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Abstract

A road mapping and feature extraction for mobile robot navigation in road roundabout
and road following environments is presented in this chapter. In this work, the online
mapping of mobile robot employing the utilization of sensor fusion technique is used to
extract the road characteristics that will be used with path planning algorithm to enable
the robot to move from a certain start position to predetermined goal, such as road curbs,
road borders, and roundabout. The sensor fusion is performed using many sensors,
namely, laser range finder, camera, and odometry, which are combined on a new wheeled
mobile robot prototype to determine the best optimum path of the robot and localize it
within its environments. The local maps are developed using an image’s preprocessing
and processing algorithms and an artificial threshold of LRF signal processing to recog-
nize the road environment parameters such as road curbs, width, and roundabout. The
path planning in the road environments is accomplished using a novel approach so called
Laser Simulator to find the trajectory in the local maps developed by sensor fusion.
Results show the capability of the wheeled mobile robot to effectively recognize the road
environments, build a local mapping, and find the path in both road following and
roundabout.

Keywords: LRF, vision system, odometry, laser simulator, road roundabout,
road following, 2D map, local map

1. Introduction

Autonomous navigation can be defined as the ability of the mobile robot to determine its

position within the reference frame environment using suitable sensors, plan its path mission

through the terrain from the start toward the goal position using high planner techniques and
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perform the path using actuators, all with a high degree of autonomy. In other words, the robot

during navigation must be able to answer the following questions [1]:

• Where have I been? It is solved using cognitive maps.

• Where am I? It is determined by the localization algorithm.

• Where am I going? It is done by path planning.

• How can I go there? It is performed by motion control system.

Autonomous navigation comprises many tasks between the sensing and actuating processes that

can be further divided into two approaches: behavior-based navigation and model-based navi-

gation. The behavior-based navigation depends on the interaction of some asynchronous sets of

behaviors of the robot and the environment such as: build maps, explore, avoid obstacles, and

follow right/left and goal seeking, which are fused together to generate suitable actions for the

actuators. The model-based navigation includes four subtasks that are performed synchronously

step by step: perception, localization, path planning, and motion control. This is the common

navigation systems that have been used and found in the literature.

The model-based navigation will be explained in details, since it is implemented in the proposed

navigation system. In the perception task of this navigation model, the sensors are used to

acquire and produce enormous information and good observation for the environments, where

the robot navigates. There is a range of sensors that can be chosen for the autonomous navigation

depending on the task of mobile robot, which generally can be classified into two groups:

absolute position measurements and relative position measurements [2]. The European robotics

platform (EUROP) marks the perception process in the robotics system as the main problem

which needs further research solutions [1].

The localization process can be perceived as the answer to the question: where am I? In order

to enable the robot to find its location within the environments, two types of information are

needed. First, a-priori information is given to the robot from maps or cause-effect relationships

in an initialization phase. Second, the robot acquires information about the environment

through observation by sensors. Sensor fusion techniques are always used to combine the

initial information and position measurements of sensors to estimate the location of the robot

instantly [1].

In the path planning process, the collision-free path between start and target positions is

determined continuously. There are two types of path planning: (a) global planning or delib-

erative technique and (b) local path planning or sensor-based planning. In the former, the

surrounding terrain of the mobile robot is known totally, and then the collision-free path is

determined offline, while in the latter, the surrounding terrain of the mobile robot is partially

or totally unknown, and the robot uses the sensor data for planning the path online in the

environments [1]. The path planning consists of three main steps, namely, the environment’s

modeling, determination of the collision-free trajectory from the initial to target positions, and

searching continuously for the goal [1].

In motion control, the mobile robot should apply a steering strategy that attempts to prevent

slippage and reduce position errors. The control algorithm has to guarantee a zero steady-state
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orientation or position error. The kinematic and dynamic analysis of the mobile robot is used

to find the parameters of the controllers for continuously avoiding the obstacles and moving

toward the target position through the predefined path [1]. The autonomous navigation

system can be classified according to the environmental features as follows:

i. Structured environments: it is usually found in indoor applications, where the environ-

ments are totally known.

ii. Semi-structured environments: the environments are partially known.

iii. Unstructured environments: outdoor applications are almost unstructured, where the

environments are totally unknown.

