chosen as a basis for mesh partitioning.

This partition is referred to as the primary partition. Secondary partitions may be

derived from the primary partition for the other mesh entities used in the code. The

compute time for a CM code is dominated by the time spent in the solution of an

equation of the form Ax = b. It is consequently important for load balance to obtain

an equal number rows and an equal number of coefficients in each of the distributed A

matrices. This inevitably results in some compromise. With an element based x for

example, a primary partition based on elements will keep the vector length and hence

number of rows in A balanced across each sub-domain. But the number of off diagonal

coefficients in each A depends upon the number of internal faces in the sub-domain.

Balancing elements will not necessarily balance matrix coefficients In the case of the two

dimensional flow code used in this thesis the primary partition is based on elements and

there is only one secondary partition, that being for grid points. For reasons of clarity

the following discussion is based on an element based primary partition. The discussion

is nonetheless applicable to other mesh entity partitioning orders.

Secondary partitions are inherited from the primary partition in accordance with the

connectivity between the entities. For example, each node is connected to a number

of elements, each of which belongs exclusively to one sub-domain. This provides a

basis for the allocation of the node to a sub-domain. The most obvious and simple

partition inheritance scheme is to allocate the node to the sub-domain which owns the

majority of the connected elements. In the case of an equal number of connected elements

being owned by two or more sub-domains, the node is allocated to the domain which

41

CHAPTER 3. DOMAIN DECOMPOSITION

owns the least number of nodes. This simple, inexpensive scheme gives a good match

between the primary and secondary partitions, but can lead to an unnecessarily high load

imbalance in the secondary partition. It does not follow that two unstructured meshes

with equal numbers of elements will have the same number of nodes, indeed there may

be a large discrepancy between the two node counts. When the two meshes are sub-

domains to be operated on in parallel this can produce an unacceptably high degree of

load imbalance for element based matrix computations as discussed earlier and possibly

even greater imbalance for node based calculations. If however the node allocation

between the sub-domains is forced to be balanced the element and node partition may

not be well matched which can result in an undesirably large and imbalanced overlap

layer. This will consequently lead to large and unbalanced communications between the

sub-domains. The comments about load and communication imbalance in sections 3.2.1

and 3.2.2 should be borne in mind at this point.

The load imbalance may be redressed to an extent by the use of more elaborate

schemes to derive secondary partitions. A possibly superior partition inheritance scheme

is to first locate the nodes for which all connected elements lie in one partition and for

each node found, allocate the node to that partition. The remaining nodes are then

allocated in turn to the least loaded domain beginning with the node which has the

greatest connectivity to that domain.

It is conceivable that the nodal imbalance may become unmanageably large, in which

case some nodes may require allocating to sub-domains that own none of the connected

elements in order to redress the balance. This will result in a communication imbalance

which may or may not be significant depending upon the characteristics of the hardware

platform. The quality of the secondary partitions then becomes a platform dependent

optimisation issue.

These schemes may be seen as an attempt at solving a graph problem by the applica-

tion of simple heuristics. It may therefore be worthwhile to use graph based techniques

to derive the secondary partitions. A possible scheme is to produce a weighted graph

of the nodes which clusters the nodes for which all connected elements lie on one parti-

42

CHAPTER 3. DOMAIN DECOMPOSITION

tion. This graph may then be partitioned using one of the graph partitioning algorithms

developed for obtaining primary partitions. The work of Chris Walshaw [Wal95] is of

interest here. The amount of effort that it is worthwhile devoting to the derivation of a

secondary partition is problem dependent. Like the search for a primary partition there

may be no singular optimal solution and a near optimal solution will in the majority of

cases provide a sufficiently good solution.

3.3.2 Overlap Construction

The overlaps between the sub-domains are determined in accordance with the data de-

pendency required by the code as discussed in section 1.2. For example, if the solution

for an element based variable requires the values in all adjacent elements as illustrated in

Figure 1.3a then the adjacent elements that lie in neighbouring sub-domains are added as

overlaps to the list of elements. Similarly if the nodes that compose the overlap elements

are also required as in Figure 1.3d then they too are added to the list of overlap nodes.

In this way the description of the mesh for each sub-domain is extended to include all

data that are required for solution of the sub-domain. The utility used to construct

overlaps for the codes parallelised in this thesis uses a simple set of rules to determine

the elements and nodes which are to be included in the overlaps (Appendix A).

