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1

I N T R O D U C T I O N

Homines non nascentur, sed finguntur

Desiderius Erasmus

In general, people tend to live in groups. This group bond between people has fostered
the development of language, culture, science, and society structures. Since humans
belong to the group of mammals, raising babies and children is enshrined in their care,
interaction, and communication skills. Humans have kinship and family ties from the
existence as hunters/gatherers, the transition to agricultural workers up to an industrial
and modern society.

Today, we live in an interactive and communicative world like never before. Despite
the abundance and ever-changing social communication and connections, one social
trait has remained the same: kinship. In fact, kinship and kinship recognition are
essential components of human social relations. Family affection influences our growth,
environment, character, development, and social status.

In many cultures, artistic expressions are closely tied to kinship relationships. Figure 1
(a family oil portrait by Rembrandt) shows the strong relationships between family
and art. Kinship is also related to religious beliefs and practices [94, 186], as many
religions include specific rules and customs for marriage, family, and inheritance [58].
Moreover, the intrinsic ability of humans for kinship recognition has an impact on
both direct fitness (breeding behavior) and indirect fitness (altruistic behavior) [93].
In addition, kinship and the recognizing of kinship are of great importance to today’s
society [64, 93, 146], including finding missing children, genealogy research [43, 95],
forensic research, social behavior analysis [64, 93, 146, 240], and so forth. With the rise
of computers, computer vision and learning systems, the question is whether technology
can help us in analyzing kinship and recognizing it. This is also known as vision-based
kinship recognition [6, 165].

Vision based kinship recognition is a technology that automatically recognizes familial
relationships based on visual information [6, 165]. Previous research [9, 38, 93, 154] has
shown that there exists a relationship between face similarity and kinship. This gives
us the opportunity to conduct vision-based kinship recognition using facial information.
Figure 2 shows the representative subtasks in the kinship recognition field, using facial
information.

1



2 I N T RO D U C T I O N

Figure 1: ”Brunswick Family Portrait” by Rembrandt Harmenszoon van Rijn.

In the past decade, technological advancements have been made in the vision based
kinship recognition field [156, 165, 166, 170, 214, 217]. Facial based kinship datasets
are collected [61, 62, 129, 158, 163, 216, 218], and different kinship recognition methods
are proposed. In the early days of kinship recognition, local features corresponding
to eyes and noses are often used, as they show heritable similarities. Hand-crafted
feature extractors like HOG [207], LBP [3], and Gabor [1, 133] are commonly employed
[130, 158, 159, 176, 227, 228, 251]. As the field has evolved, metric learning has become
a widely used technique for kinship representation. Metric learning aims to improve
kinship representation by maximizing the inter-class and minimizing the intra-class
distributions [70, 157, 227, 254]. Methods like NRML [131], LMMML [86], and DMML
[229] are proposed. Recently, the focus is on deep learning-based methods [7, 30, 37,

Kin/ 
Non-KinMachine

which family ?

Family Classification

Kinship Verification

Kinship Identification

Mother-
daughterMachine

Machine

Figure 2: Representative subtasks in kinship recognition.
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54, 119, 142, 180, 195, 199, 232, 238]. For instance, graph-based kinship reasoning
(GKR) [114] fuses the extracted features using Graph Neural Networks. Supervised
Mixed Norm AutoEncoder (SMNAE) [100] learns spatio-temporal representation by
using autoencoders. As such, deep learning-based kinship recognition is the preferred
choice for kinship recognition research and development.

Despite the progress made in the field of kinship recognition, there are still a few
shortcomings. This is due to a combination of intrinsic challenges related to the nature
of the task itself and extrinsic (imaging) challenges:

• Intrinsic challenges include the age, gender, expression, ethnicity, and types of
genetic relationships of the individuals being recognized. These factors lead to
variations in the appearance of facial features.

• Extrinsic challenges include variations in imaging conditions, such as lighting
and resolution, as well as biased testing datasets that do not accurately represent
the diversity of the population. There may also be unknown classes of kinship
relationships that are not accounted for in the current recognition methods, limiting
the generalizability of these techniques.

These challenges are common in real scenarios. However, not all of these challenges
are well-studied. Consequently, given these difficulties, this thesis aims to investigate
how to perform kinship identification kinship recognition in more realistic, real-world
settings.

1.1 R E S E A R C H O U T L I N E A N D Q U E S T I O N S

To study kinship recognition, we focus on the following question:

What is kinship verification and what are the challenges?

As a starting point, we focus on kinship verification since it is a well-studied task
in kinship recognition. Kinship verification is defined as the automatic process of verify-
ing whether two or more persons are blood relatives (kin) by analyzing images of their
faces.

Kinship verification is an important research field in computer vision with many appli-
cations such as finding missing persons, family album organization, and online image
search. Although substantial progress has been made in kinship verification, there are
still challenges such as intrinsic (face i.e., differences in facial appearance) and extrinsic
(acquisition i.e., varying imaging conditions) problems. Moreover, there is still a demand
for more diverse kinship datasets. Reviewing the existing literature in kinship verification
provides a holistic understanding of challenges in kinship recognition.

Therefore, Chapter 2 provides a survey on kinship verification methods and datasets. The
survey starts with the definition of kinship verification and its corresponding intrinsic
and extrinsic challenges. Then, an overview of kinship verification methods and datasets
is given. Finally, a new multi-modal dataset (Nemo-Kinship Dataset) is proposed as a
benchmark dataset addressing large inter-subject age variations consisting of 4216 videos
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of 248 persons from 85 families. The newly collected dataset is used to systematically
test and analyze state-of-the-art methods.

In Chapter 2, we explore the relationship between the tasks of kinship verification,
identification, and family classification. Kinship verification is a well-explored task:
identifying whether two persons are kin. In contrast, kinship identification has been
largely ignored so far. Kinship identification aims to further identify the particular type of
kinship. An extension to kinship verification falls short to properly obtain identification
because existing verification networks are individually trained on specific kin types
and do not consider the context between different kinship types. Also, existing kinship
verification datasets have biased positive-negative distributions, which are different from
real-world distributions. Many experiments done so far use equal numbers of positive
and negative examples. However, in real scenarios, the number of negative samples is
usually larger than the number of positive ones. Therefore, the second research question
is:

How can we better verify kin-types when facing unbalanced distributions in real
scenarios?

To address this question, in Chapter 3, we propose a novel kinship identification approach
based on joint training of kinship verification ensembles and classification modules.
We propose to rebalance the training dataset. Large scale experiments demonstrate the
improved overall performance on kinship identification. The experiments further show a
performance improvement of kinship verification when trained on the same dataset with
more realistic distributions.

In addition to the extrinsic challenges of unbalanced data, intrinsic challenges can also
negatively influence the performance of kinship recognition algorithms. Aging is one of
the intrinsic challenges which may cause a change in facial appearance. Therefore, the
third research question is:

How can we alleviate the negative influence of age variations when conducting kinship
verification?

The performance of kinship verification can be influenced by children-adult pairs due
to the large variations in facial appearance and shape. In Chapter 4, this problem is
approached from an age-transferring generative modeling perspective, and we present
a unified approach to kinship verification for child-adult pairs. Kinship features are
computed with the aim to eliminate the discrepancy between the features of children and
adults through age transferring.

To this end, a Children-Adult-Transferring (CAT) Module is proposed by exploiting
the generative knowledge obtained by an Identity-Preserved Conditional Generator. In
fact, children’s images are generated from the childhood age domain to an adulthood
domain, and the latent feature through generation is utilized. Then, a Kinship Mapping
Module (KMM) is created for mapping the latent features to the kinship-related domain,
which is further handled by the Neighborhood Repulsed Metric Learning method. Since
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there is no public kinship verification dataset containing a large variety of children-adult
images, the Nemo-Kinship-Children dataset is created. The experimental results show
that the towards-adult transferred features of children images robustly represent kinship
relations.

While kinship recognition and related methods have a wide range of applications in
computer vision, many of these approaches are focused on closed sets, where the number
of possible relationships is limited. However, in real-life scenarios, kinship recognition
is an open set problem as there are many unknown and unlabeled kin classes. This brings
us to the following question:

How can we improve the kinship recognition when facing unknown classes?

To address the challenge of kinship recognition in open set scenarios, Chapter 5 fo-
cuses on the measurement of kinship at various degrees for collections that include both
kin and non-kin-related people. The aim is to determine family relationships and their
corresponding degrees of kinship hierarchically. To achieve this, we propose a novel and
more general task called the Open-set Kinship Similarity Measurement (OKSM).

Different from ordinary open set methods, our method is pairwise-based and is able to
exploit mutual information from positive pairs. Large scale experiments and ablation
studies show that our method (1) reaches SOTA performance on the FIW dataset in open
set, (2) is able to properly separate kinship categories using pairwise similarity, and (3)
generates uniform similarity distributions.

Another major challenge in the field of kinship recognition is the limited size of available
datasets. It is often due to the tedious (labor-consuming) process of annotating kinship
relationships. To deal with small datasets, transfer learning can be used for kinship
verification by exploiting off-the-shelf facial knowledge. However, how to learn kinship
distributions without annotations has not been considered before. As a result, the fifth
research question is:

How can we explore off-the-shelf knowledge from pretrained facial networks for
kinship verification with limited kinship datasets?

In Chapter 6, a two-branch model, Kinship-transformer (KT), is proposed in a semi-
supervised manner. The model is first pre-trained on a large collection of images contain-
ing faces (without kinship labels). Then the model is fine-tuned on a small video kinship
dataset (Nemo-kinship). To achieve this, we propose a kinship-oriented augmentation
method (Video-kin augmentation) for pretraining. During the pretraining, the original
video is augmented into different styles, trying to form feature representations that are
similar to the kinship distribution. The results show the superiority of the proposed
model compared to traditional convolutional neural networks.
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1.2 S O C I E TA L I M PAC T A N D E T H I C A L S TAT E M E N T

Vision-based kinship recognition is closely related to our lives and has many potentially
valuable applications. The technology can potentially benefit our society by enabling
faster and more accurate identification of family members in emergencies and reuniting
separated families in the event of a kidnapping or disaster [36]. However, at the same
time, it also raises ethical and social concerns.

One of the major ethical concerns of vision-based kinship recognition is the potential
for invasion of privacy. Because kinship recognition uses an individual’s facial features
and automatically identifies/verifies family relationships based on facial information,
sensitive information can be used without people’s consent. Such sensitive information
can potentially be used for mass surveillance and tracking of individuals and families.
This can raise concerns about individual privacy violations.

Another ethical concern associated with vision-based kinship recognition is the potential
for discrimination and bias. Kinship recognition algorithms may be biased, resulting in
inaccurate or unfair results. For example, facial recognition algorithms may be more
likely to misidentify people of certain races, genders, or ages [67], which may lead to
discriminatory results in kinship recognition.

Overall, the social implications and ethical issues concerning vision-based kinship
recognition are multifaceted. While this technology has the potential to provide many
benefits, it also raises important concerns about privacy, discrimination, and the potential
for increased surveillance and control. It is crucial for the researchers developing and
implementing kinship recognition to consider and address these ethical issues carefully.
To ensure its responsible and fair use, we obey the following ethical principles:

• The research participants are fully informed about the purpose of the research and
how their biometric data is being collected and used [248].

• Individuals have the right to control their own biometric data and the right to
consent or disagree with its use [24, 173].

• The use of kinship recognition technologies should aim to maximize benefits and
minimize harm to individuals and society [11, 138].

• The personal and family information of the participants in kinship recognition
experiments are kept and protected confidentially [71, 185].

• The kinship recognition technology should not be used in a way that causes harm
or distress to individuals [248].

• The use of kinship recognition technology should remain as fair and impartial as
possible, avoiding bias and discrimination against marginalized groups [160].

In conclusion, the use of kinship recognition techniques raises important ethical consid-
erations. By addressing these challenges and considering the potential impact on society,
the researchers involved in developing and implementing this technology can help ensure
that it is used ethically and effectively.
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A S U R V E Y O N K I N S H I P V E R I F I C AT I O N

2.1 I N T RO D U C T I O N

Kinship verification (KV) is defined as the automatic process of verifying whether
two or more persons, represented by images of their faces, are blood relatives i.e., kin
or no-kin [156, 166, 170, 214, 217]. Image-based kinship verification assumes facial
resemblances between genetic-related persons [40, 93, 240]. Fang et al. [62] are among
the first to study kinship verification based on images of faces. Since then, kinship
verification attracted a lot of attention in computer vision and related research fields
such as historical and genealogical studies [43, 95], social media [20, 43, 236], behavior
analysis [64, 93, 146, 240], and inheritance [165]. Kinship verification is a challenging
task mainly due to intrinsic (face i.e., differences in facial appearance) and extrinsic
(acquisition i.e., varying imaging conditions) challenges. Intrinsic challenges are related
to changes in age, gender, expression, ethnicity, and types of genetic relationships [156].
Extrinsic challenges correspond to the image acquisition process, such as changes in
illumination, camera viewpoint, and face occlusion.

Kinship verification can be divided into three groups based on the process of feature
extraction and learning: (1) (hand-crafted) feature extraction, (2) metric learning, and
(3) deep learning. Early kinship verification methods focus on extracting features at
facial landmarks such as eyes and noses. Hand-crafted descriptors include HOG [39],
LBP [147], PEM [109], and Gabor [1] features. Later, metric learning methods are
proposed to exploit (distance) metrics by maximizing inter-class and minimizing intra-
class distances. More recently, deep learning is proposed to learn features and metrics
simultaneously [136, 192].

Different image datasets are proposed. The CornellKin dataset, proposed by Fang
et al. [62] in 2010, is the first widely used image dataset. Then, the KinFaceW-I &
II [129, 131] public datasets are proposed containing four different kinship types (father-
son, mother-son, father-daughter, and mother-daughter). Robinson et al. propose the
Families In the Wild (FIW) dataset [166, 168] to study kinship verification in more
challenging and dynamic environments. In addition, a number of video datasets are
provided [49, 100, 226]. Unfortunately, the major problem with these datasets remains
the limited age range between subjects.

To this end, in this chapter, we propose a multi-modal dataset for kinship verification
containing a wider range of age variations than existing datasets. The newly collected
Nemo-kinship dataset consists of 4216 videos of 85 families with 248 individuals.

9
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This survey:

• provides a large survey on kinship verification methods and datasets.

• studies the challenges of existing kinship methods and discusses future directions.

• proposes the Nemo-Kinship dataset containing a large range of age differences
between subjects.

This survey is organized as follows. In Section 2, kinship verification is discussed includ-
ing kinship definition, biological background, and potential applications. An overview
is given of different kinship datasets and methods in Sections 3 and 4, respectively.
In Section 5, the Nemo-kinship dataset is presented. Evaluation protocols for kinship
verification are given in Section 6. In Section 7, a benchmark is conducted on both public
datasets as well as on the Nemo-kinship dataset. Conclusion, discussion, and future
directions are outlined in Section 8.

2.2 M OT I VAT I O N A N D B AC K G RO U N D

2.2.1 Biological Background

Kinship verification by humans

Facial information is the most commonly used identification cue in genetic similarity
[9,38,93,154,240]. Images of faces contain important identification cues to determine, for
example, the age, identity, gender, and ethnicity of a person [93, 236]. In 1982, Daly and
Wilson [40] propose to use facial similarity as a physiological cue for kinship detection,
providing a basis for human kinship detection [99]. Moreover, kinship verification is
used to measure direct (breeding behavior) and indirect fitness (altruistic behavior) [93].
For instance, the paternal resemblance [20] has a positive effect on family relationships,
and the facial resemblance enhances the corporation as well as trust [42, 154].

Significance and applications

The above factors indicate that kinship verification is beneficial for genealogical studies,
but it also has important implications on other applications such as arranging and man-
aging hundreds of thousands of images online [182], historic lineage and genealogical
studies identifying inaccessible people based on their kinship similarity. Moreover,
in forensic and criminal studies, kinship verification is used to reduce the number of
suspects by narrowing down the search space e.g., in the case of the Boston Marathon
bombing [97]. Hence, kinship verification may have a positive influence on different
domains such as genealogical studies, social media, and forensic investigation, with many
applications such as automatic photo tagging and management, missing children, crime
scene investigation, and surveillance. However, improper use of kinship verification can
lead to privacy violations. Moreover, the verification system’s security may fail in case
of adversarial attacks [72, 75, 177, 178, 247] and fake facial images [96, 102].
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Figure 3: Flowchart of the three different tasks in the domain of kinship recognition.

2.2.2 Kinship Terminology, Types and Classes

Kinship verification, recognition and identification

Mohammed et al. [6],

In general, kinship may indicate similarity, familiarity, or closeness between
entities on the basis of some or all of the basic traits or features . . . biology,
kinship typically refers to the degree of genetic relatedness or coefficient of
relationship between individual members of the same species [16, 39, 118]
. . .

In general, there are two kinship types: kinship with blood (consanguineal kinship)
and marriage ties (affinal kinship) [210]. Kinship with blood ties corresponds to blood-
based relationships with overlapping genes [41] and kinship with marriage ties addresses
the connection based on marriage. This chapter focuses on blood ties. According
to the degree of similarity between family members, kinship is classified into three
groups [6, 140, 141]:

1. Primary kinship: Blood ties between people do not contain intermediate relation-
ships. This class consists of Father-Daughter (F-D), Father-Son (F-S), Mother-
Daughter (M-D), Mother-Son (M-S), Sister-Brother (S-B), Sister-Sister (S-S), and
Brother-Brother (B-B) (ego-self and affinal relationships are not considered).

2. Secondary kinship: Blood ties between people contain one intermediate kinship per-
son, e.g., Uncle-Nephew. Common relationships are GrandFather-GrandDaughter
(GF-GD), GrandFather-GrandSon (GF-GS), GrandMother-GrandDaughter (GM-
GD), and GrandMother-GrandSon (GM-GS).
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Figure 4: Facial regions used for kinship verification and kinship-related heat maps.

3. Tertiary kinship: Two intermediate levels exist for this class of kinship [141].

Hence, the type of kinship relationship can be categorized into 4-types (parents-children
included), 7-types (siblings included), and 11-types (grandparents-grandchildren in-
cluded).

Kinship Verification: definition

According to [6, 166], kinship recognition is the task of studying blood relationships
based on facial image information. Kinship verification is one of the subtasks of kinship
recognition. The three major subtasks of kinship recognition are [6, 166]: (1) kinship
verification defined as a binary classification task determining whether two or more
persons are blood-related, (2) kinship identification with the aim to estimate the kin-type,
and (3) kinship/family classification identifying to which family an individual belongs
to [76,166,217]. These three tasks are interrelated and influence each other [6]. As shown
in Figure 3, kinship verification is based on the results generated by kinship classification.
Furthermore, kinship verification analyzes different types of kinship relationships [6].
Hence, kinship verification plays a central role in kinship recognition.

Formulation

As discussed in Section. 2.2.2, kinship verification is a binary classification task de-
termining whether two (or more) people are kin or not. We now briefly discuss the
formalized kinship verification task [114]. Most of the existing research focuses on
bi-subject (one-versus-one) kinship verification. A canonical definition of the task is
as follows: let P =

{
(Xi, Yi) | i = 1, 2, . . . , N

}
denote the training set of images pairs

containing kin relationships for each kin-type. N is the number of positive pairs, and
Xi and Yi are parent and children images respectively. Then, let the negative training
set be denoted by N = {(Xi, Y j) | i, j = 1, 2, . . . , N, i , j}, representing the image
pairs without kin relation. To verify the kin-types, the binary classifier f (·) and feature
extractor g(·) are used. Then, the final output is formulated by:

z = f (g(Xi, Y j)), z ∈ {0, 1}, (1)
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where 1 represents kin and 0 non-kin. There are special cases where two parents and a
child are used as input. For this tri-subject (one-versus-two) kinship verification task,
the positive training set is given by {(X f i, Xmi, Yci) | i = 1, 2, . . . , N} and the negative
training set is denoted by {(X f i, Xmi, Yc j) | i, j = 1, 2, . . . , N, i , j} . Then, the final
output is given by:

z = f (g(X f i, Xm j, Yc j)), z ∈ {0, 1}, (2)

where X f i, Xmi, Yci denote the ith sample of father, mother and child.

2.2.3 Kinship Information

Obviously, f (·) needs to make full use of kinship information from Xi and Y j. However,
how to effectively extract kinship information is still a question. Martello and Maloney
[38] conduct experiments with 220 participants. They show that the upper half of the
face contains more relevant kinship information than the lower half. Furthermore, eye
regions contain slightly more useful cues than the rest of the upper half of the face.
Hence, enhancing the eyes, nose, and mouth areas may improve the accuracy of kinship
verification. Studies [62, 66, 99, 232] also show that cues, related to kinship information,
can be based on machine-based kinship verification. However, there are conflicting
findings between different studies. Gao et al. [66] show that mouth regions contain
higher similarities between children and parents. In contrast, Martello and Maloney [38]
show that people are better at predicting kinship without mouth regions. In addition,
DeBruine et al. [43] show that the degree of similarity may vary between same-gender
and different-gender pairs. The same-gender pairs usually obtain higher similarities.
Figure 4b shows the important facial cues for different kin-types [44]. Features may vary
for different kin-types [165].

2.2.4 Challenges on Kinship Datasets

As mentioned in Section 2.1, there are different intrinsic and extrinsic challenges. Com-
pared to datasets for face recognition [136, 193], kinship datasets are much smaller in
size. Hence, new kinship datasets are required according to:

• Large-scale video-based kinship datasets.

• Kinship datasets for solving specific kinship-related problems.

In general, current kinship datasets consist of still images. However, video-based datasets
contain dynamic facial and head cues, including head motion (gait), expressions and
mouth movement. Video-based datasets may increase the accuracy and robustness of
kinship verification algorithms. Another important aspect of a kinship dataset is that it
can be used for solving specific kinship relationships. For example, the face of a person
changes over time (i.e., aging) and may negatively influence existing kinship verification
methods. Therefore, a dataset containing pictures/videos of the same person over time is
an important addition.
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Figure 5: Pipeline of the kinship verification system.

2.2.5 Architecture of Kinship Verification Systems

Studies [6,41,125,156] show that an automated kinship verification system can be divided
into four phases: (1) face detection, (2) feature extraction, (3) similarity computation,
and (4) verification. The pipeline of a kinship verification system is illustrated in
Figure 5.

Pre-processing phase

The pre-processing phase locates, detects, and segments the facial regions and separates
them from the background. It ensures that the kinship verification system focuses on
valuable regions to extract features. This phase also includes the normalization of head
pose, illumination, and scale.

Feature extraction phase

Feature extraction methods are proposed based on hand-crafted descriptors such as
texture, appearance, and geometry features. Other feature extraction methods employ
deep neural networks.

Similarity measurement phase

This phase measures the similarity between image pairs based on the extracted features.
It includes selecting the best subset from the obtained feature or mapping the extracted
features to a more prominent manifold. Different distance calculations (e.g., Euclidean
and cosine distance) together with metric learning are used.

Verification phase

The verification phase outputs the final result i.e., kin or non-kin. Commonly conventional
machine learning methods that are used are SVM and KNN. For deep learning methods,
the classification results are usually obtained through the f c layer or MLP.

2.3 DATA S E T S

Fang et al. [62] collect the first kinship dataset. Since then, different datasets are collected
to narrow the distribution discrepancy between training and real-world data. Increasingly
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Table 1: Checkerboard of existing datasets. The darker the box is, the more similar.
kin

types constrained unconstrained pairs
<300

pairs
300˜500

pairs
500˜1000

pairs
>1000 videos audio family

structure

2 family 101 [61]
TSKinFace [158] family 101 [61] TSKinFace [158]

family 101 [61]
TSKinFace [158]

3 TSKinFace [158] TSKinFace [158] TSKinFace [158]

4

family 101 [61]
CornellKin [62]
UB KinFace [218]
KinFaceW-I&II [129]
TALKIN [216]
KFVW [226]

CornellKin [62]
UB KinFace [218]
family 101 [61]

KFVW [226]
TALKIN [216] KinFaceW-I&II [129]

TALKIN [216]
KFVW [226] TALKIN [216]

7 UvA-smile [51] KIVI [101] KIVI [101] UvA-smile [51]
UvA-smile [51]
KIVI [101] KIVI [101]

11 FIW [166]
FIW-MM [163]

FIW [166]
FIW-MM [163]

FIW [166]
FIW-MM [163]

larger datasets are proposed to support data-driven methods. Based on the kin-type
numbers, existing datasets can be divided into three categories: 4-types, 7-types, and
11-types (non-kin is not considered). The development of public kinship datasets is
shown in Figure 6. As depicted, the blue box represents image-based datasets and green
boxes correspond to video-based datasets. It is shown that, in the early days, kinship
datasets are mainly image-based. Recently, video-related datasets are collected, and
their labels are becoming more diversified. Table 1 lists the similarities and differences
between datasets in a checkerboard manner. The darker the block is, the more similar
the datasets are. Most datasets contain four kin-types, and most of these images are
unconstrained. The number of images is usually less than 1000.

2.3.1 Kinship Datasets: 4-types

Image-based dataset

CornellKin (2010) [62]: CornellKin1 is the first widely used public dataset collected in
2010, consisting of 150 pairs of public persons and celebrities with family information.
The images are collected through a controlled online search, with frontal pose and neutral
facial expressions. These datasets can be divided into four categories: Father-Son (F-S,
40%), Father-Daughter (F-D, 22%), Mother-Son (M-S, 13%), Mother-Daughter (M-D,
26%) with different race (around 50% Caucasians, 40% Asians, 7% African Americans,
and 3% others), gender, and age.

UB KinFace (2011) [218, 220]: Different from CornellKin, UB KinFace2 contains
three images for each positive set with 270 images collected in total and separated into

1 http://chenlab.ece.cornell.edu/projects/KinshipVerification/
2 http://www1.ece.neu.edu/˜yunfu/research/Kinface/Kinface.htm

http://chenlab.ece.cornell.edu/projects/KinshipVerification/
http://www1.ece.neu.edu/~yunfu/research/Kinface/Kinface.htm


16 A S U RV E Y O N K I N S H I P V E R I F I C AT I O N

90 groups. Each group contains three types of images: child, young parent, and old
parent. This dataset is updated into the so-called UB KinFace Ver2.0 in which groups are
extended from 90 to 200. For UB KinFace Ver2.0, the influence of ethnicity is considered.
There are four kin-types (F-S, F-D, M-S, M-D). To our knowledge, UB KinFace is the
first database collecting children, young parents, and old parents for kinship verification.
However, Yan et al. [229] show that there is a large imbalance in the dataset because
nearly 80% of UB KinFace are father-son relationships.

Family101 (2013) [61]: Family1013 is collected based on the family trees. It contains 101
different family trees with 206 nuclear families. Each family tree contains 1 to 7 families.
It consists of renowned (public) families. Each family contains 3 to 9 family members.
This dataset contains 72% Caucasians, 23% Asians, and 5% African Americans with
different gender or age. There are 607 individuals and 14816 images in total. Family101
is organized by a family structure providing a more structure-related task for kinship
recognition.

KinFaceW-I & KinFaceW-II (2014) [129, 131]: The aforementioned public datasets
are relatively small. Lu et al. [129, 131] collect KinFaceW-I and KinFaceW-II4 datasets
through an online search. These two datasets are slightly different during data collection.
In KinFaceW-I, kinship pairs are collected from different pictures. In KinFaceW-II, all
pairs are obtained from the same photo. These photos are unconstrained in terms of
pose, lighting, background, expression, age, ethnicity, and partial occlusion [131]. There
are four types of kinship relations for these two datasets. In KinFaceW-I, there are 156
pairs of F-S, 134 pairs of F-D, 116 pairs of M-D, and 127 pairs of M-S. Meanwhile, in
KinFaceW-II, there are 250 pairs of pictures for each kinship relation.

TSKinFace (2015) [158]: Most of the publicly available datasets are bi-subject i.e.,
based on a pair of images. In contrast, TSKinFace5 is a tri-subject kinship database for
kinship verification in a one-versus-two manner. There are two types in TSKinFace:
Father-Mother-Son (FM-S) and Father-Mother-Daughter (FM-D). The FM-S contains
513 groups of tri-subjects. 343 groups of them are Asian, and 170 groups are non-
Asian. FM-D contains 502 groups. There are 331 Asian groups and 171 non-Asian
groups.

Video-based datasets

As opposed to still images, videos contain face dynamics including changes in head
movements, expressions, and illumination conditions [226]).

KFVW (2018) [226]: The Kinship Face Videos in the Wild (KFVW) dataset contains
418 pairs of video clips from TV shows on the Internet. Each clip contains 100 to 500
frames. Videos are unconstrained in pose, lighting, background, occlusion, expression,
makeup, and age. The average size of the video frames is about 900× 500 pixels. Similar

3 http://chenlab.ece.cornell.edu/projects/KinshipClassification/index.
html

4 http://www.kinfacew.com/
5 http://parnec.nuaa.edu.cn/_upload/tpl/02/db/731/template731/pages/
xtan/TSKinFace.html

http://chenlab.ece.cornell.edu/projects/KinshipClassification/index.html
http://chenlab.ece.cornell.edu/projects/KinshipClassification/index.html
http://www.kinfacew.com/
http://parnec.nuaa.edu.cn/_upload/tpl/02/db/731/template731/pages/xtan/TSKinFace.html
http://parnec.nuaa.edu.cn/_upload/tpl/02/db/731/template731/pages/xtan/TSKinFace.html
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Figure 7: Representative public kinship datasets.

to other datasets, there are four types of kinship relations in KFVW: F-S, F-D, M-S, and
M-D, with 107, 101, 100, and 110 pairs of videos, respectively.

