
HAL Id: hal-01026531
https://hal.inria.fr/hal-01026531

Submitted on 22 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trait-oriented Programming in Java 8
Viviana Bono, Enrico Mensa, Marco Naddeo

To cite this version:
Viviana Bono, Enrico Mensa, Marco Naddeo. Trait-oriented Programming in Java 8. PPPJ’14:
International Conference on Principles and Practices of Programming on the Java Platform: virtual
machines, languages, and tools, Sep 2014, Cracow, Poland. �hal-01026531�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49609023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01026531
https://hal.archives-ouvertes.fr

Trait-oriented Programming in Java 8 ∗

Viviana Bono Enrico Mensa Marco Naddeo
Dipartimento di Informatica, University of Torino, Italy
{bono,naddeo}@di.unito.it, enrico.mensa@gmail.com

Abstract
Java 8 was released recently. Along with lambda expressions, a new
language construct is introduced: default methods in interfaces. The
intent of this feature is to allow interfaces to be extended over
time preserving backward compatibility. In this paper, we show
a possible, different use of interfaces with default methods: we
introduce a trait-oriented programming style based on an interface-
as-trait idea, with the aim of improving code modularity. Starting
from the most common operators on traits, we introduce some
programming patterns mimicking such operators and discussthis
approach.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Java 8, default method, trait, programming pattern,
code modularity.

1. Introduction
From the point of view of the language constructs, the most promi-
nent addition in Java 8 is thelambda-expressionconstruct, that
comes along with an apparently secondary construct, that is, thede-
fault method(akavirtual extension method, akadefender method)
in interfaces. The primary intent of this feature is to allowinterfaces
to be extended over time preserving backward compatibility. These
features of Java 8 are described in the proposalJEP 126(JDK En-
hancement Proposal 126)Lambda Expressions & Virtual Exten-
sions Methods[9]. JEP 126 is a follower of the Project Lambda,
that corresponds to JSR 335 (Java Specification Request 335)[17].

A default methodis a virtual method that specifies a con-
crete implementation within an interface: if any class implement-
ing the interface will override the method, the more specificim-
plementation will be executed. But if the default method is not
overridden, then the default implementation in the interface will
be executed. An already paradigmatic example of use of de-
fault methods to preserve backward compatibility concernsthe
interfaceCollection<T>, already present in previous releases
of Java. Thanks to lambda expressions, now it is possible to in-
troduce aforEach(LE) method that takes a lambda expression
LE as an argument, coding a function to be applied to all of the

∗ This material is based upon work supported by MIUR PRIN Project CINA
Prot. 2010LHT4KM and Ateneo/CSP Project SALT.

[Copyright notice will appear here once ’preprint’ option is removed.]

elements in the collection. However, adding this method as ab-
stract toCollection<T> interface would mean breaking back-
ward compatibility: in other words, every old class implementing
Collection<T> interface would have to change by adding an im-
plementation offorEach(LE), unless a default method is present
in the interface. Moreover, default methods may help avoiding code
duplication.

In previous Java releases, interfaces were to provide multiple
type inheritance, in contrast to the class-based single implementa-
tion inheritance. Java 8 interfaces, instead, introduce a form of mul-
tiple implementation inheritance, too. Therefore, they are similar
to traits [10], which are sets of (required and supplied) methods.1

Java 8 interfaces, then, can be exploited to introduce atrait-oriented
programming style. Note that we are not proposing a linguistic ex-
tension of Java 8 with traits, but programming patterns within Java
8, with the goal of improvingcode modularityand, therefore,code
reuse. Starting from operators on traits [10], we introduce some
Java 8 programming patterns mimicking such operators and dis-
cuss this approach.

The paper is organized as follows: Section 2 illustrates briefly
the trait construct, Section 3 introduces Java 8default methods,
Section 4 proposes the programming patterns inspired by thetrait
operators, Section 5 shows an example of use, Section 6 makes
some comparisons with related work, and Section 7 draws some
conclusions.

2. What are traits?
The possibility ofcompositionanddecompositionof code are im-
portant characteristics to care about in a programming language.
Let us point out some problems of (single and multiple) inheritance
concerning composability:

• Duplicated features. Single inheritance is the basic form of in-
heritance; thanks to that we can reuse a whole class (and also
add some features). But sometimes we want to express some-
thing that is much too complex to be implemented with single
inheritance. For example, we could have a classSwimming (that
gives features for swimming animals) and a classFlying (that
gives features for flying animals). What if we want to create an
animal that can both swim and fly, as swans? We can inherit
only from Swimming or Flying but not both, so we will have
to duplicate some of the existing features in theSwan class.

• Inappropriate hierarchies. Instead of duplicating methods in
the lower classes, we can bring those methods up in the hier-
archy; however, this way we violate the semantics of the upper
classes.

• Conflicting features. If we have multiple inheritance (as C++
does) a common problem is how to treat conflicts. Method
conflicts can be solved (for example, thanks to overriding),but

1 This is pointed out in many places, see, for instance, [18].

1 2014/7/22

conflicting attributes are more problematic. It is never clear if a
conflicting attribute should be inherited once or twice and how
these attributes should be initialized.

