408 research outputs found

    Learning Ground Traversability from Simulations

    Full text link
    Mobile ground robots operating on unstructured terrain must predict which areas of the environment they are able to pass in order to plan feasible paths. We address traversability estimation as a heightmap classification problem: we build a convolutional neural network that, given an image representing the heightmap of a terrain patch, predicts whether the robot will be able to traverse such patch from left to right. The classifier is trained for a specific robot model (wheeled, tracked, legged, snake-like) using simulation data on procedurally generated training terrains; the trained classifier can be applied to unseen large heightmaps to yield oriented traversability maps, and then plan traversable paths. We extensively evaluate the approach in simulation on six real-world elevation datasets, and run a real-robot validation in one indoor and one outdoor environment.Comment: Webpage: http://romarcg.xyz/traversability_estimation

    Alignment control using visual servoing and mobilenet single-shot multi-box detection (SSD): a review

    Get PDF
    The concept is highly critical for robotic technologies that rely on visual feedback. In this context, robot systems tend to be unresponsive due to reliance on pre-programmed trajectory and path, meaning the occurrence of a change in the environment or the absence of an object. This review paper aims to provide comprehensive studies on the recent application of visual servoing and DNN. PBVS and Mobilenet-SSD were chosen algorithms for alignment control of the film handler mechanism of the portable x-ray system. It also discussed the theoretical framework features extraction and description, visual servoing, and Mobilenet-SSD. Likewise, the latest applications of visual servoing and DNN was summarized, including the comparison of Mobilenet-SSD with other sophisticated models. As a result of a previous study presented, visual servoing and MobileNet-SSD provide reliable tools and models for manipulating robotics systems, including where occlusion is present. Furthermore, effective alignment control relies significantly on visual servoing and deep neural reliability, shaped by different parameters such as the type of visual servoing, feature extraction and description, and DNNs used to construct a robust state estimator. Therefore, visual servoing and MobileNet-SSD are parameterized concepts that require enhanced optimization to achieve a specific purpose with distinct tools

    Virtual Structure Based Formation Tracking of Multiple Wheeled Mobile Robots: An Optimization Perspective

    Get PDF
    Today, with the increasing development of science and technology, many systems need to be optimized to find the optimal solution of the system. this kind of problem is also called optimization problem. Especially in the formation problem of multi-wheeled mobile robots, the optimization algorithm can help us to find the optimal solution of the formation problem. In this paper, the formation problem of multi-wheeled mobile robots is studied from the point of view of optimization. In order to reduce the complexity of the formation problem, we first put the robots with the same requirements into a group. Then, by using the virtual structure method, the formation problem is reduced to a virtual WMR trajectory tracking problem with placeholders, which describes the expected position of each WMR formation. By using placeholders, you can get the desired track for each WMR. In addition, in order to avoid the collision between multiple WMR in the group, we add an attraction to the trajectory tracking method. Because MWMR in the same team have different attractions, collisions can be easily avoided. Through simulation analysis, it is proved that the optimization model is reasonable and correct. In the last part, the limitations of this model and corresponding suggestions are given

    Online Mapping-Based Navigation System for Wheeled Mobile Robot in Road Following and Roundabout

    Get PDF
    A road mapping and feature extraction for mobile robot navigation in road roundabout and road following environments is presented in this chapter. In this work, the online mapping of mobile robot employing the utilization of sensor fusion technique is used to extract the road characteristics that will be used with path planning algorithm to enable the robot to move from a certain start position to predetermined goal, such as road curbs, road borders, and roundabout. The sensor fusion is performed using many sensors, namely, laser range finder, camera, and odometry, which are combined on a new wheeled mobile robot prototype to determine the best optimum path of the robot and localize it within its environments. The local maps are developed using an image’s preprocessing and processing algorithms and an artificial threshold of LRF signal processing to recognize the road environment parameters such as road curbs, width, and roundabout. The path planning in the road environments is accomplished using a novel approach so called Laser Simulator to find the trajectory in the local maps developed by sensor fusion. Results show the capability of the wheeled mobile robot to effectively recognize the road environments, build a local mapping, and find the path in both road following and roundabout