There are many factors that can make outdoor autonomous navigation very complex in

comparison to the indoor navigation:

i. The borders of surrounding terrain in the indoor application are clear and distinct.

However, in contrary to that, they are mostly “faded” in outdoor setting.

ii. The robot algorithm should be able to discover and deal with many things that are not in

the initial planning.

iii. The locomotion of robot will be different depending on the terrain roughness.

iv. Outdoor autonomous navigation should have adequate robustness and reliable enough

because the robot typically works and meddles with people and encounters unexpected

moving obstacles.

v. Weather changes can affect the mobile robot sensor measurement, electronic devices, and

actuators. For example, the inhomogeneous of the light will affect the camera when

capturing the image of the scene, the sunray affects the laser measurement, and ultrasonic

measurement becomes unavailable.

Although the outdoor navigation in urban area is a topic involving a wide range and level of

difficulties, it is attractive and forms a challenge to the researchers who are motivated to

discover solution(s) to the problems via their proposed developed technique. Until today, there

is as yet a robot or vehicle, which is able to drive fully autonomously on the roads of urban

buildings, taking into account a high level of robust interaction with its environments [3, 4].

This vehicle is expected to operate in a dangerous situation, since it always passes through

crowded area, must follow printed or signal traffic lights and more often than not, it is in touch

with the people.

Most navigation systems on the roads are performed using two or more sensors to obtain the

parameters of the surrounding environment, taking into consideration various situations and

conditions. Sensor fusion technique is the common method that has been used in navigation of

mobile robot in road environments. In this model, the methods for extracting the features of

roads can be done with reference to either behavior-based navigation or model-based naviga-

tion as described in the following paragraphs.

Global positioning system (GPS) is used as the main sensor and combined with odometry and

LRF for trajectory tracking, obstacle avoiding and localization in curbed roads [5] or navigating
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mobile robot between urban buildings [6]. GPS can be combined with LRF and dead reckoning

for navigating vehicles in roads using beacons and landmarks [7], combined with camera vision

for localizing mobile robot in color marked roads [8], combined with 3D laser scanner for

building compact maps to be used in a miscellaneous navigation applications of mobile robot

[9], combined with IMU, camera vision, and sonar altimeter for navigating unmanned helicopter

through urban building [10] or combined with LRF and inertial sensors for leading mobile robot

ATRV-JR in paved and rugged terrain [11, 12]. GPS can be combined with INS and odometry

sensor for helping GPS to increase its positioning accuracy of vehicles [13]. GPS is combinedwith

odometry and GIS (geographical information system) for road matching-based vehicle naviga-

tion [14]. GPS can also be combined with LIDAR (light detection and ranging) and INS for

leading wheelchair in urban building by 3D map-based navigation [15]. GPS is combined with

a video camera and INS for navigating the vehicles by lane detection of roads [16]. GPS is

combined with INS for increasing position estimation of vehicles [17]. GPS is combined with

INS and odometry for localizing mobile robot in urban buildings [18]. Camera video with

odometry is used for navigating land vehicle, road following by lane signs and obstacles

avoiding [19]. Omni-directional infrared vision system can be used for localizing patrol mobile

robot in an electrical station environment [20]. 3D map building and urban scenes are used in

mobile robot navigation by fusing stereo vision and LRF [21].

LRF can be combined with cameras and odometry for online modeling of road boundary

navigation [6], for enhancing position accuracy during mobile robot navigation [22] or for

correcting trajectory navigation of mobile robot [23]. Also, it can be combined with compass

and odometry for building map-based mobile robot navigation [1]. It can be combined with

color CCD camera for modeling roads and driving mobile robot in paved and unpaved road

[24], for crossing roads through landmark detection [25], for obstacle detecting and avoiding

[26] or for road recognition process [27]. It can be combined with sonar and camera vision for

navigating mobile robot when crossing roads [1]. 3D LRF is combined with two color camera,

INS, and odometry for cross-country navigation of ADAM mobile robot through natural

terrain [1]. It can be combined with IMU, CCD camera, and odometry for guiding tractor

vehicle in Citrus Grove [1]. It can be combined with camera, LRF, sonar, and compass for

building 3D map of an urban environment [1].

