45 research outputs found

    Design of a Highly Efficient Microinverter

    Get PDF
    This paper proposes a grid-tied single-phase photovoltaic (PV) microinverter consisting of five-level four-switch (5L-4S) DC-AC converter fed by an isolated fly-back DC-DC converter. The microinverter utilizes a split-coil inductor to produce five levels of pulse width modulation (PWM) compared to the three levels of PWM using conventional four-switch topologies. These implementations reduce losses by up to 39% compared to a conventional topology. The results show that the proposed design improves performance throughout the switching frequency spectra with various loads. The theoretical expectations are validated with simulation and experimental results

    Analysis and Design of Solar Photo voltaic Grid Connected Inverter

    Get PDF
    This paper presents common mode voltage analysis of single phase grid connected photovoltaic inverter. Many researchers proposed different grid tie inverters for applications like domestic powering, street lighting, water pumping, cooling and heating applications, however traditional grid tie PV inverter uses either a line frequency or a high frequency transformer between the inverter and grid but losses will increase in the network leading to reduced efficiency of the system. In order to increase the efficiency, with reduced size and cost of the system, the effective solution is to remove the isolation transformer. But common mode (CM) ground leakage current due to parasitic capacitance between the PV panels and the ground making the system unreliable. The common mode current reduces the efficiency of power conversion stage, affects the quality of grid current, deteriorate the electric magnetic compatibility and give rise to the safety threats. In order to eliminate the common mode leakage current in Transformerless PV systm two control algorithms of multi-carrier pwm are implemented and compared for performance analysis.The shoot-through issue that is encountered by traditional voltage source inverter is analyzed for enhanced system reliability. These control algorithms are compared for common mode voltage and THD comparisons. The proposed system is designed using MATLAB/SIMULINK software for analysis

    Eliminating ground current in a transformerless photovoltaic application

    Get PDF
    For low-power grid-connected applications, a single-phase converter can be used. In photovoltaic (PV) applications, it is possible to remove the transformer in the inverter to reduce losses, costs, and size. Galvanic connection of the grid and the dc sources in transformerless systems can introduce additional ground currents due to the ground parasitic capacitance. These currents increase conducted and radiated electromagnetic emissions, harmonics injected in the utility grid, and losses. Amplitude and spectrum of the ground current depend on the converter topology, the switching strategy, and the resonant circuit formed by the ground capacitance, the converter, the ac filter, and the grid. In this paper, the ground current in a 1.5-kW PV installation is measured under different conditions and used to build a simulation model. The installation includes a string of 16 PV panel, a full-bridge inverter, and an LCL filter. This model allows the study of the influence of the harmonics injected by the inverter on the ground current.Ministerio de Ciencia e Innovación | Ref. DPI2009-0700

    A Systematic Method to Synthesize New Transformerless Full-bridge Grid-tied Inverters

    Get PDF

    Mission profile based multi-disciplinary analysis of power modules in single-phase transformerless photovoltaic inverters

    Get PDF

    Nuevo inversor fotovoltaico integrado sin transformador

    Get PDF
    Los inversores sin transformador son ampliamente utilizados en sistemas fotovoltaicos conectados a la red eléctrica, debido a los beneficios de lograr alta eficiencia y bajo costo.El inversor fotovoltaico sin transformador puede generar una corriente de fuga entre el inversor y la red eléctrica, a través de la capacitancia parásita del módulo fotovoltaico y la tierra física. Esta corriente de fuga provoca una disminución de la eficiencia, reduce el tiempo de vida del módulo fotovoltaico y pone en riesgo al personal que esté en contacto con el sistema. Se han propuesto varias topologías de inversores sin transformador para reducir esta corriente de fuga; este trabajo propone una topología diferente que consiste en la integración de dos etapas, un inversor puente completo y un convertidor CD/CD elevador. Una terminal de salida del inversor está conectada directamente a tierra y el convertidor es controlado por modos deslizantes.Palabra(s) Clave(s): control por modos deslizantes, corriente de fuga, inversor fotovoltaico

    Overview of Single-Phase Grid-Connected Photovoltaic Systems

    Get PDF

    Analysis and Implementation of Transformerless LCL Resonant Power Supply for Ozone Generation

    Get PDF
    This paper describes the analysis and design of an LCL resonant power supply for ozone generation. The main advantage of the proposed topology is the absence of high-voltage transformer; the high voltage gain is achievable by means of doubleresonance phenomena. Furthermore, the bandwidth is wider than the ordinary LC and its phase difference is constant over specific frequency range; as a result, an open-loop operation can be implemented. The complete analysis and design procedure of the power supply is presented. The design procedure is verified by implementing the power supply to drive a dielectric barrier discharge prototype ozone chamber. The hardware results are found to be in close agreement with simulation and thus justify the validity of the design procedures. The proposed circuit is suitable for portable ozone power supply fed by low-voltage source such as battery or photovoltaic module
    corecore