9 research outputs found

    Virtual environment architecture for rapid application development

    Get PDF
    We describe the MITRE Virtual Environment Architecture (VEA), a product of nearly two years of investigations and prototypes of virtual environment technology. This paper discusses the requirements for rapid prototyping, and an architecture we are developing to support virtual environment construction. VEA supports rapid application development by providing a variety of pre-built modules that can be reconfigured for each application session. The modules supply interfaces for several types of interactive I/O devices, in addition to large-screen or head-mounted displays

    Virtual Reality to Simulate Visual Tasks for Robotic Systems

    Get PDF
    Virtual reality (VR) can be used as a tool to analyze the interactions between the visual system of a robotic agent and the environment, with the aim of designing the algorithms to solve the visual tasks necessary to properly behave into the 3D world. The novelty of our approach lies in the use of the VR as a tool to simulate the behavior of vision systems. The visual system of a robot (e.g., an autonomous vehicle, an active vision system, or a driving assistance system) and its interplay with the environment can be modeled through the geometrical relationships between the virtual stereo cameras and the virtual 3D world. Differently from conventional applications, where VR is used for the perceptual rendering of the visual information to a human observer, in the proposed approach, a virtual world is rendered to simulate the actual projections on the cameras of a robotic system. In this way, machine vision algorithms can be quantitatively validated by using the ground truth data provided by the knowledge of both the structure of the environment and the vision system

    Augmented and Virtual Reality techniques for footwear

    Get PDF
    The use of 3D imaging techniques has been early adopted in the footwear industry. In particular, 3D imaging could be used to aid commerce and improve the quality and sales of shoes. Footwear customization is an added value aimed not only to improve product quality, but also consumer comfort. Moreover, customisation implies a new business model that avoids the competition of mass production coming from new manufacturers settled mainly in Asian countries. However, footwear customisation implies a significant effort at different levels. In manufacturing, rapid and virtual prototyping is required; indeed the prototype is intended to become the final product. The whole design procedure must be validated using exclusively virtual techniques to ensure the feasibility of this process, since physical prototypes should be avoided. With regard to commerce, it would be desirable for the consumer to choose any model of shoes from a large 3D database and be able to try them on looking at a magic mirror. This would probably reduce costs and increase sales, since shops would not require storing every shoe model and the process of trying several models on would be easier and faster for the consumer. In this paper, new advances in 3D techniques coming from experience in cinema, TV and games are successfully applied to footwear. Firstly, the characteristics of a high-quality stereoscopic vision system for footwear are presented. Secondly, a system for the interaction with virtual footwear models based on 3D gloves is detailed. Finally, an augmented reality system (magic mirror) is presented, which is implemented with low-cost computational elements that allow a hypothetical customer to check in real time the goodness of a given virtual footwear model from an aesthetical point of view

    Remote Visual Observation of Real Places Through Virtual Reality Headsets

    Get PDF
    Virtual Reality has always represented a fascinating yet powerful opportunity that has attracted studies and technology developments, especially since the latest release on the market of powerful high-resolution and wide field-of-view VR headsets. While the great potential of such VR systems is common and accepted knowledge, issues remain related to how to design systems and setups capable of fully exploiting the latest hardware advances. The aim of the proposed research is to study and understand how to increase the perceived level of realism and sense of presence when remotely observing real places through VR headset displays. Hence, to produce a set of guidelines that give directions to system designers about how to optimize the display-camera setup to enhance performance, focusing on remote visual observation of real places. The outcome of this investigation represents unique knowledge that is believed to be very beneficial for better VR headset designs towards improved remote observation systems. To achieve the proposed goal, this thesis presents a thorough investigation of existing literature and previous researches, which is carried out systematically to identify the most important factors ruling realism, depth perception, comfort, and sense of presence in VR headset observation. Once identified, these factors are further discussed and assessed through a series of experiments and usability studies, based on a predefined set of research questions. More specifically, the role of familiarity with the observed place, the role of the environment characteristics shown to the viewer, and the role of the display used for the remote observation of the virtual environment are further investigated. To gain more insights, two usability studies are proposed with the aim of defining guidelines and best practices. The main outcomes from the two studies demonstrate that test users can experience an enhanced realistic observation when natural features, higher resolution displays, natural illumination, and high image contrast are used in Mobile VR. In terms of comfort, simple scene layouts and relaxing environments are considered ideal to reduce visual fatigue and eye strain. Furthermore, sense of presence increases when observed environments induce strong emotions, and depth perception improves in VR when several monocular cues such as lights and shadows are combined with binocular depth cues. Based on these results, this investigation then presents a focused evaluation on the outcomes and introduces an innovative eye-adapted High Dynamic Range (HDR) approach, which the author believes to be of great improvement in the context of remote observation when combined with eye-tracked VR headsets. Within this purpose, a third user study is proposed to compare static HDR and eye-adapted HDR observation in VR, to assess that the latter can improve realism, depth perception, sense of presence, and in certain cases even comfort. Results from this last study confirmed the author expectations, proving that eye-adapted HDR and eye tracking should be used to achieve best visual performances for remote observation in modern VR systems

    Proceedings of the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology, Volume 1

    Get PDF
    These proceedings are organized in the same manner as the conference's contributed sessions, with the papers grouped by topic area. These areas are as follows: VE (virtual environment) training for Space Flight, Virtual Environment Hardware, Knowledge Aquisition for ICAT (Intelligent Computer-Aided Training) & VE, Multimedia in ICAT Systems, VE in Training & Education (1 & 2), Virtual Environment Software (1 & 2), Models in ICAT systems, ICAT Commercial Applications, ICAT Architectures & Authoring Systems, ICAT Education & Medical Applications, Assessing VE for Training, VE & Human Systems (1 & 2), ICAT Theory & Natural Language, ICAT Applications in the Military, VE Applications in Engineering, Knowledge Acquisition for ICAT, and ICAT Applications in Aerospace