Priori map can be used for navigation by mapping precisely environment landmarks [1]. Dead

reckoning is used for estimating position accurately by feature detection in mobile robot [1]. A

hybrid methodology between the teleoperating and autonomous navigation system has been

applied in a curbed road environment as explained in [5]. A combination of differential global

positioning system (DGPS) and odometry with extended Kalman filter is used to localize the

mobile robot in a road environment. LRF is used for obstacle avoidance by finding the suitable

path to pass through the road curbs and to estimate the position of the road curbs during

trajectory tracking. The main setback in this work is that the robot cannot work autonomously

in road environments.

Jose et al. [7] presented a robust outdoor navigation system using LRF, and dead reckoning is

proposed for navigating vehicles using beacons and landmarks on the roads. The system is

studied considering several cylindrical or V-shaped objects (beacons) that can be detected
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using LRF in a road environment. The information filter (derived from Kalman filter) is used to

gather data from sensors and build map and determine the localization of robot. The results

show that the accuracy of the online mapping is very close to DGPS, which has accuracy equal

to 1 cm. Donghoon et al. [8] proposed a navigation system method based on fusing two

localization systems is proposed. The first one uses a camera vision system with particle filter,

while the second uses two GPS with Kalman filter. The printed marks on the road like arrows,

lines, and cross are effectively detected through the camera system. By processing the camera’s

data using the hyperbola-pair lane detection, that is, Delaunay triangulation method for point

extraction and mapping based on sky view of points, the robot is able to determine the current

position within its environment. To eliminate the camera drawback like lens distortion and

inaccuracy in the long run, GPS system data are used to complement and validate the camera’s

data. The errors between the predefined map and real-time measurements are found to be

0.78 m in x direction and 0.43 m in y direction.

Cristina et al. [9] suggested a compact 3D map building for a miscellaneous navigation applica-

tion of mobile robot in real time performed through the use of the GPS and 3D laser scanner. A

3D laser scanner senses the environment surface with sufficient accuracy to obtain a map, which

is processed to get a qualitative description of the traversable environment cell. The 3D local map

is built using 2D Voronoi diagram model, while the third dimension is determined through the

data from laser scanner for the terrain reversibility. The previous map is gathered with the GPS

information to build a global map. This system is able to detect the slopes of navigated surfaces

using Brezets algorithm and the roughness of the terrain using normal vector deviation for the

whole region. Although the proposed algorithm is very complicated, the result shows that it is

able to extract an area as big as 40 � 20 m in an outdoor environment for 0.89 s.

2. Platform overview

A new platform for an autonomous wheeled mobile robot navigation system has been

designed and developed in our labs. It is comprised of the following parts as shown in

Figure 1:

• Two motors, type: DC-brush with power 120 W and model DKM.

• One spherical Castor wheel.

• 4 m range LRF; model HOKUYO URG-04LX-UG01.

• High resolution WiFi camera, model JVC-GC-XA1B.

• Two optical rotary odometry; model, B106.

• Motors drivers, types SmartDrive 40.

• Five cards for the interface free-based controllers system (IFC): interface power, abbrevi-

ated as IFC-IP00; interface computer, abbreviated as IFC-IC00; interface brushless, abbre-

viated as IFC-BL02; and interface brush motors, abbreviated as IFCBH02.
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• The platform has an additional part such as battery with model NP7-12 lead acid and the

aluminum profile and sheet-based chassis as shown in Figure 1.

3. Sensor modeling and feature extraction

The data coming from each sensor in the platform were prepared in such a way that it enables

for the extraction of the road features autonomously while navigating on the road. It is

described in the following section.

3.1. Camera

JVC-GC-XA1B camera is utilized to figure out the environments in front of the robot with good

resolution (760 � 320) and speed equal to 30 frame/s. The sequences of pictures are extracted

from the live video using image processing tool boxes in MATLAB. An algorithm has been

developed that can take the image sequences from the video and apply multiple operations to

get a local map from the image and perform further calculation for road following and

roundabout detection. In general, the image sequences processing algorithm consists of three

main parts:

i. Preprocessing of the image for depth processing.

ii. Processing of the image and development of the environment local map.

iii. Post processing algorithms to perform the following subtasks:

• Roundabout detection based on LS approach.

• Road following in the roads without curbs.

Figure 1. The developed platform used for experiments.
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The first and second steps will be explained here, while the third one will be explained in next

section.