TALKIN (2019) [216]: Wu et al. [216] collect a multi-model kinship dataset called
TALking KINship (TALKIN). This dataset is collected from YouTube with a prepared
list of celebrities and family TV shows. It consists of both visual and audio information.
After collection, the data is cropped and resized into 224× 224 resolution. There are four
kin relations in the dataset: F-S, F-D, M-S, and M-D. Each relation contains 100 pairs of
videos. The length of the videos ranges from 4.032 seconds to 15 seconds.

2.3.2 Kinship Datasets: 7-types

Image-based datasets

WVU (2016) [99]: WVU is collected by Kohli et al. in 2017 and contains 113 pairs. The
statistics for each kin-type are 22 (B-B), 9 (B-S), 13 (S-S), 14 (F-D), 32 (F-S), 13 (M-D),
and 8 (M-S).

IIITD (2012) [98]: IIITD contains 272 pairs of celebrities on the Internet. It consists
of four ethnicities: Afro-American, American, Indian, and Asian. The numbers of
each kin-type are 42 (B-B), 49 (B-S), 55 (S-S), 33 (F-D), 2 (F-S), 26 (M-D), and 52
(M-S).

Video-based datasets

UvA-NEMO Smile (2013) [49, 51]: UvA-Nemo smile dataset contains 1240 videos
of 400 subjects with a resolution of 1920 × 1080 at 50 f ps rate. The dynamics of
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spontaneous and posed smiles of each subject are recorded. All videos are constrained
i.e., keeping the same viewing angle and background. There are 95 kin relations for the
152 subjects. Videos contain two types of smiles: 228 pairs of spontaneous and 287 pairs
of posed smiles. There are seven kin relationships: S-S, B-B, S-B, M-D, M-S, F-D, and
F-S.

KIVI(2019) [101]: KIVI6 is collected from the Internet to include realistic in-the-wild
variations. It contains 503 videos of individuals from 211 families. There are 355
positive kin pairs. The videos’ duration is around 18.78 seconds, with a frame rate of
26.79 frames per second (fps). The total number of still frames in the database is over
250,000 [101].

2.3.3 Kinship Datasets: 11-types

Image-based datasets

FIW (2016) [166] [168] [198] [170]: Over time, datasets with larger capacities and more
kinship types are provided. The Families In the Wild (FIW7) dataset is collected from
the Internet. Over 10000 family photos of 1000 families are labelled. There are 11193
unconstrained family photos of 1000 families. On average, there are ten images for each
family. Later, Robinson et al. [167] [169] extended FIW. In [167], over 13000 family
photos of 1000 families are collected. The number of pairs increased from 418000 to
656954. In [169], existing labels are used for each family as side information to add
more data to under-represented families.

Video-based datasets

FIW-MM (2020): FIW with multimedia (FIW-MM) dataset [163] is a dataset proposed
by Robinson et al.. It is an extended version of the FIW dataset. FIW-MM extended the
existing paired faces of FIW via an automated labelling pipeline. Multimedia (MM) data
(i.e., video, audio, and text captions) is collected.

2.3.4 Others

In addition to the datasets mentioned above, datasets used for other applications also
contain kinship information. The Family Face Database (FF-Database) [246] is used
for the face prediction of children. It consists of 7488 parent and 8558 child faces
with 128 × 128 resolution. Six facial attributes are labelled: expression, gender, age,
glasses, moustache, and skin colour. The People in Social Context (PISC) [110] dataset
is collected for the task of social relation recognition. It consists of common social
relationships, including commercial, couples, family, friends, etc.. The People in Photo
Album (PIPA) dataset [183] is collected from Flickr photo albums and can be used for
both person recognition and social relation recognition. 16 finer relationships are labelled,

6 http://iab-rubric.org/resources/KIVI.html
7 https://web.northeastern.edu/smilelab/fiw/

http://iab-rubric.org/resources/KIVI.html
https://web.northeastern.edu/smilelab/fiw/
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including the grain kinship relationships, such as father-child. Although these datasets
are created for other tasks, they can also be used for kinship verification.

2.3.5 Discussion

In Figure 6 and Table 1, it is shown that image-based kinship datasets are well-developed
for image-based kinship verification. In contrast, there is still a demand for video-
based kinship datasets. According to Table 1, most of the datasets are collected in
unconstrained settings, causing many external interference factors, and making it difficult
to study kinship verification systematically.

Several kinship datasets can be used to study specific kinship problems. For example,
TSKinFace can be used for the tri-subject kinship verification task. UB KinFace is suit-
able for kinship verification of elderly people, and TALKIN for multi-modal and sound-
based kinship verification. In contrast to specific kinship problems, general-purpose
kinship and generic datasets are required. To this end, we collected the Nemo-kinship
dataset for the purpose of child-adult kinship verification. This dataset is discussed in
Section 5.
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Figure 8: Challenges and related methods.
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Figure 8 shows the challenges summarized for kinship verification and corresponding
approaches. There are six internal sub-challenges i.e., age, race, gender, facial expres-
sion, posture, and kin-type. There are four for extrinsic i.e., data imbalance, data size,
unconstrained, and multi-modal. We select and list the corresponding approach. Many
challenges have their corresponding methods, but some of them lack a specific solution.
For example, there are currently no kinship verification methods proposed to deal with
racial bias or low-quality facial images.
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Figure 9 shows the development of existing methods. According to the type of input,
kinship verification methods can be divided into image-based and video-based methods.
Among each of them, we divide the methods into three categories according to their
feature representation: (1) hand-crafted feature-based, (2) metric learning-based, and (3)
deep learning-based. The hand-crafted feature-based category includes traditional hand-
crafted descriptors. The extracted facial features are used by standard discriminators such
as KNN and SVM. The metric-learning-based category mainly focuses on projecting
latent features onto more prominent spaces. The goal of these methods is to decrease
the intra-class distance of the projected features and to increase the inter-class distance.
The third category is based on deep learning, such as CNNs, GANs, GCNs, and auto-
encoders.

2.4.1 Image-based

Handcrafted feature descriptors

The first kinship verification method is proposed by Fang et al. [62]. The method uses 22
hand-crafted (facial) features to represent the geological information between parents
and children. These features are low-level features such as color, facial geometry, and
texture. Then, K-Nearest-Neighbors and SVMs are trained based on these features.
The top 14 factors are selected based on the classification accuracy. It shows that most
of the informative parts are around the eyes. Since these features correspond to local
parts, global features are also included. Later, Fang et al. [61] use the dense SIFT
(dSIFT) descriptor for kinship verification. After this first publication, different hand-
crafted feature extracting methods are proposed [15, 54, 107, 130, 158, 159, 210, 228,
230, 249]. Low-level features such as HOG [207], LBP [3], LPQ are used for kinship
verification.

An overview of hand-crafted descriptors is as follows:

SIFT: Scale-invariant feature transform (SIFT) [126]. A series of kinship verification
methods [130, 158, 159, 228, 230] use SIFT to extract kinship features.

LBP: Local binary patterns (LBP) are used for face recognition [2, 227]. There are
different variants of LBP: Three-patch LBP (TPLBP) [212], CLBP and ILBP [91] etc..
For kinship verification methods, Boutellaa et al. [18] use LBP and LBPTOP features.
Lu et al. [130] exploit TPLBP features. Zhou et al. [249], Dornaika et al. [54] and Wei
et al. [210] use LBP as one of the feature descriptors to verify the kinship.

Gabor [1, 133]: Zhou et al. [251] utilize a Gabor wavelet and propose a Gabor-based
gradient orientation pyramid feature for kinship verification. Xia et al. [221], and Shao
et al. [176] partition the face into regions in multiple layers and then compute Gabor
filters in each region to extract genetic-invariant features.

According to Yan and Lu [227], due to the large variations of faces caused by varying
imaging conditions, low-level feature descriptors such as LBP and SIFT may fall short.
Therefore, new approaches are proposed, such as the spatial pyramid learning-based
(SPLE) feature descriptor [249] to automatically exploit both local appearance and global
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(a) DDML [128] (b) NRML [131]

(c) LMMML [86] (d) WGEML [117]

Figure 10: Illustration of metric learning-based methods, cited from [86, 117, 128, 131].

spatial information. The SPLE obtains improved results compared to PCA, LBP, HOG,
and LE [13]. An extension of the method is provided using a new Gabor-based Gradient
Orientation Pyramid (GGOP) [251].

Other methods focus on combining feature detectors such as Alirezazadeh et al. [4]
targeting a combination of local and global hand-crafted features resulting in improved
results (81.3% and 86.15% on dataset KinFaceW-I and KinFaceW-II, respectively). Later,
Boutellaa et al. [18] use spatio-temporal features based on a combination of hand-crafted
LBP, LPQ, and BSIF, and deep learning features.

Metric learning

Different from handcrafted-feature-based methods, metric learning-based methods focus
on the similarity measurement itself i.e., decreasing the intra-class and increasing the inter-
class distance of the facial features (samples) [70,157,227,254]. It learns a distance metric
to measure the similarity between samples [128]. Metric learning can be divided into two
categories [131, 227]: unsupervised and supervised. Unsupervised methods use principal
component analysis (PCA) [188], linear discriminant analysis (LDA) [12], and Laplacian
eigenmaps (LE) [13]. For supervised methods, the Mahalanobis distance metric is
often utilized. The distance function of an image pair P =

{
(Xi, Yi) |i = 1, 2, . . . , N

}
is

described by d
(
xi, y j

)
=

√(
xi − y j

)T
M

(
xi − y j

)
, where M is a m ×m square matrix,

and 1 ≤ i, j ≤ N. M is further decomposed into WTW, which converts the Mahalanobis
distance to d

(
xi, y j

)
=

∥∥∥Wxi −Wy j

∥∥∥
2. xi and y j are feature vectors of Xi, Y j extracted

from g(·). The target is transformed from a learning distance metric M to seeking a linear
transformation W which projects the input xi, y j into a more suitable subspace. Ensemble
metric learning [179], neighborhood repulsed metric learning (NRML) [131], large
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margin multi-metric metric learning (LMMML) [86], and discriminative multi-metric
learning (DMML) [52, 198] are representative methods.

NRML [131]: Neighborhood repulsed metric learning (NRML) is proposed by Lu et
al. [129]. An extension is provided by [131]. Lu et al. propose NRML to ensure that
the intra-class samples are close to each other and repulse the inter-class samples as far
as possible. Previous metric learning methods consider the samples equally, whereas
NRML determines more informative samples as follows:

maxM J(M) = J1(M) + J2(M) − J3(M)

= 1
Nk

∑N
i=1

∑k
t1=1 d2

(
xi, yit1

)
+ 1

Nk
∑N

i=1
∑k

t2=1 d2 (xit2 , yi)−
1
N

∑N
i=1 d2 (xi, yi)

= 1
Nk

∑N
i=1

∑k
t2=1 (xit2 − yi)

T A (xit2 − yi)

− 1
N

∑N
i=1 (xi − yi)

T A (xi − yi)

, (3)

where yit1 represents the t1th k-nearest neighbor of yi, and xit2 denotes the t2th k-nearest
neighbor of xi. The optimization function is solved by determining k-nearest neighbors
of xi and yi based on the Euclidean metric and then solve d sequentially.

DMML [229]: Yan et al. [229] propose discriminative multi-metric learning (DMML).
DMML aims to extract multiple features to exploit more complementary information
by jointly learning multiple distance metrics. Unlike NRML, DMML tries to maximize
the probability instead of directly minimizing the intra-class distance and maximizing
the inter-class distance. In this method, each pair of positive samples has the highest
probability of having a shorter distance than the most similar negative sample. In addition,
the correlation between different features is also maximized. The DMML method can be
formulated as a constrained optimization problem as follows:

min
W1,...,WK ,α

J =
K∑

k=1

αk fk (Wk)

+ λ

K∑
k1,k2=1
k1,k2

N∑
i=1

|WT
k1

xk1
i −WT

k2
xk2

i ∥
2
F

, (4)

where fk (Wk) =
∏

Ok
1

log
(
1 + exp

(∥∥∥WT
k xp

ik

∥∥∥2
−

∥∥∥WT
k xn

ik

∥∥∥2
))

and xp
ik = xk

i − yk
i , xn

ik = xk
i − yk

j,

where xk
i and yk

j represent kth feature of Xi and Yi. The first term augments the probability
that a negative pair distance is larger than the positive pair distance. The second term
ensures that different features reach as much complementary information as possible.
Since the equation has no closed-form solution, Yan et al. firstly initialize Wk and α,
and update Wk sequentially by using the gradient descent method, where α is updated
accordingly.
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Table 2: Different methods.
Year Method Author Dataset Data type Input Evaluation key Idea
2010 FP,FD+ SVM Fang et al. [62] Cornell KinFace images 4 kin relations 70.67 Handcrafted feature
2011 transfer learning Xia et al. [218] UB KinFace images 3 subsets 60 Transfer subspace learning
2011 SPLE +SVM Zhou et al. [249] private Dataset images 4 kin relations 67.75 Local appearance + global spatial information;automatically
2012 GGOP Zhou et al. [251] private Dataset images 4 kin relations 69.75 Gabor wavelet+ Gradient Orientation Pyramid feature +SVM
2012 Gabor+ TSL Xiaet al. [218] [221] UB KinFace v2 images 3 subsets 56.5 Stabilize the target distribution
2012 TSL+ age+ position Xia et al. [221] FamilyFace images family images(4ks) 79.66 Make use of additional information
2013 dynamic+ CLBP-TOP Dibeklioglu et al. [49] UvA-NEMO Smile video 7 kin relations 67.11 Dynamic+ spatial temporal information

KinFaceW-I images 4 kin relations 69.9
2014 NRML Lu et al. [129, 131]

KinFaceW-II images 4 kin relations 76.5
Repulse neighborhood samples by using KNN +metric learning

2013 Graph based Guo et al. [78] Sibling-Face Database images 7 kin relation 69.25 Take advantages of graph information
KinFaceW-I images 4 kin relations 72.5

2014 DMML Yan et al. [228]
KinFaceW-II images 4 kin relations 78.25

Make use of multi descriptors Metric Learnin

2014 LMMML Hu et al. [86] KinFaceII images 4 kin relations 81.28 Utilize large margin multi-metric learning and add threshold
2015 RSBM Qin et al. [158] TSKinFace images two family type 85.4 Family info + symmetric bilinear model

KinFaceW-I images 4 kin relation 70.1
KinFaceW-II images 4 kin relation 77
Cornell KinFace images 4 kin relation 71.9

2015 PDFL Yan et al. [230]

UB KinFace images 4 kin relation 67.3

Mid-level features by discriminative learning

KinFaceW-I images 4 kin relation 77.5
2015 CNN-Points Zhang et al. [240]

KinFaceW-II images 4 kin relation 88.4
CNN + key points structure

KinFaceW-I images 4 kin relation 86.3
2015 LIRIS Lu et al. [127]

KinFaceW-II images 4 kin relation 83.1
Multi feature descriptor selection + feature selection + SVM

KinFaceW-I images 4 kin relation 65.7
2015 Genetic Measure Kou et al. [103]

KinFaceW-II images 4 kin relation 74.8
Use sparse similarity measure

KinFaceW-I images 4 kin relation 77.2
2016 SSSL Xu et al. [223]

KinFaceW-II images 4 kin relation 76
Jointly learn multiple sparse bilinear similarity models (structured similarity Fusion)

2016 Fine-tune CNNs Robinson et al. [166] FIW images 11 kin relations 71 fine-tune VGG-Face CNN
2016 Deep+ shallow Boutellaa et al. [18] UvA-NEMO Smile video 7 kin relation 90.98 Combine Spatio-Temporal Texture Features and deep feature
2016 LC-FS (HDLBPH) Zhang et al. [239] TSKinFace images three subsets 89.7 Modeling genetic transferring by two parents information

KinFaceW-I image 4kin relations 83.28
2017 MLCSL Chen et al. [29]

KinFaceW-II image 4kin relations 84.3
Multi-linear coherent space learning with multi-scale features

2017 DML Wang et al. [198] FIW images 9 kin relations 68.79 Metric learning+ Denoising Auto-encoder
KinFaceW-I images 4kin relations 83.5
KinFaceW-II images 4kin relations 84.52017 DDMML Lu et al. [128]
TSKinFace images 85.3

Hierarchical representation+ filtered contractive deep belief networks

2017 visual transformation Dibeklioglu et al. [48] UvA-NEMO Smile videos 7 kin relations 93.65 Deep contrastive learning architecture
KinFaceW-I images 4kin relations 96.1

2017 KVRL-fcDBN Kohliet al. [99]
KinFaceW-II images 4kin relations 96.2

Hierarchical representation+ filtered contractive deep belief networks

2017 KinNet Robinson et al. [170] subset FIW images 7 kin relations 74.86 Fine-to-coarse deep metric learning with triplet loss
2017 video-based DML Yan et al. [226] KFVW videos 4 kin relations 58.15 LBP/HOG from videos + metric learning

KinFaceW-I images 4 kin relations 77.4
KinFaceW-II images 4 kin relations 79.3
UB KinFace images 4 kin relations 72.3

2017 CFT Duan et al. [56]

Cornell KinFace images 4 kin relations 78.6

Coarse-to-Fine Transfer Learning +NRML

2017 LLMMML Hu et al. [85] KinFaceW-I images 4 kin relations 80 Jointly learns multiple distance metrics
2018 SDM-Loss Wang et al. [197] FIW images 11 kin relations 69.47 GAN +sparse discriminative metric loss
2018 SphereFace Robinson et al. [168] FIW images 11 kin relations 69.18 Fine-tuned CNNs +angular softmax loss

KinFaceW-I images 4 kin relations 82.6
2019 attention network Yan et al. [232]

KinFaceW-II images 4 kin relations 92
Multi input + attention network

KinFaceW-I images 4 kin relations 79.2
2020 GKR network Li et al. [114]

KinFaceW-II images 4 kin relations 90.6
Kinship Relational Graph + MLP

KinFaceW-I images 4 kin relations 78.5
2020 KinMix Song et al. [180]

KinFaceW-II images 4 kin relations 89.7
Convolutional neural network + Linear generation in feature space

KinFaceW-I images 4 kin relations 78.6
2020 NESN-KVN Wang et al. [199]

KinFaceW-II images 4 kin relations 89.0
Deep convolutional networks + reinforcement learning

KinFaceW-I images 4 kin relations 82.4
2021 DSMM Li et al. [113]

KinFaceW-II images 4 kin relations 93.6
Meta-miner network + CNN

KinFaceW-I images 4 kin relations 79.6
KinFaceW-II images 4 kin relations 89.9
UB KinFace images 4 kin relations 75

2021 AdvKin Zhang et al. [241]

Cornell KinFace images 4 kin relations 81.4

Family ID-based adversarial convolutional network+
self-adversarial mechanism

KinFaceW-I images 4 kin relations 85.6
2021 Relational Network Yan et al. [231]

KinFaceW-II images 4 kin relations 88.8
Deep relational network + multi-scale features

KinFaceW-I images 4 kin relations 83.1
KinFaceW-II images 4 kin relations 88.7
Cornell KinFace images 4 kin relations 82.9

2022 D2GFL Chen et al. [30]

TSKinFace images 4 kin relations 91.3

Generation-shared feature + CNN

KinFaceW-I images 4 kin relations 80.4
KinFaceW-I images 4 kin relations 91.62022 AWK-TMN Huang et al. [89]
TSKinFace images 4 kin relations 94.3

Metric Learning + adaptively weighted scheme +
multiple levels of convolutional features

KinFaceW-I images 4 kin relations 91.11
KinFaceW-II images 4 kin relations 90.30
Cornell KinFace images 4 kin relations 90.68

2022 TXQEDA+WCCN Serraoui et al. [174]

TSKinFace images 4 kin relations 93.77

Multi-view deep feature extraction + Metric learning

DML [198] : Discriminative metric learning uses a linear projection [52] defined by:

min
WWT=I

tr
(
WFLwFTWT

)
tr

(
WFLbFTWT

) , (5)

where F = [xi, . . . , xn, yi, . . . , yn] denotes the training data, and Lw and Lb are Laplacian
matrices. Wang et al. [198] use denoising auto-encoder-based robust metric learning by
combining denoising auto-encoding (DAE) and metric learning. The projection matrix
is constrained simultaneously by both DAE and metric learning to obtain a nonlinear
transformation. The loss of DML is given by:

L = min
W1,W2,b1,b2

1
2
∥F − F̂∥2F +

λ

2
tr

(
HLwHT

HLbHT

)
, (6)
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where H = σ (W1F + B1) , F̂ = σ (W2H + B2), and B1 and B2 are the offset matrices.
The projection matrix W is used as an encoded hidden layer. The DML encodes the
feature non-linearly while maximizing the inter-class distance and minimizing the intra-
class distances.

DDML [128]: Deeper non-linear representations are preferred, since linear transfor-
mations are shallow and may not be powerful enough. Similar to DML, discriminative
deep metric learning (DDML) uses a deep neural network to learn a set of hierarchical
nonlinear transformations to project pairs into an optimized feature space. Hu et al. [128]
propose a deep neural network f (·) to generate representations of sample pairs. Sample
pairs are fed into the network non-linearly. The Euclidean distance of these represen-
tations is defined by d2

f (Xi, X j) =
∥∥∥ f (Xi) − f (X j)

∥∥∥2
2. A margin framework is used to

separate positive and negative pairs. As illustrated in Figure 10a, a threshold τ (τ > 1)
is used to enforce the distance of a positive pair (li j = 1) to be smaller than τ and the
distance of a negative pair (li j = −1) to be larger than τ. The optimization function is
defined by:

arg min
f

J = J1 + J2

=
1
2

∑
i, j

g
(
1 − ℓi j

(
τ − d2

f (Xi, X j)
))

+
λ

2

M∑
m=1

(∥∥∥∥W(m)
∥∥∥∥2

F
+

∥∥∥∥b(m)
∥∥∥∥2

2

) , (7)

where g(z) = 1
β log(1 + exp(βz)) is a logistic loss function and β is a sharpness pa-

rameter. ∥ · ∥F represents the Frobenius norm of the matrix. λ is a regularization
parameter.

In conclusion, the combination of deep learning with the discriminative ability of metric
learning is one of the promising directions of current methods.

Deep learning

Previous studies [21, 88, 184] show that deeper layers extract higher-level features
effectively.

CNNs: Zhang et al. [240] use, for the first time, a deep learning model. The proposed
convolutional neural network consists of three convolutional layers and one fully con-
nected layer. To use local information, images are cropped into different patches based on
their facial landmarks. Then, the aligned patches are fed into the matched sub-models. A
significant improvement is obtained compared to earlier methods [129–131, 228]. From
that moment on, different CNN-based methods [7, 30, 33, 37, 54, 83, 106, 119, 142, 175,
180, 195, 199, 215, 232, 235, 238, 241] are proposed.

In contrast to Zhang et al., Yan et al. [232] focus on attention mechanisms. They design
a part-aware attention network to extract local facial information. Moreover, key point
masks are added to the input images for a better guidance. The architecture is illustrated
in Figure 11. Furthermore, Chen et al. [30] propose a two-stream convolutional neural
network to learn parent-specific and child-specific features. Yan et al. [231] suggest
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Figure 11: The structure of the attention network, cited from Yan et al. [232].

a deep relational network, utilizing multi-scale features from different convolutional
layers. Wang et al. [199] propose a reinforcement learning-based network. They design
a negative example sampling network to select more suitable samples for learning
discriminative features.

In addition to kinship information, other face-related information can be used. Zhang
et al. [241] propose a two-stream adversarial convolutional network (AdvKin) model
based on family ID information. A self-adversarial strategy is exploited to reduce feature
distribution discrepancy. Hormann et al. [83] focus on opposite-gender pairs and propose
a comparator framework with kinship relation information. Song et al. [180] propose a
KinMix method to generate positive samples in the feature space. They assume that the
linearly combined kinship features yield similar clustering.

Table 3: Checkerboard of different datasets and corresponding methods.
kin-types constrained unconstrained pairs <300 300 <pairs<500 500 <pairs<1000 1000>pairs images videos audio family structure

2 types

family 101 [61]
TSKinFace [158]
———————–
Fang2013 [61],
RSBM [158],
LC-FS [239],
DDMML [128]

family 101 [61]
——————
Fang2013 [61]

TSKinFace [158]
———————–
RSBM [158],
LC-FS [239],
DDMML [128]

family 101 [61]
TSKinFace [158]
———————
Fang2013 [61],
RSBM [158],
LC-FS [239],
DDMML [128]

family 101 [61]
TSKinFace [158]
———————–
Fang2013 [61],
RSBM [158],
LC-FS [239],
DDMML [128]

3 types

TSKinFace [158]
———————–
RSBM [158],
LC-FS [239],
DDMML [128]

TSKinFace [158]
———————–
RSBM [158],
LC-FS [239],
DDMML [128]

TSKinFace [158]
——————
RSBM [158],
LC-FS [239],
DDMML [128]

TSkinFace [158]
———————–
RSBM [158],
LC-FS [239],
DDMML [128]

4 types

family 101 [61]
CornellKin [62]
KinFaceW-I&II [129]
TALKIN [216]
KFVW [226]
————————
NRML [131],
DMML [229],
LMMML [86],
PDFL [230],
CFT [56],
CNN-Points [240],
LIRIS [127],
Genetic measure [103],
SSL [253],
MLCSL [29],
DDMML [128],
KVRL-fcDBN [99],
LLMMML [86],
attenNet [232],
Fang2010 [62],
transferlearning [218],
Gabor+TSL,
audio-visual [216],
video-based DML [226]

CornellKin [62]
UB KinFace [218]
family 101 [61]
——————
Fang2010 [62],
PDFL [230],
CFT [56],
DMML [229],
SMNAE [101]

KFVW [226]
TALKIN [216]
—————
video-based DML [226],
audio-visual [216]

KinFaceW-II [129]
————————
NRML [131],
DMML [229],
LMMML [86],
PDFL [230],
CFT [56],
CNN-Points [240],
LIRIS [127],
Genetic measure [103],
SSL [253],
MLCSL [29],
DDMML [128],
KVRL-fcDBN [99],
LLMMML [86],
attenNet [232]

Family 101 [61]
CornellKin [62]
UB KinFace [218]
KinFaceW-II [129]
——————–
Fang2010 [62],
Transfer learning [218],
Gabor+TSL,
NRML [131],
DMML [229],
LMMML [86],
PDFL [230],
CFT [56],
CNN-Points [240],
LIRIS [127],
Genetic measure [103],
SSL [253],
MLCSL [29],
DDMML [128],
KVRL-fcDBN [99],
LLMMML [86],
attenNet [232]

TALKIN [216]
KFVW [226]
———————
audio-visual [216],
video-based DML [226]

TALKIN [216]
———————
audio-visual [216]

7 types

UvA-NEMO Smile [51]
———————–
dynamic+CLBP-TOP [49],
deep+shallow [18],
Dibelioglu2017 [48],

KIVI [101]
——————–
SMNAE [101]

KIVI [101]
——————–
SMNAE [101]

UvA-NEMO Smile [51]
———————–
dynamic+CLBP-TOP [49],
deep+shallow [18],
Dibelioglu2017 [48],

UvA-NEMO Smile [51],
KIVI [101]
———————–
dynamic+CLBP-TOP [49],
deep+shallow [18],
Dibelioglu2017 [48],
SMNAE [101]

KIVI [101]
———————
SMNAE [101]

11 types

FIW [166]
——————–
FineTune CNN [168],
DML [198],
SDM-Loss [197],
SphereFace [165]

FIW [166]
——————
Finetune CNN [168],
DML [198],
SDM-Loss [197],
SphereFace [165]

FIW [166]
——————
Finetune CNN [168],
DML [198],
SDM-Loss [197],
SphereFace [165]

FIW [166]

———————–
FineTune CNN [168],
DML [198],
SDM-Loss [197],
SphereFace [165]

Auto-encoders, GANs, and Graph neural networks are used for kinship verification:

Auto-encoders: Due to the nature of preserving identical information, auto-encoders
are often used to extract genetic information. Generally, the encoder obtains the latent
representation by deterministic mapping e = fθ(x) = s(Wx + b). Here, x denotes the
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Figure 12: Illustration of a cross-generation generative kinship verification framework, cited from
Wang et al. [197].

input vector. The latent representation y is mapped back to reconstruct the input vector
x̂ = gθ′(e) = s (W′e + b′) with the parameter θ′ =

{
W′, b′

}
. The auto-encoder can be

optimized by [190]:

θ⋆, θ′⋆ = arg min
θ,θ′

1
n

n∑
i=1

L
(
x(i), x̂(i)

)
= arg min

θ,θ′

1
n

n∑
i=1

L
(
x(i), gθ′

(
fθ

(
x(i)

)))
.