When using only the element based flow and heat code;

Overlap elements are denned as:-

All elements that are adjacent to a core element.

Overlap nodes are defined as:-

Nodes of all elements including overlaps that are not core nodes.

However the node based stress code involves a more extensive data dependency

and the required overlap layers become deeper so that;

Additional overlap elements are defined as:-

CHAPTER 3. DOMAIN DECOMPOSITION

Elements that contain at least one core node.

Additional overlap nodes are defined as:-

Nodes that are connected to core nodes.

An example of the overlaps required for the flow code is shown in Figure 3.6. The same

mesh is shown in Figure 3.7 with the additional elements and nodes in the overlaps

required for the stress code .

Figure 3.6: A mesh of 28 triangles divided into two sub-domains with the overlaps

required for the flow scheme.

Providing that the mesh data structures are either one dimensional linked or indexed

lists, or stored as multi dimensional arrays in which the number of entities is the highest

index (last in F77, first in C) then the overlaps may be stored as extensions to existing

data structures which allows them to be passed to subroutines and addressed in the

parallel code in the same manner as the original data structures. This hides the paral-

lelism and results in only small source file changes being required to extend mesh as it

CHAPTER 3. DOMAIN DECOMPOSITION

Figure 3.7: A mesh of 28 triangles divided into two sub-domains with the overlaps

required for the stress scheme.

is implemented in the serial code. For example the array of grid points in Fortran may

be declared as;

INTEGER DIMENSION, NO_OF_GRID_POINTS

INTEGER GRID_POINTS(1:DIMENSION, 1:NO_OF_GRID_POINTS)..

This array may be easily extended to include overlaps as;

INTEGER DIMENSION, EXTD_NO_OF_GRID_POINTS

INTEGER GRID_POINTS(1:DIMENSION, 1:EXTD_NO_OF_GRID_POINTS)

Clearly this structure will still be correctly declared in all subsequent subroutines calls

without any code modification. Subroutines may be called with either the original or the

extended point count and the declaration will remain consistent. If however the array of

grid points is declared as;

INTEGER GRID_POINTS(1:NO_OF_GRID_POINTS, 1:DIMENSION)

CHAPTER 3. DOMAIN DECOMPOSITION

Then the array may also be extended as;

INTEGER GRID_POINTS(1:EXTD_NO_OF_GRID_POINTS, 1:DIMENSION)

But now each subroutine must declare grid points to the extended size in order to

remain consistent. It may prove less invasive to change the serial code to reverse such

declarations and subsequently all occurrences of the variable. Apart from cache effects

such a modification will not affect the serial code and unlikely to raise objections from

the serial code authors.

3.3.3 Parallel Execution Control and Renumbering

Consider the following code fragment that loops over each grid point in each element.

INTEGER NUMBER_OF_GP_IN_ELEMENT(1: NUMBER, OF.ELEMENTS)
INTEGER GP_IN_ELEMENT (1: MAX_NUM_GP_PER_ELE, 1: NUMBER_OF_ELEMENTS)
REAL XELE(1:NUMBER.OF.ELEMENTS)
REAL YGP(1:NUMBER_OF_GRID_POINTS)

DO I = 1, NUMBER_OF_ELEMENTS
DO J = 1, NUMBER_OF_GP_IN_ELEMENT(I)

XELE(I) = XELE(I) + YGP(GP_IN_ELEMENT(J,I))
END DO

END DO

Two arrays are used in this example to describe the element topology;

NUMBER_OF_GP_IN_ELEMENT is a vector that contains the number of grid points that are

in each element.

GP_IN_ELEMENT is a two dimensional array that contains the grid point number for each

grid point in each element.

Two data items are involved; an element based variable XELE and a grid point based

variable YGP . This code fragment can be implemented in parallel by using 'owner com-

putes' execution control masks which are conditionals to control the scope of operations

CHAPTER 3. DOMAIN DECOMPOSITION

for each processor. In this example the execution control mask is implemented with a

function OWNER.OF.ELEMENT that returns true only if the argument is an element number

that is owned by the processor, the computation only being performed if this is the case.