(i) Preprocessing of the image for depth processing.

A preprocessing algorithm is utilized to capture the environments of the road from the live

video and prepare it in an appropriate form to be processed in the next processes. The main

operations that have been used at this step can be briefly described as follows:

• Constructing the video input object: the video input object represents the connection

between MATLAB and a particular image acquisition device.

vid = videoinput(‘winvideo’,3);

• Preview of the WiFi video: it creates a video preview window that displays live video data

for video input object. The window also displays the timestamp and video resolution of

each frame and the current status of video input object.

preview (vid);

• Setting the brightness of live video

The brightness of image’s sequences is adjusted, since the aperture of camera is not

automatic. Following command is used:

set (vid.source, ‘Brightness’, 35);

• Start acquiring frames

This function helps to reserve the image device for the exclusive use in this program and

locks the configuration to others applications. Thus, certain properties become read only

while running.

Start(vid);

• Acquiring the image frames to MATLAB workspace

It returns the data, which contains the number of frames specified in the (Frames per

Trigger) property of the video input object.

data = getdata(vid);

• Crop image

It allows for cutting the interesting regions in the images. In the proposed algorithm, the

bottom half of the image is cropped, since it contains the nearest area of the road to the

robot; also to save time needed for calculation in comparison with whole image.

GH = imcrop(data, [1 u1 io(2) io(1)]);

• Convert from RGB into grayscale

Thepurpose is tomake imageuseful for the edgedetection and removing the noise operations.

IS = rgb2gray(GH);
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• Remove image acquisition object from memory

It is used to free memory at the end of an image acquisition session and start a new frame

acquisition.

delete(vid).

(ii) Processing of the image and development of the environments local map.

It includes some operations that allow to extract the edges of the road and roundabout from

the images with capability to remove the noises and perform filtrations.

The following operations are applied for edge detection and noise filtering:

1. 2D Gaussian filters: It is used for smoothing the detection of the edge. The point-spread

function (PSF) for 2D continuous space Gaussian is given by:

g x; yð Þ ¼
1

2πσ2
:e
�

x�x0ð Þ2

2σ2
þ

y�y0ð Þ2

2σ2

� �

(1)

σ is the standard deviation of the Gaussian distribution.

The following Gaussian filter was applied to the image in MATLAB:

PSF = fspecial(‘gaussian’, 3, 3).

2. Multidimensional images (imfilter): It allows the user to filter one array with another array

according to the specified options. In the proposed image processing, a symmetric option

is used to filter the image by the Gaussian filter as follows:

I = imfilter(IS, PSF, ‘symmetric’, ‘conv’).

IS is the gray value image of the scene, and conv indicates the linear convolution operation

of the image in which each output pixel is the weighted sum of neighboring input pixels.

3. Canny, Prewitt, and Sobel filters for edge detection: these filters were used to find the edges

of curbed road in the image. They are derivative-based operations for edge detection:

Canny filter: It finds the edges by looking for local maxima of the gradient of the image

matrix. It passes through the following steps: smoothing the image by blurring the

operation in order to prepare for removing the noise; finding the gradients of the edges,

where the large magnitude gradients of the image should be marked; nonmaximum

suppression operation which allow only the local maxima to be marked as edges; double

thresholding applied to the potential edges; and edge tracking by hysteresis, where the

final edges are determined by removing all edges that are not connected to certain strong

edges (large magnitudes). This filter is implemented with threshold coming from imfilter as

follows:

BW = edge (I, ‘canny’, (graythresh(I) * .1)).

Prewitt gradient filter:

Applications of Mobile Robots136



It finds the edges using the Prewitt approximation of the derivative. Each component of the

filter takes the derivative in one direction and smoothies in the orthogonal direction using

a uniform filter. This filter is implemented with threshold coming from imfilter as follows:

BW = edge (I, ‘prewitt’, (graythresh(I) * .1)).

Sobel gradient filter:

It finds the edges using the Sobel approximation of the derivative. Each filter takes the

derivative in one direction and smoothies in the orthogonal direction using a triangular

filter. This filter is implemented with the threshold coming from imfilter as follows:

BW = edge (I, ‘sobel’, (graythresh(I) * .1)).