(8)

Here θ = {W, b}, where the loss function is L(x, x̂) = ∥x − x̂∥2. Liang et al. [116]
use auto-encoders to learn deep relational features. Dehghan et al. [44] propose to
use gated auto-encoders with a discriminating neural network layer. Wang et al. [196]
propose a deep kinship verification (DKV) model and utilize metric learning methods
to extract features. Firstly, they use a stacked auto-encoder network to select nonlinear
low-dimension features. Then, deep kinship verification is combined with a stacked
auto-encoder network and metric learning.

GANs: Although genetic-related information is used [44, 61, 116], these methods may
fall short to deal with (test) pairs with large age differences yielding a performance
drop in kinship verification accuracy [197, 218, 220]. To mitigate age and identity
divergences, Wang et al. [197] propose a towards-young cross-generation model with
a Sparse Discriminative Metric Loss (SDM-Loss). As shown in Figure 12, the aged
parents are generated to a young age while keeping the same identity. Then, the image
pair is extracted through a convolutional neural network constrained by SDM-loss. The
derived discriminative metric minimizes the feature gap among aged parents and children,
alleviating the intrinsic side effects.

Graph neural networks: Li et al. [114] propose a graph-based kinship reasoning
(GKR) network that performs relational reasoning on the extracted features. The overall
framework of the GKR network is shown in Figure 13. Features are extracted by the same
convolutional neural network and built into a Kinship Relational Graph. A recursive
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Figure 13: Framework of a graph-based kinship reasoning network, cited from Li et al. [114].

Figure 14: Framework of a meta-learning based network, cited from Li et al. [113].

message passing scheme is employed. The final results are computed by a predefined
MLP.

Meta-learning: Deep learning-based methods show good performance in solving extrin-
sic challenges. One of the extrinsic challenges lies in that ”Kinship verification databases
are born with unbalanced data” [113]. A kinship dataset of N pairs of positive samples
contains N(N − 1) potential negative pairs leading to a large unbalance. However, most
of the current methods only use N negative pairs. Recently, Li et al. [113] propose a
Discriminative Sample Meta-Mining (DSMM) approach to exploit all possible pairs and
learn discriminative information. As depicted in Figure 14, a meta-miner is deployed
to mine the distinctive samples by re-weighting the sample ratios in the training batch
with a meta-gradient. This framework simultaneously samples two training batches with
different ratios. It conducts sample mining on the training batch under the guidance of
the balanced meta-train batch.

Others

There are two types of transfer learning: inductive and transductive transfer learning. For
inductive transfer learning, the distribution of learning targets can be different [73, 233].
In contrast, transductive transfer learning always keeps the learning target identical, but
the embedded data distribution is often changed. Two transductive transfer learning
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(a) Xia et al. [218] (b) Xia et al. [220]

Figure 15: Transfer subspace learning methods [218, 220] for kinship verification. D1, D2,
and D3 correspond to target domain, source domain, and learned subspaces, cited from Xia et
al. [220].

methods are proposed by Xia et al. [218, 220] aiming to improve the representation of
latent features.

Transductive transfer learning: Xia et al. [218] use intermediate data by collecting
images of young parents as intermediate sets. Both the source and target distributions
are supposed to be close to the intermediate set to yield a similar distribution and are
formulated as follows:

W =arg min
W

{
F(W) + λ1DW (PL∥PU) +

λ2DW (PL∥PV)
} , (9)

where the F(W) is a general subspace learning (e.g., PCA [188], LDA [12] and DLA
[243]). The distribution of the source, intermediate, and target set correspond to PU ,
PL and PV , respectively. DW (PL∥PU) and DW (PL∥PV) are Bregman divergence-based
regularization. In fact, the intermediate set becomes the bridge to connect the other
two sets. Xia et al. simplify the method by using two distributions based on pairwise
differences instead of transferring three distributions together to a general subspace, as
defined by:

W = arg min
W

{
F(W) + λDW (PL∥PU)

}
. (10)

As shown in Figure 15, the task corresponds to finding a subspace, where the different
distribution of the two pairs (child-young parent and child-old parent) has a similar
distribution while keeping distinctions.

Inductive transfer learning: Inductive transfer learning is often used in deep learning
methods, exploiting the feature-extracting capability of the pre-trained neural net model.
Robinson et al. [166] use several methods and benchmark them on the FIW data. The
pre-trained convolutional neural network is taken as an on-the-shelf feature extractor.
Specifically, the layers of the pre-trained VGG-Face model are frozen, except for the
second-to-last fully-connected layer.
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2.4.2 Video-based

By the end of 2017, existing kinship verification methods are mainly based on static
images. However, important kinship-related information can be derived from facial
dynamics/motion. For example, children may have similar facial expressions as their
parents such as smile, anger, astonishment, etc.) [49]. Research [152] also shows that
parents and children have genetic similarities in facial dynamics. Obviously, static
images do not provide such information i.e., pose variations, facial expression changes,
dynamic movement, adequate 3D estimation, etc. Hence, video-based kinship datasets
are required.

Handcrafted descriptors

Dibeklioglu et al. [49] is the first to use a video dataset for kinship verification. They
exploit dynamic information from smiling using the UvA-NEMO Smile dataset. First,
the displacement of eyebrows, eyelids, cheeks, and lip corners are computed based on
the movement of landmark points. Then, spatio-temporal features are extracted using
the temporal Completed Local Binary Pattern (CLBP) descriptors from multiple frames.
Finally, the combined information from dynamic and spatio-temporal features are used
by a SVMs jointly. After the publication, several other methods are proposed. Boutellaa
et al. [18] use the shallow spatio-temporal texture information and deep information.
Yan et al. [226] collect a new dataset (KFVW) and evaluate different metric learning
methods.

Metric learning

Yan et al. [226] evaluate a number of metric learning-based methods using the KFVW
dataset. One hundred frames are randomly extracted from each video with a cropped
face region. Then, all images are converted to gray-scale. LBP features and HOG
features are extracted for comparison. Information-theoretic metric learning (ITML), side-
information-based linear discriminant analysis (SILD), KISS metric learning (KISSME),
and cosine similarity metric learning (CSML) are evaluated. The final results show that
the LBP feature obtains better performance than using HOG.

Deep learning

DeepFeat: Inspired by [49], Boutellaa et al. [18] use spatio-temporal information for
video-based kinship verification. Instead of using handcrafted features, they use pre-
trained VGG-Face in an off-the-shelf way to extract features. The spatio-temporal
features are extracted by three different handcrafted methods: LBPTOP, LPQTOP, and
BSIFTOP. The results show that combining shallow with deep features obtains the best
results.

SMNAE: [100] Kohli et al. [101] propose a deep learning framework for kinship verifi-
cation in unconstrained videos using Supervised Mixed Norm Autoencoders (SMNAE).
This auto-encoder formulation introduces class-specific sparsity in the weight matrix.



2.4 R E P R E S E N TAT I V E M E T H O D S 31

Figure 16: The three-stage kinship verification in unconstrained videos framework by using
SMNAE, cited from Kohli et al. [100].

The Mixed Norm Auto-encoder (SMNAE) combines l2,p norm and a pairwise class-based
sparsity penalty with loss function JS MNAE formulated by:

JS MNAE =arg min
W,W′

∥∥∥x − ϕ (W′H)
∥∥∥2

F

+ λ

C∑
c=1

∥Wxc∥2,p + β
(
tr

(
HT HL

)), (11)

where W is the weight matrix and ϕ is the activation function. L is the Laplacian matrix,
which can be taken as L = D − M. D is the diagonal matrix, and M is the adjacency
matrix. They use this formulation to develop a three-stage framework. The framework
of SMNAE is illustrated in Figure 16. In the first stage, the video pair is split into
non-overlapping vidlets. These vidlets are fed into a stacked SMNAE to yield a spatial
representation. In the second stage, the learned spatial representations are concatenated
pair-wisely and then fed into the second stage’s stacked SMNAE. The third stage mainly
receives the global Spatio-temporal information. The encoded representation is used
by an SVM for the final classification. The aim of the approach is to obtain spatial and
temporal information by using an auto-encoder, resulting in a discriminative but sparse
representation.

2.4.3 Multi-label Methods

Audio: As mentioned in [216], the University of Nottingham’s experiment shows that
the human voice contains heritable information. Other research also shows that the voice
of people with close kin relationship results in a performance degradation of automatic
speaker verification (ASV) [10, 105]. Inspired by this observation, assuming that the
human voice contains kin-related cues, Wu et al. [216] fuse face and voice modalities to
improve the accuracy and robustness of kinship systems verification. They propose a
Siamese fusion network with a contrastive loss utilizing the fine-tuned VGG-Face CNN
cascaded and an LSTM network. To extract voice features, they pre-train a ResNet-
50 [150] on VoxCeleb2 [35] and fine-tune it with TALKIN. These two models are trained
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Figure 17: Architecture of an audio-based method, cited from Wu et al. [150].

using a contrastive loss to learn intra-class similarity and inter-class dissimilarity. After
feature extraction, PCA is used to reduce the feature dimensions for both face and audio.
Facial and vocal features are reduced to 130 and concatenated together to form a 260-
dimensional feature. After the f c layer, the outcome is evaluated by using the cosine
similarity. The results show that the vocal information improves the accuracy by around
3 percent.

Age: Previous studies [8, 38, 93, 218, 220] show that changes in age may negatively
affect the accuracy of kinship verification. Because of the age gap, the parents’ face
structures are deformed compared to the face when they were young [161]. It indicates the
possibility of improving the accuracy of transforming people’s facial information by age.
Similar ideas are proposed by Xia [218, 220] to transfer the distribution of children and
parents to a general subspace, which indirectly utilizes the age information. In addition,
Wang et al. [197] generate parent images to their younger ages, and Dehshibi [45] propose
an age-aware facial kinship verification to fill the gap of aging effects in asserting kin-
relation.

Graph based: Xia et al. [220] assume that people have a higher kin likelihood when
they are located together in an image. For example, in a family photo, senior people often
sit in the middle surrounded by their family members. The paper utilizes the information
to improve kinship verification by combining relative distance, gender relation, age
difference, and kinship score. In [78], the potential relationships of people in one photo
are transformed into a set of candidate graphs with all possible relationships. Then,
they accumulate the scores of each candidate graph. The graph with the highest score
corresponds to the final kinship prediction.

2.4.4 Discussion

Details of the different methods are listed in Table 2 and Table 3. Most methods focus
on solving the 4-types of kinship verification task using public datasets collected online
in an unconstrained environment. Only a few methods focus on kinship types with
two generation skips (11 types). The Family 101, KinFaceW-I&II, and CornellKin
and the metric-learning-based methods are mostly used. Many of the metric-learning-
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Figure 18: Potential directions for kinship verification.

based methods, obtaining high accuracy, follow a similar strategy: they have multiple
descriptors with different ranges of scales and deeper descriptors. On the other hand,
some methods focus on specific challenges. As shown in Figure 8, the challenge of
unconstrained-images-based kinship verification is often approached by data-driven
methods. However, only a few methods focus on solving the unconstrained challenges
based on a specific design. For example, to our knowledge, there is no approach to
adjust the methods to deal with pose variations and occlusion problems. As for intrinsic
challenges, expression changes are mostly taken into account for video-based kinship
verification. Recently, many methods focus on utilizing gender information, whereas
ethnicity’s side-effect is largely ignored so far. Also, for the age differences, there are
several methods that focus on solving larger age differences and old-parents-related tasks.
However, a few methods focus on how to deal with children-related pairs. The graph
of methods shows that there are still many unsolved problems. From the milestones in
Figure 9, it is shown that more and more deep learning methods are used. There is also a
trend to combine metric learning with deep learning.

2.4.5 Potential Directions for Kinship Verification

Kinship verification is a challenging but promising task. Currently, there are still many
open directions, see Figure 18. For example, most of the current kinship verification
methods are close-set approaches. Both testing and training data are from the same kin-
type set. However, this evaluation protocol ignores many unknown relationships in real-
world scenarios and omits the influence of other kin-type samples. Conducting kinship
verification in an open-set environment is a promising direction. Another point is that
there is a racial imbalance in the data collection and construction process. Positive and
negative samples also do not match real-world scenarios. Debiasing kinship verification
is of great importance. In addition, there are many interference factors. Research in
cross-age kinship verification, cross-expression kinship verification, make-up-based
kinship verification, and partial-face-based kinship verification is required. Due to the
development of deepfakes [209], anti-spoofing becomes important. Increasing the kinship
system’s stability is a promising direction. How to combine various types of data and
features at different levels is still an unsolved problem.
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(a) Skulls of an infant (A) and adult (B), cited from
Dal et al. [38]

(b) Examples from the Family 101 dataset Fang et
al. [61]

Figure 19: (a) Differences in face outlines between children and adults increase the appearance
discrepancy. (b) Variations in skin color and texture between childhood and adulthood increase
the heterogeneity of the same person.

2.5 N E M O - DATA S E T

2.5.1 Motivation

Kinship verification based on child-adult-related pairs is useful as child-adult pairs often
occur in many applications such as children’s adoption and missing children searching.
The performance of kinship verification on child-adult pairs is negatively influenced by
large variations among children and adults. As shown in Figure 19, the facial outlines of
the same person during childhood and adulthood change drastically.

However, only a few researchers focus on child-adult kinship verification. One reason
is the shortage of child-adult images-based kinship datasets. Considering the com-
monality of public datasets, this specific task for kinship verification cannot be studied
systematically.

2.5.2 Data Collection

The aim of the Nemo-Kinship Dataset is to collect child-adult-based kinship-related
videos with multiple labels. To this end, we collect the kinship-related data from a
deception-testing experiment at Nemo Museum as part of the scientific experiments of
NEMO Science Live Program8.

Recording conditions

During the data collection process, the participants are divided into different groups
based on family or friend relationships, and the language they speak. Participants in
each group take turns to undergo the experiment as test subjects. According to the
allocated questions, all the participants’ answers during the experiments are recorded
and divided into 13 different video clips. The entire experiment is recorded by a web

8 https://www.nemosciencemuseum.nl/nl/wat-is-er-te-doen/activiteiten/
science-live/

https://www.nemosciencemuseum.nl/nl/wat-is-er-te-doen/activiteiten/science-live/
https://www.nemosciencemuseum.nl/nl/wat-is-er-te-doen/activiteiten/science-live/
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Figure 20: Structure of the proposed Nemo-Kinship dataset and age distribution. On the left
side:(a): Age distribution of the Nemo-kinship dataset. (b): Age distribution of the KinFaceW-I
dataset is annotated by two participants manually, since there is no age label in KinFaceW-I
dataset. On the right side: The Nemo-Kinship images are stored in a family list.

camera connected to a computer. The web camera records video information together
with audio. The video has a resolution of 1920 × 1080 pixels at a speed of 60 frames per
second, and the audio codec format is MPEG − 4AAC with stereo channel, 48000hz of
sample rate and 320kbps of Bit-rate. During the entire experiment, the camera’s angle
and the position are kept the same, so all test subjects are taken with a frontal view in a
controlled environment. Incandescent lamps are arranged around the entire interview
room to ensure that the light is as stable as possible to eliminate the interference caused
by environmental changes.

Data annotation

After collecting all the practical information of participants, 248 participants with kinship-
related information are kept. An auto-clipping tool is created to divide the video into
separate clips according to the interview questions and answers. Each video is kept along
with audio information containing the speech. There are 11 valid kinship types: F-D,
F-S, M-D, M-S, B-B, B-S, S-S, GF-GD, GF-GS, GM-GD, GM-GS. Also, age, gender,
and family relationship information is collected. As depicted in Figure 20, the videos of
the participants are arranged in separate family units ( f 01 − f 85). All family members
are stored sequentially (m 1, m 2, ...). Each family member contains 17 video clips. Each
family member’s label contains age, gender, spoken language, and kinship relationships
between other members in the same family unit.

2.5.3 Data Statistics

The dataset consists of a large proportion of children’s videos, making it easier to focus
on child-adult-related kingship verification tasks. It contains 4216 videos of 248 family
members from 85 families. It contains 11 kinship types and the age of each family
member. The ages of the family members vary from 7 to 71. A child is a person whose
age is under 16. The age distribution of the dataset compared to KinFaceW-I is depicted
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Table 4: Statistics of Nemo-Kinship dataset.
parent-child siblings grandparent-grandchild

Kin-type
F-S F-D M-S M-D S-S B-B B-S GM-GS GM-GD GF-GD GF-GS

pairs 34 30 42 46 15 15 31 5 6 3 3
Children related 33 26 40 44 12 14 28 5 6 3 3
Family numbers 26 25 34 37 15 13 26 2 5 3 2
English speaker 20 15 18 20 10 6 8 0 0 2 0
Dutch speaker 40 40 57 64 20 21 49 6 10 4 5

Male 60 25 40 0 0 27 28 4 0 3 5
Female 0 30 35 84 30 0 29 2 10 3 0

individuals 60 55 75 84 30 27 57 6 10 6 5
Total individuals 248

in Figure 20. Statistics of the Nemo-Kinship dataset are shown in Table 4. A comparison
between the Nemo-Kinship dataset and other related datasets is listed in Table 5.

In conclusion, the Nemo-Kinship dataset:

1. contains a large proportion of children images.

2. consists of different labels and can be used for different tasks such as:

• Video-based kinship verification.

• Child-adult-based kinship verification.

• Kinship verification with age information.

• Kinship verification with gender information.

• Kinship verification with audio information.

• Family classification.

• Kin-based detection.

2.6 E VA L UAT I O N P ROT O C O L S , M E T R I C S F O R K I N S H I P V E R I F I C AT I O N

2.6.1 Protocols

The kinship verification task is a binary classification problem. The mostly used evalu-
ation protocol for kinship verification is K-fold cross-validation. Because the number
of samples of the training dataset is limited, the test results may vary. K-fold cross-
validation provides relatively more stable results. The mostly used cross-validation is
5-fold cross-validation. Using the same cross-validation fold provides a comparison
between the proposed and methods in the literature.

2.6.2 Metrics

The mostly used evaluation metrics are classification accuracy [70] and EER. Each
kinship’s result is calculated and obtained for classification accuracy by dividing the
correct number by the total test number. Finally, an accuracy metric is obtained with



2.7 B E N C H M A R K I N G 37

Table 5: Details of the different kinship datasets. Video† denotes that the videos are recorded with
spontaneous smiles. Sizes with ⋆ indicate that the original size is 1920 × 1080. Brackets indicate
the updated number compared to the original numbers collected.

Year Name types pairs/
groups

kin
types subjects numbers size extra

labels
family

structure age time
range source top

method score Human
score

2010 CornellKin [62] images
150

(143) 4 300* 300* 100x100 no no no no online Kohli et al. [101] 94.4 67.19

2012 UB KinFacev1 [218] images 90 * - 180 270 -
young,

old parents no no yes online Yan et al. [230] 67.3 -

2012 UB KinFacev2 [176] images 200* 4 400 600 127x100
young,

old parents no no yes online Kohli et al. [101] 95.3 54.85

2012 familyFace [221] images - 4 507 214 -
family tree,

age,
position

yes no yes online - - -

2013 Family101 [61] images
692

(206) 4 607 14,816 -
family tree,
206 nuclear

families
yes no yes

Amazon
MTurk wang et al. [205] 92.03 -

videos† 228 7 75 456
2013

UvA-Nemo
Smile [49]

videos
(posed) 287 7 87 564

125x100⋆ video yes no no offline Kohli et al. [101] 96.07 80.2

2014 KinFaceW-I [129] images 533 4 1066 1066 64x64 - no no no online Kohli et al. [101] 96.9 78.6
2014 KinFaceW-II [129] images 1000 4 2000 2000 64x64 - no no no online Kohli et al. [101] 97.1 83.5

2015 TSKinFace [158] images 1015
3

(2)

2589 787 - family tree yes no yes online zhang et al. [239] 89.8 79.55

2016 FIW [168] images
656,
(954) 11 10,676 30,725 224x224 family tree yes no yes online Robinson et al. [168] 69.18 57.5

2017 KFVW [226] videos 418 4 - 900x500 video no no no
online

TV show yan et al. [226] 58.15 73

2019 KIVI [101] videos 355 7 503 503* 128x128 video yes no no online Kohli et al. [101] 83.18 -

2019 TALKIN [216] videos 400 4 - - 224x224⋆ video,audio no no no
online

TV show wu et al. [216] 70.2 -

2019
Nemo-

Kinship
(ours)

videos 228 11 248 4216 160x160⋆
family tree,

age,
language

audio

yes yes no offline - - -

an average score for each subset. Besides classification accuracy, receiver operating
characteristic (ROC) curves are used.
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Table 6: Results of methods on 4-type relation datasets. The results with † and ‡ indicate
the kinship verification performance on the children young-parents related set and children
old-parents related set respectively for UB KinFace.

Dataset Format Dataset Method Description F-S F-D M-S M-D average
Fang et al. 2010 [62] kNN,SVM - - - - 70.7
Yan et al. 2014 [228] DMML,SVM 76.0 70.6 77.5 71.0 -
Lu et al. 2013 [130] MNRML,SVM 74.5 68.8 77.2 65.8 71.6
Yan et al. 2015 [230] MPDFL,SVM 74.8 69.1 77.5 66.1 71.9
Liu et al. 2016 [121] GInCS 78.2 73.0 78.8 73.5 75.9
kohli et al. 2017 [99] fcDBN,3-1NN 91.7 87.9 95.2 84.2 -
Dehshibi et al. 2019 [45] K-BDPCA 74.8 69.1 77.5 66.1 -

CornellKin

Zhou et al. 2019 [250] kinship metric learning 78.9 82.6 78.3 85.7 81.4
Serraoui et al. 2022 [174] TXQEDA+WCCN - - - - 93.77
Shao et al. 2011 [176] kNN,CMC - - - - 56.5
Xia et al. 2011 [219] Region(Gabor),DLA,Transfer

Learning
- - - - 60.0

Xia el. al 2012 [221] Local Gabor, TSL - - - - 56.5
Yan et al. 2014 [228] DMML,SVM 74.5† - 70.0 ‡ - -
Lu et al. 2014 [130] MNRLM,SVM 67.3 † 66.8 ‡

Yan et al. 2015 [230] MPDFL,SVM 67.5 † 67.0 ‡ 67.3
Liu et al. 2016 [121] GInCS 75.8 † 72.2 ‡

Kohli et al. 2017 [99] fcDBN 92.0 † - 91.5 ‡ - -
Dehshibi et al. 2019 [45] K-BDPCA 72.5 66.5 66.2 72.0 -

UB KinFace

Zhou et al. 2019 [250] kinship metric learning 75.8 † 75.2 ‡ 75.5
Fang et al. 2013 [61] sparse group lasso - - - - 32
Wang et al. 2014 [205] GMM,SVM 92.3 - - - -Family101
Dehshibi et al. 2019 [45] K-BDPCA 86.8 82.8 84.4 83.2 -
Lu et al. 2014 [130] MNRML,SVM 72.5 66.5 66.2 72.0 69.9
Yan et al. 2014 [228] DMML,SVM 74.5 69.5 69.5 75.5 -
Dehghan et al. 2014 [44] gated autoencoder 76.4 72.5 71.9 77.3 74.5
Liu et al. 2015 [120] IFVF 73.4 71.7 71.1 77.6 73.5
Alirezazadeh et al. 2015
[5]

genetic algorithm 77.9 78.0 81.4 87.9 81.3

Zhang et al. 2015 [240] CNN-point 76.1 71.8 78.0 84.1 77.5
Bottinok et al. 2015 [17] handcrafted features, svm 85.8 85.3 86.7 86.7 86.3
Duan and Tan 2015 [57] LPQ 75.4 63.8 69.9 74.6 70.9
Yan et al. 2015 [230] MPDFL,SVM 73.5 67.5 66.1 73.1 70.1
Xu et al. 2016 [223] S3L 82.4 72.8 74.6 79.1 77.2
Zhou et al. 2016 [253] Multiview SSL 82.8 75.4 72.6 81.3 78.0
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Zhou et al. 2016 [252] Ensemble similarity learning 83.9 76.0 73.5 81.5 78.6
Puthenputhussery et al.
2016 [155]

SF-GFVF feature 76.3 74.6 75.5 80.8 76.1

Li et al. 2016 SMCNN 75.0 75.0 72.2 68.7 -
Liu et al. 2016 [121] GInCS 77.3 76.9 75.8 81.4 77.8
Liang et al. 2017 [116] autoencoder,SVM 71.2 74.3 77.2 73.3 -
Lu et al. 2017 [128] DDMML 86.4 79.1 81.4 87.0 83.5
Yan 2017 [224] NRCML 73.4 70.6 70.8 69.9 73.1
Patel et al. 2017 [151] BNRML 83.38 77.25 75.80 78.36 78.7
Fang et al. 2017 [63] SSML 84.6 75.0 76.3 82.3 79.6
kohli et al. 2017 [99] fcDBN 98.1 96.3 90.5 98.4 -
Dehshibi et al. 2019 [45] K-BDPCA 77.9 78.0 81.4 87.9 -
Dibeklioglu et al. 2017
[48]

deep contrastive learning - - - - 80.5

Chen et al. 2017 [29] multi-linear coherent space
learning

88.5 81.0 81.0 82.6 83.3

Mahpod and Keller 2018
[134]

MHDL3 77.0 76.1 80.1 85.8 79.8

Kohli et al. 2018 [100] Supervised Mixed Norm Au-
toencoder

- - - - 96.9

Liang et al. 2019 [117] WGEML 78.5 73.9 80.6 81.9 78.7
Zhou et al. 2019 [250] kinship metric learning 83.8 81.0 81.2 85.0 82.8
Yan 2019 [225] D-CBFD 79.6 73.6 76.1 81.5 77.6

KinFaceW-I

Li et al. 2020 [114] graph-based kinship reasoning 79.5 73.2 78.0 86.2 79.2
Serraoui et al. 2022 [174] TXQEDA+WCCN 91.00 87.78 92.32 93.35 91.11
Lu et al. 2014 MNRLM,SVM 76.9 74.3 77.4 77.6 76.5
Yan et al. 2014 [229] DMML,SVM 78.5 76.5 78.5 79.5 78.3
Dehghan et al. 2014 [44] gated autoencoder 83.9 76.7 83.4 84.8 82.2
Hu et al. 2014 [86] LM3L 82.4 74.2 79.6 78.7 78.7
Liu et al. 2015 [120] IFVF 85.6 75.4 82.8 82.6 81.6
Alirezazadeh et al. 2015
[4]

genetic algorithm 88.8 81.8 86.8 87.2 86.2

Zhang et al. 2015 [240] CNN-point 89.4 81.9 89.9 92.4 88.4
Bottinok et al. 2015 [17] handcrafted features, SVM 89.4 83.6 86.2 85.0 86.0
Duan and Tan 2015 [57] LPQ 82.4 76.2 76.6 73.2 77.1
Yan et al. 2015 [230] MPDFL,SVM 77.3 74.7 77.8 78.0 77.0
Xu et al. 2016 [223] S3L 82.6 73.8 74.1 73.6 76.0
Zhou et al. 2016 [253] Multiview SSL 81.8 74.0 75.3 72.5 75.9
Zhou et al. 2016 [252] Ensemble similarity learning 81.2 73.0 75.6 73.0 75.7
Puthenputhussery et al.
2016 [155]

SF-GFVF feature 87.2 79.6 88.0 87.8 85.7

Li et al. 2016 [111] SMCNN 79.0 75.0 85.0 78.0 -
Liu et al. 2016 [121] GInCS 85.4 77.0 81.6 81.6 81.4
Liang et al. 2017 [116] autoencoder,SVM 80.3 85.2 83.3 82.6 -
Lu et al. 2017 [128] DDMML 87.4 83.8 83.2 83.0 84.3
Yan 2017 [224] NRCML 79.8 76.1 79.8 80.0 78.7
Patel et al. 2017 [151] BNRML 84.0 79.0 79.2 80.0 80.6
Hu et al. 2017 [85] L2M3L 82.4 78.2 78.8 80.4 80.0
Fang et al. 2017 [63] SSML 85.0 77.0 80.4 78.4 80.2
kohli et al. 2017 [99] fcDBN 96.8 94.0 97.2 96.8 -
Hu et al. 2018 [84] MvDML 80.4 79.8 78.8 81.8 80.2
Dehshibi et al. 2019 [45] K-BDPCA 88.8 81.8 86.8 87.2 -
Dibeklioglu et al. 2017
[48]

deep contrastive learning - - - - 82.3

Chen et al. 2017 [29] multi-linear coherent space
learning

86.8 82.8 84.4 83.2 84.3

Mahpod and Keller 2018
[134]

MHDL3 88.4 84.0 86.4 89.2 87.0

Kohli et al. 2018 [100] Supervised Mixed Norm Au-
toencode

- - - - 97.1

Liang et al. 2019 [117] WGEML 88.6 77.4 83.4 81.6 82.8
Zhou et al. 2019 [250] kinship metric learning 87.4 83.6 86.2 85.6 85.7
Yan 2019 [225] D-CBFD 81.0 76.2 77.4 79.3 78.5

KinFaceW-II

Li et al. 2020 [114] graph-based kinship reasoning 90.8 86.0 91.2 94.4 90.6
Serraoui et al. 2022 [174] TXQEDA+WCCN 89.80 90.60 87.60 93.20 90.30
Qin et al. 2015 [158] RSBM 83.0 80.5 82.8 81.1 FM-S: 86.4,

FM-D: 84.4
Zhang et al. 2016 [239] HDLBPH 91.1 88.3 89.7
Lu et al. 2017 [128] DDMML 86.6 82.5 83.2 84.3 FM-S: 88.5,

FM-D: 87.1
Zhang et.al 2015 [244] GMP 88.5 87.0 87.9 87.8 FM-S: 90.6,

FM-D: 89.0

Image

TSKinFace

Liang et al. 2019 [117] WGEML 90.3 89.8 91.4 90.4 FM-S: 93.5,
FM-D: 93.0

Serraoui et al. 2022 [174] TXQEDA+WCCN 89.42 89.31 90.87 93.15 FM-S:
95.34,
FM-D:
96.53

Yan et al. 2018 [226] CSML 38 .6* 47 .1* 38 .5* 43 .2* 41 .8*
KFVW

Yan 2019 [225] D-CBFD 61.5 57.0 58.8 59.9 59.3Video
TALKIN Wu et al. 2019 [216] Deep Siamese Network 80.0 70.5 73.5 72.5 74.1
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2.7.1 Benchmark on Publicly Available Datasets

Relation degree

4 types: Most of the current methods train and test on 4-types datasets. The performances
of the different methods based on the different 4-types datasets are listed in Table 6. It
can be concluded that the video dataset is more complicated than the image dataset, since
the highest accuracy of the KFVW dataset is 59.3%, and for TALKIN it is 74.1%. UB
KinFace yields a lower performance considering image-based datasets when testing this
4-type using the same method. MNRLM achieves an accuracy of 67.1 for UB KinFace
and 71.6, 69.9, and 76.5 for CornellKin, KinFaceW-I, and KinFaceW-II, respectively.
KinFaceW-I and KinFaceW-II are the mostly used public datasets. The traditional metric
learning methods MNRLM and DMML show relatively low performance. Compared
to MNRLM, DDMML performs better by utilizing multiple neural networks and using
the commonality of multiple feature descriptors. Based on the comparison, deeper
features usually result in higher accuracy. For instance, fcDBN uses a convolutional
neural network and SMNAE uses mixed norm auto-encoders. it can be concluded that
multi-descriptors provide better results. Compared to NRML and DDML, which only
use one specific feature descriptor, MNRM and DDMML achieve better results on the
KinFaceW-I&II datasets. A partial-aware feature extractor is also helpful. The Attention
Network uses a part-aware attention module. fcDBN uses hierarchical representations
with local and global facial regions. Both of them show good performance. In conclusion,
deeper feature extractors, multi-descriptors, and part-aware extractors are useful for
kinship verification.