DO I = 1, NUMBER_OF_ELEMENTS
IF (OWNER_OF_ELEMENT(I)) THEN

DO J = 1, NUMBER_OF_GP_IN_ELEMENT(I))
XELE(I) = XELE(I) + YGP(GP_IN_ELEMENT(J,D)

END DO
END IF

END DO

However in order to achieve scalability of memory each processor can store only its own

sub-domain. In this example the most fundamental mesh entity, the grid point, described

as a set of coordinates, will renumber itself through the simple process of being packed

into memory as a consecutive list of coordinates for each grid point in the sub-domain. So

the core grid points are packed into the first 1 to LOCAL_NUMBER_OF_GRID_POINTS locations

and the overlap grid points as LOCAL_NUMBER_OF_GRID_POINTS+1 to EXT_LOC_NUMBER_OF_GRID_POINTS.

Where LOCAL_NUMBER_OF_GRID_POINTS is the number of grid points in the sub-domain core

and EXT_LOC_NUM_OF_GRID_POINTS is the number of grid points in the entire sub-domain.

Similarly extracting and storing (packing) only the local entries for the variables XELE,

YGP and NUMBER.OF_GP_IN_ELEMENT is straightforward. Other mesh entities are however

described as relationships or 'pointers' between entities. So packing GP_IN_ELEMENT re-

sults in a list of global node numbers for each locally numbered element. To allow for

this pointer arrays must be embedded into the code in order that each time the code

refers to a grid point of an element the pointer array indirectly addresses a grid point in

the local numbering scheme.

INTEGER NUMBER_OF_GP_IN_ELEMENT(1 :EXT_LOC_NUM_OF_ELEMENTS)
INTEGER GP_IN_ELEMENT(1 :MAX_NUM_GP_PER_ELE, 1:EXT_LOC_NDM_OF_ELEMENTS)
INTEGER PTR.ELE(1:NUMBER.OF.ELEMENTS)
INTEGER PTR.GP(1:NUMBER_OF_GRID_POINTS)
REAL XELE(1:EXT_LOC_NUM_OF_ELEMENTS)
REAL YGP(1: EXT_LOC_NUM_OF_GRID_POINTS)

DO I = 1, NUMBER.OF.ELEMENTS

47

CHAPTER 3. DOMAIN DECOMPOSITION

IF (OWNER_OF_ELEMENT(I)) THEN
DO J = 1, NUMBER_OF_GP_IN_ELEMENT(PTR_ELE(I))

XELE(PTR_ELE(I)) = XELE(PTR_ELE(I)) +
i- YGP (PTR.GP (GP_IN_ELEMENT (J ,PTR_ELE (I))))

END DO
END IF

END DO

Here two indirection pointer arrays are used PTR_ELE and PTR.GP which store the local

element and grid point numbers respectively. For example if element number 28 is

local element number 14 then PTR_ELE(28) has the value 14. The code still uses global

numbers, only the addresses are indirected. A simple optimisation here is to move the

element indirection upwards.

DO II = 1, NUMBER_OF_ELEMENTS
IF (OWNER_OF_ELEMENT(II)) THEN

I = PTR.ELE(II)
DO J = 1, NUMBER_OF_GP_IN_ELEMENT(I)

XELE(I) = XELE(I) + YGP(PTR_GP(GP_IN_ELEMENT(J,I)))
END DO

END IF
END DO

These pointers will need to be globally sized and so do not scale in memory. Also the loop

still increments over the global number of elements and so does not scale in processing.

Execution of the control mask for every element can be a significant operation. Since

PTR.ELE now represents the local renumbering implied by the array packing, the local

element numbers in the above loop when the execution control mask is true will run from

1 to LOCAL_NUMBER_OF_ELEMENTS. Therefore a further optimisation is possible by changing

the loop limits to local numbering.

DO I = 1, LOCAL_NTJMBER_OF_ELEMENTS
DO J = 1, NUMBER.OF_GP_IN_ELEMENT(I)

XELE(I) = XELE(I) + YGP(PTR_GP(GP_IN_ELEMENT(J,I)))
END DO

END DO

Now only one pointer is required but it remains globally sized and so is still not scalable.

If all uses of GP_IN_ELEMENT throughout the code are as the index of the array PTR.GP

CHAPTER 3. DOMAIN DECOMPOSITION

then this indirection can be propagated upwards to the highest level where PTR_GP is

used to renumber the contents of GP_IN_ELEMENT to a local grid point numbering scheme.