4. Morphological operations

The morphological methodology is applied to improve the shape of the lines representing the

road curb, which are extracted from edges in the images using the above-mentioned filters.

Morphology technique includes a various set of image processing enhancing operations that

process the images based on shapes. Morphological operations implement a structuring

element to the input image and then carry out the output images with a similar size. The

morphological operation compares the current pixel in the output image with the input one

and its neighbors to calculate the value of each output image pixels. This is done by selecting

a certain shape and size of the neighbors that are sensitive to the input image’s shapes.

Two operations are used to perform the morphological method:

Morphological structuring element (strel): it is used to define the areas that will be applied

using morphological operations. Straight lines with 0
�

and 90
�

are the shapes used for the

images which actually represent the road curbs.

se90 = strel(‘line’, 3, 90).

se0 = strel(‘line’, 3, 0).

Dilation of image (imdilate): dilation and erosion are two common operations in morphol-

ogy. With dilation operation, the pixels in the image have to be summed to the object

boundaries. The numbers of the added pixels are depended on the element size and its

structure that is utilized to process the input images. In dilation process, the status of the

pixels in the output images is figured out by implementing a certain rule and equations to

the corresponding input pixels and all its neighbors. In the developed algorithm, the

imdilate is used with a range that comes from the strel operation as follows:

BW1 = imdilate(BWC, [se90 se0]).

BWC is the binary image coming from the edges filters.

5. 2D order-statistic filtering (ordfil2)

It is also called Min/Max of the Median filter. It uses a more general approach for filtration,

which allows for specifying and choosing the rank order of the filter as:
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f2 = ordfilt2(x, 5, [1 1 1; 1 1 1; 1 1 1]).

Where, the second parameter specifies the rank order chosen, and the third parameter

specify the mask with the neighbors specified by the nonzero elements in it.

6. Removing of small objects from binary image (bwareaopen)

This function is helpful to remove all connected components (objects) that have less than a

certain threshold numbers of pixels from the binary image. The connectivity between the

pixels can be defined at any direction of image; in MATLAB, it can be defined by default to

4-connected neighborhood or 8-connected neighborhood for the images. In the proposed

algorithm, it is adjusted as follows:

BW2 = bwareaopen(BW1, 1200).

7. Filling of image regions and hole operation (imfill)

Due to the object in images are not clear, especially at the borders, this function is used to

fill the image region that represents an object. This tool is very useful in the proposed

algorithm to detect the roundabout intersection. One can describe the region filling oper-

ation as follows:

Xf ¼ Xf�1⊕B
� �

∩AC f ¼ 1, 2, 3, :: (2)

Xf is any point inside the interested boundary, B is the symmetric structuring element, ∩ is

the intersection area between A and B, and AC is the complement of set A. The above-

mentioned equation is performed in MATLAB by the following command:

P = imfill(BW2, ‘holes’).

The developed image sequences after processing looked like the one shown in Figures 2

and 3, which are used later on for Laser Simulator-based roundabout detection. Also,

Figures 8–11 portrayed in Section 4 show the capability of the algorithm to develop the

local map in the indoor and outdoor road environments.

3.2. Laser range finder

LRF measurements are used to localize the robot in environments and for building 2D local

map. As previously mentioned, this device can scan an area with 240� at 100 ms/scan. The

surrounding environments in the LRF measurements look like the one shown in Figure 4.

Two coordinate systems are used to characterize the measurements of LRF as depicted in

Figure 5, which are: LRF measuring coordinate and LRF environment coordinate systems.

Since the LRF measurements are scanned starting from the origin point, the calculation is done

based on the right triangle as depicted in Figure 5.

If the laser measurement of components in yL direction is compared at points a, b, and c, one

can find:
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yLc ¼ Lc, xLc ¼ 0

yLa ¼ La sin β
� �

¼ Lc, xLc ¼ La cos β
� �

yLb ¼ Lb sin β
� �

, xLb ¼ Lb cos β
� �

(3)

La, Lb, and Lc are the length of laser measurements at point a, b, and c, respectively, as shown in

Figure 5. β is the angle between the measurement point and the platform coordinate system

which can be calculated from the scan area angle Lθ = (0–240�). yLa and yLc represent the