Table 7: Results of Methods on 7-type relation Datasets.
Dataset Format Dataset Method Description F-D F-S M-D M-S B-B B-S S-S average

WVU Kinship Db Kohli et al. 2017 [99] fcDBN 88.4 90.8 95.2 90.6 90.9 87.5 95.7 -
Image

IIITD-Kinship Kohli et al. 2012 [98] SSD, SVM 73.4 77.3 79.6 71.0 73.0 68.7 78.3 -
Dibeklioglu et al. 2013 [49] dynamic features,CLBP-TOP 75.0 79.0 67.54 75.0 70.0 68.8 75.0 72.9
Boutellaa rt.al.2016 [18] DeepFeat 89.7 92.7 90.2 85.7 92.8 88.5 88.9 89.8UvA-NEMO Smile
Dibeklioglu 2017 [48] contrastive learning 93.8 93.4 93.6 92.2 95.7 92.6 94.2 93.6

Video

KIVI Kohli et al. 2019 [100] SMNAE - - - - - - - 83.2

7 types: Table 7 shows the performances of different methods on the 7-type kinship
datasets. Compared to 4-type datasets, fewer methods focus on 7-type datasets. To our
knowledge, fcDBN is the only method tested on the WVU kinship dataset. As for the
video-based dataset, the UvA-NEMO Smile dataset is the most widely used. The best
performance on this dataset is 93.6%. Among these methods, Dibeklioglu et al. [49]
reach an average accuracy of 72.9. Boutellaa et al. [18], achieve an average accuracy of
89.8. Dibeklioglu et al. [49] use traditional descriptors by combining facial dynamics and
spatio-temporal appearance. Boutellaa et al. [18] use the spatio-temporal information
and use deep features from VGG-face.

11 types: FIW is the largest image-based dataset al.l methods, conducted on the FIW
dataset, are based on neural network architectures.
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Table 8: Results of the methods on 11-type relation datasets.
Dataset Format Dataset Method Description F-D F-S M-D M-S B-S B-B S-S GF-GD GF-GS GM-GD GM-GS average

Robinson et al. 2016 [167] VGG-face +SVM 64.4 63.4 66.2 64.0 73.2 71.5 70.8 64.4 68.6 66.2 63.5 66.9
Robinson et al. 2016 [166] Fine-Tuned CNN 69.4 68.2 68.4 69.4 74.4 73.0 72.5 72.9 72.3 72.4 68.3 71.0FIW
Wang et al. [198] VGG+DML 68.1 71.0 70.4 70.8 75.3 - - 64.9 64.81 67.4 66.5 68.8
Robinson et al. 2017 [170] ResNet+Centerface 68.2 67.7 71.1 68.6 69.5 69.9 69.5 66.4 66.5 65.8 64.4 67.9
Robinson et al. 2018 [168] SphereFace 69.3 68.5 71.8 69.5 70.2 71.9 77.3 66.1 66.36 64.6 65.4 69.2
Laiadi et al. 2019 [106] Deep-Tensor+ELM - - - - - - - 68.4 68.2 70.2 67.8 68.6

Image
FIW
(extended)

Wang et al. 2018 [197] ResNet+SDMLoss 69.1 68.6 72.3 69.6 70.4 72.6 79.4 65.9 65.1 66.4 64.9 69.5

Table 9: Best reported performance on different kinship verification datasets.
Format Dataset Type Method Metric Protocol Score

CornellKin [62] 4 Serraoui et al. 2022 [174] Acc. 5-fold cross validation 93.8
Family 101 [61] 4 Mukherjee et al. 2022 [139] Acc. 5-fold cross validation 92.3
KinFaceW-I [130] 4 Kohli et al. 2019 [100] Acc. 5-fold cross validation 96.9
KinFaceW-II [130] 4 Kohli et al. 2019 [100] Acc. 5-fold cross validation 97.1
TSKinFace [158] 4 Serraoui et al. 2022 [239] Acc. 5-fold cross validation 90.7
WVU [99] 7 Kohli et al. 2017 [99] Acc. 5-fold cross validation 90.7
IIITD [98] 7 Kohli et al. 2012 [98] Acc. 5-fold cross validation 74.5
FIW [166] 11 Robinson et al. 2016 [166] Acc. 5-fold cross validation 71.0

Image

FIW(extended) [168] 11 Wang et al. 2018 [197] Acc. 5-fold cross validation 69.5
KFVW [226] 4 Yan et al. 2018 [226] ERR. 5-fold cross validation 41.8
KFVW [226] 4 Yan 2019 [225] Acc. 5-fold cross validation 59.3
TALKIN [35] 4 Wu et al. 2019 [216] Acc. 5-fold cross validation 74.1
UvA-Nemo Smile [49] 7 Dibeklioglu 2017 [48] Acc. 5-fold cross validation 93.6

Video

KIVI [100] 7 Kohli et al. 2019 [100] Acc. 5-fold cross validation 83.2

Human evaluation

The evaluation of kinship verification by humans often occur in the domain of social
analysis related topics [20,42,43,64,93,95,146,154,236]. The participants assessing the
image pairs are usually divided by age, gender, race, career etc.. In a number of surveys,
the participants generally tend to be specialists or students with basic psychological
knowledge. In [93], 59 undergraduate students with an average age of 21.6 take part in
the kinship verification test. These students all obtain partial credits in an introductory
psychology course. In early research, human’s evaluation of kinship verification is
questionnaire-based. Researchers show the different images to the participants without
any labels. The participants write down the judgment of the kinship. In some experiments,
the judgment time is recorded.

In recent years, machines are used to make experimental data more accurate. In [93],
random stimuli appear on the screen. The participants need to judge the kinship between
the pairs shown in the stimuli. The response time is limited to 20s. The response of
the participants is also recorded. A degree of relatedness is finally recorded with the
parameters of kinship assessment. In [125], the researchers used the Amazon Mechanical
Turk service (MTurk) crowd-sourcing service to evaluate a set of kinship verification
pairs. In these experiments, the MTurk participants are anonymous. Like the previous
experiment, the pair of face images are displayed on the screen, and the participant’s
answers are recorded by clicking the corresponding button. The final evaluation is the
average score of all correct answers by all participants. Lopez et al. [125] show that for
the dataset KinFaceW-I, KinFaceW-II, a human can reach a performance within a range
of 75% to 85%. Both [93] and [125] show that humans are better, especially for M-D
(mother and daughter) relationships.
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Figure 21: Crowd-sourced human evaluation of kinship using Amazon Mechanical Turk, cited
from Lopez et al. [125].

Table 10: Human evaluation for different datasets.
Year Name human participants description train score
2010 CornellKin Fang et al. 2010 [62] 16 randomly select 20 pairs 67.19

2012 UB KinFace v2 Shao et al. 2011 [176] 20
40training sample,
40 test samples(20true)

time1: 53.17
time2: 56

2012 Family-Face Xia et al. 2012 [221] 20 randomly select 32 pairs 56.88
2013 UvA-Nemo Smile Lopez et al. 2018 [125] 304 MTurk+quality assurance 80.2

Lopez et al. 2018 [125] 304 MTurk+quality assurance 78.6
2014 KinFaceW-I Yan et al. 2014 [228]

Lu et al. 2013 [130] 10 5 males and 5 females 71

Lopez et al. 2018 [125] 304 MTurk+quality assurance 83.5
2014 KinFaceW-II Yan et al. 2014 [228]

Lu et al. 2013 [130] 10 5 males and 5 females 74

100 pairs
A: parents -children 1:1 no 74.62

2015 TSKinFace Qin et al. 2015 [158] 10
B parents -children 2:1 no 79.55

case1 75
406 samples,
11 categories,
type-by-type basis

no 57.5

2016 FIW Robinson et al. 2018 [168]
case2 110

406 samples,
11 categories,
type unspecified

no ˜57.5

cropped,
20 pos,20 neg 68.63

2017 KFVW Yan et al. 2018 [226] 5m5f origin,
20pos,20neg 73

2.7.2 Benchmark on the Nemo-Kinship Dataset

Different methods are re-implemented. All videos are pre-processed by a face detector
and aligned with the same eye position.

Data post-processing

The pipeline of the post-processing of the Nemo-Kinship dataset is shown in Figure23.
Firstly, we extract the members and divided them into 11 categories according to their
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Figure 22: ROC curves based on different features.

kin-types. Since the number of samples, having the secondary kinship, is small, we
only use seven kin relations as the testing relationship: M-D, M-S, F-D, F-S, B-B, B-S,
and S-S. We extract one video from the Nemo-Kinship dataset with the ”yes” answer.
Secondly, we convert the video of each person into 100 frames. The faces are cropped
into 160x160 pixels according to the bounding box of the detected face. Then, we
align each image according to the landmarks. We adjust each face and fixed all the eye
positions. Thirdly, all the family members are re-arranged into seven kinship-type folders.
The entire dataset is trained and tested by 5-fold-cross-validation. Therefore, we generate
a cross-validation list of five folders for each kinship for training and testing.

Methods

Both image-based methods and video-based methods are selected. For image-based
methods, NRML [130], CNN-points [240], Attention Networks [232], Sphereface-
baseline [164, 165], and Vuvko [175] [175] are used. NRML is the traditional and
widely-used metric learning method. CNN-points is the first deep learning method.
Attention Network and Vuvko are more recent methods. Sphereface-baseline is the
benchmark method for Recognizing Families In the Wild Data Challenge (RFIW) in
2020 and 2021. Vuvko reaches the state of the art results on the kinship verification track
for RFIW2020. The performances of different methods are listed in Table 11. Among
these methods, Vuvko shows the highest accuracy. Vuvko utilizes the information
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Figure 23: The pipeline of post-processing on the Nemo-kinship dataset. (a) The Nemo-kinship
dataset is stored in 17 videos per family member considering the family tree. Fn represents the
nth of the family group. Mn denotes the family members for each family. (b) All the videos are
converted into frames. Every detected face is processed by the detection, alignment, and cropping
procedure. (c) All family members are reconstructed into seven kinship folders. Each person
contains 100 frames.

of the face recognition task and selects arcfacer 100 v1 [47] as the backbone. The
results show that face verification information helps to improve kinship verification.
Comparing Attention Network (with masks) and Attention Network, it can be concluded
that using masks improves the results. For video-based methods, the Deep+Shallow
method proposed by Boutellaa et al. [18] is used. It combines deep features obtained
by the convolutional network and spatio-temporal texture features. The results show an
improvement for the brother-sister type.

Feature representations

To study the influence of different features, SIFT, LBP, HOG, VGG-face, and Facenet are
selected as basic descriptors. SIFT is one of the widely used feature descriptors in image
recognition and classification. We follow [168] and [131]. The images are divided into
16 × 16 blocks with a stride of 8. Then, the SIFT feature with 128D is extracted from
each block and concatenated together. The LBP [2] features are extracted following the
implementation of [129]. The image is divided into 16 × 16 non-overlapping blocks at
first. The radius is set to 2, and the sampling number is set to 8. The extracted features are
represented by 256D histograms, forming a 2096D (256× 16) feature. Unlike traditional
descriptors, VGG-face and Facenet are used as off-the-shelf face encoders following the
settings of [168]. The similarities of image pairs based on different features are calculated
by the cosine similarity with a certain threshold. The ROC curves of different features
are shown in Figure 22. It shows that Facenet features and VGG-face features provide
the best results. It also shows that test pairs with the same generation (Brother-brother,
Sister-sister, and Brother-sister) obtain more distinguished features.
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Table 11: Accuracy of existing methods on the Nemo-kinship dataset.
Method Description F-D F-S M-D M-S B-B B-S S-S Average
Lu et al. 2012 [130] NRML 0.6627 0.6209 0.5907 0.6321 0.7177 0.6198 0.7313 0.6209

CNN-basic 0.5550 0.5462 0.5053 0.5790 0.5067 0.5393 0.5250 0.5366
Zhang et al. 2015 [240]

CNN-points 0.4965 0.6054 0.5075 0.5817 0.5597 0.5527 0.5067 0.5443
Attention Network 0.5753 0.5396 0.5273 0.5585 0.4587 0.5523 0.5356 0.5353
Attention Network(with masks) 0.5792 0.5273 0.5672 0.5997 0.5290 0.5940 0.5700 0.5666Yan et al. 2019 [232]
Attention Network(Multi-inputs) 0.5288 0.5356 0.5137 0.5760 0.5077 0.5155 0.5520 0.5328

Shadrikov et al. 2020 [175] Vuvko 0.7750 0.8488 0.7769 0.7335 0.8166 0.7607 0.7606 0.7715
Robinson et al. 2021 [164, 165] Sphereface-baseline 0.5237 0.5407 0.5606 0.5548 0.5937 0.5803 0.5467 0.5572
Boutellaa et al. 2017 [18] DEEP+Shallow 0.5833 0.5667 0.5756 0.5708 0.4667 0.7000 0.5333 0.5709

2.7.3 Discussion

The results of different methods on the public datasets and our newly proposed Nemo-
Kinship dataset, show that the current methods (NRML, CNN-basic, CNN-points, Atten-
tion Network, Vuvko) provide better results on public datasets. This can be attributed
to the fact that the Nemo-Kinship dataset contains more samples of children and adults.
These samples show larger differences in appearance. Based on the results, Vuvko
achieves the best performance. The features extracted by the combination of LBP and
HOG are enhanced by metric learning during the training process. Due to overfitting,
deep neural networks without pre-training do not show good results on the Nemo-kinship
data set. Attention Network and Attention Network (with mask) show that attention
to local features improves the performance. On the other hand, ROC curves of the
differential feature extractors show that the deep features from the pre-trained network
provide better features.

2.8 C O N C L U S I O N

This survey provides a comprehensive review of public datasets and representative
methods for kinship verification. Representative methods are categorized and compared
based on their feature representations: (1) hand-crafted feature-based, (2) metric learning-
based, and (3) deep learning-based. Also, this review studies current kinship challenges
according to intrinsic factors (face i.e., differences in facial appearance) and extrinsic
factors (acquisition i.e., varying imaging conditions). New promising directions are
discussed based on current advances in kinship research. Open-set kinship verification
and debiasing kinship verification are largely ignored so far. They are promising for
the kinship verification task in the future. Through the analysis of current kinship
verification datasets, we believe that there is still a need for more kinship datasets for
specific problems. More video-based kinship datasets are in demand. Therefore, a new
video dataset is presented as a benchmark for a child-adult-based kinship verification
task. This dataset consists of 248 subjects from 85 families. It contains age, gender, and
audio information. This benchmark is used to systematically test and analyze current
state-of-the-art methods.
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K I N S H I P I D E N T I F I C AT I O N T H R O U G H J O I N T
L E A R N I N G

3.1 I N T RO D U C T I O N

Kinship is the relationship between people who are biologically related with over-
lapping genes [129, 131], such as parent-children, sibling-sibling, and grandparent-
grandchildren [6, 166, 170, 217]. Image-based kinship identification is used in a variety
of applications including missing children searching [217], family album organization,
forensic investigation [170], automatic image annotation [129], social media analy-
sis [20, 43, 236], social behavior analysis [64, 93, 146, 240], historical and genealogical
research [43, 95], and crime scene investigation [100].

While kinship verification is a well-explored task, identifying whether or not persons
are kin, kinship identification, which is the task to further identify the particular type of
kinship, has been largely ignored so far. Existing kinship verification methods usually
train and test each type of kinship model independently [166, 197, 217] and hence do
not fully exploit the complementary information among different kin types. Moreover,
existing datasets have unrealistic positive-negative sample distributions. This leads to
significant limitations in real world applications. When conducting kinship identification,
since there is no prior knowledge of the distribution of images, all independently trained
models are used to determine the kinship type of a specific image pair. Figure. 24 shows
an example of providing an image pair to four individually trained verification networks
based on a recent state-of-the-art method by Yan et al. [232]. The network generates
contradictory outputs showing that the test subjects are simultaneously father-daughter,
father-son, mother-son and mother-daughter.

In this chapter, a new identification method is proposed to learn the identification and
verification labels jointly i.e. combining the kinship identification and verification tasks.
Specifically, all kinship-type verification models are ensembled by combining the binary
output of each verification model to form a multi-class output while training. The
binary and multi-class models are leveraged in a multi-task-learning way during the
training process to enhance generalization capabilities. Also, we propose a baseline
multi-classification neural network for comparison.

We test our proposed kinship identification method on the KinFaceW-I and KinFaceW-II
datasets and demonstrate state-of-the-art performance for kinship identification. We

45
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Figure 24: Identification of kinship relationships using verification ensembles. (a) Existing
verification networks are trained independently resulting in contradictory outputs. (b) The output
of our proposed joint training

also show that the proposed method significantly improves the performance of kinship
verification when trained on the same unbiased dataset.

To summarize, the contributions of our work are:

• We propose a theoretical analysis in metric space of relationships between kinship
identification and kinship verification.

• We propose a joint learnt network that simultaneously optimizes the performance
of kinship verification and kinship identification.

• The proposed method outperforms existing methods for both kinship identification
and unbiased kinship verification.

3.2 R E L AT E D W O R K

K I N S H I P V E R I F I C AT I O N Fang et al. [62] are the first to use handcrafted feature
descriptors for kinship verification. Later, Xia et al. collected a new dataset with young
and old parent images to utilize the intermediate distribution using transfer learning [219,
220]. Lu et al. [131, 249] propose a series of metric learning methods. Other handcrafted
feature-based methods can be found in [49,61,129,204,219,227,229,251]. Deep learning-
based methods [232,240] exploits the advantages of deep feature representations by using
pre-trained neural networks in an off-the-shelf way. Zhang et al. are the first to use deep
convolutional neural networks [240], and Yan et al. [232] are the first to add attention
mechanisms in deep learning networks for kinship verification. In recent years, there is a
trend to combine different features from both traditional descriptors [227, 249] and deep
neural networks [21, 88, 184] to generate better representations [18]. (m)DML [52, 198]
combines auto-encoders with metric learning. However, these methods focus on specific
types of kinship and train and test on the same kinship types separately, which may not
be feasible in real-world scenarios.
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K I N S H I P I D E N T I F I C AT I O N Different from kinship verification, kinship identifi-
cation attracted less attention [6]. [6, 166] only slightly deal with kinship identification.
Guo et al. [78] propose a pairwise kinship identification method using a multi-class linear
logistic regressor. The method uses graph information from one image with multi inputs.
The paper is based on ”kinship recognition” and uses a strong assumption that all the data
is processed by a perfect kinship verification algorithm. Since there is not sufficient data
with family annotations, the method is limited by using multi-input labels. In contrast,
our method handles negative pairs and focuses on pair-wise kinship identification. For ex-
ample, in the context of searching for missing children, we need to handle each potential
pair online and find the most likely pair for specific kinship types. In this case, we need
to filter the online data and test the most likely data after filtering. As for the family photo
arrangement or social media analysis, the aim is to understand the relationships between
persons in a picture. There are usually many faces and different kinship relations in a
family picture. Hence, the goal is to verify the most likely pairs among negative pairs.
Previous methods are not able to cope with this scenario. Figure 25 shows that kinship
verification is closely related to kinship identification. As a consequence, we propose a
new approach by jointly learning all independent models with kinship verification and
identification information.

3.3 K I N S H I P I D E N T I F I C AT I O N T H RO U G H J O I N T L E A R N I N G W I T H K I N S H I P

V E R I F I C AT I O N

In this section, we first introduce the three types of relationship understanding: kinship
verification, kinship identification, and kinship classification. Based on this, we introduce
the current challenge on kinship identification. Finally, we introduce the concept of
conducting kinship identification by using a joint learning strategy between kinship
identification and kinship verification.

3.3.1 Definition of Kinship Verification, Kinship Identification and Kinship Classifica-
tion

Kinship recognition is the general task of kinship analysis based on visual information.
There are mainly three sub-tasks [6,166]: kinship verification, kinship identification, and
kinship classification (e.g. family recognition). The goal of kinship verification is to
authenticate the relationship between image pairs of persons by determining whether
they are blood-related or not. Kinship identification aims at determining the type of
kinship relation between persons. Kinship classification [166, 217] is the recognition of
the family to which a person belongs to. Figure 25 illustrates the relationship between
these tasks. This chapter focuses on kinship identification, which is an important but
not well-explored topic. Unlike other kinship recognition methods [32, 78, 194, 203],
which take images of multiple people as input to predict the relationships between them,
the kinship identification task targets at classifying the kin-type of image pairs (negative
pairs also included).
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Figure 25: Flowchart of the relation between kinship verification and kinship identification. (a)
Kinship verification is used as a preliminary process for kinship identification. (b) The kinship
identification process can be divided into two steps: kinship identification and kinship verification
on a specific type.

3.3.2 Relationship between Kinship Verification and Kinship Identification and the
Limitation of Existing Methods

Relation between the Two Tasks

In the literature, kinship verification and identification are two tasks which are studied
separately but are closely related. When analyzing the kinship relation between persons,
verification is usually applied first to determine whether these persons are kin or not. Then,
the kinship type is defined. Figure 25.a shows the common process of kinship analysis,
where kinship verification is used as a preliminary process for kinship identification.
Furthermore, kinship identification can be divided into two steps, as shown in Figure 25.b.
In the first step, the images are preliminarily classified by the kinship identification model.
Then, the classified images are sent to the corresponding verification model. Due to the
differences of inherited features among different kin-type images, the kinship verification
model provides a better representation than a general kinship identification model. On
the other hand, since the kinship identification process filters out irrelevant samples, it
provides a consistent and similar feature distribution for kinship verification modelling.
In this way, kinship verification and identification are two complementary processes, and
can benefit from each other.

Representation of Kinship Relationships in Metric Feature Space and Limitation of
Existing Methods

In the literature, metric learning is a popular approach for kinship verification. Ideally, the
learnt metric space represents kinship likeness for smaller distances. However, existing
kinship verification models only consider specific kinship types and ignore the influence
of other types.
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Figure 26: Feature space of models during training. Similar feature shapes indicate that the
samples are from the same family. Joint learning better represents the context between different
kinship relationships. Small circles are used to represent focused samples in feature space.

As shown in Figure 26a, when the father-daughter verification model is being trained, the
features of father and daughter samples will be congregated during the training process
and the negative daughter images will be pulled apart. However, due to the negative
samples of father-son pairs, which are not included in the training data, the features
of son images are less affected by the training process pulling father-son images apart.
A narrow-down training of kinship verification can improve the representation of each
sample within a specific kin-type. However, since the model does not thoroughly learn
other types of negative samples, the separate trained models can easily conflict with each
other resulting in ambiguous results. In contrast, a multi-classification method not only
considers different types of images but also the interaction between different types. As
shown in Figure 26b, the son features will be learned as negative features for the father-
daughter feature space, whereas the features of daughters will be considered as negative
features for the father-son space. The yellow arrows in Figure 26b indicate negative
samples which will be separated from the matched feature space. A multi-classification
method may obtain a weaker representation for a specific kin-type because of the large
difference of inherited features among different kin-type images. A joint learning method
has the advantage of the generalization of multi-class training and the representation of
individual verification models. Hence, identification methods based on joint learning not
only repulse negative pairs of different kinship types but also push the potential negative
images to the target feature space, which is illustrated in Figure 26c.

Real World Kinship Distribution and Dataset Bias

Note that the proportion of positive and negative samples is highly unbalanced for
existing kinship verification datasets in the real world. This unbalanced distribution has
a negative impact on different applications. Take the online family picture organization
application for example. The problem is to determine the matched pairs of images for
a specific kinship relationship when the number of kin-related samples only contains a
small portion of the entire dataset. Another example is that, when searching for missing
children, to retrieve a picture that looks the most like the son of the parents in which the
majority of these samples are negative samples.
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Figure 27: Structure of the approaches using four relationships as an example.

3.4 J O I N T L E A R N I N G O F K I N S H I P I D E N T I F I C AT I O N A N D K I N S H I P V E R I F I -
C AT I O N

We propose a joint learning network (JLNet) based on the learning strategy shown in
Figure 27 aiming to utilize the representation capability of kinship verification models as
well as making use of the advantages of multi class classification. This approach consists
of two major steps: the combination of different types of images and joint learning.

The main ideas of the approach are summarized as follows:

1. We utilize all different kin-types of image pairs to train each kinship model, not
based on a specific type.

2. Different models are trained jointly to differentiate negative kinship feature pairs
from the matched model and to merge positive pairs as much as possible.

Note that naively using a single classification network (Figure 27.a) or naively combining
multiple verification networks (Figure 27.b) are not suitable approaches. As described
above, our network (Figure 27.c) utilizes the advantage of both tasks. Without loss
of generality, we outline our approach for four relationships: father-daughter (F-D),
father-son (F-S), mother-daughter (M-D), mother-son (M-S).

3.4.1 Architecture of the Proposed Joint Learning Network (JLNet)

The new Joint Learning Network (JLNet) is illustrated in Figure 28. The structure of
JLNet consists of two parts: the individual Verification Module and the Joint Identification
Module.

Individual Kinship Verification Module

As shown in Figure 27.c, each Individual Kinship Verification Module is defined as a bi-
nary classification problem. Let S =

{(
Iαpi

, Iβc j

)
, i, j = 1, 2, . . . , N,α = 1, 2, 3, 4, β = 1, 2, 3, 4

}
be the training set of N pairs of images. And α ∈ {1, 2, 3, 4} and β ∈ {1, 2, 3, 4} correspond
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Figure 28: Architecture of our Joint Learning Network (JLNet)

to the following kinship types: father-daughter, father-son, mother-daughter, mother-son
respectively. Then, the Individual Verification Module is defined by:

ŷ = Dn
θ

(
Iαpi

, Iβc j

)
, (12)

where Iαpi
∈ RH×W×3 is i-th parent image from α type data set and Iβc j ∈ RH×W×3 is

the j-th child image from β type data set. The output ŷ of each Individual kinship
verification Module is a 1 × 2 vector. An Attention Network [232] is used as the basic
architecture for each Individual Kinship Verification Module. As shown in Figure 28, the
Attention Network uses a bottom-up top-down structure and consists of three attention
stages. Each stage consists of one attention module and one residual structure. To exploit
the shared information between the complimentary tasks, the parameters of the two
stages of the Attention Network are shared to learn low-level and mid-level features
from the input images. This forms the Basic-feature Extraction Sub-module. This
Basic-feature Extraction Sub-module extracts the basic, generic facial features. Then,
high-level features are extracted: four separate branches are added after the last layer
(a max pool layer) of the Basic-feature Extraction Sub-module. Each branch focuses
on one specific kin-type separately, resulting in four Kinship Mapping Sub-modules.
Each of this sub-Module obtains the third stage of the Attention Network and focuses on
different kinship types.