Traits are a possible solution to these problems. A trait is a“simple
conceptual model for structuring object-oriented programs” [10]
and it is a collection of methods. This is very important: these traits
are statless, they cointain only methods, therefore every conflict of
state is avoided. Only method name conflicts must be dealt with,
explicitly, by the programmer.

Every trait can definerequired methodsandrequired fields. In
the considered model, required fields are indirectly modelled via
required setter and getter methods. A trait can be defined directly
(by specifying its methods) or by composing one or more traits. The
composition is performed by means of the following operators:

• Symmetric Sum: a new trait is defined by combining two or
more existing traits whose method sets are disjoint. In the case
the sets are not disjoint, conflicts arise.

• Trait overriding: a new trait is defined by adding method(s) to
an existing trait. If an already present method is added, theold
version is overridden.

• Exclusion: a new trait is defined by excluding a method from an
existing trait.

• Aliasing: a new trait is defined by adding a second name to a
method from an existing trait. This is useful if the originalname
was excluded after resolving a conflict. Note that, if a recursive
method is aliased, the recursive call will be done on the original
method.

These operators are from the original proposal [10]. Other opera-
tors were introduced in further works (a comprehensive listof op-
erators with relations among them can be found in [5]). We focus
on this particular set as we think they are the most interesting ones
from a programming point of view.

The original definition of traits says that trait and class usages
are separated: the first ones are units of reuse, while the second ones
are generator of instances. A class can be specified by composing
a superclass with a set of traits and someglue methods(akaglue
code). Glue methods are written inside a class and make it possibile
the connection between different traits. An example of gluecode
are the setter/getter methods, that allow methods in traitsto access
the fields.

Trait composition respects the following three rules [10]:

• Methods defined in a class itself take precedence over methods
provided by a trait. This allows glue methods defined in the
class to override methods with the same name provided by the
traits.

• Flattening property: a non-overridden method in a trait hasthe
same semantics as if it were implemented directly in the class.

• Composition order is irrelevant. All the traits have the same
precedence, and hence conflicting trait methods must be explic-
itly disambiguated.

Method name conflicts can be resolved by introducing appropriate
glue methods in classes which redefine the conflicting methods, or
thanks to two operators:

• with trait override, by adding one method with the same
name, which hides the previous implementations and may call
whichever of them;

• with exclusion, by excluding all but one of the conflicting meth-
ods.

3. On default methods
The role of an interface up to Java 7 was to give a contract to the
user (that is, a type), but not to specify any detail of the contract it-
self (that is, the implementation). The main characteristic of default
methods (introduced by a keyworddefault) is that they are virtual
like all methods in Java, but they provide a default implementation
within an interface.

Java 8 method resolution is defined in [12] and its formalization
in a Featherweight-Java style [14] can be found in [13]. To summa-
rize it, we take the four (informal) rules about method linkage from
[13]:

• A method defined in a type takes precedence over methods
defined in its supertypes.

• A method declaration (concrete or abstract) inherited froma
superclass takes precedence over a default inherited from an
interface.

• More specific default-providing interfaces take precedence over
less specific ones.

• If we are to linkm() to a default method from an interface, there
must be a unique most specific default-providing interface to
link to, otherwise the compiler signals a conflict.

From these dispatch rules, we can extrapolate some examplesof
behaviour that can help the reader to understand the defaultmethod
construct.

A first example. If the class that implements the interface using
default methods does not override those methods, the default im-
plementation provided in the interface will be executed.

interface A {
default void m()

{out.println ("Hi , I’m interface A");}
}
class B implements A {}
// doesn ’t override m

public class FirstDM {
public static void main(String [] args) {

B b = new B();
b.m();

}
}

The output will be:Hello from interface A.

Classes always win. Here there is an example:

interface A {
default void m()

{out.println ("Hi , I’m interface A");}
}
class B implements A {

// overrides m
public void m()

{out.println ("Hi , I’m class B");}
}
public class SecondDM {

public static void main(String [] args) {
B b = new B();
b.m();

}
}

The output will be:Hi, I’m class B.

The most specific interface wins.If no class overrides a default
method, the default method with the most specific implementation
will be executed:

interface A {

2 2014/7/22

default void m()
{out.println ("Hi I’m interface A");}

}
interface B extends A {

default void m()
{out.println ("Hi I’m interface B");}

} // more specific because of the ’extends ’

class C implements A, B { }

public class ThirdDM {
public static void main(String [] args) {

C c = new C();
c.m();

}
}

The output will be:Hi, I’m interface B.

Conflicts are not always avoidable.If a unique most specific
default-providing interface is not found, an error will occur:

interface A {
default void m()

{out.println ("Hi I’m interface A");}
}
interface B {

default void m()
{out.println ("Hi I’m interface B");}

}

class C implements A, B { }

public class FourthDM {
public static void main(String [] args) {

C c = new C();
c.m();

}
}

The compiler says:class C inherits unrelated defaults
for m() from types A and B - class C implements A,
B.

