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Linear discriminant analysis (LDA) is a well-known scheme for supervised subspace learning. It has

been widely used in the applications of computer vision and pattern recognition. However, an intrinsic

limitation of LDA is the sensitivity to the presence of outliers, due to using the Frobenius norm to

measure the inter-class and intra-class distances. In this paper, we propose a novel rotational invariant

intra-class compactness and the inter-class separability by using the rotational invariant L1 norm

instead of the Frobenius norm. Based on the DCL1, three subspace learning algorithms (i.e., 1DL1, 2DL1,

and TDL1) are developed for vector-based, matrix-based, and tensor-based representations of data,

respectively. They are capable of reducing the influence of outliers substantially, resulting in a robust

classification. Theoretical analysis and experimental evaluations demonstrate the promise and

effectiveness of the proposed DCL1 and its algorithms.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, linear discriminant analysis (LDA) plays an
important role in supervised learning with many successful
applications of computer vision and pattern recognition. By
maximizing the ratio of the inter-class distance to the intra-class
distance, LDA aims to find a linear transformation to achieve the
maximum class discrimination. Many variations of LDA with
different properties have been proposed for discriminant sub-
space learning. The classical LDA [1,2] tries to find an optimal
discriminant subspace (spanned by the column vectors of a
projection matrix) to maximize the inter-class separability and
the intra-class compactness of the data samples in a low-
dimensional vector space. In general, the optimal discriminant
subspace can be obtained by performing the generalized eigen-
value decomposition on the inter-class and the intra-class scatter
matrices. However, an intrinsic limitation of the classical LDA is
that one of the scatter matrices is required to be nonsingular.
Unfortunately, the dimension of the feature space is typically
much larger than the size of the training set in many applications
(e.g., face recognition), resulting in the singularity of one of the
scatter matrices. This is well-known as the undersampled
problem (USP). In order to address the USP, Fukunaga [3] proposes
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a regularization method (RM) which adds perturbations to the
diagonal entries of the scatter matrices. But the solution obtained
by RM is not optimal. In recent years, many algorithms have been
developed to deal with the USP, including the direct linear
discriminant analysis (DLDA) [5] and the null-space linear
discriminant analysis (NLDA) [4]. NLDA extracts discriminant
information from the null space of the intra-class scatter matrix.
In comparison, DLDA extracts the discriminant information from
the null space of the intra-class scatter matrix after discarding the
null space of the inter-class scatter matrix. However, NLDA and
DLDA may lose discriminant information which may be useful for
classification. To fully utilize all the discriminant information
reflected by the intra-class and inter-class scatter matrices, Wang
and Tang [6] propose a dual-space LDA approach to make full use
of the discriminative information in the feature space. Another
approach to address the USP is to use PCA+LDA [7,8] to extract
the discriminant information (i.e., the data are pre-processed by
PCA before LDA). However, PCA+LDA may lose important
discriminant information in the stage of PCA.

More recent LDA algorithms work with higher-order tensor
representations. Ye et al. [9] propose a novel LDA algorithm (i.e.,
2DLDA) which works with the matrix-based data representation.
Also in [9], 2DLDA+LDA is proposed for further dimension
reduction by 2DLDA before LDA. Similar to [9], Li and Yuan [18]
use image matrices directly instead of vectors for discriminant
analysis. Xu et al. [19] propose a novel algorithm (i.e., Concurrent
Subspaces Analysis) for dimension reduction by encoding images
as 2nd or even higher order tensors. Vasilescu and Terzopoulos
[15] apply multilinear subspace analysis to construct a compact
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representation of facial image ensembles factorized by different
faces, expressions, viewpoints, and illuminations. Lei et al. [14]
propose a novel face recognition algorithm based on discriminant
analysis with a Gabor tensor representation. He et al. [11] present
a tensor-based algorithm (i.e., tensor subspace analysis) for
detecting the underlying nonlinear face manifold structure in
the manner of tensor subspace learning. Yan et al. [10] and Tao
et al. [13] propose their own subspace learning algorithms
(i.e., DATER [10] and GTDA [13]) for discriminant analysis with
tensor representations. Wang et al. [12] propose a convergent
solution procedure for general tensor-based subspace analysis.
Essentially, the aforementioned tensor-based LDA approaches per-
form well in uncovering the underlying data structures. As a result,
they are able to handle the undersampled problem (USP) effectively.

