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Abstract. Goal modelling is a well known rigorous method for analysing 

problem rationale and developing requirements. Under the pressures typical of 

time-constrained projects its benefits are not accessible. This is because of the 

effort and time needed to create the graph and because reading the results can 

be difficult owing to the effects of crosscutting concerns. Here we introduce an 

adaptation of KAOS to meet the needs of rapid turn around and clarity. The 

main aim is to help the stakeholders gain an insight into the larger issues that 

might be overlooked if they make a premature start into implementation. The 

method emphasises the use of obstacles, accepts under-refined goals and has 

new methods for managing crosscutting concerns and strategic decision 

making. It is expected to be of value to agile as well as traditional processes. 

1   Introduction 

The practice of managing software development projects from well-understood 

requirements has many advantages but these advantages may seem inaccessible in the 

commercial world where time-to-market is a primary consideration (Boness, 

Harrison, Liu, 2005).  In such cases there is a strong pressure to “get-on with it”.  If 

we accept that requirements analysis can be an economic way of reducing the risks of 

building the wrong product or attempting an unrealistic implementation then we need 

requirements engineering tools that are compatible with time-constrained approaches 

to software development.  For example, tools that help stakeholders and project 

managers to discover and locate project failure risks in the early stages and to show 

which bits can safely be “got-on-with”.  The decision to start building a system is, in 

practice, a risk management decision made by the stakeholders.  It would be more 

soundly based if the stakeholders were better informed about each other’s goals and 

assumptions, and the choices, risks and costs that follow. 

Goal based requirements analysis (Mylopoulos, Chung, Yu, 1999; Yu, 1997; 

Dardenne, van Lamsweerde, Fickas, 1993; Anton, Potts, 1998) can reveal structural 

completeness, consistency and rationale. It can also show the options for architectural 

choice and the soundness of the representation of the purpose1 in hand. The question 

                                                           
1 i.e. An intention to define and solve a problem. 
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is whether this approach can be practicable in the time-pressed industrial regime. A 

common view is that goal oriented methods, such as KAOS (Cediti, 2003), can be 

time-consuming and can result in very complex representations; neither feature being 

attractive in time-constrained projects. 

This paper introduces a new adaptation of the KAOS approach to goal analysis. 

This new approach is lightweight and includes some representational enhancements to 

provide ease of use and lowered complexity of representation. We have assumed that 

requirements only attain maturity by an iterative-incremental process that starts with a 

rough sketch. Given the time-constrained scenario discussed above, it is essential that 

the visualization provides a clear and comprehensive representation that emphasizes: 

 

1. Simplicity of construction 

2. A visual language that is easy to understand by all negotiating stakeholders  

3. A means to tolerate and represent incompleteness and imprecision 

 

This paper is structured as follows: In section 2, related work is described. Section 

3 introduces our lightweight approach to goal-oriented requirements engineering. 

Section 4 focuses in more detail on specific model properties. Section 5 presents an 

exemplar that uses our approach. Section 6 comprises a discussion and further work 

and section 7 presents conclusions. 

2   Related Work 

Anton and Potts present the Goal-Based Requirements Analysis Method (GBRAM) 

(Anton, Potts, 1998). This approach consists of a number of activities: Goals and their 

responsible agents are identified, organised, pruned and elaborated. Finally, goals are 

translated into operations. 

The KAOS framework by Lamsweerde et al. (Dardenne, van Lamsweerde, Fickas, 

1993), (van Lamsweerde, Letier, 2003) is a more comprehensive goal-oriented 

approach, spanning goal analysis through elaboration and operationalisation to object 

modelling. Within this model, obstacles describe impediments to achieving a goal that 

has to be resolved. The KAOS model has been used in this work as a starting point for 

a lightweight approach to goal-oriented requirements engineering. 

Mylopoulos et al. (Mylopoulos, Chung, Yu, 1999) introduced the idea of 

satisficing a soft goal or non-functional requirement. Soft goals are goals that do not 

have a clear-cut criterion for when they are satisfied. They are said to be satisficed 

when there is enough positive and little enough negative evidence that justifies their 

satisfaction.  This concept is implicit in the KAOS concept of a “soft goal”.  One of 

the simplifications introduced in this work, is to drop the distinction between “hard” 

and “soft” goals and to emphasize the active role of stakeholders in validating goal 

refinements and determining precise acceptance criteria, as (Gilb, 1988) recommends. 