Figure 2. Image sequence processing where no roundabout can be detected, (a) original image, (b) curbed image in a

gray, (c) after edge detection algorithm, (d) final processed image, and (e) developed image for local map.
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parameters of the road, and yLb represents the curb. It is found that yLa and yLc have the same

length in y direction; however, the length of yLb is different and can be written as follows:

yLb ¼ yLc �
ZRb

sin rð Þ
) yLc � yLb ¼

ZRb

sin rð Þ (4)

ZRb = hc, hc is idetified as the road curbed height which is known as a threshold in the program.

r is defined as the LRF rays and the floor. For obstacle detection, two successive scan measure-

ments (i and ii) have to be compared with each other in yL direction in the location between e

and d as illustrated in Figure 5 to find the obstacles ahead of the robot as shown in Eqs. (5)–(7):

Figure 3. Image sequence processing where roundabout is detected, (a) original image, (b) curbed image in a gray value,

(c) with edge detection algorithm, (d) final image, and (e) developed image for local map.

Applications of Mobile Robots140



yc � yd ¼
ZRd

sin rð Þ
andxd ¼ -Ld cos β

� �

(5)

yc � ye ¼
ZRe

sin rð Þ
andxe ¼ -Le cos β

� �

, (6)

The width of the obstacle can be calculated as:

Wob ¼ xe � xd (7)

Figure 4. Laser measurements and the location of objects in its environment at the left, middle, and right side.

Figure 5. Principle of laser measurement calculation.
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From previous calculation, one can define the parameters that will be used later for road

discovering by LRF as shown in Figure 5 as:

• Road fluctuations (height of objects with reference to the laser device) as follows:

rfn ¼ rn cos β
� �

(8)

• Road width (side distance with reference to the laser device) as follows:

rwn ¼ rn sin β
� �

(9)

rn is the dimension of LRF signals for n-th LRF measurements.

• Curb threshold: rf0 in β = 0
�

is used as reference and the other fluctuation measurements

(rfn) on the left and right side in the same scan are compared with this base line. If the

deviation between the reference point and other measurement values exceeds the

predefined threshold th, this point will be considered as a road curb. Otherwise, it will be

considered as a road. This operation is repeated with all measurements as follows:

rfn � rf 0 ≥ � th (10)

The LRF driver for reading the data from USB connection in real-time is developed in

MATLAB. It includes some functions to identify, configure and get data from the sensors as

further detailed out in Appendix B. The algorithm for detecting the curbs of road based on the

previous mentioned Eqs. (3)–(10) is developed and implemented in the road environments as

shown in Figure 6. The LRF is the main sensor for the calculation of the robot path within the

environments, which produces the results through using the LRF to generate the equations for

path planning as shown in Sections 4.1 and 4.2.

3.3. Odometry

Two rotary encoders (B106) were used to estimate the position of robot, which are connected

through dual brush card pins (IFC-BH02) to the two differential wheels. The full rotation of

Figure 6. Laser measurements for the experimental setup, (a) one scan of laser measurement (mm), (b) road with curbs in

3D (mm), and (c) path generation (mm).
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encoders is 500 pulses/rotations, and the linear position of the wheels is calculated from the

encoder rotation as shown in Figure 7 using the following expression:

C ¼
2π r Pcur

Pfr
(11)

C is the accumulative path of robot, r is the radius of wheel, Pcur is the number of pulses in the

current position, and Pfr is the number of pulses for one full rotation of the encoder.

Two encoders were used in the proposed system, and the accumulative path will be calculated

as an average value of both encoders as follows:

Cav ¼
C1 þ C2

2
(12)

4. Navigation system results and discussion

The proposed WMR is able to navigate autonomously on the road following and negotiates

effectively the curvature of a standard roundabout. The robot is able to find the path starting

from the predefined start pose until it reaches the pregoal position using the LS approach for

the local map that was identified by the robot sensors such as camera, the LRF, and odometry

measurements. Normally, the start and goal positions are determined using the DGPS system,

and the robot uses this information to detect the direction of the roundabout exit. Since the

proposed robot is navigating in a relatively small area (about 10–30 m), it is not useful to use

GPS. Instead one can simply inform the robot about the roundabout exit direction, goal

position before it starts to move. The goal position can be determined as how much distance

the robot should travel after passing through the roundabout, for example, the goal is located

at eastern part of the exit of the roundabout (i.e., 270�) with a distance equals to 20 m. The path

that the robot will follow in the environment can be adjusted in the program of the navigation

system as in middle, left or right. It is desired that the robot should navigate in the middle of

the road for all the experiments. The velocity of the robot during navigation is adjusted in the

range of 7–10 cm/s.