Joint Identification Module

The binary outputs of each Individual Kinship Verification Module are ensembled. The
binary output is described in Eq. 12. The multiple output Ô of the kinship identification
module is defined by:

Ôm =

 minn∈{1,2,3,4}D
n
θ

(
Iαpi

, Iβc j

)
z=1

, if m = 0

Dn
θ

(
Iαpi

, Iβc j

)
z=2

if m , 0
, (13)
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where m ∈ {0, 1, 2, 3, 4} represents the m-th item of vector Ô and z represents z-th item of
the output vector ofDn

θ . The output class C is defined by:

C = arg max
m∈{0,1,2,3,4}

σ(Ô)m, (14)

where σ(·) is the softmax function.

During the training, the Weighted Cross Entropy loss is used for both kinship verification
and identification:

L = −
n∑

i=1

wnlog(σ(·)n), (15)

where n is the class label of the kinship verification or identification output and σ(·)n
is the n-th output of the softmax function. The loss of the joint learning model is given
by a weighted summation of the kinship verification loss (from binary outputs) and the
kinship identification loss (from multiple outputs):

L =
4∑

i=1

λiLkvi + λ5LkI , (16)

where LkI is the Weighted Cross Entropy loss of the kinship identification output given
by Eq. 15 and λi is the i-th weight of each loss.

3.4.2 Comparative Methods

Ensemble Method based on Kinship Verification Models (Ensemble Net)

Figure 27.a shows the structure of the Ensemble Method based on Kinship Verification
Models (Ensemble Net). The Individual Kinship Verification Modules of the Ensemble
Net have the same structure as JLNet. While testing, the Ensemble Net feeds the images
into four kinship verification models simultaneously and ensembles four binary outputs.
The output class C is defined by:

C =

 0 if maxn σ(Dn
θ

(
Iαpi

, Iβc j

)
)z=2 < 0.5

argmaxn σ(D
n
θ

(
Iαpi

, Iβc j

)
)z=2, otherwise

, (17)

where Iαpi
is the i-th parent image from α type data set and Iβc j is the j-th child image from

β type data set.

Multi-Classification Neural Network (Multi-class Net)

The structure of the Multi-Classification Neural Network (Multi-class Net) is shown
in Figure 27.b. Similar to the Ensemble Net, Multi-class has the same backbone with
the Individual Kinship Verification Module of JLNet. The Multi-class Net handles the
kinship identification task as a multiple classification problem:

ŷ = Dθ

(
Iαpi

, Iβc j

)
, (18)
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where S =
{(

Iαpi
, Iβc j

)
, i, j = 1, 2, . . . , N,α = 1, 2, 3, 4, β = 1, 2, 3, 4

}
and the output ŷ is

a 1 × 5 vector.

3.5 E X P E R I M E N T S

3.5.1 Unbias Dataset for Training and Testing

Three types of benchmark datasets are generated from the KinFaceW-I and KinFaceW-II
datasets [129, 131] consisting of four kinship types: father-daughter (F-D), father-son (F-
S), mother-daughter (M-D), mother-son (M-S). To conduct the experiment on unbiased
datasets, we re-balance the KinFaceW-I and KinFaceW-II datasets into three different
benchmark datasets as follows:

1. Independent Kin-type Image Set: This dataset has four independent subsets, where
each subset contains one specific kinship type. This dataset simulates a dataset
obtained by an ideal kinship classifier. The split of this image set is the same as
KinFaceW-I or KinFaceW-II. The positive samples are the parent-children pairs
with the same type of kinship. The negative samples are the pairs of unrelated
parents and children within the same kin-type distribution. The positive and
negative ratio is 1 : 1.

2. Mixed Kin-Type Image Set: This dataset combines four different kin-type images
taken from the KinFaceW-I or KinFaceW-II datasets resulting in the type ratio
(father-daughter: father-son: mother-daughter: mother-son: negative pairs) to be
1 : 1 : 1 : 1 : 4. This image set is used for both training and testing. Image
pairs with kinship relations are denoted as positive samples. Negative samples
are random image pairs without kinship relation but within the same type of
distribution.

3. Real-Scenario Kin-Type Image Set: This dataset simulates the data distribution
for real-world scenarios (e.g. retrieval of missing children). All the images in
the KinFaceW-I or KinFaceW-II datasets are paired one by one, which leads to a
highly unbalanced positive-negative rate. Taking KinFaceW-II as an example, in
each cross-validation, there will be 400 images (200 positive pairs) to be tested.
All these images are paired one by one. The ratio of positive and negative pairs is
1 : 398.

3.5.2 Experimental Design

All methods are trained on the Mixed Kin-Type Image Set. The dataset is divided into
5-folds and verified by a 5-cross validation. We use the same data augmentation for all
methods. The data is augmented by randomly changing the brightness, contrast, and
saturation of the image. Random grayscale variations, horizontal flipping, perspective
changes, and resizing and cropping are also included. All images have the same size
64 × 64 × 3, and the batch size is set to be 64.
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Proposed Joint Learning Method (JLNet)

The training scheme of JLNet is divided into two phases. The first one is to train the
network parameters for the four models independently. The weighted cross entropy is
used for updating and the weight list is set to be [0.25, 8] for each verification output.
The second phase is to update network parameters jointly by using both binary and
multiple-outputs. The weight matrix of the cross-entropy of the multiple outputs is set to
[0.18, 2, 2, 2, 2], and λi of the total loss is 1 : 1 : 1 : 1 : 10 respectively. Adam is used as
optimizer and the learning rate is set to 10−4. Since there is no public code available for
the attention network, we re-implemented the attention network from scratch. During
testing of the kinship verification of each individual kin-type, the binary output of the
matched Individual Kinship Verification Module is taken as the final result. During
testing of the kinship identification task, both the binary outputs (for kinship verification)
and multiple outputs (for kinship identification) are used. A combined result based on
the confidence of these two types of outputs are taken as the final result.

A B L AT I O N S T U DY

• Joint Learning without Backpropagation of Multiple Outputs (JLNet†): To assess
the performance of additional multi-classification outputs, the structure of JLNet†

is kept the same as JLNet. Further, JLNet† is trained in the same way as JLNet,
but without using multiple output results for parameter updating.

• Joint Learning using Multiple Outputs for Kinship Identification (JLNet‡): We use
the trained model of JLNet directly but only the multiple output is taken as the
final result during testing.

Experiments and Comparison

E N S E M B L E N E T For Ensemble Net, we provide two ways to train the models:

• Ensemble Net*: Each verification model is trained separately on the Indepen-
dent Verification Image Set, which is the same as [232]. This means that each
independent kinship verification module is only trained on matched data.

• Ensemble Net: Each verification model is trained on the Mixed-Type Image Set,
which is the same as the training data of JLNet and Multi-class Net. Adam is used
and the learning rate was set to be 10−4. The weights of the cross entropy are
0.25, 8.

M U LT I - C L A S S N E T Also for the Multi-Class Net, Adam is used as an optimizer.
The learning rate is again 10−4. A weight list of [0.1,1,1,1] is used for the weighted Cross
Entropy loss.

3.5.3 Results & Evaluation

The methods are evaluated on the different datasets. Five-cross validation is used as
the evaluation protocol. As a reminder, Ensemble Net* is trained on the Independent



3.5 E X P E R I M E N T S 55

Kin-Type Kinship Image Set, JLNet† is trained without Backpropagation of Multiple
Outputs, and JLNet‡ uses multiple outputs as the final result. The results are shown in
Table 12-16.

Results for the Independent Kin-Type Image Set

Table 12: The accuracy of different methods through 5-fold cross-validation on the Independent
Kin-Type Image Set.

KinFaceW-I KinFaceW-IIMethods
F-D F-S M-D M-S Mean F-D F-S M-D M-S Mean

Ensemble Net* 0.7017 0.7506 0.7410 0.615 0.7021 0.746 0.7440 0.7520 0.7320 0.7435

Multi-class Net 0.6463 0.6797 0.6650 0.5770 0.6420 0.5880 0.6240 0.6200 0.5920 0.6060
Ensemble Net 0.6425 0.6321 0.6382 0.577 0.6224 0.6060 0.6000 0.5860 0.6260 0.6045
JLNet† 0.6534 0.6991 0.6539 0.5772 0.6459 0.6160 0.6100 0.600 0.6500 0.6190
JLNet 0.6608 0.7309 0.7207 0.5897 0.6755 0.6800 0.7140 0.6860 0.7060 0.6965

Table 13: F1 scores of different methods through 5-fold cross-validation on Independent Kin-Type
Image Set

KinFaceW-I KinFaceW-IIMethods
F-D F-S M-D M-S Mean F-D F-S M-D M-S Mean

Ensemble Net* 0.6915 0.7472 0.7566 0.6648 0.7150 0.7671 0.7589 0.7690 0.7607 0.7639

Multi-class Net 0.6084 0.6563 0.6767 0.5766 0.6295 0.5629 0.6000 0.6143 0.5062 0.5709
Ensemble Net 0.6639 0.6737 0.6735 0.6083 0.6548 0.6213 0.6439 0.6051 0.6399 0.6276
JLNet† 0.6301 0.6952 0.6496 0.5816 0.6391 0.6396 0.6166 0.6061 0.6191 0.6203
JLNet 0.6320 0.7087 0.7052 0.5657 0.6529 0.6585 0.7211 0.6939 0.6847 0.6896

Table 12 shows the verification results for the different methods based on the Independent
Kin-Type Kinship Image Set. For this image set, accuracy and F1 scores are used to
evaluate the performance of kinship verification. All methods are trained on the Mixed
Kin-type Image Set except for ensemble Net*. The results show that when trained on the
same dataset, JLNet outperforms all other approaches. When tested on the KinFaceW-II
dataset, JLNet outperforms Multi-Class Net with 9% and Ensemble Net by 9.2% on
average accuracy. Considering the F1 score, JLNet outperforms Multi-Class Net with
11.9% and Ensemble Net with 6.2% on average. When comparing JLNet†and JLNet,
it is shown that additional multi-outputs improve the results of the ensembled models.
When compared with Ensemble Net, the accuracy of JLNet is lower than Ensemble Net.
One of the reasons is that each of the verification module of Ensemble Net is trained on
one specific dataset. This may result in overfitting. JLNet provides better generalization
than Ensemble Net*, as shown in the next section.

Results on Mixed Kin-Type Kinship Image Sets

Table 14 shows the results of macro F1 scores and accuracy for the kinship identification
task using the Mixed Kin-Type Kinship Image Set. The results show that the performance
of JLNet outperforms the ensemble and multi-class net methods. Moreover, macro F1
scores show that JLNet(full) outperforms Ensemble Net* with 22.7% on KinFaceW-I and
with 25.0% on KinFaceW-II. Moreover, JLNet(full) outperforms Ensemble Net* with
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Table 14: Macro F1 score and accuracy of kinship identification for the Mixed Kin-Type Kinship
Image Set

KinFaceW-I KinFaceW-IIMethods
macro F1 Accuracy macro F1 Accuracy

Ensemble Net* 0.3240 0.3723 0.2846 0.3319

Multi-class Net 0.5291 0.5494 0.4861 0.5225
Ensemble Net 0.4837 0.4887 0.4464 0.4564
JLNet† 0.5155 0.5487 0.4648 0.4875
JLNet‡ 0.5507 0.5880 0.5285 0.5535
JLNet(full) 0.5506 0.5993 0.5343 0.5790

22.7% on KinFaceW-I and 24.7% on KinFaceW-II. As shown in Figure 29, Ensemble
Net* may lead to indecisive results. The independently trained verification models can
lead to overfitting and results in weak generalization capabilities. JLNet obtained the
highest performance. In Figure 29, it is shown that the joint learning method provides
indecisive results. To this end, the joint learning method JLNet(full) obtains the best
performance for kinship identification on the Mixed Kin-type Kinship Image Set.
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Figure 29: Confusion matrix for different experiments on the Mixed Kin-Type Image Set using the
KinFaceW-I dataset. Negative samples are excluded)

Results on Real Scenario Sample Set

Tables 15 and 16 show the results of the F10 score and accuracy for the kinship identifi-
cation task in a real-world scenario. We focus more on recall than precision, so the F10
score is used to emphasize on the recall rate. The results show that JLNet(full) obtains
the best performance on both KinFaceW-I-based Real-Scenario data and KinFaceW-
II-based Real-Scenario data. The results show that the JLNet(full) outperforms all the
other approaches for both KinFaceW-I and KinFaceW-II. From the confusion matrix in
Figure 30, it is interesting to note that father-son and mother-daughter relations are more
distinguishable than other kin-types. We argue that the manifold of pairs with the same
gender is easier to be learned.
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Table 15: F10 score and accuracy for different methods on the Real-Scenario Set using KinFaceW-
I dataset. F10 (all) represents the average of F10 scores for all different labels (the negative label
is also included)

KinFaceW-Imethods
F-D F-S M-D M-S mean F10(all) Accuracy

Ensemble Net* 0.0886 0.1179 0.1236 0.1003 0.1076 0.1830 0.4807
Multi-class Net 0.1548 0.2951 0.3047 0.1539 0.2271 0.2947 0.5618
Ensemble Net 0.1508 0.2791 0.2740 0.1378 0.2104 0.2596 0.4537
JLNet† 0.1522 0.2966 0.2937 0.1569 0.2249 0.2985 0.5901
JLNet‡ 0.1742 0.3235 0.3123 0.1620 0.2430 0.3287 0.6681
JLNet(full) 0.1715 0.3241 0.3198 0.1669 0.2456 0.3459 0.7439
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Figure 30: Confusion matrix for different experiments on the Real-Senario Image set using the
KinFaceW-I dataset. Negative samples are excluded)

Table 16: F10 score and accuracy for different methods on the Real-Scenario Set using KinFaceW-
II dataset. F10 (all) represents the average of F10 scores for all different labels (the negative
label is also included)

KinFaceW-IImethods
F-D F-S M-D M-S mean F10(all) Accuracy

Ensemble Net* 0.0469 0.0713 0.0726 0.0904 0.0703 0.1498 0.4647

Multi-class Net 0.1468 0.1972 0.1853 0.1076 0.1592 0.2528 0.6240
Ensemble Net 0.1399 0.1681 0.1496 0.0900 0.1369 0.2075 0.4874
JLNet† 0.1413 0.1757 0.1624 0.0962 0.1439 0.2303 0.5730
JLNet‡ 0.1620 0.2133 0.2127 0.1225 0.1776 0.2735 0.6547
JLNet(full) 0.1867 0.2134 0.2296 0.1296 0.1898 0.3003 0.7398

3.6 C O N C L U S I O N

In this chapter, we presented a new approach for kinship identification by joint learning.
Experimental results show that joint learning with kinship verification and identification
improves the performance of kinship identification. To our knowledge, this is the first
approach to handle the kinship identification tasks by using deep neural networks jointly.
Since this method is not restricted to any neural network, a better architecture can further
improve the performance for kinship identification.
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I D E N T I T Y I N VA R I A N T A G E T R A N S F E R F O R K I N S H I P
V E R I F I C AT I O N O F C H I L D - A D U LT I M A G E S

4.1 I N T RO D U C T I O N

Image based kinship verification is an important computer vision task with different
applications such as social media analysis [236], social behavior analysis, and historical
and genealogical research [95]. Different methods focussing on (1) unconstrained
conditions [134], (2) large scale datasets [167] and (3) multi-kinship types [194] have
been proposed. However, the kinship verification problem between children and adults
has been largely ignored. This is a tremendous problem as there are many applications
involved including the search for missing children, the adoption of children and the
creation of family albums [227].

Kinship verification for child-adult pairs is difficult because there are large appearance dif-
ferences between children and their parents. Furthermore, as shown in Figure 31.a, there
may exist a higher similarity in facial appearance in feature space for non-blood-related
child-adult pairs than blood-related child-adult pairs. This may negatively influence
the feature representation and may confuse the verification model. To mitigate this
discrepancy, we propose a method to transform children’s face images into adulthood
faces while maintaining their identity information. As depicted in Figure 31.c, the latent
features of children shift towards the feature space of their parents. In this way, the
difference in facial appearance between children and their parents is mitigated.

To this end, we propose a Children-Adult-Transferring (CAT) Module to extract identity
and age-related features by using pre-trained information from an Identity-preserved
Aging Generator. The face image of a child is transferred to an older age range while
the parent’s face image is kept in a similar age range. Then, the extracted features are
used as input for a Kinship Mapping Module, which maps the extracted features to a
kinship-related manifold. Finally, the mapped kinship-related features are processed by a
Neighborhood Repulsed Metric Learning (NRML) [131] for kinship verification.

In Figure 31, our proposed method is explained. Most of the publicly available kinship
datasets contain relatively unbalanced age distributions, where the child-adult pairs
usually occupy only a small portion of the dataset. Therefore, we created the Nemo-
Kinship-Children dataset by collecting children-adult images. The main contribution of
this chapter can be summarized as follows:

59
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Figure 31: (a) Children may have larger appearance differences compared to their parents than to
their peers of similar age. Consequently, the intra-class distance can be larger than the inter-class
distance. (b) and (c) show the verification results of three methods (Yan et al. [232], Zhang et
al. [240] and our proposed method) which are trained on the Nemo-Kinship-Children dataset.
An external image pair is tested. The result shows that our proposed method can generate the
correct verification result. (c) The novelty of our approach is to transfer images of children
from childhood to adulthood while keeping the identity invariant at feature level. This approach
enlarges the inter-class distance and reduces the intra-class distance.

• We introduce a novel challenge of kinship verification based on child-adult pairs
and collect a new benchmark dataset of child-adult pairs for this specific task.

• We propose a Children-Adult-Transferring (CAT) Module and Kinship Mapping
Module (KMM) using an attention mechanism.

• A new Children-Adult-Transferring Network (CATNet) is proposed.

• Large scale experiments are conducted. The experimental results show that the
towards-adult transferred features of children images improve the representation
of kinship relations and subsequently the kinship verification performance.

4.2 R E L AT E D W O R K

4.2.1 Kinship Verification

The first method of image based kinship verification is proposed by Fang et al. [62]
in 2010. Then, Lu et al. propose a number of metric learning methods [128, 229] by
minimizing the intra-class and maximizing the inter-class samples. Zhou et al. [251]
use Gabor-based gradient orientation pyramid features to conduct kinship verification
in uncontrolled circumstances. Other methods [112, 114, 199] focus on the use of
neural networks. Zhang et al. use convolutional neural networks [240] demonstrating
the effectiveness of exploiting deep learning with a limited set of samples and Yan et
al. [232] add attention mechanisms in deep learning networks for kinship verification.
Dibeklioglu et al. [48] explore video-based facial representations by transforming the



4.2 R E L AT E D W O R K 61

32x128x128
64x32x32

64x32x32

64x64x64

64x64x64 64x32x32

x3

( (

64x32x32

x3

(

(

Identity
Encoder

Aging
Generator

Discriminator

Generated image
with target age

Real Image with
true age range

Age classifier

Real/Fake

Identity-preserved Module  

Age Condition

Age Condition

Identity-preserved Conditional Generator

Age Condition

3x128x128

3x128x128 1x131072

1x131072

Kinship feature

Contrastive
loss

NRML Kin/not
Kin

Training step 2 Training step 3

Input(3x128x128)

: convolutional
layer+ batch

norm
layer+RELU 

: convolutional
layer+ batch norm

layer 

: feature of the last
layer of CAT

Module 

: transposed
convolutional

layer+ batch norm
layer+RELU 

:  convolutional
layer+  

 Tanh activation
function

Legend 

CAT Module

Pretrained

Age Range
Classification 

Identity-preserved Module  
Training step 1

: upsample
layer+sigmoid

KMM
Module

channel
attention

spatial 
attention

channel
attention

spatial 
attention

share

: maxpooling+ 
convolutional

layer

32x128x128
64x32x32

64x32x32

64x64x64

64x64x64 64x32x32
( (

64x32x32

x3

x3

( (

128x32x32

128x32x32

Figure 32: Pipeline of the proposed Children-Adult-Transferring Network (CATNet). The top left
side of the figure shows an overview of the CAT Module. The boxes with dashed lines depict that
the training process of the proposed approach is divided into three stages: the training of the
Identity-Preserved Conditional Generator, the training of the Kinship Mapping Module and the
training of the NRML.

facial appearance of kin-pairs using a deep contrastive learning architecture. As for
age related work on kinship verification, Xia et al. [219] show that the aging process
influences the kinship verification performance. Lelis et al. [108] conduct a large-age-
variation-adapted method by using extracted features from a pre-trained model. Wang et
al. [194] pre-trained a siamese model by using face attributes (e.g., age, gender, kin-or-
not) to predict the family tree in a photo. Recently, a towards-young cross-generation
model is proposed by Wang et al. [197] by generating younger parent images from older
ones. In contrast to [197], our approach mainly focuses on child-adult images and we
exploit the hidden feature representation of an aging generator model instead of using
the generated images.

4.2.2 Age-Invariant Face Feature Learning and Cross-Age Face Synthesis

The aim of age-invariant feature learning is to reduce face variations but to keep the
identity-related features. Li et al. use a local feature description [115] to compute the age-
invariant information, and [206] use CNN’s. Wang et al. [206] introduce the Orthogonal
Embedding CNN (OE-CNN) model and decompose the age-related and identity-related
information into two orthogonal components. Previous synthesis methods [162] require
massive annotated data (e.g. facial shape, structure, and muscles) and are computationally
expensive. Wang et al. [200] propose a face aging (RFA) framework based on a recurrent
neural network. Song et al. [181] propose dual conditional GANs (Dual cGANs) for
face aging. They use age estimation techniques to preserve the identity information. To
make use of both recognition and synthesis, Zhao et al. [245] propose an Age-Invariant
Model (AIM) leveraging both cross-age face synthesis and recognition. Similarly, Wang
et al. [208] propose an Identity-Preserved Conditional Generative Adversarial Networks
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(IPCGANs) framework and utilize pretrained AlexNet to preserve the identity information
for the synthesized faces.

4.3 M E T H O D

4.3.1 Problem Formulation and Motivation

Generally, kinship verification is a binary task aiming at verifying whether a pair of
persons is kin or not. One of the difficulties of computing child-adult pairs is the
difference in face outlines between children and adults. Another problem is the variation
in skin color and texture between children and adults. With age, the texture and color of
the face change. Such aging issues not only reduce the resemblance of child-adult kinship
members but also influence the verification of pairs with large age influences.

To this end, we propose to exploit an age-transferring generator to learn the age-
transferring information and at the same time to preserve the identity information. We
approach the kinship verification problem from an age-transferring generative perspective
by introducing towards-adult-kinship-related features.

4.3.2 Pipeline

As shown in Figure 32, a novel Children-Adult-Transferring Network (CATNet) is pro-
posed based on the Children-Adult-Transferring (CAT) module by using hidden features
of the generator. The framework consists of two branches. The shared-weight CAT
module computes the preliminary features separately from two test images with age range
conditions. Then, the preliminary features are mapped onto a kinship related manifold by
the Kinship-Mapping Module (KMM), which enhances the similarity features through an
attention mechanism both element-wise and channel-wise. The mapped kinship features
are further processed by the NRML.

4.3.3 Identity-preserved Aging Generator

To simulate the facial aging process at feature space, we propose a novel Identity-
Preserved Aging Generator as the basic generative model. To this end, the aim is to
integrate the Identity-Preserved Aging Generator into an Identity Encoder (the bottom
branch of Children-Adult-Transferring (CAT) Module) and an Aging Generator. Different
from the existing IPCGANs [208], we focus on exploiting identity-preserved hidden
features instead of creating aging figures.

Sub-modules

The aim of Children-Adult-Transferring (CAT) Module is to compute identity-related
hidden features conditioned on the target age range. As shown in Figure 32, the CAT
Module consists of two sub-branches. The top sub-branch consists of three convolutional
layers and an attention block. The bottom sub-branch is the Identity Encoder, which is
incorporated into the Identity-Preserved Aging Generator.
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In our proposed architecture, test image x is fed into the CAT Module and then mapped
onto the manifold of real image y within the target age range Ct by the Aging Generator
G. In order to train the CAT Module in an adversarial manner, discriminator D is formed
capturing the distribution of true images. The distributions of input x and target images y
are denoted by px(x) and py(y).

A modified LSGANs [135] loss is used during the training process:

LD =
1
2

Ey∼py(y)

[
(D (y|Ct) − 1)2]+ 1

4
Ey∼py(y)

[
(D (y|Cn))

2]
1
4

Ex∼px(x)

[
(D(G(E(x|Ct))|Ct))

2
]

,

LG =
1
2

Ex∼px(x)

[
(D(G(E(x|Ct))|Ct) − 1)2] ,

(19)

where E, G and D indicate the Identity Encoder, Aging Generator and Discriminator
respectively. The value Ct represents the following five age ranges: 11-20, 21-30, 31-40,
41-50, and 50+ respectively.

I D E N T I T Y- P R E S E RV E D M O D U L E To keep the person-dependent properties con-
sistent, we use Alexnet network h(.) pretrained on ImageNet as the Identity-Preserved
Module to compute the latent feature space of test x and target image y. Then, the identity
loss is defined by:

Lidentity =
∑

x∈px(x)

∥∥∥h(x) − h(G(E(x|Ct)))
∥∥∥2 . (20)

AG E D O M A I N C L A S S I F I E R To support G(E(.)) to generate photo-realistic images
in the target age domain, a pretrained age classifier is used by adapting the pretrained
Alexnet on the CACD dataset [25]. The age loss Lage is given by:

Lage =
∑

x∈px(x)

ℓ (G(E(x|Ct))), Ct) , (21)

where ℓ denotes the cross entropy loss of the pretrained age classifier.

Objective Function of Identity-preserved Aging Generator

As shown in Figure 32, an overview of the training scheme of the Identity-Preserved
Aging Generator is given. Objective functions of D and G are defined by:

Gloss = λ1LG + λ2Lidentity + λ3Lage,
Dloss = LD,

(22)

where λ1, λ2 and λ3 are the weights of each loss. In our framework, the Identity-Preserved
Aging Generator is pretrained. The pretrained CAT Module is used as a preliminary
feature extractor for the kinship verification task.
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Figure 33: Detailed structure of the Kinship Mapping Module. Features fp and fc are mapped
and enhanced by channel- and element-wise attention.

4.3.4 Identity-Invariance-Aging-Transferring Network

Kinship Mapping Module

To augment the kinship-related information from the preliminary features, we add a
Kinship Mapping Module (KMM) after the final layer of the CAT Module. As shown in
Figure 33, the KMM aims to preserve the kinship related information and to make the
kinship features of parents and children more distinguishable. These are extracted from
the identity invariant information of the CAT Module containing spatial information and
large channel wise features. To further enhance the kinship-related features, we add the
attention module both channel-wisely and spatial-wisely.

Firstly, features fp and fc for channel C are calculated and mapped by two 1 × 1 convo-
lutional layers respectively. Then, a channel wise attention module is utilized based on
the Squeeze-and-Excitation block [87, 149]. To reduce parameter overhead [213], the
channel-wise attention map is squeezed into RC/8×1×1 and excited back into RC×1×1.
Then, the aggregated channel attention is used by the spatial attention module to enhance
the local spatial information. A model similar to [232] is utilized using a bottom-up
top-down structure consisting of a Maxpooling layer, 3 × 3 convolutional layers and one
up sampling layer with Sigmoid function. Finally, the mapped Identity-Invariance-Aging
features are obtained.

Further, the contrastive loss is used. Assuming the preliminary feature to be mapped
as Ip and Ic, representing the preliminary features of a parent image and a child image
respectively, the contrastive loss [80] is defined by:

L(W, Y , Ip, Ic) = (Y)
1
2
(DW)2 + (1 − Y)

1
2

{
max (0, m − DW)

}2 , (23)

where DW is the parameterized distance function represented by the Euclidean distance
between points on the mapped manifold: Dw(Ip, Ic) = ∥Gwp(Ip) −Gwc(Ic)∥. Gwp and
Gwc are the convolution layers of the kinship mapping module with parameters obtained
by the training process. Y is the label for kinship relation. Y = 0 indicates that Ip and Ic
are dissimilar.
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(a) Age distribution of
mother-son images for the
Nemo-Kinship-Children dataset

(b) Age distribution of father-son
images for the Nemo-Kinship-
Children dataset

(c) Age distribution of father-
son images for the KinFaceW-I
Dataset

Figure 34: Age distribution of the Nemo-Kinship-Children Dataset. (c) The Age distribution
of KinFaceW-I dataset has been annotated by two persons since there is no age label for the
KinFaceW-I datasets.

Neighborhood Repulsed Metric Learning (NRML)

After training the KMM, kinship-preserved features pi and c j are computed. We use
NRML [130] to further learn the distance metric. NRML is given by the following
optimization strategy:

maxA J(A) = J1(A) + J2(A) − J3(A)
= 1

Nk
∑N

i=1
∑k

t1=1 (pi − cit1)
T A (pi − cit1)

+ 1
Nk

∑N
i=1

∑k
t2=1 (pit2 − ci)

T A (pit2 − ci)

− 1
N

∑N
i=1 (pi − ci)

T A (pi − ci) ,

(24)

where cit1 indicates the t1−th k-nearest neighbor of ci, and pit2 indicates the t2−th k-
nearest neighbor of pi. ci and p j (i = j) are taken as kinship related and ci and p j (i , j)
are non-kinship related. N is the number of training samples and A is a square matrix to
be learned.