However, all the aforementioned LDA approaches utilize the
Frobenius norm to measure the inter-class and intra-class
distances. In this case, their training processes may be dominated
by outliers since the inter-class or intra-class distance is
determined by the sum of squared distances. To reduce the
influence of outliers, we propose a novel rotational invariant L1

norm (referred to as R1 norm [16,17]) based discriminant criterion
called DCL1 for robust discriminant analysis. Further, we develop
three DCL1-based discriminant algorithms (i.e., 1DL1, 2DL1, and
TDL1) for vector-based, matrix-based, and tensor-based represen-
tations of data, respectively. In contrast to the classical LDA [1],
2DLDA [9], and DATER [10], the developed 1DL1, 2DL1, and TDL1

can reduce the influence of outliers substantially.
1.1. Related work

Pang et al. [20] propose a L1-norm-based tensor analysis (TPCA-L1)
algorithm which is robust to outliers. Compared to conventional
tensor analysis algorithms, TPCA-L1 is more efficient due to its
eigendecomposition-free property. Zhou and Tao [21] present a
gender recognition algorithm called manifold elastic net (MEN). The
algorithm can obtain a sparse solution to supervised subspace
learning by using L1 manifold regularization. Especially in the cases
of small training sets and lower-dimensional subspaces, it achieves
better classification performances against traditional subspace learn-
ing algorithms. Pang and Yuan [22] develop an outlier-resiting graph
embedding framework (referred to as LPP-L1) for subspace learning.
The framework is not only robust to outliers, but also performs well
in handling the USP. Zhang et al. [23] propose a discriminative locality
alignment (DLA) algorithm for subspace learning. It takes advantage
of discriminative subspace selection for distinguishing the dimension
reduction contribution of each sample, and preserves discriminative
information over local patches of each sample to avoid the USP. Liu
et al. [24] make a semi-supervised extension of linear dimension
reduction algorithm called transductive component analysis (TCA)
and orthogonal transductive component analysis (OTCA), which
leverage the intra-class smoothness and the inter-class separability
by building two sorts of regularized graphs. Tao et al. [25] propose
three criteria for subspace selection. As for the c-class classification
task, these three criteria is able to effectively stop the merging of
nearby classes in the projection to a subspace of the feature space if
the dimension of the projected subspace is strictly lower than c�1.
Tao et al. [26] incorporate tensor representation into existing
supervised learning algorithms, and present a supervised tensor
learning (STL) framework to overcome the USP. Furthermore, several
convex optimization techniques and multilinear operations are used
to solve the STL problem.

The remainder of the paper is organized as follows. In Sec-
tion 2, the Frobenius and R1 norms are briefly reviewed. In Section
3, a brief introduction to Linear Discriminant Analysis using the
Frobenius norm is given. In Section 4, the details of the proposed
DCL1 and its algorithms (1DL1, 2DL1, and TDL1) are described.
Experimental results are reported in Section 5. The paper is
concluded in Section 6.
2. Frobenius and R1 norms

Given K data samples X ¼ fwkg
K
k ¼ 1 with wk ¼ ðx
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The rotational invariant L1 norm (i.e., R1 norm) is defined as
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When n¼1, the above norms are vector-based; when n¼2, they
are matrix-based; otherwise, they are tensor-based. In the
Euclidean space, the Frobenius norm has a fundamental proper-
ty—rotational invariance. In comparison, the R1 norm has the
following properties: (1) triangle inequality; (2) rotational invar-
iance, as emphasized in [16]. For convenience, we call JwkJ

(s.t. 1rkrK) as an element of the above norms. Clearly, the
Frobenius norm is determined by the sum of the squared elements,
i.e.,

PK
k ¼ 1 JwkJ

2. In this case, the squared large elements dominate
the sum

PK
k ¼ 1 JwkJ

2. Consequently, the Frobenius norm is sensitive
to outliers. In comparison, the R1 norm is determined by the sum of
elements (i.e.,

PK
k ¼ 1 JXkJ) without being squared. Thus, the R1

norm is less sensitive to outliers than the Frobenius norm [16].
3. Linear discriminant analysis using the Frobenius norm

3.1. The classical LDA

Given the L-class training samples D¼ ffy‘i g
N‘

i ¼ 1g
L
‘ ¼ 1 with

y‘i AR
D�1 and N¼

PL
‘ ¼ 1 N‘ , the classical LDA [1,2] aims to find

a linear transformation UARD�z which embeds the original
D-dimensional vector y‘i into the z-dimensional vector space U
such that zoD. Let Trð�Þ be the trace of its matrix argument, SUb be
the inter-class scatter matrix in U , and SUw be the intra-class scatter
matrix in U . Thus, the inter-class and intra-class distances in U
are, respectively, measured by TrðSUb Þ and TrðSUwÞ, which are
formulated as:

TrðSUb Þ ¼
XL

‘ ¼ 1

N‘TrðUT ðm‘�mÞðm‘�mÞT UÞ

¼
XL
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2
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where B� ¼ fb‘gL‘ ¼ 1 with b‘ being
ffiffiffiffiffiffi
N‘

p
UT ðm‘�mÞ, W� ¼

ffwi‘g
N‘

i ¼ 1g
L
‘ ¼ 1 with wi‘ being UT ðy‘i�m‘Þ, m‘ ¼ ð1=N‘Þ

PN‘

i ¼ 1 y‘i is
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the mean of the samples belonging to the ‘th class, and
m¼ ð1=NÞ

PL
‘ ¼ 1 N‘m‘ is the global mean of the training samples.

The classical LDA aims to find an optimal transformation U by
maximizing TrðSUb Þ and minimizing TrðSUwÞ simultaneously. Ac-
cordingly, we have the following optimization problem:

max
U

TrðSUb Þ

TrðSUwÞ
¼max

U

PL
‘ ¼ 1 N‘JUT ðm‘�mÞJ2PL

‘ ¼ 1

PN‘

i ¼ 1 JUT ðy‘i�m‘ÞJ
2
¼max

U

JB�J2

JW�J2
: ð5Þ

Typically, the solutions to the above optimization problem can be
obtained by performing the following generalized eigenvalue
decomposition: SU

b x¼ lSU
wx, s.t. la0, where SU

b ¼
PL

‘ ¼ 1

N‘ðm‘�mÞðm‘�mÞT and SU
w ¼

PL
‘ ¼ 1

PN‘

i ¼ 1ðy
‘
i�m‘Þðy‘i�m‘Þ

T . For
convenience, let B denote the matrix ðSU

wÞ
�1SU

b . Indeed, the optimal
transformation U is formed by the z eigenvectors of B corresponding
to its z largest nonzero eigenvalues.

3.2. 2DLDA

Given the L-class training samples D¼ ffY‘
i g

N‘

i ¼ 1g
L
‘ ¼ 1 with

Y‘i ARD1�D2 and N¼
PL

‘ ¼ 1 N‘ , 2DLDA [9] is an image-as-matrix
learning technique for discriminant analysis in the ðz1 � z2Þ-
dimensional space U1#U2 (# denotes the tensor product) such
that zioDi for 1r ir2. Suppose that U1 and U2 are spanned by
the column vectors of U1ARD1�z1 and U2ARD2�z2 , respectively.
Thus, the low-dimensional representation of Y‘

i AR
D1�D2 in

U1#U2 is formulated as UT
1 Y‘

i U2ARz1�z2 . Furthermore, we define
SUb and SUw as the inter-class andintra-class scatter matrices in the
low-dimensional space U1#U2, respectively. Like the classical
LDA, 2DLDA uses the traces TrðSUb Þ and TrðSUwÞ in U1#U2 to
measure the inter-class and intra-class distances, respectively.
Consequently, 2DLDA aims to find the optimal transformations U1

and U2 from

max
Uk j

2
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where B3 ¼ fB‘gL‘ ¼ 1 with B‘ being
ffiffiffiffiffiffi
N‘

p
UT

1 ðM‘�MÞU2, W3 ¼

ffWi‘g
N‘

i ¼ 1g
L
‘ ¼ 1 with Wi‘ being UT

1 ðY
‘
i �M‘ÞU2, M‘ ¼ ð1=N‘Þ

PN‘

i ¼ 1 Y‘
i

is the mean of the samples belonging to the ‘th class, and
M¼ ð1=NÞ

PL
‘ ¼ 1 N‘M‘ is the global mean of the training samples.

However, the problem of computing the optimal U1 and U2

simultaneously is intractable. Consequently, 2DLDA adopts an
iterative procedure to compute the optimal U1 and U2 asynchro-
nously [9].

3.3. Discriminant analysis with tensor representation (DATER)

Given the L-class training samples D¼ ffY‘i g
N‘

i ¼ 1g
L
‘ ¼ 1 with

Y‘i ARD1�D2 ����Dn and N¼
PL

‘ ¼ 1 N‘ , DATER [10] is a tensor-based
learning technique for discriminant analysis in the
ðz1 � z2 � � � � znÞ-dimensional space U1#U2 � � �#Un such that
zioDi for 1r irn. Let UkARDk�zk ð1rkrnÞ denote the transfor-
mation matrix whose column vectors span the space Uk. DATER
aims to pursue multiple interrelated transformation matrices (i.e.,
Uk for 1rkrn), which maximize the inter-class distances while
minimizing the intra-class distances under the tensor metric.
More specifically, the criterion for DATER is formulated as