An agent-based approach to goal-oriented requirements engineering is presented 

by Yu (Yu, 1997) in his i* model. The main concept in i* is the agent, an intentional 

actor with motivations, goals, beliefs and abilities. This can be contrasted with the 

less psychological perspective in KAOS and the present work. In i* dependencies 



exist between agents who influence the achievement of goals, the performance of 

tasks, and the furnishing of resources.  In our approach, we distinguish between the 

stakeholder role of understanding and owning goals and the agent role of performing 

tasks. 

3   A Lightweight, Goal-Oriented Approach: KAOS Lite 

We have created a goal analysis method based on KAOS emphasizing the benefits 

of simplicity in the modelling and visualization of goals.  

Fig.1 shows a possible goal graph using most of the node entities and edges that 

are supported in KAOS Lite. Goals A and E are root goals whose existence depend 

solely on the stated intentions of the stakeholders. They are connected through edges 

to a conflict operator (the bow-tie). The conflict operator refers to the fact that 

achieving Goal A poses a conflict of some sort for achieving Goal E, which needs 

attention by the stakeholders or requirements engineer.  

Goal A is refined into sub-goals B and C.  The refinement operator (small circle) 

can have multiple children and the set of children must be satisfied to achieve the 

parent goal; i.e. the refinement operator behaves as an AND gate.  Goal D is 

operationalised but also appears to be a root goal. Goal E is OR refined into goals K 

and F. Goal F is operationalised but is also obstructed by Obstacle 1. An obstacle is 

an impediment to achieving a goal. Unless an obstacle is resolved, a goal graph 

cannot be considered complete.  

 

 

 

 
Fig. 1. Illustrative goal graph 



 

Obstacle 1 is OR refined into sub-obstacles 2 and 3. Obstacle 2 is not resolved but 

obstacle 3 is resolved by goal G. Goals H and J are alternative refinements of goal G; 

called a strategic OR and can be used for architectural reasoning. Of the two choices 

only Goal H is operationalised. The process operationalising Goal H shows a shadow 

background to indicate that it superimposes itself on certain other processes (in this 

case the process that operationalises Goal F – this is discussed below in “crosscutting 

structures”). 

Goals B, C, D, F, H and J are leaf goals that should be operationalised as either 

requirement, assumption or expectation.  A requirement is something that the system-

to-be must do or a property it must have.  An assumption is an invariant property that 

the system-to-be depends on.  An expectation is a property or behaviour of the 

environment that the system-to-be depends on but cannot guarantee.  In KAOS Lite 

they are represented uniformly as processes assigned to agents.  However, the agents’ 

responsibilities differ.  In the case of requirements, the agent is an architectural 

component of the system-to-be. For expectations and assumptions, the responsibility 

lies with agents drawn from the stakeholders or the environment. This provides a 

basis for negotiating with stakeholders about the balance of responsibilities, e.g. 

tradeoffs between system complexity and users’ required skills.  

Continuing with Fig.1, only Goals B, C and D are operationalised: B as an 

assumption with Agent 3 assigned responsibility for its validity; C by an operation 

assigned to Agent1 for satisfaction; and D by an expectation assigned to Agent 2 for 

satisfaction. 

4   Model Properties 

This section highlights some distinctive features of KAOS Lite that are particularly 

relevant for time-constrained projects. 

4.1   Refinement and Architectural Choice 

There are two types of OR refinement in a goal graph: strategic OR, representing an 

alternative implementation strategy (build this or that), and run-time OR, representing 

a necessary logical inclusion in a goal refinement (the parent goal is true at run time if 

either this or that are true). KAOS Lite distinguishes them by annotating the 

refinement operator with a ‘?’ symbol. 

In Fig. 2. (a) we are stating that at run-time the activity will be closed by receipt of 

either a telephone message of an email. In Fig. 2 (b) we are stating that as a matter of 

design we will choose an implementation based on one or other of the possibilities.  

 



 

 

Fig. 2. Run-time OR (a) and strategic OR (b) 

It is important to distinguish strategic choices because they often represent policy 

decisions that have architectural, cost and schedule implications.  In general, only one 

branch will be elaborated and eventually implemented.  The alternative branches are 

modelled schematically to assist documenting the rationale for the stakeholders' 

preference.  This can be valuable in agile approaches because architectural decisions 

may have to be revisited as a result of evolution in either a system's requirements or 

its environment. 

