175 research outputs found

    Traits Programming with AspectJ

    Full text link

    AspectMaps: Extending Moose to visualize AOP software

    Get PDF
    International audienceWhen using aspect-oriented programming the application implicitly invokes the functionality contained in the aspects. Consequently program comprehension of such a software is more intricate. To alleviate this difficulty we developed the AspectMaps visualization and tool. AspectMaps extends the Moose program comprehension and reverse engineering platform with support for aspects, and is implemented using facilities provided by Moose. In this paper we present the AspectMaps tool, and show how it can be used by performing an exploration of a fairly large aspect-oriented application. We then show how we extended the FAMIX meta-model family that underpins Moose to also provide support for aspects. This extension is called ASPIX, and thanks to this enhancement Moose can now also treat aspect-oriented software. Finally, we report on our experiences using some of the tools in Moose; Mondrian to implement the visualization, and Glamour to build the user interface. We discuss how we were able to implement a sizable visualization tool using them and how we were able to deal with some of their limitations. Note: This paper uses colors extensively. Please use a color version to better understand the ideas presented here

    Unwoven Aspect Analysis

    Get PDF
    Various languages and tools supporting advanced separation of concerns (such as aspect-oriented programming) provide a software developer with the ability to separate functional and non-functional programmatic intentions. Once these separate pieces of the software have been specified, the tools automatically handle interaction points between separate modules, relieving the developer of this chore and permitting more understandable, maintainable code. Many approaches have left traditional compiler analysis and optimization until after the composition has been performed; unfortunately, analyses performed after composition cannot make use of the logical separation present in the original program. Further, for modular systems that can be configured with different sets of features, testing under every possible combination of features may be necessary and time-consuming to avoid bugs in production software. To solve this testing problem, we investigate a feature-aware compiler analysis that runs during composition and discovers features strongly independent of each other. When the their independence can be judged, the number of feature combinations that must be separately tested can be reduced. We develop this approach and discuss our implementation. We look forward to future programming languages in two ways: we implement solutions to problems that are conceptually aspect-oriented but for which current aspect languages and tools fail. We study these cases and consider what language designs might provide even more information to a compiler. We describe some features that such a future language might have, based on our observations of current language deficiencies and our experience with compilers for these languages

    Expression and Composition of Design Patterns with AspectJ

    Get PDF
    National audienceDesign patterns are well-known couples of problems-solutions for software engineer- ing. By nature, they often lack support from languages and this further complicates the study of their composition in the code. Aspect-oriented languages provide new mechanisms for modula- rization, which can help to improve design patterns implementation. (Hannemann et al., 2002) is the first extensive study of patterns aspectization with AspectJ. We notice some AspectJ idioms are needed in order to implement object relationships. We give a more reusable VISITOR pat- tern. We highlight a reusable composition of COMPOSITE and VISITOR patterns and expressive interactions of the OBSERVER pattern with a tree structure. We thus show that modularization by aspects helps composition of design patterns

    Trait-oriented Programming in Java 8

    Get PDF
    International audienceJava 8 was released recently. Along with lambda expressions, a new language construct is introduced: default methods in interfaces. The intent of this feature is to allow interfaces to be extended over time preserving backward compatibility. In this paper, we show a possible, different use of interfaces with default methods: we introduce a trait-oriented programming style based on an interface-as- trait idea, with the aim of improving code modularity. Starting from the most common operators on traits, we introduce some programming patterns mimicking such operators and discuss this approach
    corecore