max
Uk j

n
k ¼ 1

PL
‘ ¼ 1 N‘JðM‘�MÞ�1U1 � � � �nUnJ

2PL
‘ ¼ 1

PN‘

i ¼ 1 JðY
‘
i�M‘Þ�1U1 � � � �nUnJ

2
¼ max

Uk j
n
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JBWJ2
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where BW ¼ fB‘gL‘ ¼ 1 with B‘ being
ffiffiffiffiffiffi
N‘

p
ðM‘�MÞ�1U1 � � � �nUn,

WW ¼ ffW i‘g
N‘

i ¼ 1g
L
‘ ¼ 1 with W i‘ being ðY‘i�M‘Þ�1U1 � � � �nUn,

M‘ ¼ ð1=N‘Þ
PN‘

i ¼ 1 Y
‘
i is the mean of the samples belonging to

the ‘th class, andM¼ ð1=NÞ
PL

‘ ¼ 1 N‘M‘ is the global mean of the
training samples. In [10], a novel algorithm called k-mode cluster-

based discriminant analysis (referred to as KCDA) is developed to
iteratively learn the transformation matrices (i.e., Ukj

n
k ¼ 1) by

unfolding the tensor along different tensor dimensions. More
specifically, KCDA aims to optimize the problem: maxUk

TrðUT
k SBUkÞ=TrðUT

k SW UkÞ, whereSB and SW denote the inter-class
and intra-class scatters of the k-mode unfolding matrices,
respectively [10].
4. Linear discriminant analysis using the R1 norm

4.1. R1 norm based discriminant criterion (DCL1)

In the classical LDA, 2DLDA, and DATER, the Frobenius norm is
applied to characterize the inter-class separability and intra-class
compactness. Due to its sensitivity to outliers, the Frobenius norm
is incompetent for robust discriminant analysis. In order to
address this problem, we propose a novel R1 norm based
discriminant criterion called DCL1, which uses the R1 norm to
replace the Frobenius norm as the cost function. As a result, the
proposed DCL1 is less sensitive to outliers. The details of DCL1 are
described as follows.

In contrast to the Frobenius norm based discriminant criteria
(i.e., Eqs. (5)–(7)), the DCL1s for vector-based, matrix-based,
and tensor-based representations of data are, respectively,
formulated as

max
U
J a ¼ ð1�aÞJBu�JR1

�aJWu�JR1
, ð8Þ

max
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where a, b, and g are three control coefficients such that
0oa,b,go1, Bu� ¼ fbu‘gL‘ ¼ 1 with bu‘ being N‘UT ðm‘�mÞ,
Wu� ¼ ffwui‘g

N‘

i ¼ 1g
L
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L
‘ ¼ 1 with Wui‘ being

ðY‘i�M‘Þ�1U1 � � � �nUn. According to the properties of the R1

norm, Eqs. (8)–(10) can be rewritten as:
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Based on Eqs. (11)–(13), three DCL1-based subspace learning
algorithms (i.e., 1DL1, 2DL1, and TDL1) are further developed
for vector-based, matrix-based, and tensor-based representations
of data, respectively. The details of the three algorithms are given
as follows.
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4.2. 1DL1

1DL1 aims to find the optimal transformation matrix UARD�z

(z is the final lower dimension) to maximize the objective
function J a in Eq. (11). It is noted that UARD�z is an orthogonal
matrix such that UT U ¼ Iz with Iz being a z� z identity matrix.
Consequently, we have the following constrained optimization
problem:

max
U
J a, s:t: UT U ¼ Iz,

¼)max
U
La ¼J aþ

1

2
Tr½LðIz�UT UÞ�, ð14Þ

where the Lagrange multiplier L is a diagonal matrix and J a is
defined in Eq. (11). For simplicity, we rewrite J a as

Ja ¼ ð1�aÞ
XL
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T UÞ
q

: ð15Þ

According to the Karush–Kuhn–Tucker (KKT) conditions for the
optimal solution, we have

@La
@U
¼ FaU�UL¼ 0 ¼) FaU ¼UL, ð16Þ

where

Fa ¼ ð1�aÞ
XL

‘ ¼ 1

N‘ðm‘�mÞðm‘�mÞTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðUT ðm‘�mÞðm‘�mÞT UÞ

q
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T UÞ

q : ð17Þ

In this way, we derive an iterative algorithm for computing the
optimal U. More specifically, given the current U, we can update
the U by performing the eigenvalue decomposition FaU ¼UL. The
specific procedure of 1DL1 is listed in Fig. 1.
4.3. 2DL1

