572 research outputs found

    Transferring knowledge with source selection to learn IR functions on unlabeled collections

    Full text link

    Transfer learning for information retrieval

    Get PDF
    The lack of relevance labels is increasingly challenging and presents a bottleneck in the training of reliable learning-to-rank (L2R) models. Obtaining relevance labels using human judgment is expensive and even impossible in some scenarios. Previous research has studied different approaches to solving the problem including generating relevance labels by crowdsourcing and active learning. Recent studies have started to find ways to reuse knowledge from a related collection to help the ranking in a new collection. However, the effectiveness of a ranking function trained in one collection may be degraded when used in another collection due to the generalization issues of machine learning. Transfer learning involves a set of algorithms that are used to train or adapt a model for a target collection without sucient training labels by transferring knowledge from a related source collection with abundant labels. Transfer learning can also be applied to L2R to help train ranking functions for a new task by reusing data from a related collection while minimizing the generalization gap. Some attempts have been made to apply transfer learning techniques on L2R tasks. This thesis investigates different approaches to transfer learning methods for L2R, which are called transfer ranking. However, most of the existing studies on transfer ranking have been focused on the scenario when there are a small but not sucient number of relevance labels. The field of transfer ranking with no target collection labels is still relatively undeveloped. Moreover, the main reason why a transfer ranking solution is needed is that a ranking function trained in the source collection cannot generalize to the target collection, due to the differences in the data distribution of the two collections. However, the effect of the data distribution differences on ranking model generalization has not been examined in detail. The focus of this study is the scenario when there are no relevance labels from the new collection (the target collection), but where a related collection (the target collection) has an abundant amount of training data and labels. In this thesis, we first demonstrate the generalization gap of different L2R algorithms when the distribution of the source and target collections are different in multiple ways, and we then develop alternative solutions to tackling the problem, which includes instance weighting algorithms and self-labeling methods. Instance weighting algorithms estimate weights for each training query in the source collection according to the target query distribution and use the weighted objective function to optimize a ranking function for the target collection. The results on different test collections suggest that instance weighting methods, including existing approaches, are not reliable. The self-labeling methods use other approaches to generate imputed relevance labels for queries in the target collection, which look to transfer the ranking knowledge to the target collection by transferring the label knowledge. The algorithms were tested on various transferring scenarios and showed significant effectiveness and consistency. We thus demonstrate that the performance of self-labeling methods can be further improved with a minimal number of calibration labels from the target collection. The algorithms and knowledge developed in this thesis can help solve generic ranking knowledge transfer problems under different scenarios

    Data-Efficient Machine Learning with Focus on Transfer Learning

    Get PDF
    Machine learning (ML) has attracted a significant amount of attention from the artifi- cial intelligence community. ML has shown state-of-art performance in various fields, such as signal processing, healthcare system, and natural language processing (NLP). However, most conventional ML algorithms suffer from three significant difficulties: 1) insufficient high-quality training data, 2) costly training process, and 3) domain dis- crepancy. Therefore, it is important to develop solutions for these problems, so the future of ML will be more sustainable. Recently, a new concept, data-efficient ma- chine learning (DEML), has been proposed to deal with the current bottlenecks of ML. Moreover, transfer learning (TL) has been considered as an effective solution to address the three shortcomings of conventional ML. Furthermore, TL is one of the most active areas in the DEML. Over the past ten years, significant progress has been made in TL. In this dissertation, I propose to address the three problems by developing a software- oriented framework and TL algorithms. Firstly, I introduce a DEML framework and a evaluation system. Moreover, I present two novel TL algorithms and applications on real-world problems. Furthermore, I will first present the first well-defined DEML framework and introduce how it can address the challenges in ML. After that, I will give an updated overview of the state-of-the-art and open challenges in the TL. I will then introduce two novel algorithms for two of the most challenging TL topics: distant domain TL and cross-modality TL (image-text). A detailed algorithm introduction and preliminary results on real-world applications (Covid-19 diagnosis and image clas- sification) will be presented. Then, I will discuss the current trends in TL algorithms and real-world applications. Lastly, I will present the conclusion and future research directions

    Novel deep cross-domain framework for fault diagnosis or rotary machinery in prognostics and health management

    Get PDF
    Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This doctoral research provides a systematic review of state-of-the-art deep learning-based PHM frameworks, an empirical analysis on bearing fault diagnosis benchmarks, and a novel multi-source domain adaptation framework. It emphasizes the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. Besides, the limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research. The empirical study of the benchmarks highlights the evaluation results of the existing models on bearing fault diagnosis benchmark datasets in terms of various performance metrics such as accuracy and training time. The result of the study is very important for comparing or testing new models. A novel multi-source domain adaptation framework for fault diagnosis of rotary machinery is also proposed, which aligns the domains in both feature-level and task-level. The proposed framework transfers the knowledge from multiple labeled source domains into a single unlabeled target domain by reducing the feature distribution discrepancy between the target domain and each source domain. Besides, the model can be easily reduced to a single-source domain adaptation problem. Also, the model can be readily updated to unsupervised domain adaptation problems in other fields such as image classification and image segmentation. Further, the proposed model is modified with a novel conditional weighting mechanism that aligns the class-conditional probability of the domains and reduces the effect of irrelevant source domain which is a critical issue in multi-source domain adaptation algorithms. The experimental verification results show the superiority of the proposed framework over state-of-the-art multi-source domain-adaptation models