4.3.5 Nemo-Kinship-Children Dataset

Table 17: Scales of different kinship datasets. Our newly collected Nemo-Kinship-Children
dataset is comparable to other kinship related datasets both on kinship types, numbers of images,
and pairs.

Dataset F-D F-S M-D M-S pairs people type
CornellKin [62] 33 60 39 18 150 300 Image
UB Kinface ver1 [219] - - - - 270 180 Image
UB Kinface ver2 [221] - - - - 400 400 Image
KinFaceW-I [129] 134 156 127 116 533 - Image
KinFaceW-II [129] 250 250 250 250 1000 - Image
IIITD [98] 33 52 26 52 163 - Image
Nemo-Kinship-Children 51 60 84 75 270 209 Video

Currently, many public kinship datasets contain unbalanced age images. Due to the
small portion of children images, these datasets are not directly suited to assess the
child-adult-related kinship verification task. To obtain child-related images, we created
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Table 18: Performance of the different methods by 5-fold cross validation on the Nemo-Kinship-
Children Dataset.

Methods F-D ↑ F-S ↑ M-D ↑ M-S ↑ average accuracy ↑
Zhang et al. 2015 [240] 0.520 0.467 0.454 0.479 0.521
Yan et al. 2019 [232] 0.513 0.593 0.522 0.563 0.547
Lu et al. 2013 [131] 0.632 0.640 0.664 0.646 0.646

CATNet (ours) 0.718 0.733 0.652 0.779 0.721

the Nemo-Kinship-Children dataset. This dataset is a subset of the data collected in the
Nemo-museum as part of Science Live, the innovative research program organized by
Science Center NEMO1.

The Nemo-Kinship-Children Dataset comprises 3553 videos of 209 people. All images
in the dataset are recorded indoors with consistent lighting conditions, and all subjects
have frontal poses. The dataset can be divided into four groups: Father-Daughter (F-D),
Father-Son (F-S), Mother-Daughter (M-D), and Mother-Son (M-S). The ages of the
subjects vary from 7 to 63. The histogram in Figure 34 shows that the Nemo-kinship-
Children dataset has a large number of children images under 16 compared to the public
KinFaceW-I dataset. The portion of children images under 16 (without 16) are 92.8%
(F-D), 97.1% (F-S), 95.7% (M-D), 97.6% (M-S), which results in a large variation in
age. The table 17 shows the comparison of Nemo-Kinship-Children dataset with public
datasets.

4.4 E X P E R I M E N T S

4.4.1 Data Selection and Preparation

Large scale experiments are conducted using the Nemo-Kinship-Children and KinFaceW-
I datasets [129]. KinFaceW-I and KinFaceW-II are commonly used datasets for kinship
verification. In KinFaceW-I, all kinship pairs are taken from different pictures. Since
KinFaceW-II pairs are cropped from the same photo, the image pairs contain the same
imaging conditions. Therefore, the KinFaceW-I dataset is selected. For Nemo-Kinship-
Children Dataset, we extract one image per subject to make it comparable to other public
datasets. The face of the subject is cropped, aligned, and resized to 160 × 160.

4.4.2 Experimental Setups

The training of our proposed method is divided into three stages: the pre-training of
the Identity-Invariance-Aging Module, the training of the KMM, and Neighborhood
Repulsed Metric Learning. The training of the Identity-preserved Aging Generator
follows the experiments in [208]. A Cross-Age-Celebrity Dataset (CACD) [25] is used
for training. For the training of the KMM, the Nemo-Kinship-Children dataset is used.
The scheme is illustrated in Figure 32. The trained Identity Encoder is frozen to prevent

1 https://www.nemosciencemuseum.nl/nl/wat-is-er-te-doen/activiteiten/
science-live/

https://www.nemosciencemuseum.nl/nl/wat-is-er-te-doen/activiteiten/science-live/
https://www.nemosciencemuseum.nl/nl/wat-is-er-te-doen/activiteiten/science-live/
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Table 19: Ablation study: The accuracy results of different features with NRML on Nemo-Kinship-
Children dataset. CAT+NRML (w/o aging) is using generated feature without aging children
from childhood to adulthood.

Methods F-D ↑ F-S ↑ M-D ↑ M-S ↑ average accuracy ↑
LBP+NRML 0.680 0.623 0.653 0.585 0.635
HOG+NRML 0.657 0.590 0.621 0.682 0.615

(HOG+LBP)+(m)NRML 0.632 0.640 0.664 0.646 0.646
CAT+NRML (w/o KMM) 0.685 0.673 0.642 0.742 0.686
CAT+NRML (w/o aging) 0.678 0.690 0.652 0.754 0.694

CAT+NRML (ours) 0.718 0.733 0.652 0.779 0.721

Table 20: Ablation study: The AUC results of different features with NRML on the Nemo-Kinship-
Children dataset. CAT+NRML (w/o aging) is using generated features without aging children
from childhood to adulthood.

Methods F-D ↑ F-S ↑ M-D ↑ M-S ↑ average AUC ↑
LBP+NRML 0.545 0.470 0.534 0.622 0.543
HOG+NRML 0.518 0.562 0.563 0.505 0.537

(HOG+LBP)+(m)NRML 0.520 0.504 0.544 0.569 0.535
CAT+NRML (w/o KMM) 0.546 0.567 0.561 0.602 0.569
CAT+NRML (w/o aging) 0.566 0.613 0.597 0.623 0.600

CAT+NRML (ours) 0.584 0.623 0.596 0.634 0.609

from being disturbed by parameter updating of the Kinship Mapping Module. As
mentioned above, a contrastive loss is used and m is set to be 10. Adam is adopted with a
learning rate of 10−4 and weight decay 5 × 10−3. The batch size is set to be 36. The λ1−3
are set to be 70 : 1 : 1. After training the KMM, the obtained kinship-related features
are used for NRML for further processing. The training of NRML follows the training
procedure from the public source of [131].

4.4.3 Comparison with Current Methods

To compare our approach, we select three representative methods: Part-aware attention
network [232], CNN-point Network [240], and (m)NRML [131] with LBP and HOG
features. (m)NRML is a typical kinship verification method in metric learning. It is
often used and the source code is publicly available. We use the (m)NRML method with
LBP and HOG features. According to the provided code of NRML, cosine similarity is
used for evaluating the similarity of test samples. The accuracy of each kinship type is
the average result of the best performance on each validation fold. Zhang et al. [240]
representative for deep learning methods for kinship verification. Part-aware attention
network is a recently proposed method using ensembles of CNNs with an attention
module. These two methods show competitive performance compared to previous
handcrafted-feature based methods. Since public source code is not available, we
have re-implemented the fundamental architecture of the part-aware attention networks
(attention-only network [232]) and the fundamental architecture (CNN-Basic Network)
of Zhang et al.’s method from scratch following [232, 240].
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Qualitative Results

Table 21: Accuracy of different methods for 5-fold cross validation on the KinFaceW-I dataset.
Methods F-D ↑ F-S ↑ M-D ↑ M-S ↑ average accuracy ↑

Yan et al. 2014 Discriminative [228] 0.675 0.705 0.720 0.655 0.689
Yan et al. 2014 Prototype [230] 0.735 0.675 0.661 0.731 0.701

Dehghan 2014 Who [44] 0.764 0.725 0.719 0.773 0.745
Zhang et al. 2015 [240] 0.709 0.770 0.795 0.689 0.741
Yan et al. 2019 [232] 0.616 0.725 0.772 0.608 0.680

Lu et al. 2013 (LBP) [131] 0.702 0.805 0.741 0.685 0.733
Lu et al. 2013 (HOG) [131] 0.709 0.782 0.733 0.698 0.731

Lu et al. 2013 (LBP+hog) [131] 0.717 0.802 0.740 0.715 0.743
Liang et al. 2019 Weighted [117] 0.785 0.739 0.806 0.819 0.787

Yan 2019 Learning [225] 0.796 0.736 0.761 0.815 0.776
Li et. al. 2020 Graph [114] 0.732 0.795 0.862 0.780 0.792

Wang et.al. 2020 Discriminative [199] 0.765 0.77 0.852 0.758 0.786
Yan et al. 2021 Multi [231] 0.850 0.875 0.881 0.809 0.856

Li et.al 2021 Reasoning [112] 0.788 0.817 0.814 0.886 0.826
Chen et.al 2022 Deep [31] 0.837 0.800 0.822 0.864 0.831

CATNet (ours) 0.780 0.840 0.804 0.780 0.801

Table 22: Ablation study: The accuracy results of different features with NRML on the KinFaceW-I
dataset.

Methods F-D ↑ F-S ↑ M-D ↑ M-S ↑ average accuracy ↑
LBP+NRML 0.7017 0.8046 0.7401 0.6851 0.7329
HOG+NRML 0.7091 0.7821 0.7333 0.6982 0.7307

(HOG+LBP)+(m)NRML 0.7165 0.8015 0.7399 0.7154 0.7433
CAT+NRML (w/o KMM) 0.7165 0.7725 0.7801 0.7281 0.7493
CAT+NRML (w/o aging) 0.7387 0.8015 0.7487 0.7585 0.7619

CAT+NRML (ours) 0.7799 0.8398 0.8039 0.7803 0.8010

Quantitative Comparison

The results of the 5-fold cross validation on the Nemo-Kinship-Children dataset are
shown in Table 18. Our approach outperforms NRML and the two deep learning methods.
The results also show that the methods by Yan et al.’s and Zhang et al.’s yield relatively
low accuracy on the Nemo-Kinship-Children dataset. We attribute this to the size of the
Nemo-Kinship-Children dataset as well as the large discrepancy among children and
adults.

The generated images from different datasets are shown in Figure 35. The results show
apparent aging changes between the original child’s image and the transferred one of
our newly collected dataset, and the FIW and CornellKin dataset. The texture of the
transferred image face is more similar to the adult texture.
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Table 23: Ablation study: The AUC results of different features with NRML on the KinFaceW-I
dataset.

Methods F-D ↑ F-S ↑ M-D ↑ M-S ↑ average AUC ↑
LBP+NRML 0.7017 0.8325 0.7290 0.6861 0.7373
HOG+NRML 0.7344 0.8589 0.7658 0.6859 0.7612

(HOG+LBP)+(m)NRML 0.7288 0.8582 0.7565 0.6957 0.7598
CAT+NRML (w/o KMM) 0.7268 0.7759 0.7844 0.771 0.7645
CAT+NRML (w/o aging) 0.7268 0.7759 0.7844 0.771 0.7645

CATNet (new) 0.7797 0.8275 0.8356 0.8164 0.8148

Original Images

Generated images on Nemo-Kinship Children Dataset

Original Images

FIW Dataset Cornell Kinship Dataset KinFaceW-I Dataset

Generated Images (range from age1 - age5)

Generated Images (range from age1 - age5)
Generated images on FIW 

Father FatherSon Son MotherDaughter

Figure 35: Qualitative results of generated images on a target age range while preserving identity.

4.4.4 Ablation Study

We compare the CAT features of our approach with the HOG and LBP features. The
results show that the NRML with CAT features outperform HOG and LBP. For the
Kinship Mapping Module, the results of Table 19 show that the Kinship Mapping
Module extracts kinship related features improving the final results in both Nemo-
Kinship-Children dataset. We also compare the aged and non-aged features used by our
proposed architecture. It shows that the transferred hidden feature improves the kinship
verification performance. The AUC results in Table 20 show that our approach, based on
CAT features, produces the highest average AUC.
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4.4.5 Robustness and Generalization

In this section, we evaluate our approach to show the robustness and generalization of
our model. The results of the different methods on KinFaceW-I is shown in Table 21. It
is shown that our approach outperforms the two re-implemented methods and NRML
with LBP and HOG features and obtains more robust results than the methods by Yan
et al.’s and Zhang et al.’s [232, 240]. In comparison to current state-of-the-art methods,
our method is compatible to Li et al. [114] and Wang et al. [199]. The difference in
performance with respect to Yan et al. [231] is that our method is focused on young
children-related pairs, while the KinFaceW-I also contains images of different ages.
Table 22 and Table 23 are consistent with the previous experimental results. The results
in Table 22 show the performance of the Kinship Mapping Module. The AUC results in
Table 23 show the suitability of our CAT feature.

4.5 C O N C L U S I O N

In this chapter, we proposed a novel Identity-Invariance-Aging-Transferring approach
based on newly designed modules. A kinship mapping module is used to compute the
improved kinship-related information from the features of the CAT Module. The results
show that, compared to the handcrafted feature, the transferred features capture the
hidden features of genetic relationships and provide more robust results for child-related
and elderly-related pairs.
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K I N S H I P S I M I L A R I T Y F O R O P E N S E T S

5.1 I N T RO D U C T I O N

Image-based kinship recognition [165] aims at determining the genetic relationship
between people by analyzing images of their faces. In recent years, more and more
attention has been focused on kinship related tasks such as kinship verification, family
recognition, and kinship identification [166] due to many applications such as searching
missing children [217], family album organization, forensic investigation [170], crime
scene investigation [100], social media [236] and behavior analysis [240], historical and
genealogical research [95], and automatic image annotation [130].

The recognition of kinship relationships between people as a hierarchical (tree) structure
is an important task because people may share origins at different degrees. The genetic
(kinship) relationship between two people is the amount of DNA they have in common
because they are related. According to the average percent of DNA shared between
relatives1, some kinship relations may have similar gene overlap. As illustrated in
Figure 36, family members have various degrees of kinship relationships. For example,
the boy has 50% genetic origin with his (full) father and mother. In addition, the genetic
relationship between the boy and his (full) brother is 0.5, as they share an average of 50%
origins of their DNA. The boy and his grandmother share 25% DNA. Hence, genetic
relationships between family members are determined by a family tree. Obviously,
outside the family, there exists a large set of people who have no genetic origin at all
(or very far) with the family members. Hence, kinship recognition is by definition an
open set problem for real-life scenarios. However, the recognition of different degrees of
kinship in open set scenarios has largely been ignored so far.

Therefore, this chapter focuses on kinship at various degrees for open collections (i.e.
including kin and non-kin related people). The aim is to determine family relationships
and their corresponding degrees of kinship hierarchically. To this end, we propose a novel
and more general task called the Open-set Kinship Similarity Measurement (OKSM).
As illustrated in Figure 36, similarities between images of faces of people are derived to
measure different degrees of kinship relationship i.e. the first-degree relationship between
parent and child, the second degree between grandparent and grandchild, etc. The more
genetically related people are, the higher the similarity. Furthermore, current open set
classification methods are mainly focused on distinguishable classes (not pairs), and most

1 https://isogg.org/wiki/Autosomal_DNA_statistics
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Figure 36: The proposed open set kinship recognition task. The open set contains both (1) family
members (having various degrees of kinship) and (2) non-kin persons. Kinship recognition is by
definition an open set problem for real-life scenarios.

of the benchmark datasets are image-based [69]. In contrast, our method is pairwise-
based and exploits mutual information from positive pairs by merely re-matching them.
Moreover, we propose a data-driven strategy to compute hierarchical kinship degrees.
Firstly, our method assigns images (Primary-Kin) into self-self (ego-self), kin-related
(containing 50% genetics), and known-negative (unrelated) pairs. Then, a hierarchical
kinship triplet loss is proposed to learn the similarity of the different pairs. Image pair
features are projected onto a distance-based feature space. The distance measure is used
to differentiate between primary kin, secondary kin, and non-kin relationships.

The main contributions of this chapter are summarized as follows:

1. Kinship similarity is introduced for open sets.

2. A method is proposed to derive pairwise information by re-matching known
(positive) pairs.

3. A hierarchical kinship network is proposed to distinguish primary kin, secondary
kin, and non-kin relationships for open-set kinship scenarios.

4. The proposed method outperforms state-of-the-art methods on the FIW dataset.

5.2 R E L AT E D W O R K

5.2.1 Kinship Recognition and Related Tasks

Image-based kinship recognition receives more and more attention in the computer vision
community [62, 165, 195]. Kinship recognition typically includes kinship verification,
kinship identification, and family recognition [166]. Kinship verification is a binary
classification problem, determining whether two persons, represented by image pairs of
their faces, are kin related or not [165]. Different methods are proposed in the field of
kinship verification [31,50,78,112–114,130,219,226,228,231,251]. Kinship verification
has limited applicability because it is not able to distinguish different kin-types. In
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contrast, kinship identification aims to determine the different kinship types [166]. For
example, Guo et al. [78] propose a graph-based method recognizing the type of kinship
using pairwise kinship information. Wang et al. [194] propose a deep kinship recognition
framework to predict kin relationships using family trees. Different feature modalities
are used such as kin-or-not, gender, and relative age attributes. Recently, Wang et al.
propose a kinship identification method based on joint learning [202]. The method is
specifically designed for pairwise kinship identification. However, the above kinship
verification and identification methods are used for closed sets. Kinship recognition is
an open set problem in real-life scenarios, as many people are not (directly) kin related.
Therefore, in this chapter, we propose a new and more general open-set kinship similarity
framework.

5.2.2 Open-set Recognition

Open-set recognition (OSR) is the problem of properly handling unknown samples
during the classification of the known ones [26, 27, 123, 171]. Based on traditional
machine learning methods, previous OSR methods utilize SVM [172], extreme value
machines (EVM) [77], and sparse representation-based methods [237]. Lately, deep
neural network-based methods are proposed. An OpenMax layer is proposed by Bendale
and Boult [14] to circumvent the problem of the Softmax cross-entropy loss [69]. The
method incorporates the likelihood of the recognition failures and adopts the concept
of Meta-Recognition [242]. In addition, generative models are proposed [68, 92]. For
example, the G-OpenMax algorithm [68] uses synthesized (fake) unknown samples. Neal
et al. [143] generate known-negative images as counterfactual images to improve the
robustness of their model. However, the performance can be negatively affected by the
(poor) quality of the generated (fake) images. Recently, the class anchor clustering (CAC)
loss is proposed [137] by clustering known classes into predefined clusters. Unlike the
OpenMax method, the CAC loss predefines anchors of known classes without updating
them during training. More recently, Chen et al. [27] propose Reciprocal Point Learning
(RPL) utilizing reciprocal points representing extra-classes for one specific class. The
method is extended to Adversarial Reciprocal Point Learning (ARPL) by adding an
instantiated adversarial enhancement process [26]. The method obtains state-of-the-art
performance for different datasets [104]. None of the open-set methods is used for
kinship recognition. Since our new task is an open-set problem, we propose a new
pairwise open-set method for kinship similarity.

5.3 P RO B L E M F O R M U L AT I O N A N D C O M PA R I S O N

5.3.1 Problem Formulation

We formulate the open-set kinship problem as a classification problem. Face images
are pre-processed in a pairwise form [(IA, IB), y], where IA and IB denote two different
images with kinship label y. In this way, a dataset {[(IAi , IBi), yi] | i = 1, 2, . . . , n} is
obtained where i is the index to the paired sample and y indicates the type of kinship.
Further, a feature embedding neural network ϕ is used to transform image pairs to vector
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pairs, i.e., (ϕ(IA), ϕ(IB)) = (xA, xB). D = {[(xAi , xBi), yi] | i = 1, 2, . . . , n} is the
resulting dataset.

Based on kinship similarity, the samples are categorized into three classes {P, S , N},
where P, S and N represent the Primary-kin (P), Secondary-kin (S ), and Non-kin
(N) relationships respectively. These three classes contain different kinship types with
label values Y = {1, 2, . . . , 7︸      ︷︷      ︸

P

, 8, . . . , 11︸    ︷︷    ︸
S

, 12︸︷︷︸
N

}. Specifically, 1, 2, . . . , 12 in Y represent

Father-Daughter (F-D), Father-Son (F-S), Mother-Daughter (M-D), Mother-Son (M-
S), Brother-Brother (B-B), Brother-Sister (B-S), and Sister-Sister (S-S), Grandfather-
Granddaughter (GF-GD), Grandfather-Grandson (GF-GS), Grandmother-Granddaughter
(GM-GD), Grandmother-
Grandson (GM-GS), and pairs without kinship respectively. Since most existing kinship
datasets only contain 1 − 7 different kinship types, only samples with label P are used
for training, and samples with labels P, S , N are used for testing. In our settings, a
measurement model is used to compute the kinship similarity of three classes. Similarity
distance d is used to distinguish P, S , and N.

5.3.2 Comparison with Kinship Recognition

Our problem is to determine three categories P, S , and N by computing kinship-related
information from pairs. Different from existing kinship recognition, our approach yields
kinship similarity types. The aim of existing kinship recognition is to bring positive
pairs together and negative pairs apart. However, this strategy may have a negative
influence on the computation of hierarchical kinship relationships as it may lead to
incorrect predictions of similarity types of the test samples. Therefore, our approach
focuses on measuring the hierarchical kin similarities of pairs depending on their genetic
sharing.

The Softmax Cross-Entropy is used as the standard loss in deep learning-based kinship
recognition or related kinship tasks. Denoting z as the extracted logits from a neural
network, then the Softmax Cross-Entropy loss is defined by:

L = −
1
N

N∑
i

log
(

ezi∑
j ez j

)
, (25)

where z j represents the j-th element of the logits, and zi is the target logit [153] of the
ground truth. N is the number of training samples. However, the close-set Softmax is not
able to properly handle unknown samples because:

1. The Softmax Cross Entropy loss is not injective [65]. It can not guarantee a proper
clustering behaviour [137].

2. The Softmax Cross Entropy [69] inherently has a closed set nature and can easily
be misled by unknown samples [14].

On the contrary, our approach is specifically designed for open-set scenarios.
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Figure 37: Left: General OSR methods [69] are single-based and known samples are independent
of each other. Right: Our OKSM task is pairwise-based. Labels denote the relationships between
image pairs.

5.3.3 Comparison with Open-set Recognition

Open-set methods are specifically designed to deal with unknown samples. However,
current open set methods mostly focus on the classification of (single) classes [69]. As
illustrated in Figure 37, the current open-set recognition approach mainly focuses on
learning representative features for each known class. However, our open-set kinship
approach is pairwise. The classification is based on the mutual relation between pairs.
Hence, our model computes corresponding feature relationships among pairs. Moreover,
our pairwise kinship model inherently obtains extra information by merely re-matching
the known positive pairs. The right side of Figure 37 shows that after our data-driven
strategy, the self-self and non-kin relationships can be auto-annotated and utilized for
hierarchical feature representation. Standard open-set recognition methods consider
two separate classes i.e. known K and unknown U. Let the open set be denoted by
Ok = So −Sk; So is the overall measure space [69], and Sk is the embedding space [26]
of K, then OU

k is the unknown space of U, the open space risk can be quantitatively
described by:

Ro
(
ψk,OU

k

)
=

∫
OU

k
ψk(x)dx∫

Sk∪Ok
ψk(x)dx

, (26)

where ψk(x) is a binary measurable function. However, our open-set kinship problem is
to separate P, S and N. Hence, following the previous notion [26, 69], we re-define our
open-set kinship measurement risk Rko as follows:

Rko
(
ψk,OUN

k

)
=

∫
O

U
k
ψk(x)dx∫

Sk∪Ok
ψk(x)dx

+

∫
O

UN
k
ψuk(x)dx∫

Sk∪Ok
ψuk(x)dx

, (27)

where ψuk(x) is a binary measurable function, ψuk(x) = 1 indicates that UN is regarded
as Uk. UN is the measure space for N samples and Uk is the measure space for S
samples.
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Figure 38: Our Hierarchical Kinship Measurement Network (HKMNet).

5.4 M E T H O D O L O G Y

The aim is to determine family relationships and their corresponding degrees of kinship
hierarchically. To this end, we now introduce the architecture of the Hierarchical Kinship
Measurement Network (HKMNet). The proposed hierarchical kinship network is a new
6-branch architecture integrating a modified fc layer, tanh layers and similarity values
c. As illustrated in Figure 38, a data-driven strategy is adopted to extract hierarchical
similarity from positive samples. Then, feature similarities of different hierarchical pairs
are learned by our hierarchical kinship triplet loss. The final classification of test samples
is dependent on the similarity measurements.

5.4.1 Hierarchical Information

Different from person re-identification or face retrieval, our new task predicts multiple
classes. We only use Primary-Kin pairs as training samples. Secondary-Kin pairs
are used as testing subsets for the open-set environment. Pairwise images inherently
contain known-negative pairs of information. For example, as depicted in Figure 39,
during training, known positive pairs are separated and re-matched into new pairs. Pairs
containing two images of the same person form self-self pairs. Pairs containing known-
positive images are denoted by known-positive (Primary-Kin relation) pairs, and pairs
containing two images from two different families correspond to known-negative (Non-
kin relation) pairs. Based on genetic similarity, self-self (ego-self) pairs correspond to
the highest similarity (100% genetic overlap). Known-positive samples (Primary-Kin
containing father-son, mother-son, father-daughter, mother-daughter) relates to medium
similarity (around 50% genetic overlap), and known-negative (Non-kin) pairs correspond
to the lowest similarity.

In this chapter, the auto-annotation process M(·) is formulated as follows:

{(a, s, p, n)i|i = 1, 2, . . . , n} = M({(IAi , IBi)|i = 1, 2, . . . , n}), (28)

where the i-th tuple (a, s, p, n)i represent the anchor image of the person, the image of
the same person, the image of a person with a known positive class, and the image from
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Algorithm 1: Pipeline of the Hierarchical Kinship Measurement Network.

Input: Image pairs (IAi , IBi) = {(IAi , IBi) |
i = 1, 2, . . . , n}

Output: Primary-Kin, Secondary-Kin,
Non-Kin

Training (only using Primary-Kin)
while Lhk > ∆ do

batch images
= {(a, s, p, n)i|i = 1, 2, . . . , N}, N =
batch size;

if do hard example mining (HE) then
Concatenate (batch images, hard

images);
calculate Lhk;
select hard images with smaller
values of d(x1, x4) − d(x1, x3);

else
calculate Lhk;

end

end
Testing
if d(IAi , IBi) > T1 then

if d(IAi , IBi) < T2 then
Return Secondary-Kin (S )

else
Return Non-Kin (N)

end
else

Return Primary-Kin (P)
end

a different family, respectively. The total number n of re-generated sets is the same as
the previous known positive sets.

5.4.2 Distance-based Losses

After generating new sets from known-positive (Primary-Kin) pairs, the images are given
to the feature extractor. The extracted features are then projected into a kinship-feature
space. To learn hierarchical similarities instead of separating ”positive” and ”negative”
samples, the Hierarchical Kinship Triplet Loss is used.

Hierarchical Kinship Triplet Loss

Since the same kinship category (Primary-Kin, Secondary-Kin, etc.) has the same gene
overlap2, the kinship similarity is the same for these kinship categories. We first pre-set
the similarity value c = {c1, c2, c3} for each training pair. Obviously, the feature distance
of self-self pairs (c1) should be smaller than that of known-positive pairs (c2). And the
feature distance of known-positive pairs (c2) should be smaller than the known-negative
(Non-kin) pairs (c3). To learn such hierarchical information, the hierarchical kinship
triplet loss is defined as follows:

Lhk =
3∑

i=1

∥d(x1, xi+1) − ci∥
2 +

2∑
i=1

Lt(x1, xi+1, xi+2), (29)

2 https://customercare.23andme.com/hc/en-us/articles/
212170668-Average-Percent-DNA-Shared-Between-Relatives

https://customercare.23andme.com/hc/en-us/articles/212170668-Average-Percent-DNA-Shared-Between-Relatives
https://customercare.23andme.com/hc/en-us/articles/212170668-Average-Percent-DNA-Shared-Between-Relatives
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Original Feature Space Learning Process Feature Space after Learning

Primary-Kin Relation Self-self (through anto-annotation)
Non-kin (through anto-annotation)

Self-self (after learning)
Primary-Kin Relation (after learning) Non-Kin(after learning)

Figure 39: Feature learning pipeline of our proposed Hierarchical Kin-ship Measurement Network
(HKMNet).

where the distance function is given by d(·), and x1, x2, x3, x4 representing the features
of a, s, p, n respectively. Lt is the triplet loss represented by:

Lt(xa, xp, xn) = max{d(xa, xp) − d(xa, xn) + m, 0}, (30)

where m is a margin, and d(·) is the Euclidean distance. xa, xp, xn represent the anchor,
positive, and negative feature of a specific person. Different from previous triplet
pairs (anchor, pos, neg) [145], our triplet loss use the pairs with kin-based hierarchical
information (self-self, known-positive, known-negative). The full pipeline is given in
Algorithm 1.

5.5 E X P E R I M E N T

5.5.1 Datasets

The Families In the Wild (FIW) [166] dataset is used as the training and testing dataset.
FIW is the largest publicly available image-based dataset for the kinship-related tasks.
For our task, we downloaded the newest version (rfiw2020) from the official website. The
images of FIW are collected from the Internet. The dataset contains 11193 unconstrained
family photos of 1000 families. These images are processed into 418060 pairs with
11 kinship types. Since our task is new, the settings of training and testing datasets
are different from previous settings. We follow the 5-split protocol and fit the dataset
into our task3. We only labeled the Primary-Kin images. The training set contains one
subset:

• Primary-Kin set, which only contains direct kinship types.