2DL1 aims to find two optimal transformation matrices (i.e.,
Ukj

2
k ¼ 1AR

Dk�zk with z1 � z2 being the final lower dimensions) to
maximize the objective function J b in Eq. (12). It is noted that Uk
Fig. 1. The specific procedure of the 1DL1.
ð1rkr2Þ is an orthogonal matrix such that UT
k Uk ¼ Izk

with Izk

being a zk � zk identity matrix. Thus, we have the following
constrained optimization problem:

max
Uk j

2
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and kAf1,2g
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2
k ¼ 1

Lb ¼J bþ
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2
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k ¼ 1

Tr½OkðIzk
�UT

k UkÞ�, ð18Þ

where the Lagrange multiplier Ok (1rkr2) is a diagonal matrix
and J b is defined in Eq. (12). For simplicity, we rewrite Lb as

J b ¼ ð1�bÞ
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2 ðM‘�MÞT U1Þ

q

�b
XL

‘ ¼ 1

XN‘

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðUT

1 ðY
‘
i �M‘ÞU2UT

2 ðY
‘
i �M‘Þ

T U1Þ

q
: ð19Þ

According to the Karush–Kuhn–Tucker (KKT) conditions for
the optimal solution and the property Tr(AB)¼Tr(BA), we
have

@Lb
@U1
¼ Fb1

U1�U1O1 ¼ 0,
@Lb
@U2
¼ Fb2

U2�U2O2 ¼ 0;

¼)Fb1
U1 ¼U1O1, Fb2

U2 ¼U2O2; ð20Þ

where

Fb1
¼ ð1�bÞ

XL

‘ ¼ 1

N‘ðM‘�MÞU2UT
2 ðM‘�MÞT

TrðUT
1 ðM‘�MÞU2UT

2 ðM‘�MÞT U1Þ

�b
XL

‘ ¼ 1

XN‘

i ¼ 1

ðY‘
i �M‘ÞU2UT

2 ðY
‘
i �M‘Þ

T

TrðUT
1 ðY

‘
i �M‘ÞU2UT

2 ðY
‘
i �M‘Þ

T U1Þ
, ð21Þ

Fb2
¼ ð1�bÞ

XL

‘ ¼ 1

N‘ðM‘�MÞT U1UT
1 ðM‘�MÞ

TrðUT
2 ðM‘�MÞT U1UT

1 ðM‘�MÞU2Þ

�b
XL

‘ ¼ 1

XN‘

i ¼ 1

ðY‘
i �M‘Þ

T U1UT
1 ðY

‘
i �M‘Þ

TrðUT
2 ðY

‘
i �M‘Þ

T U1UT
1 ðY

‘
i �M‘ÞU2Þ

: ð22Þ

Consequently, we derive an iterative algorithm for computing
the optimal Ukj

2
k ¼ 1. More specifically, given the current Ukj

2
k ¼ 1,

we can update the Uk iteratively by performing the eigenvalue
Fig. 2. The specific procedure of the 2DL1.
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decomposition Fbk
Uk ¼UkOk in Eq. (20). The specific procedure

of 2DL1 is listed in Fig. 2.
Fig. 3. The specific procedure of the TDL1.
4.4. TDL1

TDL1 aims to seek for n optimal transformation matrices (i.e.,
Ukj

n
k ¼ 1AR

Dk�zk with z1 � z2 � � � � zn being the final lower dimen-
sions) to maximize the objective function J g in Eq. (13). It is
noted that Uk (1rkrn) is an orthogonal matrix such that
UT

k Uk ¼ Izk
with Izk

being a zk � zk identity matrix. For convenience,
define G‘k as ðM‘�MÞ�1U1 � � � �k�1Uk�1�kþ1Ukþ1 � � � �nUn, define
G‘
ðkÞ as the k-mode unfolding matrix of G‘k, define H‘

k as
ðY‘i�M‘Þ�1U1 � � � �k�1Uk�1�kþ1Ukþ1 � � � �nUn, and define H‘

ðkÞas
the k-mode unfolding matrix of H‘

k. Thus, the objective function
J g in Eq. (13) can be rewritten as

J g ¼ ð1�gÞ
XL

‘ ¼ 1

N‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JG‘k�kUkJ

2
q

�g
XL

‘ ¼ 1

XN‘

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JH‘

k�kUkJ
2

q

¼ ð1�gÞ
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‘ ¼ 1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðUkÞ

T G‘
ðkÞJ

2
q

�g
XL

‘ ¼ 1

XN‘

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðUkÞ

T H‘
ðkÞJ

2
q

¼ ð1�gÞ
XL

‘ ¼ 1

N‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrððUkÞ

T G‘
ðkÞðG

‘
ðkÞÞ

T UkÞ

q

�g
XL

‘ ¼ 1

XN‘

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrððUkÞ

T H‘
ðkÞðH

‘
ðkÞÞ

T UkÞ

q
: ð23Þ

Refer to [10] for the details of the aforementioned tensor
operations. Consequently, we have the following constrained
optimization problem:

max
Uk j

n
k ¼ 1

J g, s:t: UT
k Uk ¼ Izk

and kAf1,2, . . . ,ng

¼)max
Uk j

n
k ¼ 1

Lg ¼J gþ
1

2

Xn

k ¼ 1

Tr½GkðIzk
�UT

k UkÞ�, ð24Þ

where the Lagrange multiplier Gk ð1rkrnÞ is a diagonal matrix.
According to the Karush–Kuhn–Tucker (KKT) conditions for the
optimal solution, we have

@Lg
@Uk
¼ Fgk

Uk�UkGk ¼ 0 ¼) Fgk
Uk ¼UkGk, ð25Þ

where

Fgk
¼ ð1�gÞ

XL

‘ ¼ 1

N‘G
‘
ðkÞðG

‘
ðkÞÞ

Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrððUkÞ

T G‘
ðkÞðG

‘
ðkÞÞ

T UkÞ

q

�g
XL

‘ ¼ 1

XN‘

i ¼ 1

H‘
ðkÞðH

‘
ðkÞÞ

Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrððUkÞ

T H‘
ðkÞðH

‘
ðkÞÞ

T UkÞ

q : ð26Þ

As a result, an iterative strategy is adopted to compute the
optimal Ukj

n
k ¼ 1. The specific procedure of TDL1 is listed in Fig. 3.
4.5. Convergence analysis

Since TDL1 is a higher-order generalization of 1DL1 and 2DL1,
we only need to make a convergence analysis of TDL1 in theory.
Based on [26], we give the convergence proof of TDL1 as follows.
For convenience, we can reformulate the objective function of
TDL1 as J g ¼ f ðU1,U2, . . . ,UnÞ ¼ f ðUkj

n
k ¼ 1Þ. Here, f is a continuous

function defined as:

f : U1 � U2 � � � � � Un ¼ �
k ¼ 1

nUk-R, ð27Þ
where UkAUk and Uk is the set which includes all possible Uk.
According to Eq. (27), f has n different mappings formulated as

U�k ¼
W

arg max
Uk AUk

f ðUkj
n
k ¼ 1Þ

¼ arg max
Uk AUk

f ðUk;Ulj
k�1
l ¼ 1,Ulj

n
l ¼ kþ1Þ, ð28Þ

where 1rkrn. The solution Uk
* to Eq. (28) can be computed with

the given Ulj
k�1
l ¼ 1 in the t-th iteration and Ulj

n
l ¼ kþ1 in the (t�1)-th

iteration of the for-loop in Step 5 in Fig. 3. Given an initial solution
UkAUk for 1rkrn, the optimization procedure of Eq. (28) can
generate a sequence of items fU�k,tj1rkrng. The sequence has the
following relationship:

f ðU�1,1Þr f ðU�2,1Þ

r � � �r f ðU�n,1Þr f ðU�1,2Þ

r � � �r f ðU�1,tÞr f ðU�2,tÞ

r � � �r f ðU�1,TÞr f ðU�2,TÞ

r � � �r f ðU�n,TÞ: ð29Þ

As T-þ1, f increases monotonically. On the other hand, the
upper bound of the TDL1’s objective function can be analyzed as
follows:

JJ gJ¼ Jf ðUkj
n
k ¼ 1ÞJ¼ Jð1�gÞ

XL

‘ ¼ 1

N‘A‘þg
XL

‘ ¼ 1

XN‘

i ¼ 1

Bi
‘J, ð30Þ

where A‘ ¼ JðM‘�MÞ�1U1 � � � �nUnJ and Bi
‘ ¼ JðY‘i�M‘Þ�1U1 � � �

�nUnJ. Apparently, the following relationship holds:

Jf ðUkj
n
k ¼ 1ÞJr ð1�gÞ

XL
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N‘JA‘Jþg
XL

‘ ¼ 1

XN‘

i ¼ 1

JBi
‘J

r
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k ¼ 1
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 !
ð1�gÞ
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‘ ¼ 1
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 !

r
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k ¼ 1

ffiffiffiffiffi
zk

p !
max

XL

‘ ¼ 1

N‘JM‘�MJ,
XL

‘ ¼ 1

XN‘

i ¼ 1

JY‘i�M‘J

 !
: ð31Þ

Consequently, the TDL1’s objective function has an upper bound.
According to Eqs. (29) and (31), it is proved that TDL1 converges.
5. Experiments

In order to evaluate the performances of the proposed
algorithms, five datasets are used in the experiments. The first
dataset is a toy set composed of ten samples categorized into two



Fig. 4. Exemplar training images for each person with five representative ‘‘real’’ images and one representative outlier image.