The example now becomes

DO I = 1, LOCAL_NUMBER_OF_ELEMENTS
DO J = 1, NUMBER_OF_GP_IN_ELEMENT(I)

XELE(I) = XELE(I) + YGP(GP_IN_ELEMENT(J,I))
END DO

END DO

If this code fragment exists inside a subroutine where NUMBER.OF.ELEMENTS is passed

into the subroutine as an argument then the calling routine can be modified to call the

subroutine with LOCAL_NUMBER_OF_ELEMENTS so that

This thesis follows the option of re-numbering each entire sub-domain to a local

numbering scheme as this has been shown above to be consistent with objectives (ii) and

(iii). Each processor 'sees' its renumbered sub-domain as a complete mesh consisting

of 1 to elements and 1 to grid points where and are the local number of

elements and grid points respectively. This can be carried out at the highest possible

level in the code, that is where the problem specification is read from file. A record of the

global (serial) numbers for each local mesh entity (referred to as a decomposition index)

is stored on each processor in order to allow reconstruction of data back into its original

global form. Translation back from local to global numbering using this record is only

required as an i/o process when writing variables to file. Rebuilding of global variables is

carried out by the i/o (master) processor and so this is the only processor that requires

the decomposition indices, however the indices are distributed with the sub-domains to

maintain scalability of memory. This scheme can encounter difficulty when the problem

size increases to the point at which the geometry description will no longer fit into the

memory of the master processor. This is not however insurmountable and is discussed

further in Section 4.2 and Chapter 7. The effect of renumbering is illustrated in Figures

3.8 and 3.9. Consider the element partition in Figure 3.9 The partition list of

processor numbers that own each element as returned from the partitioner utility is as

follows;

1111112222222111111112222222

49

CHAPTER 3. DOMAIN DECOMPOSITION

Figure 3.8: A mesh of 28 triangles divided into two sub-domains showing the renumbering

of grid points from global to local numbering.

~,~ *

Figure 3.9: A mesh of 28 triangles divided into two sub-domains showing the renumbering

of elements from global to local numbering.

50

CHAPTER 3. DOMAIN DECOMPOSITION

The resulting element renumbering as stored in PTR_ELE is listed in Table 3.2. The

Global
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Processor 1
1
2
3
4
5
6
15
0
0
0
0
0
16
7
8
9
10
11
12
13
14
17
18
0
0
0
0
0

Processor2
0
0
0
0
0
15
1
2
3
4
5
6
7
16
17
0
0
0
0
0
18
8
9
10
11
12
13
14

Table 3.2: Element indirection pointer arrays for the partition illustrated in Figure 3.9

renumbering has maintained the core elements as the first 14 elements in each partition

allowing the transformation to local loop limits. The implications of renumbering are

discussed further in Section 4.3.

3.3.4 Overlap Communication

The notion of the mesh overlaps is that each processor calculates only the values of core

variables. That is variables that are associated with mesh entities within its own domain,

51

CHAPTER 3. DOMAIN DECOMPOSITION

no computation being performed on the overlaps. Variable values are then swapped into

the overlap from the processors on which the variables are calculated, as shown in Fig-

ure 3.10. This is a one way communication process between all adjacent sub-domains.

Data travels only from the core of the sub-domains (where it is calculated) into the

overlaps of adjacent sub-domains (where it is used). There are however some rather

obvious exceptions, where data operations are so trivial that it is faster to perform the

operation locally on the overlap than to import the new values from a neighbour (see

Jacobi example in Appendix C. For example, setting a variable to a fixed value, zero

for instance, requires a processor only to write a register to memory. This will undoubt-

edly be faster than reading data from the communication port and writing the data

back out to memory. Implementation of such exceptions may be seen as an optimisa-

tion of the parallelisation. Indeed such optimisations may produce an improvement in

performance on some platforms and not others. Overlap values are generally exchanged

between processors as soon as practically possible, usually whenever a variable has been

fully updated, for example, at each iteration of a solver. Asynchronous communication

schemes may be used to improve the parallel performance by overlapping communication

with calculation. This is discussed further in Chapter 5. The coordination of overlap

Figure 3.10: Overlap update communication scheme.

data exchange requires a communication template for each sub-domain which holds the

mesh entity numbers to be sent and the processor number to which they are to be trans-

CHAPTER 3. DOMAIN DECOMPOSITION

mitted. A corresponding template records the entity numbers to be received and the

processor number from which they will arrive. These templates must be matched across

each sub-domain boundary so that the data sent from one sub-domain is received in

the anticipated order in the adjacent sub-domain. This is achieved by preserving the

global ordering of the elements. For a simple processor interconnection topology such as

a pipeline (a one dimensional chain), where the partition can guarantee mapping to the

processor topology, the template becomes reasonably straightforward. Exchange of data

between processors can be synchronised by the template on an odd-even alternate pair

basis. This is a four cycle process described in the following table.