How to resolve conflicts. The construct X.super.m() can be
used, whereX is one of the direct superinterfaces containing the
default methodm():

interface A {
default void m()

{out.println ("Hi I’m interface A");}
}
interface B {

default void m()
{out.println ("Hi I’m interface B");}

}
class C implements A, B {

// calls m in A
public void m()

{A.super .m();}
}
public class FifthDM {

public static void main(String [] args) {
C c = new C();
c.m();

}
}

The output will be:Hi I’m interface A.
Note that this new construct is just for resolving conflicts while

using default methods and not for a general purpose [12].

About abstract methods. We said that classes always win over
interfaces. This is true also when classes are abstract:

interface A {
default void m()

{out.println ("Hi I’m interface A");}
}
abstract class B {

abstract void m();
}

class C extends B implements A { }

public class SixthDM {
public static void main(String [] args) {

C c = new C();
c.m();

}
}

The compiler says:C is not abstract and does not override
abstract method m() in B - class C extends B implements
A. This happens because the abstract declaration ofm() in B takes
precedence over the default declaration inA.

4. A guide to trait-oriented programming
Java 8 interfaces play the role of traits, with default methods as
provided methods and abstract methods as required methods.We
will refer to an interface with this role with the term “trait” and
we introduce the convention that such an interface will be named
with a name starting withT or Trait. As within stateless traits,
required fields are encoded as required accessory (getter and setter)
methods, that is, as abstract methods, whose implementation will
be provided as glue code by the class implementing the traits.

In order to introduce the trait-oriented programming style, we
propose some programming patterns to match the trait operators
listed in Section 2.

Symmetric sum. This provides the fundamental feature of multi-
ple inheritance. With “symmetric” it is meant that all the addends
of a sum are peers, implying that, in the case of a conflict, it is up
to the developer to deal with it. The first example shows a caseof
a sum without conflicts. We have three traits:TMouth, TEyes and
TTail:

public interface TMouth {
default void makeASound ()

{out.println (" Yaaaawn ");}
default void eat(String s)

{out.println ("I’m eating "+s);}
}

public interface TEyes {
default void lookAround ()

{out.println ("I’m looking ");}
default void blink ()

{out.println ("I’m blinking ");}
}

public interface TTail {
default void shakeTail () {

out .println ("Wuush , I’m shaking my tail .");
}

}

Then a new trait,TCat, puts together all the features previously
defined, and a class implements it:

public interface TCat
extends TEyes , TMouth , TTail {

default public void purr()
{out.println (" PuUurRrRr ");}

}

3 2014/7/22

public class MyCat implements TCat {
private String name;
public MyCat(String n)

{this.name = n;}

public static void main(String [] args) {
MyCat jacky = new MyCat (" Jacky ");
jacky .eat (" Meat ");

}
}

The output will be:I’m eating Meat".

Trait overriding. The override operator defines a new trait by
adding one or more methods to an existing trait:

public interface TraitA {
default void m()

{out.println ("I am m in TraitA ");}
}

public interface TraitB extends TraitA {
/** overrides TraitA , adding

a new feature **/
default void m2()

{out.println ("I am m2 in TraitB ");}
}

public class C implements TraitB {
public static void main(String [] args) {

C c = new C();
c.m();
c.m2();

}
}

Both methodsm andm2 are callable, therefore the output will be:I
am m in TraitA, I am m2 in TraitB.

Trait overriding can be used to solve conflicts. If we add
a methodclose() in both traits TMouth and TEyes (intro-
duced above), we get from the compiler:MyCat.java:1: error:
class MyCat inherits unrelated defaults for close()
from types TEyes and TMouth public class MyCat
implements TCat.

Notice that in the overriding version ofclose(), we use the
constructX.super.m():

public interface TCat
extends TEyes , TMouth , TTail {

/** Conflict resolution **/
default void close ()

{TEyes.super.close ();}

default public void purr ()
{out.println (" PuUurRrRr ");}

}

The methodclose() that will be executed is the one from the
TEyes trait. The close() method from theTMouth trait is not
lost, as it can be aliased. However, notice that the use of the
X.super.m() feature reduces the low coupling betweenTCat and
TEyes: if some day theclose() in TEyes method will change (for
example by adding a parameter to it), also theclose() method
insideTCat must change.

Exclusion. Exclude is a tough operator. In [12], it was described
the possibility to remove a default method by using thedefault
none keyword, but this has not made its way in the official Java
8 release (dealing with negative information is never easy). A
proposal for an exclude programming pattern, then, can use awell-
know workaround, i.e., we can exclude a method by redefining it
with an empty body or by throwing an exception. We prefer the
second alternative. Consider this trait:

public interface TraitA {
default void m()

{out.println ("I am m in TraitA ");}
default void q()

{out.println ("I am q in TraitA ");}
}

If we want to excludem(), we can do as follows:

public interface TraitB extends TraitA {
default void m() {

String s = "Method not understood ";
throw new UnsupportedOperationException (s);

}
}

public class C implements TraitB {
public static void main(String [] args){

C c = new C();
c.m();
c.q();

}
}

The first method call throws the exception. The second one would
print I am q in TraitA.