Fig. 5. Learning performances of 1DL1 and the classical LDA over the toy dataset. (a) shows the original dataset with an outlier. (b) and (c) display the discriminant learning

results of 1DL1 and the classical LDA, respectively.

Fig. 6. Class-by-class learning performances of 1DL1 and the classical LDA over the

20 Newsgroups text dataset.
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classes with an additional outlier sample. The second dataset is
the 20 Newsgroups text dataset,1 which consists of 18 941
documents from 20 classes. To efficiently make classification
performance evaluations, we randomly split this text dataset into
20 subsets, each of which is generated by randomly selecting 20%
of the original samples class by class. The other three benchmark
datasets are three face recognition datasets: ORL, Yale, and PIE,
respectively. More specifically, ORL2 consists of 400 face images of
40 persons. Each person has 10 images. Yale3 is composed of 165
images of 15 persons. Each person has 11 images. PIE is a subset of
the CMU-PIE face dataset.4 This sub-dataset contains 11560
images of 68 persons. Each person has 170 images.

Three experiments are conducted to demonstrate the superiority
of the proposed 1DL1, 2DL1, and TDL1. Specifically, the first two
datasets (i.e., toy and 20 Newsgroups) are, respectively, used in the
first two experiments. The three face datasets (i.e., ORL, Yale, and
PIE) are used in the last experiment. In the experiments, each image
is normalized to 32�32 pixels. For DATER and TDL1, 40 Gabor
features with five different scales and eight different directions are
extracted for each image encoded as a 3rd order Gabor tensor of size
32�32�40. Furthermore, a, b, and g, respectively, in 1DL1, 2DL1,
and TDL1 are set to 0.20, 0.15, and 0.30, respectively. T�max, T3

max, and
TW

max, respectively, in 1DL1, 2DL1, and TDL1 are all set to 20. In order
to better evaluate the effectiveness of the various descriptors, the
simple 1-nearest-neighbor (1NN) classifier is used for final classi-
fication. Moreover, 5-fold cross validation is used for quantitative
classification performance evaluations. For each person, several
white noise images are generated as outlier training images. For a
better illustration, some exemplar training images are shown in
1 Available at: http://people.csail.mit.edu/jrennie/20Newsgroups/
2 Available at: http://www.cl.cam.ac.uk/research/dtg/attarchive/facesataglance.

html
3 Available at: http://cvc.yale.edu/projects/yalefaces/yalefaces.html
4 Available at: http://www.ri.cmu.edu/projects/project_418.html
Fig. 4, including one representative outlier image and five
representative ‘‘real’’ images selected from the training dataset.

The first experiment over the toy dataset (as shown in
Fig. 5(a)) is to compare the dimension reduction performances
between 1DL1 and the classical LDA. In order to demonstrate the
effectiveness (i.e., insensitivity to outliers) of 1DL1, we
intentionally include the outlier sample (plotted as ‘‘*’’ at the
top-right corner of Fig. 5(a)) into the training samples of Class 1
before the binary classification. For 1DL1, D is equal to 2, and z is
set as 1. For the classical LDA, z is also set as 1. The final learning
results are plotted as two 1-dimensional signals in Figs. 5(b) and
(c) corresponding to 1DL1 and the classical LDA, respectively. In
Figs. 5(b) and (c), the pentacle-like and diamond-like samples
correspond to the samples of Classes 1 and 2, respectively, after
the step of dimension reduction. Clearly, the inter-class scatter
(i.e., 0.51) of the two-class samples except for the outlier sample
in Fig. 5(b) is much larger than that (i.e., 0.01) in Fig. 5(c).