4.2   Obstacle 

One of the expected benefits of goal analysis is the identification of obstacles. From a 

stakeholder's perspective, an obstacle is an event, state or situation that could prevent 

a project from achieving its goals. For example, ‘demand exceeds capacity’ is a 

potential obstacle in many sales-driven projects because that situation would 

contradict a goal of ‘meet customer expectations’. Three obstacles are shown in Fig. 

1. 

It is often the case that in the early stages relatively few goals are specified. This 

leads to the danger that the implementation is naïve (Cediti, 2003). It is not 

uncommon to discover that the easy part of the implementation is the intended 

functionality. “Getting-on-with-it” tends to focus on the main functionality. However 

the obstacles, which include the exception conditions, are often the cause of most 

development and testing effort. Furthermore it is often the case that unnoticed 

obstacles cause the stakeholders to be disappointed with the delivered product; with 

potentially serious cost consequences. In KAOS Lite goals are considered equally as 

defining the problem to be solved. The example below shows that they are a rich 

source of the necessary goals that may easily have been overlooked resulting in a 

large body of implemented code that needs refactoring and supplementing to cope 

with them. 

Although goals and obstacles are logically symmetrical (Lamsweerde sometimes 

refers to obstacles as anti-goals) stakeholders often have asymmetric knowledge of 

them. For example, in the earliest stages of requirements engineering for an E-type 

system, the goals may be vague and volatile. However, it is possible to infer many 

likely obstacles by drawing on previous experience of similar projects, i.e. through 

case-based reasoning. Furthermore, few software projects begin with a blank slate; 

usually they address some existing problem. Thus a goal graph can be initialised as a 



collection of obstacles to be resolved. Goals can be added as stakeholders discover 

them through a process of obstacle refinement. 

KAOS Lite like KAOS includes obstacles but in KAOS Lite their use is encouraged 

since it is often the case that problems may be represented more rapidly as obstacles 

than goals; of course ultimately every obstacle requires resolution by a goal or a goal 

refinement. 

4.3   Crosscutting Structures 

Applying a goal-based approach to requirements engineering can lead to overly 

complex goal graph representations. The same goal or obstacle can be found scattered 

in several places and focusing on only one part of a goal graph reveals several 

tangling concepts. Such scattering and tangling turns reading and understanding of the 

goal graph into a problem. When it comes to modifications of the goal graph due to 

volatile or only partly known requirements, the changes have to be applied at different 

places, which hinders a re-factoring of the goal graph and increases the likelihood of 

errors. 

Aspect-Oriented Programming (Kiczales et al., 1997) offers an approach to dealing 

with complex goal graph representations. At its core is the idea of an aspect or 

crosscutting concern as a modular unit. A concern is a thing of particular interest for a 

subset of stakeholders and a crosscutting concern is a concern that cuts across other 

concerns. For example, persistence or localization cut across the main concern(s) of 

the system. Aspects represent modular units which become most apparent in Aspect-

Oriented Programming and Modelling, where crosscutting concerns are expressed 

through new modularized programming structures, the aspect in AspectJ (Kiczales et 

al., 2001), for example, or through extensions to UML (Clarke, Walker, 2001). When 

crosscutting concerns have to be expressed in a goal graph, it is very likely that the 

problems of tangling and scattering described above occur, since the crosscutting 

nature of this concern is expressed through multiple instances of goals or obstacles or 

through the multiple usage of edges between entities. 

KAOS Lite treats the problem of crosscutting structures at process level through 

superimposed processes. A superimposed process is a process that superimposes its 

functionality onto other processes thus revealing its crosscutting nature. For example, 

a localization concern superimposes itself on all processes that carry out output to a 

screen, in order to translate all output before it is sent to the screen. Superimposed 

processes support the idea of changing requirements. Changes to the localization 

requirement that have an effect on its processes need only be applied to one concern 

which is represented through its separate goal graph. 

 In the KAOS notation, processes are expressed through ovals and are always 

carried out by an agent, either an internal software agent or an external agent, 

expressed through a diamond shape. To decrease complexity through a limited 

number of shapes, in KAOS Lite agents and processes are merged into one oval, 

expressing the processes an agent has to carry out. Superimposed processes will be 

visualized through a double oval, expressing that one process superimposes itself on 

another. The detailed relationship between the imposing and superimposed processes 

is undefined, since an actual design and implementation should be possible with either 



aspect or non-aspect-oriented languages. The set of processes that will be 

superimposed will be described for example in a combination of regular expressions. 