    Recuperação multimodal e interativa de informação orientada por diversidade

    Get PDF
    Orientador: Ricardo da Silva TorresTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Os métodos de Recuperação da Informação, especialmente considerando-se dados multimídia, evoluíram para a integração de múltiplas fontes de evidência na análise de relevância de itens em uma tarefa de busca. Neste contexto, para atenuar a distância semântica entre as propriedades de baixo nível extraídas do conteúdo dos objetos digitais e os conceitos semânticos de alto nível (objetos, categorias, etc.) e tornar estes sistemas adaptativos às diferentes necessidades dos usuários, modelos interativos que consideram o usuário mais próximo do processo de recuperação têm sido propostos, permitindo a sua interação com o sistema, principalmente por meio da realimentação de relevância implícita ou explícita. Analogamente, a promoção de diversidade surgiu como uma alternativa para lidar com consultas ambíguas ou incompletas. Adicionalmente, muitos trabalhos têm tratado a ideia de minimização do esforço requerido do usuário em fornecer julgamentos de relevância, à medida que mantém níveis aceitáveis de eficácia. Esta tese aborda, propõe e analisa experimentalmente métodos de recuperação da informação interativos e multimodais orientados por diversidade. Este trabalho aborda de forma abrangente a literatura acerca da recuperação interativa da informação e discute sobre os avanços recentes, os grandes desafios de pesquisa e oportunidades promissoras de trabalho. Nós propusemos e avaliamos dois métodos de aprimoramento do balanço entre relevância e diversidade, os quais integram múltiplas informações de imagens, tais como: propriedades visuais, metadados textuais, informação geográfica e descritores de credibilidade dos usuários. Por sua vez, como integração de técnicas de recuperação interativa e de promoção de diversidade, visando maximizar a cobertura de múltiplas interpretações/aspectos de busca e acelerar a transferência de informação entre o usuário e o sistema, nós propusemos e avaliamos um método multimodal de aprendizado para ranqueamento utilizando realimentação de relevância sobre resultados diversificados. Nossa análise experimental mostra que o uso conjunto de múltiplas fontes de informação teve impacto positivo nos algoritmos de balanceamento entre relevância e diversidade. Estes resultados sugerem que a integração de filtragem e re-ranqueamento multimodais é eficaz para o aumento da relevância dos resultados e também como mecanismo de potencialização dos métodos de diversificação. Além disso, com uma análise experimental minuciosa, nós investigamos várias questões de pesquisa relacionadas à possibilidade de aumento da diversidade dos resultados e a manutenção ou até mesmo melhoria da sua relevância em sessões interativas. Adicionalmente, nós analisamos como o esforço em diversificar afeta os resultados gerais de uma sessão de busca e como diferentes abordagens de diversificação se comportam para diferentes modalidades de dados. Analisando a eficácia geral e também em cada iteração de realimentação de relevância, nós mostramos que introduzir diversidade nos resultados pode prejudicar resultados iniciais, enquanto que aumenta significativamente a eficácia geral em uma sessão de busca, considerando-se não apenas a relevância e diversidade geral, mas também o quão cedo o usuário é exposto ao mesmo montante de itens relevantes e nível de diversidadeAbstract: Information retrieval methods, especially considering multimedia data, have evolved towards the integration of multiple sources of evidence in the analysis of the relevance of items considering a given user search task. In this context, for attenuating the semantic gap between low-level features extracted from the content of the digital objects and high-level semantic concepts (objects, categories, etc.) and making the systems adaptive to different user needs, interactive models have brought the user closer to the retrieval loop allowing user-system interaction mainly through implicit or explicit relevance feedback. Analogously, diversity promotion has emerged as an alternative for tackling ambiguous or underspecified queries. Additionally, several works have addressed the issue of minimizing the required user effort on providing relevance assessments while keeping an acceptable overall effectiveness. This thesis discusses, proposes, and experimentally analyzes multimodal and interactive diversity-oriented information retrieval methods. This work, comprehensively covers the interactive information retrieval literature and also discusses about recent advances, the great research challenges, and promising research opportunities. We have proposed and evaluated two relevance-diversity trade-off enhancement work-flows, which integrate multiple information from images, such as: visual features, textual metadata, geographic information, and user credibility descriptors. In turn, as an integration of interactive retrieval and diversity promotion techniques, for maximizing the coverage of multiple query interpretations/aspects and speeding up the information transfer between the user and the system, we have proposed and evaluated a multimodal learning-to-rank method trained with relevance feedback over diversified results. Our experimental analysis shows that the joint usage of multiple information sources positively impacted the relevance-diversity balancing algorithms. Our results also suggest that the integration of multimodal-relevance-based filtering and reranking was effective on improving result relevance and also boosted diversity promotion methods. Beyond it, with a thorough experimental analysis we have investigated several research questions related to the possibility of improving result diversity and keeping or even improving relevance in interactive search sessions. Moreover, we analyze how much the diversification effort affects overall search session results and how different diversification approaches behave for the different data modalities. By analyzing the overall and per feedback iteration effectiveness, we show that introducing diversity may harm initial results whereas it significantly enhances the overall session effectiveness not only considering the relevance and diversity, but also how early the user is exposed to the same amount of relevant items and diversityDoutoradoCiência da ComputaçãoDoutor em Ciência da ComputaçãoP-4388/2010140977/2012-0CAPESCNP
    corecore