3 We signed and strictly follow the ‘Social Safety Support Guide and Rules of Code of Conduct’ for using
the human data.
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Note that the Secondary-Kin images are not labeled and hence the problem becomes
an open set problem. One of our tasks is to recall unlabeled data containing kinship
information more effectively. Consequently, the Secondary-Kin set is not used for
training and the training set corresponds to Primary-Kin label containing seven or four
known positive kinship types: F-D, F-S, M-D, M-S, B-B, B-S, and S-S. These seven
types are the mostly used kinship types in the literature. The testing set contains three
subsets:

• Primary-Kin set, which contains known kinship types.

• Secondary-Kin (Unlabeled but kin-related) set, containing four kin type pairs
(GF-GS, GF-GD, GM-GS, GM-GD) as unknown and unlabeled samples in real
scenarios.

• Non-Kin set, which contains unknown pairs without kinship types.

More information (images and code) is anonymously available at our Github.

5.5.2 Experimental Settings

During data preprocessing, the images are resized to 64 × 64. Only horizontal flipping
is applied for the purpose of data augmentation. Our proposed HKMNet is a plug-and-
play network which is suited for different existing neural networks. In this section,
AttentionNet [225] is used as the backbone. Experimental results with other feature
extractors are provided in the supplementary material. The f c layer is shared-weighted
and the tanh activation function is added after the f c layer. The length of the features
(x1, x2, x3, x4) are 1 × 64. Our HKMNet model is trained with SGD. The learning rate is
set to be 0.001 and the epoch to be 40. During training, the hierarchical kinship triplet
loss is calculated and hard examples (HE) are reused. Margin m in Lt(x1, x2, x3) is set
to be 0.5. Further, m in Lt(x1, x3, x4) is set to be 3. The similarity values c1, c2, c3 are
set to be 0, 1, and 4 respectively.

Comparison

Unfortunately, publicly available codes are very limited in kinship recognition. Note
that none of the existing methods can directly be applied to our new task. Therefore, all
the compared methods are adapted to the new task at hand by changing their outputs
accordingly.

To evaluate the performance of our proposed method, we compare our method with
state-of-the-art methods in two different domains: (1) open-set recognition and (2)
kinship-recognition. The CAC method [137] is one of the best performing distance-based
open-set recognition methods. It explicitly trains known classes to form clusters around
anchored class-dependent centers in logit space. ARPL is the state-of-the-art approach of
open-set recognition tasks for many datasets. It models the unexploited extra-class space
with the concept of Reciprocal Point and uses an instantiated adversarial enhancement
process.
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Table 24: Kinship similarity performance of 5-cross-validation on the FIW dataset. Here 7
kin-types (F-D, F-S, M-D, M-S, B-B, B-S, S-S) in Primary-Kin category are used for training.
The Unlabeled includes both Secondary-Kin and Non-Kin.

Methods Accuracy AUROC
Primary-Kin vs Unlabeled

AUROC
Secondary-Kin vs Non-Kin F1

Same-backbone
AttentionNet+S o f tmax* [225] 0.3752 0.6110 0.5780 0.3488
AttentionNet+S o f tmax [225] 0.3500 0.4842 0.5156 0.2835

Open-set
Recognition

CAC [137] 0.3084 0.4893 0.5195 0.2264
ARPL [26, 27] 0.3636 0.5388 0.4717 0.2590

kinship
Related methods

CNN-point [240] 0.4266 0.6413 0.5865 0.3832
AttentionNet* [225] 0.2926 0.5182 0.4802 0.2242

JLNet [202] 0.3807 0.5689 0.5539 0.3494

Ours HKMNet 0.4298 0.6518 0.6043 0.4008
HKMNet +HE 0.4706 0.6684 0.6433 0.4379

(a) ROC curves (Secondary-Kin vs Non-kin)
trained on 7 kin types

(b) ROC curves (Primary-Kin vs Unlabeled)
trained on 7 kin types

Figure 40: ROC curves of the different methods for FIW.

For a fair comparison, networks are used with the same backbone [225]. AttentionNet
+ S o f tmax is created following [137]. It uses kin types in the training set directly as
classes. Moreover, two variations are added: AttentionNet+S o f tmax* and AttentionNet*.
AttentionNet+S o f tmax* utilizes non-kin samples during training. AttentionNet* uses
the same auto-annotated label as our HKMNet model.

We also compare our method with related kinship recognition methods. CNN-point [240]
is selected as a representative of deep learning methods for kinship verification. JLNet is
a pairwise-based kinship identification model. It utilizes kinship verification ensembles
to enhance kinship identification performance. CAC, ARPL, and JLNet use kin-types as
their training classes following their training set in the experiments. CNN-point uses the
same auto-annotated label as our HKMNet.

Results and Discussion

Accuracy measures the matching of correct categories. It corresponds to the ability in pos-
itive samples among different models. AUROC (Primary-Kin vs unlabeled) corresponds
to the ability to differentiate known labeled and unlabeled pairs where unknown samples
contain both unknown-kin-related and unknown-non-kin pairs. AUROC (Secondary-Kin
vs Non-Kin) measures the ability to retrieve unlabeled but kin-related pairs from all
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Table 25: Precision, Recall and F1 of 5-cross-validation for each testing category of different
methods on the FIW dataset. Here, 7 kin types (F-D, F-S, M-D, M-S, B-B, B-S, S-S) within the
Primary-Kin category are used for training.

Methods Primary-Kin Secondary-Kin Non-kin Total
Precision Recall F1 Precision Recall F1 Precision Recall F1 F1-Macro

Same-backbone
AttentionNet+S o f tmax* [225] 0.4490 0.4826 0.4538 0.2609 0.2824 0.2243 0.3711 0.4565 0.3682 0.3488
AttentionNet+S o f tmax [225] 0.3373 0.3992 0.3344 0.2401 0.1546 0.1783 0.2966 0.4390 0.3379 0.2835

Open set
CAC [137] 0.3486 0.2696 0.2537 0.0667 0.0171 0.0272 0.2941 0.7118 0.3982 0.2264

ARPL [26, 27] 0.5757 0.3362 0.4245 0.3206 0.7335 0.4462 0.2642 0.0745 0.1162 0.2590

kinship
Related methods

CNN-point [240] 0.4777 0.5162 0.4878 0.3399 0.1905 0.2215 0.3850 0.5654 0.4403 0.3832
AttentionNet* [225] 0.3436 0.2778 0.2397 0.1411 0.2264 0.1393 0.2612 0.5037 0.2935 0.2242

JLNet [202] 0.4142 0.4695 0.4163 0.3775 0.2961 0.2743 0.3594 0.3859 0.3576 0.3134

Ours HKMNet 0.4617 0.5883 0.4904 0.3790 0.2465 0.2703 0.4193 0.4742 0.4418 0.4008
HKMNet +HE 0.4802 0.5717 0.5122 0.3934 0.3627 0.3689 0.4918 0.4119 0.4327 0.4379

unlabeled samples. F1 score computes the average F1 scores for three categories. Fur-
thermore, precision, recall, and F1 scores are calculated for each category. We conduct
5-cross validation for the final results. Our HKMNet outperforms other methods for all
metrics (e.g. distribution of distances and ROC curves).

C O M PA R I S O N W I T H S OTA O P E N - S E T M E T H O D S Table 24 shows a comparison
of our method with SOTAs in OSR. Our approach, HKMNet, outperforms ARPL [26]
and CAC [137] in all the four metrics. Note that T1 and T2 are derived from two ROC
curves based on the Youden index [234]. If T1 > T2, there will be no optimal threshold
for S . Then, Precision, Recall, and F1 will be set to 0. According to the results in
Table 25, CAC and ARLP perform poorly in separating Non-kin type and unlabeled but
kin-related pairs. ARLP obtains the lowest recall and F1 for Non-Kin CAC obtains the
lowest recall and F1 for Secondary-Kin, which means it does not have the capability to
distinguish and mine the unlabeled but kin-related pairs. Instead, our proposed model
obtains more balanced scores.

C O M PA R I S O N W I T H S OTA K I N S H I P R E C O G N I T I O N M E T H O D S CNN-Point,
AttentionNet*, and JLNet are kinship recognition related methods and are specifically
designed to extract kinship related features. The results show that CNN-Point and JLNet
perform, in general, better than CAC and ARPL. AttentionNet* utilizes the same feature
backbone and label as HKMNet(ours). The results between HKMNet and AttentionNet*
indicate the feasibility of our proposed methods. Figure 41 illustrates the distributions
of distances for HKMNet (ours), CAC and JLNet on the testing dataset. For CAC, the
distance distributions of three testing categories are overlapping. As for JLNet, it can
distinguish the known Primary-Kin and Non-kin categories. However, the Secondary-
Kin category does not follow a uniform distribution. In contrast, our method is able to
properly separate the three categories. Although the Secondary-Kin is unknown to our
HKMNet, our model can still form a unified similarity distribution for the Secondary-Kin
category.

C O M PA R I S O N W I T H T H E S A M E B AC K B O N E C N N S The results are shown in Ta-
ble 24. Our model outperforms all (same) backbone models. As for precision, recall, and
F1 among Secondary-Kin and Non-kin in Table 25, AttentionNet+S o f tmax performs in
an unbalanced way. When comparing metric AUROC between AttentionNet+S o f tmax
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(a) Distribution of distances of HKMNet on
the training dataset

(b) Distribution of distances of HKMNet on
the testing dataset.

(c) Distribution of distances of CAC on the
testing dataset.

(d) Distribution of distances of JLNet on the
testing dataset.

Figure 41: Distribution of distances of HKMNet (ours), CAC and JLNet.

Table 26: Ablation Study of HKMNet on FIW dataset.

tanh
f c

share weights HE Accuracy
AUROC

Primary-Kin
vs Unlabeled

AUROC
Secondary-Kin

vs Non-Kin
F1

✓ 0.4193 0.6486 0.6066 0.3772

✓ 0.4444 0.6472 0.6098 0.3885

✓ ✓ 0.4298 0.6518 0.6043 0.4008

✓ ✓ ✓ 0.4706 0.6684 0.6433 0.4379

and AttentionNet+S o f tmax*, it is shown that adding non-kin label information improves
the capability of the AttentionNet+S o f tmax* to distinguish different categories. Even
though using the same auto-annotated labels, our HKMNet still outperforms Attention-
Net*. This means that our proposed Hierarchical Kinship Triplet Loss is more beneficial
than the Softmax+Cross-Entropy loss.

Ablation Study

An ablation study is conducted. When removing the tanh activation function, the
performance drops. tanh activation function enforces the feature values to a limited
scale, which helps the model to obtain a better representation. When the f c layers do not
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Test Pairs

Ground Truth Secondary-Kin Secondary-Kin Secondary-Kin Secondary-Kin Secondary-Kin Secondary-Kin Non-Kin Non-Kin Non-Kin Non-Kin

AttentionNet+softmax* Primary-Kin Primary-Kin Non-kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin Secondary-Kin

AttentionNet+softmax 
 Primary-Kin Non-kin Non-kin Non-kin Non-kin Non-kin Primary-Kin Primary-Kin Primary-Kin Secondary-Kin

AttentionNet* Non-kin Primary-Kin Primary-Kin Non-kin Primary-Kin Non-kin Secondary-Kin Secondary-Kin Primary-Kin Secondary-Kin

CAC Primary-Kin Non-kin Primary-Kin Non-kin Non-kin Non-kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin

ARPL Non-kin Non-kin Non-kin Primary-Kin Non-kin Primary-Kin Secondary-Kin Primary-Kin Secondary-Kin Secondary-Kin

CNN-point Primary-Kin Non-kin Non-kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin Secondary-Kin Secondary-Kin Primary-Kin

JLNet Primary-Kin Non-kin Non-kin Primary-Kin Primary-Kin Non-kin Primary-Kin Primary-Kin Primary-Kin Secondary-Kin

HKMNet (ours) Secondary-Kin Secondary-Kin Secondary-Kin Secondary-Kin Secondary-Kin Secondary-Kin Non-kin Non-kin Non-kin Non-kin

Test Pairs

Ground Truth Primary-Kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin

AttentionNet+softmax* Secondary-Kin Secondary-Kin Non-kin Non-kin Secondary-Kin Non-kin Non-kin Non-kin Non-kin Non-kin

AttentionNet+softmax 
 Non-kin Non-kin Non-kin Non-kin Non-kin Secondary-Kin Secondary-Kin Non-kin Secondary-Kin Non-kin

AttentionNet* Secondary-Kin Non-kin Secondary-Kin Secondary-Kin Secondary-Kin Non-kin Non-kin Non-kin Non-kin Non-kin

CAC Non-kin Non-kin Non-kin Non-kin Non-kin Non-kin Non-kin Non-kin Non-kin Non-kin

ARPL Non-kin Non-kin Non-kin Non-kin Non-kin Non-kin Non-kin Non-kin Non-kin Non-kin

CNN-point Secondary-Kin Non-kin Non-kin Non-kin Non-kin Non-kin Non-kin Non-kin Secondary-Kin Non-kin

JLNet Non-kin Non-kin Non-kin Non-kin Secondary-Kin Secondary-Kin Secondary-Kin Non-kin Secondary-Kin Secondary-Kin

HKMNet (ours) Primary-Kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin Primary-Kin

Unknown (Unlabeled)

Known

Figure 42: Qualitative results of different methods. The testing set consists of three kinship
categories: ”Primary-Kin”,” Secondary-Kin” and ”Non-Kin”. Here, ”Secondary-Kin” and

”Non-Kin” are unknown and unlabeled pairs in the open set.

share weights, it is difficult for the method to learn a uniform projection for the different
extracted features. When mining hard samples during the training process, the AUROC
score increases. The Accuracy and average F1 are also increased. The hard sample
mining process can be a good process to improve the performance.

Qualitative Results

Qualitative results are shown in Figure 42. ”Secondary-Kin” pairs are unknown and
unlabeled in the open set. They are easy to be taken as ”Primary-Kin” or ”Non-Kin”.
Compared to other methods, our model (HKMNet) is able to correctly recognize the
testing pairs in the ”Primary-Kin”, ”Secondary-Kin”, and ”Non-Kin” categories.

5.6 C O N C L U S I O N

A method has been proposed to determine family relationships and their corresponding
degrees of kinship in an open set environment. It is pairwise-based and is able to exploit
mutual information from positive pairs in a hierarchical way. Experiments and an ablation
study show that our method outperforms the compared methods. Our model is able to
properly separate kinship categories, and generates uniform similarity distributions.
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Our approach has the following benefits for related kinship research: (1) pairs may exist
(i) without any genetic relationship or (ii) with unlabeled kin-relationships in open-set
collections. This may lead to (hard) negative samples possibly affecting the performance
of close-set trained models in a negative way. Our method determines general kinship
similarities of potential pairs to identify (hard) non-kin samples. This may yield cleaner
close-set collections for kinship-related tasks, (2) current publicly available datasets may
contain kin-related pairs without labels (i.e. kinship degree). Our approach is able to
measure similarities for these unlabeled but kin-related samples yielding enhanced and
larger kinship datasets.
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K I N S H I P V E R I F I C AT I O N I N V I D E O S U S I N G
S E M I - S U P E R V I S E D L E A R N I N G

6.1 I N T RO D U C T I O N

Vision-based kinship verification [130, 165, 166] aims to determine whether faces in
images are kin or non-kin. It is an important task in computer vision as there are many
applications such as media analysis [20, 43, 95, 236], missing children searching [217]
and social behavior analysis [64, 93, 146, 240]. Current kinship datasets, especially video
datasets, are relatively small because manually collecting facial images/videos with
labels is difficult and tedious. Hence, learning features for kinship verification with a
limited number of samples is a problem.

To deal with small datasets, in this chapter, transfer learning is used for kinship verifica-
tion. Large-scale face datasets (not intended for the kinship verification task) are used to
extract facial features. Learning kinship verification using pre-training without kinship
annotations has not been studied before. In contrast to a typical classification task based
on a single subject, kinship information is represented by the relationship between two
subjects. Then, the simulation of the kinship distribution through unlabeled external face
data becomes important.

Therefore, in this chapter, we propose a kinship-oriented augmentation method (Video-
kin augmentation) for kinship verification in videos. As shown in Figure 43, during the
pre-training stage, the original videos are augmented using different styles. A series of
frames are augmented through age transformation and face deformation. These frames

Backbone Backbone Backbone Backbone

Repel
Attract Attract

Contrastive
Learning 

Video Video

Video-kin augmentation
(Aging, Crop, Blur,

Color Jitter ... )

Video-kin augmentation
(Aging, Crop, Blur,

Color Jitter ... )

(a) Pretraining on external large scale face
datasets.

Similarity 
Measurement

 Video/Images Features

Kin
/ 

Non-
Kin

Prediction

Backbone

Shared
WeightsInput

(b) Training/testing on kinship dataset based on pretrained
backbone.

Figure 43: Pipeline of proposed Kinship-transformer.
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are then used to form visually similar video pairs, where the appearance is similar, but the
age differs slightly. The augmentation enables the model to form feature representations
similar to the kinship distributions. The proposed method is divided into three steps.
Firstly, the proposed Kinship-transformer is pre-trained on large scale face datasets
(e.g. YouTube Face Database [211]) which are designed for tasks other than kinship
verification, i.e. no kinship labels. Then, different strategies for data augmentation
are used. Facial and dynamic feature representations are learned through contrastive
learning. Finally, the pre-trained Kinship-transformer is fine-tuned on (small) video
kinship datasets.

The contributions of this chapter are summarized as follows:

• A kinship-oriented augmentation method, Video-kin augmentation, is proposed
to enable the model to learn kinship-like distributions based on large face video
datasets.

• Video transformers are proposed for the kinship video verification task.

• The proposed framework can be pre-trained on large face datasets without kinship
annotations.

• Experiments show that the proposed method outperforms existing convolutional
neural networks.

6.2 R E L AT E D W O R K

6.2.1 Kinship Verification

Kinship verification in computer vision is considered as a binary classification problem.
It determines whether two or more persons, represented by image/video pairs of their
faces, are kin related or not [165]. Different methods are proposed in the field of kinship
verification [31, 50, 78, 112–114, 130, 219, 228, 231, 251]. Among these methods, image-
based kinship verification methods are mostly studied. In contrast, video-based kinship
verification has received less attention. Dibeklioglu et al. [50] use a video dataset for
kinship verification. Both statistical and dynamic features are extracted. Boutellaa et
al. [19] use shallow spatio-temporal learning for kinship verification. Yan et al. [226]
collect a new dataset (KFVW) and evaluate different metric learning methods. Dong
et al. [53] aggregate multiple visual features using multi-modal knowledge and design
an adaptive feature fusion mechanism. The method is used in a self-supervised way,
assuming that each sample pair is a distinct class of its own. A memory bank (Moco [82])
and noise-contrastive estimation (InfoNCE [189]) are utilized. Zhang et al. [239] propose
a linear combination model to measure the similarity between parents and children in
an unsupervised manner. However, this method is based on tri-subject verification and
is not suitable for the common task of bi-subject kinship verification. In contrast to the
above mentioned methods, in this chapter, the aim is to learn features for video-based
kinship verification using pre-training without kinship annotations in a semi-unsupervised
way.
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Figure 44: Feature space of embeddings of videos after Video-kin augmentation T .

6.2.2 Transformer

Dosovitskiy et al. introduce the Vision Transformer (ViT) for computer vision tasks [55].
Several attempts are proposed to improve the performance such as Pyramid Vision
Transformer (PVT) [201], Swin Transformer [122], Twins [34], DeiT [187], and DETR
[22]. DETR focuses on end-to-end object detection with transformers. PVT utilizes a
progressive shrinking pyramid to reduce the computation. Swin Transformer merges
image patches to build hierarchical feature maps. However, DETR, PVT and Swin
Transformer are data agnostic. Instead, Deformable Attention Transforme (DAT) [222]
trains the transformer in a data-dependent way by using a deformable self-attention
module.

The success of transformers also inspires researchers to study video-based recognition
tasks. The Video Transformer Network (VTN) [144] uses a temporal attention mecha-
nism for video recognition. MViT [60] uses multiscale ViT and learns spatio-temporal
information. Video Swin Transformer (SWT) studies the spatio-temporal locality and ex-
tends the Swin transformer [124] from 2d-shifted windows to 3d-shifted windows.

6.2.3 Pre-training without Annotation

Manually collecting face images/videos with kinship labels is difficult and tedious.
Hence, current annotated kinship datasets are relatively small. Semi-unsupervised
learning (i.e. face images without kinship relations) can alleviate this problem through
pre-trained feature extraction [132] from unlabeled data [90]. Combining unsupervised
feature learning [90] and transfer learning [132] using large-scale face datasets can
be beneficial. Contrastive learning aims to discriminate between positive (similar) and
negative (diverse) samples by similarity measurements such as SimCLR [28], SwAV [23],
and MoCo [82]. For generative learning, Generative Adversarial Networks (GANs) [74],
and auto-encoders [191] are often used. Recently, He et al. propose masked autoencoders
(MAE) [81] using a transformer architecture.
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6.3 M E T H O D

6.3.1 Problem Formulation

As discussed in the Section. 6.2, kinship verification is a binary classification task and
determines whether target images are kin or not kin. Kinship verification [114] can be
formalized as follows. Consider P =

{(
xa

i , xb
i

)
| i = 1, 2, . . . , N

}
as the training set of

image pairs containing kin relationships for each kin-type, where N is the number of
positive pairs. xa

i and xb
i are parent image/video and children image/video, respectively.

Then, the negative training set is denoted by N =
{(

xa
i , xb

i

)
| i = 1, 2, . . . , N, i , j

}
,

representing image pairs without kinship. To verify kin types, a binary classifier f (·) is
used and is formulated by:

y = f (g(xa
i , xb

j)), y ∈ {0, 1}, (31)

where 1 represents kin and 0 represents non-kin. In this chapter, g(·) represents the
transformer architecture and f (·) represents the cosine similarity.

Because existing kinship video dataset are limited, semi-unsupervised learning is used
through pre-trained feature extraction from face data without kinship relations. Therefore,
our method consists of a pre-training and a fine-tuning stage, see Figure 43. In the first
stage, the network (Kinship-transformer) is pre-trained on (external) face datasets without
kinship relations. In the second stage, the pre-trained model is fine-tuned on kinship-
related datasets.

6.3.2 Feature Learning through Video-kin Augmentation

Different from the standard single-subject task, the kinship relation corresponds to the
relation between two subjects. For instance, parent-child pairs share visual similarities
and differences in their ages. These features are utilized during pre-training to improve
the model’s performance. The appearance of the same person can vary due to both
intrinsic (e.g. aging, expression) and extrinsic (e.g. saturation, contrast) changes. In
this chapter, a wider range of features is formed through video augmentation. Figure 44
shows the feature learning process of our pre-training stage using augmentation.

In the pre-training stage, in addition to classical augmentation (such as changes in
contrast, flipping and color), the original video is further augmented using appearance
changes caused by variations in aging. As a result, the feature embeddings of one specific
video are formed into multiple adjacent features. Such hidden space of the specific video
embeddings should be clustered. Therefore, following the strategy of SimCLR [28],
augmented video pairs are generated using the video-kin augmentation methods T at
each epoch, and use the InfoNCE loss [148] to repel negative and attract positive samples.
After pre-training without kinship relations, the network learns the hidden embedding
space of the external face datasets and forms the capacity to discriminate similar and
diverse samples. In contrast to SimCLR, we extend the data augmentation process to
videos and do not use a projection head during the unsupervised kinship pre-training
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Figure 45: Architecture of our proposed Kinship-transformer-VST (KT-VST) with the VST [124]
backbone.

stage. Experiments show that without the projection head, our network achieves better
results.

During the fine-tuning stage, the pre-trained network is trained on kinship datasets.
Positive kinship pairs are inherently similar to each other. The network is fine-tuned
to form meaningful kinship feature distributions based on prior feature distribution
representations.

6.3.3 Kinship-transformer

Vision transformers can be used as the backbone of our proposed Kinship-transformer.
In this chapter, the Video Swin Transformer (VST) [124] is used. As shown in Figure 45,
the pre-trained transformer is composed of a two-branch architecture followed by a
similarity measurement module.

Given a 3D window with size P × M × M, the input videos xa ∈ RT×H×W×C , xb ∈

RT×H×W×C are partitioned into T
P ×

H
M ×

W
M non-overlapping 3D windows. The partitioned

windows are shifted along the time, height and width axes by P
2 ×

M
2 ×

M
2 .

Then, a block of the transformer is formulated by:

z′ℓ = 3DW-MSA (LN (zℓ−1)) + zℓ−1, ℓ = 1 . . . L,

zℓ = FFN
(
LN

(
z′ℓ

))
+ z′ℓ, ℓ = 1 . . . L,

z′ℓ+1 = 3DSW-MSA (LN (zℓ)) + zℓ, ℓ = 1 . . . L,

zℓ+1 = FFN
(
LN

(
z′ℓ+1

))
+ z′ℓ+1, ℓ = 1 . . . L,

(32)

where LN is the Layernorm and 3DW-MSA is the 3D window multi-headed self-attention.
3DSW-MSA is the 3D shifted window multi-headed self-attention. The output embed-
dings of image xa and xb are denoted by za

o and zb
o. Finally, za

o and zb
o are projected by
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Augmented Video

Original Video

Augmented Video

Figure 46: Illustration of video data augmentation.

the f c layer and used by the similarity measurement module (sim) for the final kinship
verification:

y = sim(C(za
o),C(z

b
o)), (33)

where C is the f c layer projection process and sim is the similarity measurement (cosine
similarity). During training on the kinship dataset, the pre-trained transformers are frozen,
and only the f c layer is learnable.

6.3.4 Pre-training of Kinship-transformer

The semi-supervised pre-training of our network aims to learn face feature represen-
tations between videos and videos’ augmentations. To this end, pair-wise video data
augmentation with contrastive learning is utilized on face datasets (e.g. YouTube Face
Database) without kinship relations.

Video augmentation

As shown in Figure 46, a training video xi is augmented by two random data augmen-
tations from the set of augmentations (t ∼ T and t′ ∼ T ), which leads to two newly
augmented videos x̃i and x̃ j. Since these two augmented videos are computed for the
same videos, they are taken as a positive pair. The Kinship-transformer (KT) is denoted
by f (·). The feature representation of the augmented video x̃i after kinship transformer
is given by z̃i = f (x̃i).

InfoNCE Loss

The InfoNCE loss [28] is used as the training loss. Assuming N videos in a mini-batch,
2N augmented videos are generated after data augmentation. Consequently, for one
positive pair, the other 2(N − 1) augmented videos are negative. The loss function is
given by:

ℓi, j = − log
exp (sim (zi, z j) /τ)∑2N

k=1 1[k,i] exp (sim (zi, zk) /τ)
, (34)
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where sim(zi, z j) = z⊤i z j/∥zi∥∥z j∥ is a cosine similarity function and τ is defined as a
parameter. 1[k,i] ∈ {0, 1} indicates 1 if k , i.

6.3.5 Fine-tuning of Kinship-transformer on Kinship Related Datasets

During fine-tuning of the Kinship-transformer, f (·) is frozen. The kinship datasets are
used as training sets. A learnable f c layer is designed to map the facial representation to
a kinship salient manifold. Then, the cosine similarity function is used as the final result.
During training, the MSE loss is utilized as the training loss.

6.3.6 Similarity during Testing

During the evaluation process, the cosine similarity is utilized as the final output of the
Kinship-transformer. A threshold is used to predict whether the inputs are positive or not.
The prediction is defined by:

decision =

{
1 if sim(C( f (xa)),C( f (xb))) > θ
0 if sim(C( f (xa)),C( f (xb))) ≤ θ

, (35)

where θ is the threshold for similarity.

6.4 E X P E R I M E N T S

Table 27: Different methods on the Nemo-Kinship dataset.Here, with labels means pre-training
with face labels (identification labels),without labels means pre-training without any other labels.

Model Type FD ↑ FS ↑ MD ↑ MS ↑ BB ↑ BS ↑ SS ↑ Mean ↑

Sphereface-baseline [165] fully supervised 0.524 0.541 0.561 0.555 0.594 0.581 0.547 0.557
Vuvko [175] fully supervised 0.775 0.849 0.777 0.734 0.817 0.761 0.761 0.772

DEEP+Shallow [19] fully supervised 0.583 0.567 0.576 0.571 0.467 0.700 0.533 0.571

KT-IResnet (ours) Semi-supervised 0.527 0.517 0.580 0.567 0.564 0.505 0.540 0.543
KT-ViT (ours) Semi-supervised 0.418 0.518 0.581 0.553 0.540 0.581 0.529 0.531
KT-VST (ours) Semi-supervised 0.583 0.563 0.631 0.594 0.667 0.633 0.600 0.610

6.4.1 Datasets

Two face datasets are used for pre-training without using any of their labels: MS1M-
retinaface (Lightweight Face Recognition Challenge & Workshop (ICCV 2019)) [79]
and YouTube Face Database (YTB) [211]. MS1M-retinaface is used during pre-training
for the image-based backbones of our Kinship-transformer. MS1M-retinaface dataset
is cleaned from MS1M [79]. As mentioned on the official website1, all face images are
pre-processed to size 112x112 by five facial landmarks predicted by RetinaFace [46].
In total, there are 5.1M images with 93K identities. MS1M-retinaface is used during
pretraining by the image-based backbones. YouTube Face Database (YTB) is a video-
based facial dataset for facial recognition and related tasks. YTB consists of 3425 videos

1 https://ibug.doc.ic.ac.uk/resources/lightweight-face-recognition-challenge-workshop/

https://ibug.doc.ic.ac.uk/resources/lightweight-face-recognition-challenge-workshop/
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with 1595 identities. All these videos are collected from YouTube without kinship
relations. It is used during semi-supervised pre-training of the video-based backbones
(Kinship-transformer).