Fig. 1 shows an example of a superimposed process. Through superimposed 

processes, scattering in goal-graphs can be reduced and thus enhance their readability 

and understandability. 

5   An Exemplar 

Here we take an early requirements sketch in the form of a high level problem 

statement and show how we can rapidly create a goal based representation that gives 

us confidence to proceed with implementation in some areas and reason for caution in 

others. Fig. 3 shows the problem statement.  

 

Problem Statement 

 

The customer, WeighCom, wishes to produce a set of walk-on scales that 

can be installed in public places and used by any passers by to measure their 

weight, height and body mass index (BMI) and receive a business card sized 

printed record on the spot. Normal operation is for the user to step onto a 

pressure mat facing an instruction screen and standing under an acoustic ranger. 

The measurements are made once the user pays a fee of 1 Euro into a receptor.  

 

WeighCom has an excellent reputation for always delivering a reliable 

service or returning the money. This reputation is of paramount importance to 

them. 

 

WeighCom specifies that the solution must use certain components: pressure 

mat PM; coin receptor (CR); an acoustic ranger (AR) and integrated processor 

with alpha numerical visual display and user selection touch screen (IP). All of 

these are to be controlled through software using an API (application 

programming interface). These components support an existing assembly in 

which the whole is weather proof and reasonably vandal proof. 

Fig. 3. WeighCom problem statement 

In our experience, projects in industry often start the implementation phase armed 

with not much more than such a problem statement. Similarly, after showing the 

statement to colleagues they produced an implementation within two days. However, 

this implementation focused on normal functionality which as shall be seen, is only a 

small part of the problem. Some of the risks of premature ‘code-cutting’ are readily 

exposed in the first few steps of analyzing the goals and obstacles, as we now 

demonstrate. 

To begin, the implicit goals in Fig. 3 need to be identified. Various sets may be 

postulated and Fig 4 lists one set: 

 

<G1>”Produce a set of walk-on scales”.  

<G2> “Installed in public places and used by any passers-by”  



<G3>”Normal operation”  

<G4> “Reputation”.  

<G5> “Solution must use certain components”.  

<G6>”measure their weight, height and body mass index (BMI) and receive a 

business card sized printed record on the spot.” 

<G7>”user to step onto a pressure mat facing an instruction screen and standing 

under an acoustic ranger.” 

<G8>The measurements are made once the user pays a fee of 1 Euro into a 

receptor. 

Fig. 4. Candidate list of goals 

This choice of goals though reasonable is debatable and for that reason must be 

tested with the stakeholders. Negotiations may take place to identify the most fitting 

choice.  

The initial choice of goals may also be helped by applying quality checklists and 

other heuristics. These techniques have not been used here. Also it may be noted that 

Fig. 4 does not make the underlying business case explicit, with the consequence that 

the analysis may overlook at least one significant root goal.  

For the purpose of this paper the list in Fig. 4 is taken as a baseline. A quick survey 

of these goals shows: G1 makes a plausible choice as a root goal supported by G2 

through G5. Goal G3 represents functional requirements whilst G2, G4 and G5 are 

non-functional. G5 constrains the implementation and will crosscut the leaf goals 

stemming from G3. Similarly G2 and G4 are likely to crosscut G3.  

The user interface of our tool implementing KAOS Lite allows a drag and drop 

operation from Microsoft Word. All the examples below have used this. Minor 

modifications to the goal texts in Fig. 4 have been introduced to improve clarity. 

G6 through G8 could be refined individually into sub goals. However is this 

necessary; at least initially? They may be recognized as three stories, or even one 

large story, and in agile fashion it may be expedient to accept the actual code of the 

implementation as the refinement. In Fig. 5, G7 and G8 are combined and replaced 

with a new G9 in the hope of freeing G9 as soon as possible for implementation. 

The process in Fig. 5 was what our colleagues implemented in two days. However 

there are ‘What if?’ questions to be answered including:- 

 

1. Suppose the public do not recognize the invitation to use the scales? 

2. Suppose the users do not stand properly to allow the acoustic ranger and 

pressure mat to make their measurements sufficiently accurate? 