Note that this programming pattern works well with respect to
symmetric sum: if in all summed traits we have a method that we
want to exclude, then this pattern will exclude simultaneously all
upper method versions. However, we do not exclude the methodfor
real, we just make unavoidable the upper implementation by over-
riding it, therefore Java introspection can still detect the excluded
method:C.class.getMethod(’m’) still gets an answer.

Notice, however, that it is not possible to call in a new traitthe
excludedTraitA version of the methodm:

public interface TraitB1 extends TraitB {
/** It tries to rehabilitate the version

from TraitA , excluded by TraitB **/
default void m() {

TraitA .super .m(); // does not compile
}

}

If we try to compile the above code, we obtain an error:not an
enclosing class: TraitA.

Aliasing. The alias operator provides another, alternative, name
for referring to a certain method. Consider this trait:

public interface TraitA {
default void mOneA ()

{out.println ("I’m mOneA in A");}
default void mTwoA ()

{out.println ("I’m mTwoA in A");}
}

Now, in a new trait, we create an alias for themTwoA() and we test
it:

public interface TraitB extends TraitA {
/** Aliasing mTwoA () in

aliasMTwoA () **/
default void aliasMTwoA ()

{mTwoA ();}
}

public class MyB implements TraitB {
public static void main(String [] args) {

MyB mc = new MyB ();
mc. aliasMTwoA ();
mc.mTwoA ();

}
}

4 2014/7/22

The output will be:I’m mTwoA in A, twice.
When applying the alias programming pattern, attention must

be paid to the alias name, as it is possible to override by mistake
another method of the upper trait.

4.1 On the return type of methods

In Java, the name of a method is bound forever to its first introduc-
tion in terms of the return type. This makes the reuse of the name
fragile, if we want to change the return type. We discuss thisissue
by means of an example. We want to develop a stack data struc-
ture (this example is taken from [5]). First of all, we show a single
inheritance version:

public interface IStack {
/* Tells if the stack is empty */
public boolean isEmpty ();
/* Adds one item on the stack */
public void push(Object obj);
/* Removes and returns the first

object on the stack */
public Object pop ();

}

public class Stack implements IStack {
List <Object > l;

public Stack ()
{ l = new LinkedList <Object >(); }

public boolean isEmpty ()
{ return l.isEmpty (); }

public void push(Object obj)
{ l.add(obj); }

public Object pop () {
if (! isEmpty ())

return l.remove (l.size () -1);
else

return null;
}

}

Now, suppose that we want to implement another stack, with this
interface:

public interface IStackAlt {
public boolean isEmpty ();
public void push(Object obj);
/* Removes the first object on the stack */
public void pop ();
/* Returns the first object on the stack

(without removing it) */
public Object getTop ();

}

As we can see, this interface is different fromIStack because
of two methods:pop() is now void, and we have an additional
methodgetTop(). We can implement this interface as follows:

public class StackAlt implements IStackAlt {
List <Object > l;

public StackAlt ()
{ l = new LinkedList <Object >(); }

public boolean isEmpty ()
{ return l.isEmpty (); }

public void push(Object obj)
{ l.add(obj); }

public void pop ()
{ if (! isEmpty ()) l.remove (l.size () -1); }

public Object getTop ()
{ if (! isEmpty ()) return l.get(l.size () -1);

else return null; }
}

Notice that both methodsisEmpty() and push() were already
implemented inside theStack class and we had to re-implement
them inside theStackAlt class.

We exploit now our trait-oriented approach to promote code
reuse and backward compatibilty when possible, while pointing out
the problems related to override.

From a non-void method to a void one.First of all, we introduce
aTStack trait that defines all the operations:

public interface TStack {
public List <Object > getStructure();

default boolean isEmpty ()
{ return getStructure(). isEmpty (); }

default void push(Object obj)
{ getStructure(). add (obj); }

default Object pop () {
if (! isEmpty ()) {

int pos = getStructure.size ()-1;
Object o = getStructure(). get(pos);
getStructure(). remove (pos);
return o;

}
return null;

}
}

Notice the abstract methodgetStructure(): it is a getter method
to access the stack structure, that will be implemented as a field in
a class, together with this method. The implementation ofTStack
is as follows:

public class Stack implements TStack {
List <Object > l;
public Stack ()

{ l = new LinkedList <Object >(); }
/* Glue Code */
public List <Object > getStructure()

{ return l; }
}

Note we put some glue code to provide the previously mentioned
getStructure() method.