Several datasets are selected for our video-based kinship verification task. Nemo-kinship
dataset is used for video-based kinship verification 2. We select 7 types: Father-Daughter
(FD), Father-Son (FS), Mother-Daughter (MD), Mother-Son (MS), Sister-Brother (SB),
Sister-Sister (SS), and Brother-Brother (BB). KinFaceW-I and KinFaceW-II [130] are
also used. KinFaceW-I&II are image-based kinship verification datasets. In KinFaceW-I,
kinship pairs are collected from different pictures. In KinFaceW-II, all pairs are obtained
from the same picture. These pictures are unconstrained in terms of pose, lighting,
background, expression, age, ethnicity, and partial occlusion. There are four types of
kinship relations for these two datasets. In KinFaceW-I, there are 156 pairs of F-S, 134
pairs of F-D, 116 pairs of M-D, and 127 pairs of M-S. Meanwhile, in KinFaceW-II, there
are 250 pairs of pictures for each kinship relation.

6.4.2 Implementation Details

In the experiments, three networks are used as backbones of the Kinship-transformer:
Video Swin Transformer (VST) [124], Vision Transformer [55] and IResNet [59].

For the Kinship-transformer with the VST backbone (KT-VST), the embedding dimen-
sion is set to 48. The depths are [2, 2, 6, 2]. We use the patch size of 2 in the first
block and with a size of 4 in the last two blocks. The window size is set to [8, 7, 7].
For the Kinship-transformer with ViT backbone (KT-ViT), the number of layers is 20.
The number of heads is 8. The hidden size is 512. The patch size is 8 and N = 64.
The position embeddings (not relative position) are the learnable parameters initialized
following a normal distribution. For the Kinship Kinship-transformer with the IResNet
backbone (KT-IResNet), the layers are set to 100. The output feature is 128. During the
training, the learning rate is 1e−3.

P R E T R A I N I N G O N F AC E DATA S E T S During the pre-training stage, KT-VST is
trained on YTB. Before training, all videos in YTB are extracted, and labels (e.g. identity
information) are ignored. During training, each video in the mini-batch is sent to the
augmentation operators, which are randomly selected from the augmentation lists. Each
video forms two augmented videos. We denote the videos augmented from the same
video as positive samples. All others are used as negative samples. The InfoNCE loss
is utilized. The augmentation lists are Horizontal Flip, Random Resized Crop, Color
Jitter, Gaussian Blur, Random Gray Scale, aging generation [208], and face deformation.
The epoch is set to 100, and the batch size is 40. The learning rate is 1e−4. For the
image-based backbones (KT-ViT and KT-IResNet), MS1M-retinaface is used as the
pre-training set. All images are extracted and stored together.

2 https://www.nemosciencemuseum.nl/nl/wat-is-er-te-doen/activiteiten/
science-live/

https://www.nemosciencemuseum.nl/nl/wat-is-er-te-doen/activiteiten/science-live/
https://www.nemosciencemuseum.nl/nl/wat-is-er-te-doen/activiteiten/science-live/
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F I N E - T U N I N G O N K I N S H I P DATA S E T S During the fine-tuning stage, Nemo-
kinship is utilized as training and testing data for video-based kinship verification. The
same augmentation method as in the pretraining stage is used. Horizontal flips and aging
generation are utilized. As shown in Figure 45, the backbone of the Kinship-transformer
is frozen after pre-training. The backbone extracts features of two input images/videos.
A learnable f c layer C(·) is utilized to map features to a kinship-related manifold. For
KT-VST, the feature size of each video is 374 and the feature size after mapping is 64.
Two mapped features are normalized and compared by the cosine similarity function. In
this stage, the label information is used. During the training on Nemo-Kinship dataset,
the similarity output is supervised by 0 or 1 label based on MS Eloss. The batch size is
64. The epoch for each cross-validation is 60. The learning rate is set to 1e−4. AdamW
is used as the optimizer. For KinFaceW-I and KinFaceW-II datasets, the image is taken
as a short video with one frame. During training, the batch size is set to 64. For KT-Vit
and KT-IResNet, the videos in Nemo-kinship are extracted into frames. The KT-Vit and
KT-IResNet are trained in an image-based kinship verification manner.

6.4.3 Results

Experiment results on Nemo-Kinship dataset

Table 28: Results of different methods on the KinFaceW-I dataset.

Model Type FD ↑ FS ↑ MD ↑ MS ↑ Mean ↑
SMCNN [111] fully supervised 0.750 0.750 0.722 0.687 0.727

CFT [56] fully supervised 0.795 0.716 0.733 0.799 0.761
CFT* [56] fully supervised 0.788 0.717 0.772 0.819 0.774

WGEML [117] fully supervised 0.785 0.739 0.806 0.819 0.787
GKR [114] fully supervised 0.795 0.732 0.780 0.862 0.792

DSMM [113] fully supervised 0.767 0.817 0.890 0.823 0.824

KT-IResnet (ours) Semi-supervised 0.538 0.587 0.605 0.564 0.573
KT-ViT (ours) Semi-supervised 0.635 0.651 0.666 0.608 0.640
KT-VST (ours) Semi-supervised 0.657 0.682 0.707 0.634 0.670

Since the proposed setting for kinship verification is novel, we can only compare the
performance of our methods with different backbones. The results of different methods
on YTB are shown in Table 27. The accuracy shows that our proposed KT-VST achieves
0.610 average accuracy on the video-based Nemo-kinship dataset. KT-IResNet and
KT-ViT obtain 0.543 and 0.531 respectively. It shows that our video based KT-VST
outperforms image-based methods (KT-ViT and KT-IResNet). Moreover, our model
KT-VST shows better results on BB, BS and SS kin-type. The reason is that the age of
the subjects in BB, BS and SS type are more similar. The similar age samples improve
the feature representation after transfer learning.

Results are listed for current fully supervised kinship verification methods. For image-
based methods, we extract frames (N frames for one video) of the videos and form N
image-pairs. The average of N image-pairs is taken as the final result. As shown in
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Table 29: Results of different methods on KinFaceW-II dataset.

Model Type FD ↑ FS ↑ MD ↑ MS ↑ Mean ↑

CFT [56] fully supervised 0.754 0.688 0.774 0.778 0.759
SMCNN [111] fully supervised 0.750 0.790 0.780 0.850 0.793

CFT* [56] fully supervised 0.774 0.766 0.790 0.838 0.793
WGEML [117] fully supervised 0.886 0.774 0.834 0.816 0.828

KML [228] fully supervised 0.874 0.836 0.862 0.856 0.857
GKR [114] fully supervised 0.908 0.860 0.912 0.944 0.906

DSMM [113] fully supervised 0.898 0.926 0.958 0.936 0.930

KT-IResnet (ours) Semi-supervised 0.650 0.712 0.680 0.718 0.690
KT-ViT (ours) Semi-supervised 0.702 0.758 0.754 0.722 0.734
KT-VST (ours) Semi-supervised 0.714 0.766 0.782 0.790 0.763

(a) F-D (b) F-S

(c) M-D (d) M-S

Figure 47: The ROC curves of Kinship-transformer for the fourth cross validation on KinFaceW-I
dataset.

Table 27, Vuvko shows the best supervised performance. VuvKo is pretrained on MS-
celeb-1M dataset using the ArcFace model. The model uses the off-the-shelf capability
of the network and reaches the first place in RFIW2020 competition.



6.4 E X P E R I M E N T S 95

(a) F-D (b) F-S

(c) M-D (d) M-S

Figure 48: The ROC curves of Kinship-transformer for the fourth cross validation on KinFaceW-II
dataset.

Results on KinFaceW-I and KinFaceW-II

Figure 47 and Figure 48 show the ROC curves of our proposed methods. In general,
KT-VST achieves the best performance. Table 28 and Table 29 show the different
methods on KinFaceW-I and KinFaceW-II datasets. Our KT-VST results in 0.670 on
KinFaceW-I and 0.763 on KinFaceW-II. KT-VST outperforms the supervised method
CFT on KinFaceW-II.

Feature distances are visualised for KT-VST on KinFaceW-II. Figure 49 show that our
proposed KT-VST provides better separable feature distances on the MS type.

6.4.4 Ablation Study

Table 30: Ablation studies on the Nemo-kinship dataset.
Data

augmentation
Pretraining Training

on Nemo FD↑ FS↑ MD↑ MS↑ BB↑ BS↑ SS↑ Mean↑with annotations without annotations

✓ - - ✓ 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
✓ ✓ - - 0.483 0.516 0.546 0.524 0.600 0.55 0.567 0.541
- - ✓ ✓ 0.550 0.570 0.521 0.476 0.567 0.517 0.600 0.543
✓ - ✓ ✓ 0.583 0.563 0.631 0.594 0.667 0.633 0.600 0.610
✓ ✓ - ✓ 0.550 0.643 0.610 0.583 0.767 0.617 0.600 0.624
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(a) F-D (b) F-S

(c) M-D (d) M-S

Figure 49: Feature distances of KT-VST for fourth cross validation on KinFaceW-II dataset. For
visualization, we combine the cosine similarities of test pairs in all 5 cross validations.

Table 31: Ablation study using the projection head (SimCLR) and without (ours) during the
semi-supervised pre-training stage.

Training Data w/o projection head FD ↑ FS ↑ MD ↑ MS ↑ BB ↑ BS ↑ SS ↑ Mean↑

KinFaceW-I - 0.623 0.599 0.639 0.556 - - - 0.604
KinFaceW-I ✓ 0.657 0.682 0.707 0.634 - - - 0.670
KinFaceW-II - 0.714 0.744 0.771 0.769 - - - 0.750
KinFaceW-II ✓ 0.714 0.766 0.782 0.790 - - - 0.763
Nemo-kinship - 0.617 0.533 0.532 0.644 0.600 0.533 0.500 0.566
Nemo-kinship ✓ 0.583 0.563 0.631 0.594 0.667 0.633 0.600 0.610

Table 32: Comparisons with aging augmentation. DA corresponds to standard data augmentation.
Model Pretraining Fine-tuning FD ↑ FS ↑ MD ↑ MS ↑ BB ↑ BS ↑ SS ↑ Mean ↑

KT-VST (ours) DA w/o DA 0.483 0.543 0.589 0.579 0.700 0.667 0.667 0.604
KT-VST (ours) DA + aging w/o DA 0.650 0.540 0.586 0.618 0.633 0.617 0.600 0.606
KT-VST (ours) DA + aging DA + aging 0.583 0.563 0.631 0.594 0.667 0.633 0.600 0.610

In this section, we discuss the ablation studies of our proposed network on the Nemo-
kinship dataset. The related performances are listed in Table 30. There are five experi-
ments. Firstly, the KT-VST is trained directly on the Nemo-Kinship dataset. The average
accuracy is 0.5, which indicates that training of our network directly on the Nemo-kinship
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Test Pairs KT-IResnet KT-VST Ground
TruthKT-ViT
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Figure 50: Qualitative results for the first cross-validation of father-daughter type on KinFaceW-II
dataset.

fails to converge. Secondly, the KT-VST is trained on YTB in a supervised manner
and predicts the Nemo-kinship samples directly. The Nemo-kinship is not trained. Our
KT-VST obtains 0.541. It shows that without fine-tuning on target kinship dataset, KT-
VST fails to provide improved kinship representations. Thirdly, the KT-VST is trained
without using Video-kin augmentation during the pretraining stage. The final accuracy
drops by six percent. It shows the feasibility of our proposed Video-kin augmentation.
Fourthly, the KT-VST is trained with the proposed pipeline. The KT-VST results in the
best performance when pre-trained in a semi-supervised way. Finally, the KT-VST is
trained in a supervised manner, and then fine-tuned on the Nemo-Kinship. The model
achieves 0.624 among all the ablation studies. The table also shows that our proposed
semi-supervised pipeline is competitive when compared to a fully supervised method.
We conduct ablation studies to analyze the influence of the aging augmentation. Table 32
shows that aging augmentation improves the performance. We conduct extra ablation
studies to analyze the performance of our method compared to SimCLR. One of the
differences between our method and SimCLR method is that our pipeline does not use a
projection head during the learning stage. The performance of our method (without using
a projection head) and SimCLR method (using a projection head) is listed in Table 31.
Our method outperforms SimCLR on three different kinship datasets. Qualitative results
are shown in Figure 50.
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6.5 C O N C L U S I O N

This is the first study on video-based transformers for the kinship verification task in a
semi-supervised manner, i.e. pre-training on face datasets without kinship labels/relations.
To this end, a kinship-oriented augmentation method, Video-kin augmentation, is pro-
posed to enable the model to learn kinship-like distributions based on the pre-training on
face video datasets. Large scale experiments are conducted and show that our proposed
framework achieves state-of-the-art performance on the Nemo-kinship dataset.



7

S U M M A R Y A N D C O N C L U S I O N

7.1 S U M M A RY

The main purpose of this thesis is to analyze and study vision based kinship recognition
in a real scenario. The thesis analyzes the current relevant research methods and explores
the difficulties of the current application of kinship recognition in the real world. Based
on these difficulties, the thesis proposes its basic methods in different chapters. The
specific summary of each chapter is as follows:

Chapter 2: A Survey on Kinship Verification

By reviewing the existing literature on kinship verification, we can better understand the
challenges and successes in kinship recognition. Chapter 2 gives the answer to the first
research question and presents a review of public datasets and representative methods for
kinship verification. Representative methods are categorized and presented. To address
the first research question (”What is kinship verification and what are the challenges”),
this chapter studies current kinship challenges according to intrinsic factors (face i.e.,
differences in facial appearance) and extrinsic factors (acquisition i.e., varying imaging
conditions). New promising directions are discussed based on current advances in kinship
research. For instance, open-set kinship verification and debiasing kinship verification
are largely ignored so far. They are promising for the kinship verification task in the
future. The review notes that there is a need for more kinship datasets, particularly video-
based ones, and introduces a new video dataset as a benchmark for child-adult kinship
verification. This dataset consists of 248 subjects from 85 families. This benchmark
is used to systematically test and analyze current state-of-the-art methods. Based on
Chapter 2, several works targeting exploring kinship recognition in the real world are
presented in the following chapters.

Chapter 3: Kinship Identification through Joint Learning

Chapter 3 addresses the second research question (”How can kin types be better verified
when facing unbalanced distribution in real scenarios?”) by presenting a new method for
kinship identification through joint learning. A training procedure on mixed-dataset is
proposed. The unbalanced training data type between non-kin and other kin types make
the model learn better discriminative feature among different kin types. Experimental
results show that joint learning with kinship verification and identification improves

99
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the performance of kinship identification. Chapter 3 proposes a basic approach on
kinship identification in the real scenario. Since this method is not restricted to any
neural network, a better architecture can further improve the performance in kinship
identification.

Chapter 4: Identity Invariant Age Transfer for Kinship Verification of Child-Adult
Images

Chapter 2 introduces challenges of kinship verification. In Chapter 4, the issue of
aging in kinship verification is discussed. Aging can impact the performance of kinship
verification models in different ways. For instance, the images of a person of different
ages can influence the performance of kinship verification. The image pairs of an
older person with an adult can also affect the performance of the kinship verification
models. Specifically, this chapter focuses on a more specific and overlooked situation,
tackling kinship verification on child-adult images. To address this task, we propose a
novel Identity-Invariance-Aging-Transferring approach that extracts identity-invariant
information while removing the effects of aging as much as possible. In this way, the
identity-invariant feature of each sample is extracted and transferred into a similar age
distribution. Moreover, a kinship mapping module is used to compute the improved
kinship-related information from the features of the CAT Module. The results show that,
compared to the handcrafted feature, the transferred features capture the hidden features
of genetic relationships and provide more robust results for child-related pairs.

Chapter 5: Kinship Similarity for Open Sets

When addressing the fourth research question (”How can we improve kinship recog-
nition when facing unknown classes?”), it is essential to identify and understand the
different types of unknown classes that can exist in real-world scenarios. As noted in
Chapter 5, unknown pairs may exist without any genetic relationship or with unlabeled
kin relationships in open-set collections. Unknown pairs without genetic relationships
can not be clearly clarified into one specific relation type. These unknown pairs without
genetic relationships are taken as negative pairs. In reality, there are also some far
kin-relationship but unlabeled pairs. These types may lead to (hard) negative samples,
possibly affecting the performance of close-set trained models in a negative way. These
types of samples require special attention and consideration when developing kinship
recognition methods.

To answer the fourth research question, Chapter 5 proposes a new subtask of kinship
recognition to determine kinship similarity in open sets. A method is proposed to de-
termine family relationships and their corresponding degrees of kinship. The proposed
method is pairwise-based and uses mutual information from positive pairs in a hier-
archical way. Experiments and an ablation study show that our method outperforms
the compared methods. Our model is able to separate kinship categories properly and
generates uniform similarity distributions.

By proposing such Open-set Kinship Similarity Measurement, we hope there will be
more approaches in the future. There are several potential benefits. Firstly, a good
method on OKSM can utilize kinship similarities to identify (hard) non-kin samples
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among potential kin pairs, which can help create more accurate collections of close-set
kin samples for kinship-related tasks. Additionally, the kin-related pairs without labels
(i.e. kinship degree) in the public dataset can be picked. Such unlabeled but kin-related
samples can be used to enhance and enlarge kinship datasets.

Chapter 6: Kinship Verification in Videos using Semi-Supervised Learning

Chapter 6 gives an answer to the fifth research question (”How can we explore off-the-
shelf knowledge from pretrained facial networks for kinship verification with limited
kinship dataset?”). To better utilize the off-the-shelf knowledge from pretrained facial
networks, we give a study on video-based transformers for the kinship verification
task in a semi-supervised manner. A kinship-oriented augmentation method, Video-
kin augmentation, is proposed to enable the model to learn kinship-like distributions
based during the pretraining on facial video datasets. Large-scale experiments show
that our proposed framework achieves state-of-the-art performance on the Nemo-kinship
dataset.

7.2 C O N C L U S I O N

The main contributions of this thesis can be divided into the following four points: First,
this thesis comprehensively analyzes and summarizes the related work and datasets for
kinship recognition. Second, this thesis proposes a new dataset for kinship prediction.
Third, this thesis explores some possible challenges in the real world scenario and
proposes the basic methods respectively. Fourth, this thesis shares the relevant codes and
proposes some promising directions.





A
A P P E N D I X

A.1 S O F T WA R E & R E P O S I T O R I E S

Overall, the authors provide relevant codes and GitHub repositories for each chap-
ter:

• The public code for our kinship verification survey in Chapter 2 is provided at
https://github.com/we-wan/kin_sv.

• The public code for our JLNet in Chapter 3 is provided at https://github.
com/we-wan/JLNet.

• The public code for our CATNet in Chapter 4 is provided at https://github.
com/anonymous-sdfasdfa/-catnet-.

• The public code for our OKSM method in Chapter 5 is provided at https:
//github.com/anonymous-fdfdklkl/OKSM.

• The public code for our Kinship-transformer (KT) in Chapter 6 is provided at
https://github.com/kdafsdnmdfa/-1848-.
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7.2 S A M E N VAT T I N G

Het hoofddoel van dit proefschrift is het analyseren en bestuderen van op visie gebaseerde
verwantschapsherkenning in een reëel scenario. Het proefschrift analyseert de huidige rel-
evante onderzoeksmethoden en onderzoekt de moeilijkheden van de huidige toepassing van
verwantschapsherkenning in de echte wereld. Op basis van deze moeilijkheden stelt het proef-
schrift in verschillende hoofdstukken zijn basismethoden voor. De specifieke samenvatting van
elk hoofdstuk is als volgt:

Hoofdstuk 2: Een onderzoek naar verwantschapsverificatie

Door de bestaande literatuur over verificatie van verwantschap te bestuderen, kunnen we de
uitdagingen en successen bij de erkenning van verwantschap beter begrijpen. Hoofdstuk 2 geeft
het antwoord op de eerste onderzoeksvraag en geeft een overzicht van openbare datasets en
representatieve methoden voor verificatie van verwantschap. Representatieve methoden worden
gecategoriseerd en gepresenteerd. Om de eerste onderzoeksvraag (”Wat is verwantschapsver-
ificatie en wat zijn de uitdagingen”) te beantwoorden, bestudeert dit hoofdstuk de huidige
uitdagingen in verwantschapsverificatie volgens intrinsieke factoren (bijvoorbeeld het gezicht)
en extrinsieke factoren (bijvoorbeeld verwerving van data met variërende beeldvormingsom-
standigheden). Nieuwe veelbelovende richtingen worden besproken op basis van de huidige
vorderingen in verwantschapsonderzoek. Zo worden open-set verwantschapsverificatie en de-
biasing verwantschapsverificatie tot nu toe grotendeels genegeerd. Deze richtingen zijn veel-
belovend voor de verwantschapsverificatietaak in de toekomst. In de review wordt opgemerkt dat
er behoefte is aan meer verwantschapsdatasets, met name op video gebaseerde datasets, en er
wordt een nieuwe videodataset geı̈ntroduceerd als maatstaf voor verificatie van verwantschap
tussen kinderen en volwassenen. Deze dataset bestaat uit 248 proefpersonen uit 85 families.
De benchmark wordt gebruikt om de huidige state-of-the-art methoden systematisch te testen
en te analyseren. In de volgende hoofdstukken worden verschillende werken gepresenteerd die
gericht zijn op het onderzoeken van verwantschapsherkenning in de echte wereld gebaseerd op
de inzichten in Hoofdstuk 2.

Hoofdstuk 3: Identificatie van verwantschap door gezamenlijk leren

Hoofdstuk 3 gaat in op de tweede onderzoeksvraag (”Hoe kunnen verwantschapstypen beter
worden geverifieerd wanneer ze worden geconfronteerd met een onevenwichtige data verdeling
in reële scenario’s?”) door een nieuwe methode te presenteren voor verwantschapsidentificatie
door middel van gezamenlijk leren. Er wordt een trainingsprocedure voor een gemengde dataset
voorgesteld. Het onevenwicht tussen niet-verwante en andere verwante typen in de trainingsset
zorgt ervoor dat het model een beter onderscheid leert maken tussen verschillende verwante
typen. Experimentele resultaten laten zien dat gezamenlijk leren met verwantschapsverificatie
en identificatie de prestaties van verwantschapsidentificatie verbetert. Hoofdstuk 3 stelt een
basisbenadering voor van verwantschapsidentificatie in het echte scenario. Aangezien deze
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methode niet beperkt is tot een neuraal netwerk, kan een betere architectuur de prestaties bij
verwantschapsidentificatie verder verbeteren.

Hoofdstuk 4: Identiteitsinvariante leeftijdsoverdracht voor verwantschapsverificatie van af-
beeldingen van kinderen en volwassenen

Hoofdstuk 2 introduceert uitdagingen van verificatie van verwantschap. In Hoofdstuk 4 wordt
het probleem van ouder worden bij verwantschapsverificatie besproken. Veroudering kan de
prestaties van verwantschapsverificatiemodellen op verschillende manieren beı̈nvloeden. De
afbeeldingen van een persoon van verschillende leeftijden kunnen bijvoorbeeld de uitvoering van
verwantschapsverificatie beı̈nvloeden. De beeldparen van een oudere persoon met een volwassene
kunnen ook van invloed zijn op de prestaties van de verwantschapsverificatiemodellen. In het bij-
zonder richt dit hoofdstuk zich op een meer specifieke en over het hoofd geziene situatie, namelijk
het aanpakken van verwantschapsverificatie op afbeeldingen van kinderen en volwassenen. Om
deze taak aan te pakken, stellen we een nieuwe identiteitsinvariante en leeftijdsoverdragende
benadering voor die identiteit-invariante informatie extraheert en tegelijkertijd de effecten van ver-
oudering zoveel mogelijk verwijdert. Op deze manier wordt het identiteitsinvariante kenmerk van
elke beeldpaar geëxtraheerd en overgebracht naar een vergelijkbare leeftijdsverdeling. Bovendien
wordt een module voorgesteld die verwantschap voorspelt om de verbeterde verwantschapsgere-
lateerde informatie uit de kenmerken van de CAT-module te berekenen. De resultaten laten zien
dat de overgedragen kenmerken – in vergelijking met de handgemaakte kenmerken – de latente
kenmerken van genetische relaties beter kunnen vastleggen en meer robuuste resultaten opleveren
voor kindgerelateerde paren.

Hoofdstuk 5: Verwantschapsovereenkomst voor open sets

Bij het beantwoorden van de vierde onderzoeksvraag (”Hoe kunnen we de herkenning van
verwantschap verbeteren wanneer we geconfronteerd worden met onbekende klassen?”), is het
essentieel om de verschillende soorten onbekende klassen te identificeren en te begrijpen die
kunnen bestaan in scenario’s in de echte wereld. Zoals opgemerkt in Hoofdstuk 5, kunnen
onbekende paren voorkomen zonder enige genetische verwantschap of met niet-gelabelde ver-
wantschapsrelaties in open verzamelingen. Onbekende paren zonder genetische relaties kunnen
niet duidelijk worden opgehelderd in één specifiek relatietype. Deze onbekende paren zon-
der genetische verwantschap worden als negatieve paren beschouwd. In werkelijkheid zijn er
ook enkele verre verwanten, maar niet-gelabelde paren. Deze typen kunnen leiden tot (harde)
negatieve steekproeven, waardoor mogelijk de prestaties van close-set getrainde modellen op een
negatieve manier worden beı̈nvloed. Dit soort voorbeelden vereist speciale aandacht en aandacht
bij het ontwikkelen van methoden voor het herkennen van verwantschap.

Om de vierde onderzoeksvraag te beantwoorden, stelt Hoofdstuk 5 een nieuwe subtaak van ver-
wantschapsherkenning voor om verwantschapsovereenkomst in open verzamelingen te bepalen.
Er wordt een methode voorgesteld om familierelaties en hun overeenkomstige verwantschaps-
graden te bepalen. De voorgestelde methode is paarsgewijs gebaseerd en gebruikt wederzijdse
informatie van positieve paren op een hiërarchische manier. Experimenten en een ablatiestudie
tonen aan dat onze methode beter presteert dan de vergeleken methoden. Ons model is in staat
verwantschapscategorieën goed te scheiden en genereert uniforme gelijkenisverdelingen.

Door een dergelijke open-set verwantschapsgelijkenismeting (OKSM, Engels) voor te stellen,
hopen we dat er in de toekomst meer benaderingen zullen zijn. Er zijn verschillende potentiële
voordelen. Ten eerste kan een goede methode op OKSM verwantschapsovereenkomsten ge-
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bruiken om (harde) niet-verwante steekproeven te identificeren tussen potentiële verwantenparen,
wat kan helpen bij het creëren van nauwkeurigere verzamelingen van close-set verwantenparen
voor verwantschapsgerelateerde taken. Bovendien kunnen de verwantenparen zonder labels
(d.w.z. verwantschapsgraad) in de openbare dataset worden gekozen. Dergelijke niet-gelabelde
maar verwante paren kunnen worden gebruikt om verwantschapsdatasets te verbeteren en uit te
breiden.

Hoofdstuk 6: Verificatie van verwantschap in video’s met behulp van semi-supervised learn-
ing

Hoofdstuk 6 geeft een antwoord op de vijfde onderzoeksvraag (”Hoe kunnen we eerdere kennis
uit voorgetrainde gezichtsnetwerken verkennen voor verwantschapsverificatie met een beperkte
verwantschapsdataset?”). Om beter gebruik te maken van de eerdere kennis van vooraf ge-
trainde gezichtsnetwerken, bestuderen we op-video-gebaseerde transformator-netwerken voor
de verwantschapsverificatietaak op een semi-gesuperviseerde manier. Een op verwantschap
georiënteerde augmentatiemethode, video-kin augmentatie, wordt voorgesteld om het model
in staat te stellen verwantschap-achtige verdelingen te leren op basis van de pre-training op
gezichtsvideodatasets. Grootschalige experimenten tonen aan dat ons voorgestelde raamwerk
state-of-the-art prestaties levert op de Nemo-kinship dataset.

7.3 G E VO L G T R E K K I N G

De belangrijkste bijdragen van dit proefschrift kunnen worden onderverdeeld in de volgende
vier punten: Ten eerste analyseert en vat dit proefschrift uitgebreid het gerelateerde werk en
de datasets voor verwantschapsherkenning samen. Ten tweede stelt dit proefschrift een nieuwe
dataset voor het voorspellen van verwantschap. Ten derde onderzoekt dit proefschrift enkele
mogelijke uitdagingen in het echte wereldscenario en stelt respectievelijk de basismethoden voor.
Ten vierde deelt dit proefschrift de relevante codes en stelt het enkele veelbelovende richtingen
voor.
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