3,688 research outputs found

    Transductive Learning with String Kernels for Cross-Domain Text Classification

    Full text link
    For many text classification tasks, there is a major problem posed by the lack of labeled data in a target domain. Although classifiers for a target domain can be trained on labeled text data from a related source domain, the accuracy of such classifiers is usually lower in the cross-domain setting. Recently, string kernels have obtained state-of-the-art results in various text classification tasks such as native language identification or automatic essay scoring. Moreover, classifiers based on string kernels have been found to be robust to the distribution gap between different domains. In this paper, we formally describe an algorithm composed of two simple yet effective transductive learning approaches to further improve the results of string kernels in cross-domain settings. By adapting string kernels to the test set without using the ground-truth test labels, we report significantly better accuracy rates in cross-domain English polarity classification.Comment: Accepted at ICONIP 2018. arXiv admin note: substantial text overlap with arXiv:1808.0840

    On multi-view learning with additive models

    Get PDF
    In many scientific settings data can be naturally partitioned into variable groupings called views. Common examples include environmental (1st view) and genetic information (2nd view) in ecological applications, chemical (1st view) and biological (2nd view) data in drug discovery. Multi-view data also occur in text analysis and proteomics applications where one view consists of a graph with observations as the vertices and a weighted measure of pairwise similarity between observations as the edges. Further, in several of these applications the observations can be partitioned into two sets, one where the response is observed (labeled) and the other where the response is not (unlabeled). The problem for simultaneously addressing viewed data and incorporating unlabeled observations in training is referred to as multi-view transductive learning. In this work we introduce and study a comprehensive generalized fixed point additive modeling framework for multi-view transductive learning, where any view is represented by a linear smoother. The problem of view selection is discussed using a generalized Akaike Information Criterion, which provides an approach for testing the contribution of each view. An efficient implementation is provided for fitting these models with both backfitting and local-scoring type algorithms adjusted to semi-supervised graph-based learning. The proposed technique is assessed on both synthetic and real data sets and is shown to be competitive to state-of-the-art co-training and graph-based techniques.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS202 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Transductive Multi-View Zero-Shot Learning

    Get PDF
    (c) 2012. The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms

    Transductive Multi-label Zero-shot Learning

    Get PDF
    Zero-shot learning has received increasing interest as a means to alleviate the often prohibitive expense of annotating training data for large scale recognition problems. These methods have achieved great success via learning intermediate semantic representations in the form of attributes and more recently, semantic word vectors. However, they have thus far been constrained to the single-label case, in contrast to the growing popularity and importance of more realistic multi-label data. In this paper, for the first time, we investigate and formalise a general framework for multi-label zero-shot learning, addressing the unique challenge therein: how to exploit multi-label correlation at test time with no training data for those classes? In particular, we propose (1) a multi-output deep regression model to project an image into a semantic word space, which explicitly exploits the correlations in the intermediate semantic layer of word vectors; (2) a novel zero-shot learning algorithm for multi-label data that exploits the unique compositionality property of semantic word vector representations; and (3) a transductive learning strategy to enable the regression model learned from seen classes to generalise well to unseen classes. Our zero-shot learning experiments on a number of standard multi-label datasets demonstrate that our method outperforms a variety of baselines.Comment: 12 pages, 6 figures, Accepted to BMVC 2014 (oral

    Adversarial Attack and Defense on Graph Data: A Survey

    Full text link
    Deep neural networks (DNNs) have been widely applied to various applications including image classification, text generation, audio recognition, and graph data analysis. However, recent studies have shown that DNNs are vulnerable to adversarial attacks. Though there are several works studying adversarial attack and defense strategies on domains such as images and natural language processing, it is still difficult to directly transfer the learned knowledge to graph structure data due to its representation challenges. Given the importance of graph analysis, an increasing number of works start to analyze the robustness of machine learning models on graph data. Nevertheless, current studies considering adversarial behaviors on graph data usually focus on specific types of attacks with certain assumptions. In addition, each work proposes its own mathematical formulation which makes the comparison among different methods difficult. Therefore, in this paper, we aim to survey existing adversarial learning strategies on graph data and first provide a unified formulation for adversarial learning on graph data which covers most adversarial learning studies on graph. Moreover, we also compare different attacks and defenses on graph data and discuss their corresponding contributions and limitations. In this work, we systemically organize the considered works based on the features of each topic. This survey not only serves as a reference for the research community, but also brings a clear image researchers outside this research domain. Besides, we also create an online resource and keep updating the relevant papers during the last two years. More details of the comparisons of various studies based on this survey are open-sourced at https://github.com/YingtongDou/graph-adversarial-learning-literature.Comment: In submission to Journal. For more open-source and up-to-date information, please check our Github repository: https://github.com/YingtongDou/graph-adversarial-learning-literatur

    Semi-supervised Embedding in Attributed Networks with Outliers

    Full text link
    In this paper, we propose a novel framework, called Semi-supervised Embedding in Attributed Networks with Outliers (SEANO), to learn a low-dimensional vector representation that systematically captures the topological proximity, attribute affinity and label similarity of vertices in a partially labeled attributed network (PLAN). Our method is designed to work in both transductive and inductive settings while explicitly alleviating noise effects from outliers. Experimental results on various datasets drawn from the web, text and image domains demonstrate the advantages of SEANO over state-of-the-art methods in semi-supervised classification under transductive as well as inductive settings. We also show that a subset of parameters in SEANO is interpretable as outlier score and can significantly outperform baseline methods when applied for detecting network outliers. Finally, we present the use of SEANO in a challenging real-world setting -- flood mapping of satellite images and show that it is able to outperform modern remote sensing algorithms for this task.Comment: in Proceedings of SIAM International Conference on Data Mining (SDM'18
    • …
    corecore