Now, we want to introduce a new methodgetTop() and we
want to change the oldpop() that was returning anObject into a
void version. The first goal is easy, we can use the trait override
pattern, however we encounter some problems with thepop()
method:

public interface TStackAlt extends TStack {
/** We redefine pop simulating

the void return type **/
default Object pop () {

if (! isEmpty ()) {
int pos = getStructure.size ()-1;
getStructure(). remove (pos);

}
return null;

}

/** If we could , we would have done:
default Object pop () {

String s = "Message not understood ";
throw new UnsupportedOperationException (s);

}

default void pop () {
int pos = getStructure.size()-1;
getStructure(). remove (pos);

}
but in Java we cannot have two methods
with same name and number of parameters
which differ only for their return types . **/

5 2014/7/22

/** We make the old pop still available
(optional) **/

default Object popTop () {
return TStack .super.pop ();

}
/** Trait Override **/
default Object getTop () {

if (! isEmpty ()) {
int pos = getStructure.size()-1;
return getStructure(). get(pos);

}
return null;

}
}

In Java we cannot have two methods with same name and number
of parameters which differ only for their return types. We did, in
fact, provide an ad-hoc solution, by returningnull in the new
version ofpop(). This is an implementing class:

public class StackAlt implements TStackAlt {
List <Object > l;
public StackAlt ()

{ l = new LinkedList <Object >(); }
/* Glue Code */
public List <Object > getStructure()

{ return l; }
}

Notice that this solution preserves backward compatibility and
it can be applied in similar cases. With respect to the single-
inheritance version, the methodsisEmpty() andpush() are not
duplicated anymore, the class tree is clearer, we provided anew
pop() method but we also made the old one still accessible.

From a void method to a non-void one.Now TStack defines
a void pop() and TStackAlt defines a newObject-returning
version of it. We have the two traits defined as follows:

public interface TStack {
public List <Object > getStructure();
default boolean isEmpty ()

{ return getStructure(). isEmpty (); }
default void push(Object obj)

{ getStructure(). add (obj); }
default void pop () {

if (! isEmpty ()) {
int pos = getStructure.size()-1;
getStructure(). remove (pos);

}
}
default Object getTop () {

if (! isEmpty ()) {
int pos = getStructure.size()-1;
return getStructure(). get(pos);

}
return null;

}
}

public interface TStackAlt extends TStack {
/** We cannot change the return type

of the pop () method from void to
Object . So we make an alternative
pop , using another name.

**/
default Object altPop () {

Object o = getTop ();
pop ();
return o;

}
}

This case is similar to the previous one, however no workaround is
possible. All we could do was to define another “pop” method that
returns anObject (methodaltPop()).

The implementing classStackAlt is the same as in the previ-
ous case. Notice, however, that any call topop() in a client will
have to be changed into a call toaltPop(): backward compatibil-
ity is broken.

The covariant override. In Java the override behavescovariantly:
an overriding method may have a return type that is a subtype of
the method it overrides. Therefore, we may do something likethis:

public interface TraitA {
default Object m()

{ /* something */ }
}
public interface TraitB extends TraitA {

default String m()
{ /* something else */ }

}

This works becauseString is a subtype ofObject. Of course we
cannot do the opposite, that is, change the return type fromString
to Object, but a case of trait manipulation requiring such a change
of signature would probably make little sense.

5. An example
We present now a small case study: the skeleton implementation of
a variant of a classic game (often used when presenting alternative
reuse mechanisms to inheritance and design patterns). The Java 8
code is presented in Appendix A and the corresponding diagram is
shown in Figure??.

There is a character with the goal of collecting as many coinsas
possible while she is moving from one place to another. Sometimes,
the character enters a room with three doors to be chosen among.
A door can be opened only if it is unlocked, each door has its own
features and provides a certain amount of coins. In particular, we
develop a room with three different doors. This example is suited to
show code reuse as any kind of door can appear in different rooms
and any feature of the doors can be exploited on elements thatare
not doors, in different situations during the game.

We start with a base door. If the door is not locked, it is possible
to open it. Once opened, the door gives some coins (a negativevalue
corresponds to “door still locked”). As an additional action, it is
possible to knock the door and try to get some other coins. Now,
we develop three features (we can, however, imagine a lot of them),
that can be applied to the doors but also to other elements of the
game. These are a coin counter, a chest of coins, an enchantment
that can give or take coins, and they are represented with three
traits, TCounter, TChest, andTEnchanment. In the traits there
are some required methods such asgetEnchantMaxCoins() and
getDoorMaxCoins(): it is up to the developer of an element to
decide the maximum amount of coins that it can give.

We can compose ourTDoor with different features and then
create a class implementing each door (and providing the required
glue code): for example, an enchanted door, represented by aclass
EnchantedDoor that uses a traitTEnchandedDoor. Note that the
classEnchantedDoor provides the required glue code by imple-
mentinggetEnchantMaxCoins() andgetDoorMaxCoins().

Similarly, we can implement a traitTChestedDoor and a class
ChestedDoor. We solve a conflict between the twoopen()’s
methods (one fromTDoor and the other fromTChest). First, we
alias theopen() from theTChest trait asopenChest(). Then,
we use the trait overriding to reuse the conflicting name and re-
implement theTDoor’s open().

We can also build a door that may give coins when knocked a
certain number of times (TKnockDoor and a classKnockDoor).

6 2014/7/22

Now we can create a room with three doors (an alternative im-
plementation could use aTRoom trait that provides general methods
for a room and then a classDoorsRoom that implements it). Finally
we put everything together. We create: aGame class that references
the rooms of the game and the player; aPlayer class (again, we
could introduce aTPlayer trait representing a basic player, that
could be combined with other traits to obtain different categories
of players such as premium, demo, etc).