The second experiment is to evaluate the classification
performances of 1DL1 and the classical LDA over the subsets

http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.cl.cam.ac.uk/research/dtg/attarchive/
http://www.cl.cam.ac.uk/research/dtg/attarchive/
http://cvc.yale.edu/projects/yalefaces/yalefaces.html
http://www.ri.cmu.edu/projects/project_418.html


Fig. 7. Classification results of different learning methods. The x-axis corresponds to the learning method while the y-axis is associated with the average classification

accuracy after 5-fold cross validation. (a), (b), and (c) correspond to the three datasets—ORL, Yale, and PIE, respectively.
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Fig. 8. Classification performance of 2DL1. This figure plots the average classification accuracy curve of 2DL1 in different cases of b.
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of the 20 Newsgroups text dataset. In this dataset, each
document is represented as a 26214-dimensional term fre-
quency (TF) feature vector. Since each TF feature point lies in a
high-dimensional nonlinear feature space, we need to embed it
into a low-dimensional linear feature space. Motivated by this,
a graph-based dimension reduction technique (i.e. Laplacian
eigenmaps [27]) is used. The edge weight of the adjacency
graph is computed as the cosine similarity, i.e., A � B=JAJJBJ. In
practice, the embedding dimension is 50. In this case, linear
discriminant analysis by 1DL1 and the classical LDA is
performed in the 50-dimensional feature space. The final
classification results are shown in Fig. 6, where x-axis
corresponds to the class index and y-axis is associated with
the classification accuracy. Clearly, 1DL1 always performs better
than the classical LDA. Quantitatively, the relative gain of 1DL1

vs. the classical LDA is 22.91% on average.
The last experiment over the three datasets (i.e., ORL, Yale, and

PIE) is to compare the classification performances of 1DL1, 2DL1, and
TDL1 with those of the classical LDA, 2DLDA, and DATER,
respectively. For 1DL1, D is equal to 1024, and z is set as 26. For
2DL1, both D1 and D2 are equal to 32. z1 and z2 are both set as 18. For
TDL1, D1, D2, and D3 are equal to 32, 32, and 40. z1, z2, and z3 are all
set as 18. For the classical LDA, 2DLDA, and DATER, the correspond-
ing settings of z, zkj

2
k ¼ 1, and z‘j3‘ ¼ 1 are the same as those for 1DL1,

2DL1, and TDL1, respectively. The final learning results are shown in
Figs. 7(a)–(c) corresponding to ORL, Yale, and PIE, respectively. From
Figs. 7(a)–(c), it is clear that the classification accuracies of the
proposed 1DL1, 2DL1, and TDL1 are much higher than those of the
classical LDA, 2DLDA, and DATER. Also, it is seen from Figs. 7(a)–(c)
that the classification performances of the different data
representations follow the descending order of the tensor-based,
matrix-based, and vector-based ones.

Furthermore, we give a face classification example over ORL
using 2DL1. This example aims to make performance evaluations
of 2DL1 in the following aspects: (i) the sensitivity to b; (ii) the
reconstruction effect. For (i), b is selected from nineteen different
numbers within the range of [0.05, 0.95]. The interval between
two adjacent numbers is fixed to be 0.05. For each number, 2DL1 is
implemented to learn two projection matrices—U1 and U2. Using
the 1-Nearest-Neighbor classifier and 5-fold cross validation
technique, we obtain the average classification accuracy, as
shown in Fig. 8. Clearly, it is seen that 2DL1 is insensitive to
b. For (ii), the reconstruction image of Y is obtained by:
Y¼U1UT

1YU2UT
2 . For a better illustration, we compare the

reconstruction performances of 2DLDA and 2DL1. The final
reconstruction result is displayed in Fig. 9. Apparently, 2DL1 is
robust to outliers while 2DLDA is affected by outliers.

In summary, we observe that 1DL1, 2DL1, and TDL1 substan-
tially outperform the classical LDA, 2DLDA, and DATER in the
presence of outliers, owing to the proposed discriminant criterion
DCL1. Therefore, 1DL1, 2DL1, and TDL1 are really promising
algorithms for supervised subspace learning.



Fig. 9. Reconstruction performances of 2DL1 and 2DLDA. Each red box corresponds to a person. The first row of the box shows one representative outlier image and five

representative face images selected from the training dataset; the second row displays the reconstruction images by 2DL1; the last row exhibits the reconstruction images

by 2DLDA. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Li et al. / Neurocomputing 73 (2010) 2571–25792578
6. Conclusion

In this paper, we have proposed a novel discriminant
criterion called DCL1 that better characterizes the intra-class
compactness and the inter-class separability by using the R1

norm instead of the Frobenius norm. Based on the DCL1, three
subspace learning algorithms (1DL1, 2DL1, and TDL1) have been
developed for the vector-based, matrix-based, tensor-based
representations of data, respectively. Compared with the
classical LDA [1], 2DLDA [9], and DATER [10], the developed
1DL1, 2DL1, and TDL1 are able to reduce the influence of outliers
substantially. Experimental results have demonstrated the
superiority of the proposed DCL1 and its algorithms in the
existing literature.
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