Processor Number Odd Even

Send right Receive left

Receive right Send left

Send left Receive right

Receive left Send right

Table 3.3: Communication operations required for a simple chain of processors

This simple scheme enables the exchange to be carried out as a parallel process.

More elaborate processor topologies can be handled with variations on such a scheme.

Regular two dimensional processor arrays can for instance use red - black checkerboard

type schemes. It cannot however be assumed that the mesh can be partitioned in such

a way as to map perfectly to the processor interconnection topology (Section 3.2.3).

A scheme is required which can cope efficiently with an unstructured partition of an

unstructured mesh mapped imperfectly to an array of processors. This is a scheduling

problem of the type familiar to operational research [Wil84].

The scheme adopted involves constructing the graph G(P, of processors and

sub-domain (processor) interconnections and attaching weights to the interconnects

according to the size of the interface. This graph is initially sorted by weight with the

processor pair having the largest amount of data to communicate being first. The graph

is then scheduled to provide a sequence in which exchanges occur as a parallel process

53

CHAPTER 3. DOMAIN DECOMPOSITION

with the largest exchanges first. Starting with the heaviest node pair, the processor

numbers are recorded. The graph is then searched for the next heaviest weight that does

not use one of the already recorded processors. When found this processor pair is sorted

to be the next entry in the graph. This operation is carried out until either all processors

are involved in communication or an unrecorded processor pair is no longer available for

scheduling. If there are still entries in the graph that have not been scheduled the list

of recorded processors is cleared and the process repeated until all processor pairs have

been scheduled. This results in a layering of exchange communication processes which

should be (but is not guaranteed to be) no deeper than the maximum node degree of

the processor graph

Consider the mesh illustrated in Figure 3.11 decomposed into three renumbered sub-

domains in Figure 3.12 Here the overlap renumbering has followed the original global

Figure 3.11: Mesh of 42 triangular elements.

numbering scheme Processor (a) must receive data for overlap elements 17 and 18 from

processor (b) where they are numbered 6 and 9 respectively. Similarly processor (b) must

receive data for overlap elements 15 and 16 from processor (a) where they are numbered

3 and 8 respectively. The communications for this example may be carried out in six

stages as follows:

54

CHAPTER 3. DOMAIN DECOMPOSITION

'. 16 .--' \

Figure 3.12: Mesh of 42 triangular elements partitioned into three renumbered sub-

domains.

Processor (a)

1 Sending to processor (b) elements 3 and 8

2 Receiving from processor (b) elements 17 and 18

3 Sending to processor (c) elements 9 and 12

4 Receiving from processor (c) elements 15 and 16

Processor (b)

1 Receiving from processor (a) elements 15 and 16

2 Sending to processor (a) elements 6 and 9

5 Sending to processor (c) elements 5, 7, 10, and 13

6 Receiving from processor (c) elements 17, 18, 19 and 20

Processor (c)

55

CHAPTER 3. DOMAIN DECOMPOSITION

3 Receiving from processor (a) elements 15 and 19

4 Sending to processor (a) elements 5 and 6

5 Receiving from processor (b) elements 16, 17, 18 and 20

6 Sending to processor (b) elements 6, 8, 10 and 14

Note that these element numbers are always in increasing order both globally and

locally. The sending is always carried out first to allow parallelism in packing.

Data that is to be transmitted from a sub-domain core is collected into a data buffer

which allows one transmission and therefore only one latency to complete the transfer.

Unpacking of data from a buffer is an overhead that is not necessary for data reception.

Data is only ever received into an overlap, so arranging for the overlap renumbering

scheme to consecutively number overlap entities that are owned by the same processor

allows incoming data to be received directly into the overlap memory. So the global

number ordering is preserved for each interface to other processors, but not throughout

the overlap. In the above example elements 15 and 19 on processor (c) are in the core

of processor (a) and so should be numbered consecutively. This involves renumbering

overlap element 19 on processor (c) to be 16 and then overlap elements 16, 17, 18 and

20 to be 17, 18, 19 and 20 respectively.