Every trait is reusable inside the project and every featureis
stand-alone. However, there is a drawback: some of glue codein-
side the implementing classes is duplicated and, even if field acces-
sory methods might be generated authomatically, this is detrimental
for the code reuse (even though it seems a good idea that the devel-
oper of a class can decide how to access its variables). Fortunately,
if trait composition is used in synergy with class inherintance, reuse
can be improved. In our case, it is enough to regroup all the repli-
cated glue code (and the relative fields) into a classCommonDoor
(see Figure??).

6. Related work
Traits as in [10] have been fully implemented in Smalltalk-Pharo
[19]. A form of traits is present in PHP 5.4 [20], and in the literature
there are a few other different models and implementations:for
instance, in [5] and [22] there are two proposals for traits in a
Java-like language, and [3] presents a version of traits with state
(however, at the best of our knowledge, no satisfactory versions of
stateful traits have been proposed so far).

Traits andmixinsare related. Both constructs exploits composi-
tion instead of inheritance as a mechanism for software reuse and
they are alternatives to multiple inherintance. Mixins [1,4, 6, 7, 11,
24] are essentially subclasses parametric over their superclass and
can be seen as a form of linearized multiple inheritance. We outline
the three main differences between traits and mixins:

• Mixins are stateful, as they can define fields (providing reuse of
behaviourandstate), while traditional traits do not.

• Mixins useimplicit conflict resolution (the resolution is based
on the semantics of the language, for instance, it depends onthe
relative order of the components in a composition), while traits
useexplicit conflict resolution via the application of operators
(the responsability of solving the conflicts is of the developer).

• Mixins depend on linearization, traits are flattened [10].

There are libraries for modifying classes via bytecode manipu-
lation [15] and to extend classes and implement interfaces at run-
time [8], performing then a sort of runtime code composition. We
believe that trait/mixin composition can be used sometimesto solve
problems similar to those solved by this kind of runtime composi-
tion; still, this is far from trait/mixin composition, as, first of all, it
is not type-checked. Moreover, if traits and mixins are instruments
for software modularization and reuse, these libraries aremeant to
solve different problems, such as run-time code debugging.

Aspect-oriented programming [2, 16] shares with traits and
mixins the goal of software reuse, moreover aspects, traitsand mix-
ins can be all statically typed. However, its applications differ, as
traits and mixins have the goal of organizing code, while aspects
contain those parts of code that are cross-cutting concerns. If traits
and mixins can have a more general application, the code composi-
tion based on aspects is more fine-grained, as it is perfomed at the
level of methods (via pointcut definitions) and not at the level of
the containers of the methods.

In [21] there are two proposals to model a mixin-based program-
ming style in Java 8, that is, a stateful approach. The first one ex-
ploits lambda expressions to model the state but suffers from some
problems related to the runtime semantics of lambda expressions.

The second (successful) proposal relies on thevirtual field pattern,
which is nothing else than the trait glue-code technique (i.e., a field
is requested by defining one or more required accessory methods
in the trait, that will be implemented in the class) that we also ex-
ploit. However, this proposal does not consider the trait operators
in detail.

Another approach for a trait-oriented programming style inJava
8 is from [23]. Here conflicts are solved by applying an instance of
the Decorator pattern. However, with this solution, no new features
of Java 8 are used. Still, this would be a solution in Scala [24], as
with Scala traits (which are, indeed, mixins) it is straighforward to
program such a pattern.

7. Conclusions
Traits (and mixins) help the developer in thinking the elements
of a project as stand-alone units of reuse that can be composed
together, changed and remodelled. This paper does not introduce
a trait-based language, but offers a view on how default methods
can be exploited to promote and improve code modularizationvia
an interface-as-trait programming approach. To this aim, Java 8
interfaces play, then, the role of traits, where abstract methods
are therequiredmethods (including the field accessory methods),
and default methods are theprovidedmethods. We have described
some programming patterns inspired by the trait operators present
in [10]: symmetric sum (to form a new trait by composing two
or more existing traits), trait overriding (to form a new trait by
adding methods to an existing trait), exclusion (to form a new trait
by deleting a method from an existing trait), aliasing (to form a
new trait to give a method an alternative name). The symmetric
sum might introduce conflicts among method names, that must
be solved by the programmer with the use of trait overriding and
exclusion. Our programming patterns rely heavily on Java override,
therefore some attention must be paid when there is not only a
change of name, but also a change of signature (being in a typed
setting). In Section 4.1, we described the possible problems that
can arise and hinted some solutions.

As our interfaces-as-traits are stateless and accessory methods
are the only (indirect) way to specify fileds in trait, our approach
imposes a restriction on visibility of fields. However, thisis exactly
how it works within stateless traits [10].

As it is usual with traits (and mixins), it seems that our approach
has an impact on code modularity (see Section 5), which implies
more reusability and maintainability. It would be also interesting
to refactor a large-scale, real-world example by applying our pro-
gramming patterns and then use appropriate metrics (e.g., LOC) to
measure the before- and after-factorization performances.

