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DISCRIMINATIVE HESSIAN EIGENMAPS FOR FACE RECOGNITION 
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1Department of Computer Science, University of Hong Kong, Hong Kong 
2School of Computer Engineering, Nanyang Technological University, Singapore 

ABSTRACT 

Dimension reduction algorithms have attracted a lot of 
attentions in face recognition because they can select a 
subset of effective and efficient discriminative features in 
the face images. Most of dimension reduction algorithms 
can not well model both the intra-class geometry and inter-
class discrimination simultaneously. In this paper, we 
introduce the Discriminative Hessian Eigenmaps (DHE), a 
novel dimension reduction algorithm to address this 
problem. DHE will consider encoding the geometric and 
discriminative information in a local patch by improved 
Hessian Eigenmaps and margin maximization respectively. 
Empirical studies on public face database thoroughly 
demonstrate that DHE is superior to popular algorithms for 
dimension reduction, e.g., FLDA, LPP, MFA and DLA. 

Index Terms—Dimension Reduction, Manifold Learning, 
Face Recognition.

1. INTRODUCTION

Dimension reduction [3],[11] plays an important role in 
various tasks in computer vision, e.g., face recognition. A 
key role for face recognition is the distance or similarity 
between face images which can be solved via dimension 
reduction, as dimension reduction performs the recognition 
by enlarging the similarity among the intra-class samples 
and maximizing the difference among the inter-class 
samples in a subspace rather than the original feature space. 

A dimension reduction algorithm projects the original 
high-dimensional feature space to a low-dimensional 
subspace, where specific statistical properties can be well 
preserved. For example, principle component analysis (PCA) 
[1], one of the most popular unsupervised dimension 
reduction algorithms, maximizes the variance of the data in 
the projected subspace; Fisher’s linear discriminative 
analysis (FLDA) [2], the most traditional supervised 
dimension reduction algorithm, minimizes the trace ratio 
between the within class scatter and the between class 
scatter so that the Gaussian distributed samples can be well 
separated in the selected subspace; locality preserving 
projections (LPP) [4] preserves the local geometry of 
samples by processing an undirected weighted graph that 

represents the neighbourhood relations of pairwise samples; 
Marginal Fisher analysis (MFA) [12] considers both the 
intra-class geometry and interaction of samples from 
different classes; Discriminative locality alignment (DLA) 
[5] preserves the discriminative information by maximizing 
the distance among the inter-class samples and minimizing 
the distance among the intra-class samples over the local 
patch of each sample. However the geometric and 
discriminative information in these dimension reduction 
algorithms are not well modeled, e.g., LDA does not 
consider the geometric information; MFA ignores the 
discriminative information of non-marginal samples from 
different classes.  

By using the patch alignment framework [6], we can 
model both the intra-class local geometry and the inter-class 
discriminative information conveniently. In particular, for 
each sample and its associated patch (neighbours of the 
sample), it is important to consider the following two 
properties: 1) the intra-class local geometry can be 
represented by the local tangent space, which is locally 
isometric to the manifold of the intra-class nearest samples 
of the patch; and 2) the inter-class discriminative 
information can be represented by the margin between the 
intra-class neighbor samples and the inter-class nearest 
samples of the patch. Because the method used for local 
geometry representation is similar to Hessian Eigenmaps [7], 
the proposed dimension reduction algorithm is termed the 
Discriminative Hessian Eigenmaps or DHE for short. 

The rest of this paper is organized as follows. Section 2 
introduces the proposed Discriminative Hessian Eigenmaps 
(DHE). Section 3 shows the results of thoroughly empirical 
studies. Section 4 concludes. 

2. DISCRIMINATIVE HESSIAN EIGENMAPS 

This Section presents the discriminative Hessian Eigenmaps 
or DHE for short to solve the face recognition tasks. In 
DHE, we try to find an optimal linear mapping  D dW R
so that it can project D

ix R  to a low-dimensional space as 
T d

i iy W x R . In this learned low-dimensional space, 
DHE characterizes two specific properties: 
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1. The local geometry property - nearby samples in the 
original Euclidean space are close to each other in the 
learned subspace. 
2. The discriminative property - samples from different 
classes can be well separated in the learned subspace. 
In summary, the discriminative information as well as the 
local geometry will be well modeled in the DHE.  

2.1. Modified Hessian Eigenmaps 

Empirically, intra-class geometry is useful for classification. 
Hessian Eigenmaps [7] is a geometry preservation manifold 
learning method that can recover the underlying 
parameterization of a manifold M  embedded in a high-
dimensional space if the manifold M  is locally isometric to 
an open and connected subset of dR . Because the 
parameter space need not be convex in Hessian Eigenmaps, 
it can be applied to model a nonconvex manifold, e.g., an S-
curve surface with a hole. Therefore, we adapt Hessian 
Eigenmaps in DHE to preserve the local geometry for 
dimension reduction. 