    Combined Sampling and Optimization Based Planning for Legged-Wheeled Robots

    Full text link
    Planning for legged-wheeled machines is typically done using trajectory optimization because of many degrees of freedom, thus rendering legged-wheeled planners prone to falling prey to bad local minima. We present a combined sampling and optimization-based planning approach that can cope with challenging terrain. The sampling-based stage computes whole-body configurations and contact schedule, which speeds up the optimization convergence. The optimization-based stage ensures that all the system constraints, such as non-holonomic rolling constraints, are satisfied. The evaluations show the importance of good initial guesses for optimization. Furthermore, they suggest that terrain/collision (avoidance) constraints are more challenging than the robot model's constraints. Lastly, we extend the optimization to handle general terrain representations in the form of elevation maps

    Cooperative Carrying Control for Mobile Robots in Indoor Scenario

    Get PDF
    openIn recent years, there has been a growing interest in designing multi-robot systems to provide cost-effective, fault-tolerant and reliable solutions to a variety of automated applications. In particular, from an industrial perspective, cooperative carrying techniques based on Reinforcement Learning (RL) gained a strong interest. Compared to a single robot system, this approach improves the system’s robustness and manipulation dexterity in the transportation of large objects. However, in the current state of the art, the environments’ dynamism and re-training procedure represent a considerable limitation for most of the existing cooperative carrying RL-based solutions. In this thesis, we employ the Value Propagation Networks (VPN) algorithm for cooperative multi-robot transport scenarios. We extend and test the Delta-Q cooperation metric to V-value-based agents, and we investigate path generation algorithms and trajectory tracking controllers for differential drive robots. Moreover, we explore localization algorithms in order to take advantage of range sensors and mitigate the drift errors of wheel odometry, and we conduct experiments to derive key performance indicators of range sensors' precision. Lastly, we perform realistic industrial indoor simulations using Robot Operating System (ROS) and Gazebo 3D visualization tool, including physical objects and 6G communication constraints. Our results showed that the proposed VPN-based algorithm outperforms the current state-of-the-art since the trajectory planning and dynamic obstacle avoidance are performed in real-time, without re-training the model, and under constant 6G network coverage.In recent years, there has been a growing interest in designing multi-robot systems to provide cost-effective, fault-tolerant and reliable solutions to a variety of automated applications. In particular, from an industrial perspective, cooperative carrying techniques based on Reinforcement Learning (RL) gained a strong interest. Compared to a single robot system, this approach improves the system’s robustness and manipulation dexterity in the transportation of large objects. However, in the current state of the art, the environments’ dynamism and re-training procedure represent a considerable limitation for most of the existing cooperative carrying RL-based solutions. In this thesis, we employ the Value Propagation Networks (VPN) algorithm for cooperative multi-robot transport scenarios. We extend and test the Delta-Q cooperation metric to V-value-based agents, and we investigate path generation algorithms and trajectory tracking controllers for differential drive robots. Moreover, we explore localization algorithms in order to take advantage of range sensors and mitigate the drift errors of wheel odometry, and we conduct experiments to derive key performance indicators of range sensors' precision. Lastly, we perform realistic industrial indoor simulations using Robot Operating System (ROS) and Gazebo 3D visualization tool, including physical objects and 6G communication constraints. Our results showed that the proposed VPN-based algorithm outperforms the current state-of-the-art since the trajectory planning and dynamic obstacle avoidance are performed in real-time, without re-training the model, and under constant 6G network coverage

    Planning Hybrid Driving-Stepping Locomotion for Ground Robots in Challenging Environments