    Multimodal metaphors for generic interaction tasks in virtual environments

    Full text link
    Virtual Reality (VR) Systeme bieten zusätzliche Ein- und Ausgabekanäle für die Interaktion zwischen Mensch und Computer in virtuellen Umgebungen. Solche VR Technologien ermöglichen den Anwendern bessere Einblicke in hochkomplexe Datenmengen, stellen allerdings auch hohe Anforderungen an den Benutzer bezüglich der Fähigkeiten mit virtuellen Objekten zu interagieren. In dieser Arbeit werden sowohl die Entwicklung und Evaluierung neuer multimodaler Interaktionsmetaphern für generische Interaktionsaufgaben in virtuellen Umgebungen vorgestellt und diskutiert. Anhand eines VR Systems wird der Einsatz dieser Konzepte an zwei Fallbeispielen aus den Domänen der 3D-Stadtvisualisierung und seismischen Volumendarstellung aufgezeigt

    Anwendung immersiver Visualisierungssysteme zur Exploration geophysikalischer und geologischer Daten

    Get PDF
    Bei der dreidimensionalen Erkundung des geologischen Untergrundes mit Hilfe von geophysikalischen Methoden stellt sich die Frage, wie möglichst schnell ein Überblick über die Daten gewonnen werden kann. Wenn 3D-Modelle am Bildschirm dargestellt werden, geht in der Regel Information durch die Projektion auf die zweidimensionale Bildebene verloren und die Darstellung kann schnell unübersichtlich werden. Bei der Verwendung von immersiven Visualisierungssystemen wird, mit Hilfe von Stereo-Darstellung und Shutter-Brillen, ein echter dreidimensionaler Eindruck von den Datensätzen vermittelt. Die Abbildung erfolgt hierbei auf großen Projektionsflächen, so daß mehrere Benutzer das Bild gleichzeitig betrachten können. Für die Produktentwicklung und für Designstudien, z.B. in der Autoindustrie, wird diese Technologie bereits seit längerem eingesetzt. Seit kurzem beginnt auch die Erdölindustrie sie zur Darstellung der komplexen und umfangreichen Reservoir-Datensätze zu verwenden, in der Regel um die Kommunikation innerhalb ihrer multidisziplinären Teams zu fördern. In dieser Arbeit wurde der Schwerpunkt auf weitere Anwendungsbereiche der Geologie und Geophysik gelegt, um zu klären, welche weiteren Möglichkeiten sich, z.B. in der Forschung und Lehre oder in der angewandten Geologie, ergeben können. Da für diese Anwendungsbereiche keine kommerzielle Software zur Verfügung stand, welche in der Lage war, immersive Visualisierungssysteme zu nutzen, wurden verschiedene Software-Prototypen für die Visualisierung von Bohrlochdaten, invertierten geoelektrischen Meßwerten, seismologischen Daten und zur Darstellung von Radargrammen und Reflektionsseismik entwickelt. Zusätzlich bestand die Möglichkeit, geometrische Modelle in die virtuelle Umgebung zu übernehmen. Mit Hilfe der erstellten Software wurden eine 3D-Georadar-Vermessung, die geophysikalische Vermessung eines hydrogeologischen Versuchsfeldes, seismologische Daten eines hydraulischen Experimentes und das geometrische Modell eines Bergwerkes in virtuellen Umgebungen dargestellt. Der Benutzer kann sich durch das Modell navigieren und unmittelbar im Raum mit den Daten interagieren. Als Visualisierungssysteme kamen die Workbench und die CyberStage, eine CAVE-ähnliche Umgebung, zum Einsatz. Aufbauend auf den hierbei gewonnenen Erfahrungen werden die Vor- und Nachteile der Verwendung von Virtueller Realität und verschiedene mögliche Anwendungsgebiete bei der Interpretation geologischer und geophysikalischer Daten aufgezeigt.Then applying geophysical methods to investigate the geological subsurface, the question arises of how to obtain a good general view of the data. If 3-D data sets are displayed on a monitor, information is often lost because of the projection onto the 2-D plane, and the image quickly becomes confusing. By using immersive visualization systems and virtual reality, it is possible to get a real three-dimensional impression with help of stereo visualization and shutter glasses. When images are shown on large projection planes, different users can see it simultaneously. For product development and design studies (e.g. in the automobile industry) such techniques are being applied for a couple of years. More recently, the oil industry uses this technology for the visualization of large and complex reservoir data; most often to enhance the communication within their asset teams. In this work the emphasis is on other branches within geology and geophysics to look for possible further fields of applications, such as research and training or issues in applied geology. For these fields of applications, no commercial software was available which could make use of immersive visualization systems. For this reason, software prototypes were implemented for the visualization of seismological data, well-logging data, inverted geoelectric data and surveys with ground penetrating radar (GPR) as well as 2-D seismics. In addition the possibility to load geometric models into a virtual environment is provided. With the help of these software prototypes, a 3-D GPR survey, the geophysical investigation of a hydrogeological test site, seismological data from a hydraulic stimulation experiment and the geometric model of a silver mine were visualized within virtual environments. The Workbench and the CyberStage (a CAVE like system) were used as visualization systems. Based on the experiences gained during the implementation and the use of the software-prototypes, the advantages and disadvantages of the new technology and possible fields of applications are outlined
    corecore