Chapter 4

Algorithm Decomposition

The algorithms employed in unstructured mesh codes have invariably been developed us-

ing the traditional Von Neumann programming model of sequential instruction execution.

The conversion of these serial algorithms into parallel algorithms may be straightforward,

or may be very involved. Parallelism exists in many forms with a CM code. Having

chosen a geometric (topologic) DD strategy, decomposition of the algorithms to concur-

rently operate locally within each sub-domain whilst performing the same operations as

the original serial algorithm becomes a largely automatic process of communicating data

as and when required. Profiling CM execution shows that the majority of run time is

spent within the matrix equation solvers. It is these solvers that are subjected to close

scrutiny to extract the maximum possible parallel efficiency Ideally we should be able

to meet objective (i) and produce results from the parallel code that identically match

the results produced by the serial code. This may not however, be either practical or

possible. A variation between the serial and parallel code is sometimes inevitable. There

are instances where it may be more important for example to meet objective (iii) and

produce a highly efficient parallel code at the expense of failing to precisely meet ob-

jective (i). Again it will usually be a case of having to make an intelligent decision as

to which is the overridingly important criteria. Often there is little choice but to either

modify the algorithm or else suffer unacceptable inefficiency.

CHAPTER 4. ALGORITHM DECOMPOSITION

4.1 UIFS - Unstructured Incompressible Flow and Stress

The code used as a vehicle for developing the parallel strategies used in this thesis is

known as UIFS. Developed for the purpose of modelling the processes involved in metals

casting UIFS is a 2D unstructured mesh code for solving the Navier Stokes equations

for transient and steady state flow problems with solidification [Cho93] along with the

elastic stress-strain equations [FBCL91, CBCP92]. The techniques developed for UIFS

have led to the development of the 3D code PHYSICA which provides even greater

modelling flexibility for multi-physical processes.

4.1.1 The FV Fluid Dynamics Scheme

The Finite Volume (FV) (irregular control volume) fluid dynamics scheme in UIFS solves

for flow on a single unstructured mesh using a modification of the SIMPLE algorithm

of Patanker and Spalding [PatSO]. This is a cell centred scheme in which the control

volume is formed by the elements of the mesh which may be any arbitrary shape. The

definition of a staggered grid as used by Patanker is not clear for an unstructured

mesh. So the scheme uses a co-located grid with the Rhie and Chow [RC82] pressure

weighted interpolation method to suppress pressure oscillation. The solidification scheme

uses the Voller and Cross enthalpy method [VCM87] to model the velocity correction

and latent heat release during phase change. The dependency required by the solvers in

this element centred finite volume scheme is simple nearest neighbour as illustrated in

Figure 1.3(a). However in order to evaluate the cell volumes for the displaced grid the

grid point dependency as shown in Figure 1.3(d) is also required. Hence the definition

of the overlap mesh entities as given in Section 3.3.2. The scheme produces a sparse

irregular diagonally dominant system matrix which may be solved using either Jacobi or

Gauss Seidel SOR iterative methods. The fluid dynamics loop is illustrated in Figure 4.3.

The number of iterations for each of the momentum, pressure and heat solvers are set

at run time along with the maximum and minimum number of sweeps around the fluid

dynamics loop. Convergence is based on the residuals of all of momentum, heat and

58

CHAPTER 4. ALGORITHM DECOMPOSITION

pressure variables.

Momentum Equations

The equations governing the conservation of momentum for an incompressible fluid in a

cartesian system of coordinates may be expressed as:

+ V V (AtViii) (4.1)

Here is the momentum in the axis, similar equations govern the momentum in the

other axis. The other terms are; the density the resultant velocity, v, the viscosity //,

the pressure p, the face normal component and the momentum source in the axis

The momentum source term includes the buoyancy source and the Darcy source

terms which couple the momentum equation to the energy equation.

= ^>6j > "^boundary ^other

Continuity Equation

Then continuity equation governing mass conservation can be expressed as:

|£ + V (4.3)

Here is the mass source.

Energy Equation

Conservation of energy can be written as:

dt
+ V V (fcVT) + (4.4)

Where is the specific enthalpy, is the thermal conductivity, is the temperature and

s^ is the volumetric source for heat. This equation may be expressed solely in terms of

temperature using where is the specific heat.