3. Suppose the scales are not ready to operate and execute a transaction to 

completion after a user has paid?  

4. Suppose that after a transaction has begun it cannot then be completed?  

 



 

 

Fig. 5. Normal operation with a basic operationalisation process 

These are represented in Fig. 6 as obstacles B1, B2, B3 and B4. Most would also 

obstruct G4. 

 

 

 

Fig. 6. Obstacles to normal operation 

In Fig. 6 the real development problem is beginning to emerge. Clearly 

consultation with stakeholders is needed. Whereas B1 may be very easily resolved 

with an information screen, resolving the others could be complex. Depending on the 

views of the stakeholders and the potential cost and development time, the 

ramifications need to be discussed with the stakeholders. For example what policies 

apply to repayments and to the protection of reputation (G4)?  

Obstacles tend to refine in OR logic as opposed to the normal AND logic of goals. 

If obstacles are taken to be negative goals then this is an example of de Morgan’s law. 

A speculative refinement of B4 is shown in Fig. 7. This illustrates a strategic-OR 

where the stakeholders are offered the choice of relatively low investment in goal G19 

or the more complex alternative in G20. In this figure the analyst has guessed that 

G19 would be preferred and has also operationalised it.  

The operationalisation of G19 provides an example of a crosscutting process.  

 



 

 
 

Fig. 7. Proposed resolution of obstruction B4 (showing strategic OR and crosscutting process) 

The crosscutting process attached to G19 is interpreted as follows: The agent IP 

will implement this operation and superimpose it on any operation that matches a 

predicate. In this case, the predicate matches every process that is the responsibility of 

agent IP and has in its title the string “G9”. Referring to Fig. 7, it can be seen that the 

process operationalising goal G9 would be affected. If the goal analysis was complete 

to the extent of operationalising all functional goals, some stakeholders might expect 

this (anonymous) process to be superimposed on every functional process that 

interfaces with a component that is expected to malfunction. This illustrates the kind 

of misunderstanding about goals, obstacles and their resolutions that visualised goal 

analysis can help to reveal and hence resolve.  

Fig. 8 illustrates issues concerning assumptions and expectations. Assumptions that 

the stakeholders need to validate include whether the payment is solely by a 1 Euro 

coin. An expectation on the user is that they will pay and behave as instructed. These 

are included in the summarizing graph Fig. 8. 

The user expectation is not surprising. The assumption under the responsibility of 

the stakeholders is crucial to the complexity of the system. Should this assumption be 

invalid then the ramifications on cost and delivery times would need careful review 

by the stakeholders.  

Had the coin assumption been both overlooked and invalid a late and expensive 

misunderstanding could have resulted. There may be other lurking assumptions with 

even more potential for misunderstanding. For example, what are the assumptions 

concerning use in public places? 

Fig. 8 shows a possible interpretation of the normal operation with its obstacles and 

assumptions. It indicates hidden depths in the problem. These will be compounded 

when the crosscutting effects of goals G2, G4 and G5 are added.  

 



 

 

 

 
Fig. 8. Partial interpretation of normal operation including assumptions and expectations along 

with strategic-or and crosscutting process 

6   Discussion and Further Work 

The work described here bears on various issues in software engineering practice and 

research. 

A practical issue that is particularly relevant to time-constrained projects is the 

trade-off between allocating resources to goal analysis rather than, say, design or 

coding. From an agile perspective, it may appear that it would be redundant to 

elaborate a goal graph beyond an agreement between stakeholders on an initial set of 

requirements and their acceptance tests. However, anecdotal evidence from our use of 

KAOS Lite tends to contradict this position. We consistently find that an iterative and 

interactive approach to goal analysis improves our understanding of a problem and 

that we usually discard our initial attempts at drawing its goal graph.  In particular, we 

find that "lurking" obstacles and assumptions are more likely to be discovered by 

discussion than by introspection, and that a provisional goal graph is a good device 

for stimulating this process. The extended example in Section 4 illustrates this.  

Nevertheless, we do not advocate that goal graphs must be elaborated to any 

particular degree of completeness.  We consider it more valuable for stakeholders to 

clarify which paths in a goal graph lack detail, so that the risks of deferring further 

elaboration can be considered. 