At the best of our knowledge, our proposal is the first one to
explore the possibilty of a trait-oriented programming style in Java
8. We have shown that it is possible to implement the standard
operators on traits with little work-around. A formal mapping from
traits to Java 8 may be achieved by using Featherweight Java-style
calculi [14].

Another possible direction to explore is the possibility ofex-
cluding default methods (starting from [12], where it was described
a default none keyword). Moreover, we believe that our work
could be also the base for reflecting about which form of traits (or
even mixins) might be good to be added as a language constructin
future releases of Java.

References
[1] D. Ancona, G. Lagorio, and E. Zucca. Jam — a smooth extension of

Java with mixins. InProc. ECOOP ’00, volume 1850 ofLNCS, pages
145–178. Springer-Verlag, 2000.

7 2014/7/22

[2] AspectJ Documentation.
http://www.eclipse.org/aspectj/docs.php.

[3] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. State-
ful traits and their formalization. Computer Languages, Sys-
tems and Structures, 34(2-3):83–108, 2008. ISSN 1477-8424.
http://dx.doi.org/10.1016/j.cl.2007.05.003.

[4] V. Bono, A. Patel, and V. Shmatikov. A Core Calculus of Classes and
Mixins. In Proc. ECOOP ’99, volume 1628 ofLNCS, pages 43–66.
Springer-Verlag, 1999.

[5] V. Bono, F. Damiani, and E. Giachino. On traits and types in a Java-
like setting. In G. Ausiello, J. Karhumki, G. Mauri, and C.-H. L.
Ong, editors,IFIP TCS, volume 273 ofIFIP, pages 367–382. Springer,
2008. ISBN 978-0-387-09679-7.

[6] V. Bono, J. Kusmierek, and M. Mulatero. Magda: A new language for
modularity. InECOOP, pages 560–588, 2012.

[7] G. Bracha.The Programming Language Jigsaw: Mixins, Modularity
and Multiple Inheritance. PhD thesis, The University of Utah, 1992.

[8] Code Generation Library.http://cglib.sourceforge.net/.

[9] J. D. Darcy. JEP 126: Lambda Expressions & Virtual Extension
Methods.http://openjdk.java.net/jeps/126.

[10] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A.Black. Traits:
A mechanism for fine-grained reuse.ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 28, no. 2:331–388,
2006.

[11] M. Flatt, S. Krishnamurthi, and M. Felleisen. A program-
mer’s reduction semantics for classes and mixins. InFor-
mal Syntax and Semantics of Java, pages 241–269, Lon-
don, UK, UK, 1999. Springer-Verlag. ISBN 3-540-66158-1.
http://dl.acm.org/citation.cfm?id=645580.658808.

[12] B. Goetz. Interface evolution via virtual extensions meth-
ods. http://cr.openjdk.java.net/∼briangoetz/lambda/
Defender%20Methods%20v4.pdf, June 2011.

[13] B. Goetz and R. Field. Featherweight Defenders: A
formal model for virtual extension methods in Java.
http://cr.openjdk.java.net/∼briangoetz/lambda/
featherweight-defenders.pdf, March 2012.

[14] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal
core calculus for Java and GJ.TOPLAS, 23(3):396–450, 2001.

[15] Javassist.
http://www.csg.ci.i.u-tokyo.ac.jp/∼chiba/javassist/.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. Getting started with AspectJ. Com-
mun. ACM, 44(10):59–65, 2001. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/383845.383858.

[17] Lambda Expressions. Lambda Expressions for the Java Programming
Language.http://openjdk.java.net/projects/lambda/.

[18] A. C. Oliver. Love and hate for Java 8.
http://m.javaworld.com/javaworld/jw-07-2013/130725-
love-and-hate-for-java-8.html?mm ref=https://www.google.it.

[19] Pharo.http://www.pharo-project.org/home.

[20] PHP 5.4.0 Release Announcement.
http://php.net/releases/5 4 0.php.

[21] F. Sarradin. Java 8: Now you have mixins?
http://kerflyn.wordpress.com/2012/07/09/java-8-now-
you-have-mixins/.

[22] C. Smith and S. Drossopoulou. Chai: Traits for Java-like Lan-
guages. InProc. ECOOP ’05, volume 3586 ofLNCS, pages 453–478.
Springer-Verlag, 2005.

[23] R. Sollid. Java 8 and mixin with default methods.
http://reidarsollid.com/2013/03/28/java-8-and-mixin-
with-default-methods/, March 2013.

[24] The Scala Group. Scala Website.http://www.scala-lang.org/.