    Get PDF
    Ground robots capable of navigating a wide range of terrains are needed in several domains such as disaster response or planetary exploration. Hybrid driving-stepping locomotion is promising since it combines the complementary strengths of the two locomotion modes. However, suitable platforms require complex kinematic capabilities which need to be considered in corresponding locomotion planning methods. High terrain complexities induce further challenges for the planning problem. We present a search-based hybrid driving-stepping locomotion planning approach for robots which possess a quadrupedal base with legs ending in steerable wheels allowing for omnidirectional driving and stepping. Driving is preferred on sufficiently flat terrain while stepping is considered in the vicinity of obstacles. Steps are handled in a hierarchical manner: while only the connection between suitable footholds is considered during planning, those steps in the resulting path are expanded to detailed motion sequences considering the robot stability. To enable precise locomotion in challenging terrain, the planner takes the individual robot footprint into account. The method is evaluated in simulation and in real-world applications with the robots Momaro and Centauro. The results indicate that the planner provides bounded sub-optimal paths in feasible time. However, the required fine resolution and high-dimensional robot representation result in too large state spaces for more complex scenarios exceeding computation time and memory constraints. To enable the planner to be applicable in those scenarios, the method is extended to incorporate three levels of representation. In the vicinity of the robot, the detailed representation is used to obtain reliable paths for the near future. With increasing distance from the robot, the resolution gets coarser and the degrees of freedom of the robot representation decrease. To compensate this loss of information, those representations are enriched with additional semantics increasing the scene understanding. We further present how the most abstract representation can be used to generate an informed heuristic. Evaluation shows that planning is accelerated by multiple orders of magnitude with comparable result quality. However, manually designing the additional representations and tuning the corresponding cost functions requires a high effort. Therefore, we present a method to support the generation of an abstract representation through a convolutional neural network (CNN). While a low-dimensional, coarse robot representation and corresponding action set can be easily defined, a CNN is trained on artificially generated data to represent the abstract cost function. Subsequently, the abstract representation can be used to generate a similar informed heuristic, as described above. The CNN evaluation on multiple data sets indicates that the learned cost function generalizes well to realworld scenes and that the abstraction quality outperforms the manually tuned approach. Applied to hybrid driving-stepping locomotion planning, the heuristic achieves similar performance while design and tuning efforts are minimized. Since a learning-based method turned out to be beneficial to support the search-based planner, we finally investigate if the whole planning problem can be solved by a learning-based approach. Value Iteration Networks (VINs) are known to show good generalizability and goal-directed behavior, while being limited to small state spaces. Inspired by the above-described results, we extend VINs to incorporate multiple levels of abstraction to represent larger planning problems with suitable state space sizes. Experiments in 2D grid worlds show that this extension enables VINs to solve significantly larger planning tasks. We further apply the method to omnidirectional driving of the Centauro robot in cluttered environments which indicates limitations but also emphasizes the future potential of learning-based planning methods.Planung von Hybrider Fahr-Lauf-Lokomotion fĂŒr Bodenroboter in Anspruchsvollen Umgebungen Bodenroboter, welche eine Vielzahl von UntergrĂŒnden ĂŒberwinden können, werden in vielen Anwendungsgebieten benötigt. Beispielszenarien sind die Katastrophenhilfe oder Erkundungsmissionen auf fremden Planeten. In diesem Kontext ist hybride Fahr-/Lauf-Fortbewegung vielversprechend, da sie die sich ergĂ€nzenden StĂ€rken der beiden Fortbewegungsarten miteinander vereint. Um dies zu realisieren benötigen entsprechende Roboter allerdings komplexe kinematische FĂ€higkeiten, welche auch in adĂ€quaten AnsĂ€tzen fĂŒr die Planung dieser Fortbewegung berĂŒcksichtigt werden mĂŒssen. Anspruchsvolle Umgebungen mit komplexen UntergrĂŒnden erhöhen dabei zusĂ€tzlich die Anforderungen an die Bewegungsplanung. In dieser Arbeit wird ein suchbasierter Ansatz fĂŒr