These observations suggest that care is needed in designing tools to support goal 

analysis.  In broad terms, tools should only attempt to automate the tedious parts of 



tasks, e.g. drawing symbols, importing text from other documents, checking graph 

properties.  The design of tools should not encourage the illusion that they can 

magically discover knowledge.  Tools should assist stakeholders in disclosing their 

existing knowledge and discovering hidden but relevant information, within an active 

process of dialogue and negotiation with each other.  There are opportunities here to 

learn from the insights of cognitive psychology and other disciplines in their 

application to similar problem-solving situations such as pair programming. 

A further reason for caution in automating goal analysis is that the decomposition 

of goals for systems in real-world domains is properly expressed as semantic 

entailment rather than equals or logical implication.  Thus in Fig. 1:   

 

GoalGGoalJGoalH

GoalAGoalBGoalC

=∨

=∧

|

|
 

 

The use of the “entails” symbol |= reminds us that the stakeholders must take 

responsibility for the validation of each entailment in a goal graph.  It will rarely be 

possible to automate this process. 

The specification of the meta-model for KAOS Lite, particularly the treatment of 

crosscutting concerns, touches on software engineering issues related to type checking 

and responsibility-driven design.  From a goal analysis perspective, an important 

question is who decides whether a goal or process will be subject to superimposition 

by other processes.  This is currently an open question for KAOS Lite, and is itself an 

example of potentially conflicting goals.  On one side, it can be argued that a goal or 

process should take responsibility for exposing itself to specific superimpositions, e.g. 

by including an explicit clause in its declaration of the form "with Localization" 

where Localization is a superimposing process defined elsewhere in the graph.  This 

approach would be similar to statically typed programming languages such as Scala2 

that support "mixin" classes and traits.  Alternatively, it can be argued that a goal 

graph is easier and quicker to draw if the scope of a superimposing process is defined 

as a predicate in the properties of that process.  In this case, the impact on other 

processes is implicit.  Usually, one would rely on the design tool to evaluate the 

predicate and determine which processes will be superimposed on given the current 

state of the graph.  The analyst could check the correctness of a predicate by asking 

the tool to visualise the impact of superimpositions.  This approach would be 

analogous to AspectJ3. 

We originally devised KAOS Lite and the prototype tool that implements it to assist 

our research into various aspects of software quality.  Using KAOS Lite creates a 

repository of information about “what is known about what is wanted” (Boness, 

Harrison, Liu, 2005) that is available from the earliest stages of a software project.  

We plan to use this resource to inform our continuing work on profiling the quality of 

requirements.  In particular, the repository allows us to trace the provenance of 

requirements and assumptions back to goals and their stakeholder owners, and to 

derive metrics about interesting qualities of goal graphs.  KAOS Lite also provides a 

                                                           
2 http://scala.epfl.ch/ 
3 http://eclipse.org/aspectj/ 



test-bed for handling crosscutting concerns and designing systems with rapidly 

evolving requirements. 

7   Conclusion 

Rigorous approaches to goal analysis are not appropriate for all software projects but 

most projects can expect to benefit from clarifying stakeholders' goals.  For example, 

projects with innovative goals, diverse stakeholders, or in rapidly evolving domains 

may be able to significantly reduce risks of failure by using goal analysis.  Risk 

mitigation should be easier, to both plan and justify, if stakeholders have a deeper 

understanding of their goals and any conflicts between them.  Nevertheless, in 

practice, the greatest benefits of goal analysis may come from clearer foresight of the 

obstacles to achieving goals, and raised visibility of the assumptions and expectations 

that stakeholders are relying on for project success. 

Thus goal analysis is not incompatible with time-constrained and agile approaches 

to software development, provided that suitable tools are available.  KAOS Lite is 

work in progress towards satisfying this aspiration.  It adopts the core concepts of the 

KAOS method but simplifies the user interface.  Its design principles are sympathetic 

to agile perspectives. KAOS Lite aims to provide simple representations of simple 

situations and to prevent bewildering complexity in complicated situations.  The 

treatment of crosscutting concerns as superimposed processes helps to avoid tangles 

of criss-crossing graph edges.  The simpler palette for representing processes should 

encourage stakeholders to focus on agents' responsibilities, and to discourage 

premature concern with design details.  On the other hand, the palette for representing 

strategic and policy decisions has been selectively enlarged to give higher visibility to 

these issues and to clarify an ambiguity in interpretations of the OR connective 

between sub-goals. 
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