During navigation on the road, our Laser Simulator approach is used to detect the roundabout

when it is present in the local map identified by the camera [27–29]. The sensor fusion

including LRF and encoders is used to estimate the position of robot within the environments.

Figure 7. Calculation of the linear position from the rotary encoder.
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In general, two conditions are used to detect a roundabout; noncurbs detection on the left and

right and discovering ellipse in the image as shown in Figures 8 and 9.

4.1. Road following

In the road following area, the camera, encoders, and laser are combined together to find the

collision-free path. The camera is used for roundabout detection when it figures out using Laser

Simulator. LRF is utilized for detecting the road curbs and localizing the robot in the environ-

ment. The encoder’s measurements are used for estimating the current position of robot within

environments. The generation of robot path is described in the following paragraphs.

4.2. Roundabout navigation results

The results show the capability of the roundabout path planning algorithm to find the right

trajectory with a small deviation in comparison to the optimum path as shown in Figure 10.

Figure 8. Image sequences processing where no roundabout can be detected using LS, (a) image from preprocessing and

processing step, and (b) applying the LS (continues line in the middle).

Figure 9. Image sequences processing where roundabout is detected using LS, (a) image from preprocessing and

processing step, and (b) applying the LS (discontinues line in the middle).
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Figure 11 shows how the camera, encoders, and laser range finder are used for path planning

and execution from start to goal position. It also shows the local map built from camera

sequence frames, where the developed view presents the curbs of the road environment of

road in images. The camera’s local map is determined for each image in the sequences of video

frames as shown in Figure 11(b) and (c), and the LS is applied to find the roundabout.

Figure 11(c) shows the last image, where the roundabout is detected.

By applying the algorithm of cameras, laser range finder, and odometry described in Section 3,

one can determine the path of robot as in Figure 11(d). It is noticed that the part of roundabout

in the entrance and exit areas is not occurred in the roundabout environment, due to that the

laser still does not reach that area, but it is calculated based on a mixed algorithm of camera

and laser range finder. The road following curbs are shown in Figure 11(d), where the entrance

to the roundabout is located on the left side, and the exit is located on the right. The path of the

robot looked smooth especially with the indoor environments in comparison with the opti-

mum path (continuous red line); however, there is a deviation in the outdoor measurements in

Figure 10. Correction of the robot path in the road following when the start location of the robot is near to left curb, (a)

laser measurements, (b) path determination: the blue with (*) is the laser measurements, black with (o) is road curbs and

roundabout, and red with (�) is the optimum path, (c) images of the robot in the beginning of movement, and (d) images

of the robot when correcting its path.
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the area of entrance and exit of roundabout due to the distance between the curbs and the

roundabout center.

5. Conclusion

A practical implementation of the WMR online path navigation using laser simulator (LS) and

sensor fusion in the road environments is presented in this thesis. The mobile robot is sup-

posed to navigate on the roads in real time and reach the predetermined goal while

Figure 11. Camera sequence images when navigating in outdoor with 360� rotation, (a) image when start moving, (b)

camera’s local map when robot starts to move, (c) camera’s local map when robot detects the roundabout, and (d) path of

robot during navigation in a roundabout in (mm) with 360� rotation: blue with (*) is the path, black with (O) is for the

road environments, and red with (�) for the optimum path.
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discovering and detecting the roundabout. A complete modeling and path determination of

the roundabout intersection environments for autonomous mobile robot navigation is derived

and presented in this chapter. The LS approach was used for road roundabout environment

detection; whereas, the sensor fusion involves the laser range finder (LRF), and odometry was

used to generate the path of the robot and localize it within its terrain. The local maps were

built using both the camera and LRF to estimate the road border parameters such as road

width, curbs, and roundabout in 2D. The algorithm of the path generation is fully derived

within the local maps and subsequently implemented in two ways; first, considering the direct

use of the sensor fusion data for path planning without applying localization and control

algorithms and second, taking into account a complete model-based navigation including

localization, path planning, and control schemes.
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