kombinierte Fahr-/Lauf-Fortbewegungsplanung vorgestellt. Die adressierten Zielplattformen sind vierbeinige Roboter, deren Beine in lenkbaren RĂ€dern enden, so dass sie omnidirektional fahren und laufen können. Auf ausreichend ebenem Untergrund wird generell Fahren bevorzugt, wĂ€hrend der Planer Laufmanöver in der NĂ€he von Hindernissen in ErwĂ€gung zieht. Schritte werden dabei in einer hierarchischen Art undWeise realisiert: WĂ€hrend des Planens werden nur Verbindungen zwischen geeigneten AuftrittsflĂ€chen gesucht. Nur solche Schritte, die im Ergebnispfad enthalten sind, werden anschließend zu detaillierten BewegungsablĂ€ufen verfeinert, welche die Balance des Roboters sicherstellen. Um prĂ€zise Fortbewegung in anspruchsvollen Umgebungen zu ermöglichen, betrachtet der Planer die spezifischen AufstandsflĂ€chen der vier FĂŒĂŸe. Der Ansatz wurde sowohl in simulierten als auch in realen Tests mit den Robotern Momaro und Centauro evaluiert, wobei der Planer in der Lage war, Lösungspfade von ausreichender QualitĂ€t in zulĂ€ssiger Zeit zu generieren. Allerdings ergeben die benötigte feine Planungsauflösung und die hochdimensionale RoboterreprĂ€sentation große ZustandsrĂ€umen. Diese wĂŒrden fĂŒr komplexere oder grĂ¶ĂŸere Planungsprobleme die zulĂ€ssige Rechenzeit und den verfĂŒgbaren Speicher ĂŒberschreiten. Damit der Planer auch eben diese komplexeren oder grĂ¶ĂŸeren Planungsprobleme handhaben kann, wird eine Erweiterung des Ansatzes beschrieben, welche mehrere ReprĂ€sentationslevel mit einbezieht. In unmittelbarer Umgebung des Roboters wird die zuvor beschriebene detaillierte ReprĂ€sentation genutzt, um hochwertige Pfade fĂŒr die nahe Zukunft zu erzeugen. Mit zunehmendem Abstand vom Roboter wird die Auflösung gröber und die Anzahl der Freiheitsgrade in der RoboterreprĂ€sentation sinkt. Um den mit dieser Vergröberung einhergehenden Informationsverlust zu kompensieren, werden diese ReprĂ€sentationen mit zusĂ€tzlicher Semantik ausgestattet, welche das SzenenverstĂ€ndnis erhöht. DarĂŒber hinaus wird beschrieben, wie die ReprĂ€sentation mit dem höchsten Abstraktionsgrad zur Berechnung einer effektiven Heuristik genutzt werden kann. Die Evaluation in Simulationsumgebungen zeigt, dass der Planungsprozess um mehrere GrĂ¶ĂŸenordnungen beschleunigt werden kann, wĂ€hrend die ErgebnisqualitĂ€t vergleichbar bleibt. Allerdings sind das manuelle Gestalten der zusĂ€tzlichen ReprĂ€sentationen und das dazugehörige Parametrisieren der Kostenfunktionen sehr arbeitsintensiv. Um diesen Aufwand zu reduzieren, wird daher eine Methode beschrieben, welche die Gestaltung einer abstrakten ReprĂ€sentation durch ein Convolutional Neural Network (CNN) unterstĂŒtzt. WĂ€hrend eine grobe, niedrigdimensionale RoboterreprĂ€sentation und ein dazugehöriges Aktionsset einfach definiert werden können, wird ein CNN auf kĂŒnstlich erzeugten Daten trainiert, um die abstrakte Kostenfunktion zu lernen. Anschließend kann die so erzeugte abstrakte ReprĂ€sentation genutzt werden, um die bereits zuvor erwĂ€hnte effektive Heuristik zu berechnen. In der Evaluation des CNNs auf verschiedenen DatensĂ€tzen zeigt sich, dass die gelernte Kostenfunktion auch mit Daten aus realen Umgebungen funktioniert und dass die generelle ErgebnisqualitĂ€t oberhalb der Ergebnisse mit manuell erzeugten ReprĂ€sentationen liegt. Die Anwendnung der Methode zur Planung hybrider Fahr-/Lauf-Fortbewegung zeigt, dass die so erzeugte Heuristik gleichwertige Ergebnisse wie die Heuristik auf Basis manuell erzeugter ReprĂ€sentation liefert, wĂ€hrend der Aufwand zur Gestaltung und Parametrisierung deutlich verringert wurde. Da sich gezeigt hat, dass eine lernbasierte Methode den klassischen suchbasierten Ansatz effektiv unterstĂŒtzen kann, wird in dieser Arbeit abschließend untersucht, ob das gesamte Planungsproblem durch eine lernbasierte Methode gelöst werden kann. Value Iteration Networks (VINs) sind in diesem Zusammenhang ein vielversprechender Ansatz, da sie bekanntlich ein gutes zielorientiertes Planungsverhalten lernen und das Gelernte auf unbekannte Situationen verallgemeinern können. Allerdings ist ihre bisherige Anwendung auf kleine ZustandsrĂ€ume begrenzt. Durch die zuvor beschriebenen Ergebnisse motiviert, wird eine Erweiterung von VINs beschrieben, so dass diese auf verschiedenen Abstraktionsleveln planen, um grĂ¶ĂŸere Planungsprobleme in ZustandsrĂ€umen entsprechender GrĂ¶ĂŸe darzustellen. Experimente in 2D-Rasterumgebungen zeigen, dass die beschriebene Methode VINs in die Lage versetzt, deutlich grĂ¶ĂŸere Planungsprobleme zu lösen. DarĂŒber hinaus wird die beschriebene Methode benutzt, um omnidirektionale Fahrmanöver fĂŒr den Centauro-Roboter in anspruchsvollen Umgebungen zu planen. Gleichzeitig werden hier aber auch die momentanen, hardware-bedingten Grenzen rein lernbasierter AnsĂ€tze sowie ihr zukĂŒnftiges Potential aufgezeigt
    • 

    corecore