Hessian Eignmaps finds the (d+1)-dimensional null-
space of H f , where H f  is the Hessian matrix of a 

smooth mapping  f , i.e., :f M R .  This H f  can be 

calculated by using 
2

f i FM
H f H x dx  wherein 

f iH x  is the Hessian of f on the patch 

1 1, , , kiH i i i
X x x x  and the corresponding output in 

low-dimensional space is 1 1, , , kiH i i i
Y y y y . The 

tangent plane 
ixT M , a Euclidean space tangential to M at 

ix , is an orthogonal coordinate system. In order to estimate 

f iH x , we calculate the local coordinate system of H iX

and each sample in H iX  has its own local coordinate i

on the  tangent plane 
ixT M . Afterwards, this f iH x  can 

be estimated by using i .
However, Hessian Eigenmaps cannot be applied to many 

practical applications, e.g., face recognition because it 
requires that 1k d  where 1k  is the number of the 
neighbouring samples and d is the dimension of the 
subspace. It is difficult to guarantee this condition because 
we have a limited number of samples. We propose to 
overcome this problem by performing PCA on M  at ix
and orthnormalizing the d-dimensional representation to 
obtain the tangent coordinate in 

ixT M . The following 
steps for the modified Hessian Eigenmaps are similar to 
those in Hessian Eigenmaps. 

Under the patch alignment framework, the objective 
function for the modified Hessian Eigenmaps to preserve 
the local geometry on a local patch H iY  can be written as 

tr tr ,T T T
i f i f iH i H i H i H i H iH y Y H x H x Y Y L Y  (1) 

where T
f i f iH iL H x H x  encodes the local geometry 

information of the patch H iX  and iH y  is the local 

geometry representation. Under the help of H iL , local 
geometric information can be further preserved. 

2.2. Margin Maximization 

As for classification, however, it is insufficient to only 
retain the local geometry, because no labeling information is 
taken into account. To further exploit the discriminative 
power, like the definition of the local geometry, we can 
define a new margin maximization [13] based scheme for 
discriminative information preservation over patches. In 
particular, for each sample ix associated with a patch 

1 1 1 2
, , , , , ,k

ki i iM i i i
X x x x x x , wherein 1i

x ,…, 1ki
x , i.e.,

the 1k  nearest samples of ix , are from the same class as ix ,
and 

1i
x ,…,

2ki
x , i.e., the other 2k  nearest samples of ix , are 

from different classes against ix , we define the margin as 
the average difference between two kinds of distances on 
this patch. One is called inter-class distance, that is, the 
distance between ix  and samples taking different labels, i.e.,

1i
x ,…,

2ki
x ; the other is called intra-class distance, that is, 

the distance between ix  and samples sharing the same label, 
i.e., 1i

x ,…, 1ki
x . Basically, in the patch M iX ’s low-

dimensional representation 1 1 1 2
, , , , , ,k

ki i iM i i i
Y y y y y y ,

we expect the margin between intra-class and inter-class 
samples will be maximized as large as possible, i.e.,

                 
2 12 2

1 12 1

1 1
j

p

k k

i i i i
p j

y y y y
k k

.                   (2) 

On the other hand, based on (2), we try to minimize the 
bellowing objective function: 

1 2

1 2

1 2 1 2

1 2

22

1 11 2

1 1

          tr diag ,

          tr ,

j
p

k k

i i i ii
j p

T
k k T

i k k k kM i M i
k k

T
M i M i M i

M y y y y y
k k

e
Y w e I Y

I

Y L Y

(3) 

where 
1 2

1 1 2 21/ ,...,1/  , -1/k ,..., -1/k

Tk k

iw k k ;
1 2k kI is the 
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1 2 1 2k k k k  identity matrix ; 1 2

1 2
1,...,1 T k k

k ke R ;
1 2

1

diag

k k
T

i ij
jM i

i i

w w
L

w w

 and iM y  is the margin 

information representation. 