59

CHAPTER 4. ALGORITHM DECOMPOSITION

Buoyancy Source

The source terms sUt in Equation 4.1 couples into the energy equation through the

buoyancy terms. Two alternative buoyancy terms are available in UIFS; constant and

variable density. The constant density approximation Boussinesq source s^ in the

direction can be expressed as

(4.5)

Where pref is the constant density, is the volumetric coefficient of thermal expansion,

is the temperature, Tref is the reference temperature (temperature for pref) and is the

acceleration due to gravity in the direction. Density may be more accurately expressed

as a function of temperature so the buoyancy source becomes

(4.6)

Solidification Sources

For a system undergoing a change of phase from liquid to solid (or solid to liquid) the

total enthalpy can be expressed as the sum of the 'sensible' enthalpy and the latent

heat A#

. (4.7)

Latent heat will be some function of temperature

= (4.8)

which may be written in terms of the latent heat of solidification and liquid fraction

(ratio of liquid to solid)

(4.9)

Combining this with Equation 4.4 gives the enthalpy source due to the latent heat of

solidification as

(4.10)

CHAPTER 4. ALGORITHM DECOMPOSITION

Velocity correction for changes in material properties during phase transition uses the

Darcy source term

(4.11)

where is the viscosity and is the permeability. Little data is available for the viscosity

and permeabilities of materials undergoing phase transition so a simple approximation

involving the liquid fraction is used

= (4.12)

where is an empirical constant.

4.1.2 The FV Solid Mechanics Scheme

The grid point (vertex) based solid mechanics code uses the finite volume unstructured

mesh procedure of Fryer [FBCL91, Fry93] for the solution of the elastic stress-strain

equations for bodies undergoing thermal or mechanical loads.

Governing Equations

The general equilibrium equations governing the conservation of force on a static body

are

(4- 13)

Where and are the components of normal stress, shear stress and body forces

acting in direction In matrix form the above equations become

cr = Ds

where the stress vector is = <Jzy) T and the elastic strains are =

£xy)T - The matrix holds the material elastic properties; Youngs modulus

61

CHAPTER 4. ALGORITHM DECOMPOSITION

and Poissons ratio // where for plane strain

(1 - /Li 2)

1

0

1

0

0

0

9 -

(4.15)

The total strain is related to displacement by

<T> Ld (4.16)

Where the displacement vector d = represents displacement in the and

directions and L holds the differential operators

L-

d ^\
o

(4.17)

Thermal strains are given by

(4.18)

where a is the coefficient of thermal expansion, AT is the temperature change and

Discretisation of the Solution Domain

This scheme forms a control volume around each grid point with contributions to the

control volume from each of the surrounding mesh elements as illustrated in Figure 4.1.

Here the sub control volumes in each surrounding element are formed by connecting

the element centres to the face centres. Temperature and displacement variables are

stored at the grid points and the material properties, Youngs modulus, Poisson ratio,

etc., are associated with the elements. The equilibrium equations are integrated over the

control volumes where the divergence theorem is used to transform the area integrals

CHAPTER 4. ALGORITHM DECOMPOSITION

Figure 4.1: Formation of a control volume from sub-control volumes around point P.

into line integrals which enables the stresses to be approximated at the integration points

on the surface of the control volume. The discretisation uses reference elements to

represent the mesh elements in a local coordinate system in a manner similar to the

Finite Element (FE) method [SR87] (Figure 4.2). This is a computationally efficient

scheme which obtains approximations to the derivatives in the equilibrium equations in

local coordinates and uses a Jacobian matrix to map the approximations back to global

coordinates. A variable 0 and its derivatives can be approximated anywhere within an

element of grid points using Equations 4.19 and 4.20.

(4.19)
1=1

=

The shape functions for a bilinear quadrilateral are

= 0.25(1

CHAPTER 4. ALGORITHM DECOMPOSITION

Figure 4.2: Mapping of a finite volume element to a reference element.

= 0.25(1

0.25(1

= 0.25(1+ s)(l-t)

The Jacobian matrix in Equation 4.21 is used to map the derivatives of the shape function

from local to global coordinates.

. L -I

r i

(4.21)

Discretisation of the equilibrium equations

cr DLNu

/ (DBu) n f

-i

\

4.2 Parallelisation of UIFS

IF (MASTER) THEN

4.2.1 Partitioning

4.2.2 Renumbering

4.2.3 Communication

4.3 Matrix Decomposition

_____________ CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

_____________ CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

_____________CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

C0 3500
CD
.g> 3000

~O

I

-

n

\s~

C

r

\j