2.3. Discriminative Hessian Eigenmaps (DHE) 

By using the results obtained from the previous subsections, 
we can obtain the optimization framework to learn the 
projection matrix W , which can utilize both the local 
geometry and the discriminative information. Because the 
margin representation iM y  and the local geometry 

representation iH y  are defined over patches, and each 
patch has its own coordinate system, alignment strategy is 
adopted here to build a global coordinate for all patches 
defined for the training samples. As a consequence, the 
objective function for DHE to solve the dimension 
reduction problem is given by 

                   
1

arg min
D d

l

i i
W R i

W M y H y ,               (4) 

where  is the tuning parameter. If we define two selection 
matrixes H iS  and M iS , which select samples in the ith

patch from all the training samples 1 2, , ,L lY y y y  for 

constructing iM y  and iH y , respectively. Therefore, 

LH i H iY Y S  and LM i M iY Y S  with H iY  representing 

the patch for the local geometry preservation and M iY

denoting the patch for margin maximization. After plugging 
(1) and (3), the objective function in (4) will turn to 

1

1

tr
arg min                           5

tr

tr
    arg min

tr

    arg min tr

D d

D d

D d

T
l M i M i M i

TW R i
H i H i H i

T

L LM i M i M il

T
W R i

L LH i H i H i

T
M i M i M i

L
W R H i H

Y L Y
W

Y L Y

Y S L Y S

Y S L Y S

S L S
Y

S L1

    arg min tr ,
D d

l
T

LT
i i H i

T
L L

W R

Y
S

Y LY

where
1

l
T T

M i M i M i H i H i H i
i

L S L S S L S  is the 

alignment matrix encoding both the local geometry and the 
discriminative information. 

For linearization, T
L LY W X  is usually considered, 

where W  is the projection matrix. We can impose different 
constraints, e.g., T

LY Y I  or TW W I , to uniquely 
determine LY . The constraint  TW W I  will be adopted 
throughout the paper. Under this constraint and T

L LY W X ,
the solution of (5) can be obtained by using the 
conventional Lagrangian multiplier method [10] or the 
generalized eigenvalue decomposition [8]. 

3. EXPERIMENTS 

In this Section, we justify our proposed DHE algorithm with 
four representative dimension reduction algorithms, which 
are the Fisher’s linear discriminant analysis (FLDA) [2], the 
locality preservation projections (LPP) [4] with the 
supervised setting, the marginal Fisher’s analysis (MFA) 
[12] and discriminative locality alignment (DLA) [6] for 
face recognition based on a public database: CMU-PIE 
dataset [9]. 

Figure 1. Sample images from CMU-PIE database 

The CMU-PIE dataset contains 41,368 images of 68 
people under 13 different poses, 43 different illumination 
conditions, and 4 different expressions, and we randomly 
select 10 images per individual in the CMU-PIE dataset in 
this experiment. Example face images from the CMU-PIE 
database are shown in Figure 1. The images from CMU-PIE 
used for our experiments are of size 32x32 in raw pixel.  

In the training stage, we learn the projection matrix W
from each involved algorithm on the training samples. In the 
testing stage, each testing sample will be projected into the 
low-dimensional space by W and after that nearest-neighbor 
rule (NN) is applied to predict label of the test image in the 
selected subspace. 

We randomly select p (= 4, 5, 6) images per individual 
for training in the database, and use the remaining images 
for testing. All trials are repeated ten times, and then the 
average recognition rates are calculated. Figure 2 shows the 
results of DHE against FLDA, LPP, MFA and DLA with 
regard to face recognition accuracy under different 
dimensions. Table 1 provides the best recognition rate for 
each algorithm. It also provides the optimal values of 1k ,

2k , and  for DHE which are tuned by the cross validation. 
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As shown in Figure 2 and Table 1, DHE outperforms 
conventional algorithms or at least can obtain a comparable 
performance in comparing with the conventional algorithms, 
because DHE can precisely model both the intra-class 
geometry and the inter-class discriminative information in 
the local patch. 

4. CONCLUSION 

In this paper, we have proposed a novel linear dimension 
reduction algorithm, termed Discriminative Hessian 
Eigenmaps (DHE). DHE is superior to the conventional 
dimensionality reduction algorithms because it focuses on 
accurately modeling both the intra-class geometry and inter-
class discrimination in the local patch. Empirical studies on 
face recognition tasks demonstrate that DHE is more 
effective than conventional algorithms. 
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Figure 2.  Recognition rate vs. dimension reduction on the CMU-PIE database under different splits. 

Table 1. Best recognition rates (%) on CMU-PIE database. The numbers in the parentheses are 
       the subspace dimensions. For DHE, The numbers in the parentheses from left to right  

are the subspace dimensions, 1k , 2k and  respectively.
 FLDA LPP MFA DLA DHE 
4 Train 81.79(67) 82.33(68) 88.58(78) 86.50(39) 90.86(29,3,6,1)
5 Train 88.94(67) 89.38(67) 90.29(80) 90.94(62) 94.44(47,3,6,5)
6 Train 92.58(69) 93.17(67) 92.67(80) 93.46(34) 96.18(47,3,6,10) 
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