A. The example’s code

import java.lang.Math;
/* Defines a base -door with

no particular features */
public interface TDoor {

/* State references */
public boolean getLocked ();
/* Coin management */
public int getDoorMaxCoins ();
/* Tells if the door is locked or not */
default boolean isLocked ()

{return getLocked ();}
/* Tries to open the door */
default int open () {

if(! isLocked ()) {
out.println (" The door has been opened !");
double rnd = Math.random ();
int cns = (int)(rnd * getDoorMaxCoins ())+1;
out.println (" You got "+ cns +" coins .");
return cns;

}
else {

out.println (" This door is locked .");
return -1;

}
}
/* Performs a knock on the door */
default int knock () {

out .print (" Door says: ");
out .print ("How you dare , ");
out .println ("I am the one who knocks !");
int c = (Math.random () <0.8)? 0 : 1;
if(c > 0)

out.println ("Ow! You got a free coin !");
return c;

}
}

import java.lang.Math;
/* Provides a counter that after

a limit releases coins */
public interface TCounter {

/* State references */
public int getCounter ();
public void setCounter (int c);
public int getLimit ();
/* Coin management */
public int getCounterMaxCoins ();
default void incrementCounter() {

setCounter (getCounter ()+1);
}
default void decrementCounter() {

setCounter (getCounter () -1);
}
default boolean hasReachedLimit() {

return getCounter () >= getLimit ());
}
default int releaseCoins() {

double rnd = Math.random ();
int cns = (int)(rnd * getCounterMaxCoins ())+1;
out .println ("You got "+cns +" coins .");
return cns;

}
}

import java.lang.Math;
/* Provides a chest that contains coins */
public interface TChest {

/* Coin management */
public int getChestMaxCoins ();
/* Opens the chest */
default int open () {

out .print ("The chest is now opened !");

8 2014/7/22

double rnd = Math.random ();
int c = (int) (rnd * getChestMaxCoins ());
out.print ("You got "+c);
out.println (" coins from the chest .");
return c;

}
}

import java.lang.Math;
/* Provides an enchantment that

can give or take coins */
public interface TEnchantment {

/* Coin management */
public int getEnchantMaxCoins ();
/** An enchantment can give coins

(max getEnchantMaxCoins ()) or
remove coins (max -getEnchantMaxCoins ()) **/

default int applyEnchantment () {
out.println ("\ nThis is an enchantment !");
out.print ("\" If the luck is up , ");
out.println ("of coins you ’ll have a cup ,");
out.print ("but if no luck you got , ");
out.println ("you are gonna lose a lot .\"");
int max = getEnchantMaxCoins ();
double rnd = Math.random ();
int cns = -max + (int)(rnd *((max *2)+1));
if(cns >= 0) {

out .print ("Ohoh! You got "+ cns);
out .println (" coins !");

}
else {

out .print ("You lost "+Math.abs(cns));
out .println (" coins !");

}
return cns;

}
}

/* Puts together a door and an enchantment */
public interface TEnchantedDoor

extends TDoor , TEnchantment {
/** When you open an enchanted door ,

you break the enchantment and so
you apply it.

**/
default int open () {

int coins = TDoor .super .open ();
if(coins > 0) //if the door is open

coins += applyEnchantment ();
return coins;

}
}

public class EnchantedDoor
implements TEnchantedDoor {

/* Fields for the door */
private boolean locked ;
/* Glue Code for TDoor */
public boolean getLocked ()

{return locked ;}
/* Glue code for coin management */
public int getDoorMaxCoins()

{return 120;}
public int getEnchantMaxCoins ()

{return 150;}
/* Constructor */
public EnchantedDoor(boolean l)

{setLocked (l);}
/* Other helpful methods */
public void setLocked (boolean l)

{this.locked = l;}
}

/* Puts together a door and a chest */
public interface TChestedDoor

extends TDoor , TChest {
/** When you open a chested door ,

you also get the prize from the chest.
This overrides the TDoor ’s open ().

**/
default int open () {
int coins = TDoor .super.open ();
if(coins > 0) //if the door is open

coins += openChest ();
return coins;
}
/* Alias for open() from TChest */
default int openChest ()

{return TChest .super .open ();}
}

public class ChestedDoor
implements TChestedDoor {

/* Fields for the door */
private boolean locked ;
/* Glue Code for TDoor */
public boolean getLocked ()

{return this.locked ;}
/* Glue code for coin management */
public int getDoorMaxCoins()

{return 120;}
public int getChestMaxCoins()

{return 250;}
/* Constructor */
public ChestedDoor (boolean l)

{setLocked (l);}
/* Other helpful methods */
public void setLocked (boolean l)

{this.locked = l;}
}

/* Puts together a door and a counter */
public interface TKnockDoor

extends TDoor , TCounter {
/** Every knock makes the counter increment .

If the limit is reached , more coins are
released . **/

default int knock () {
int coins = TDoor.super .knock ();
incrementCounter ();
if(hasReachedLimit ()) {

out.print ("Ohh! A special drop for you !");
coins += releaseCoins();

}
else {

//Let ’s give a suggestion to the player
out.print ("Don ’t challenge me... ");
int c = getLimit ();
String sug = "never knock a door ";
sug = sug + "more then "+c+" times .";
out.println (sug);

}
return coins ;

}
}

public class KnockDoor implements TKnockDoor {
/* Fields for the door */
private boolean locked ;
/* Fields for the counter */
private int counter ;
private int limit ;
/* Glue Code for TDoor */
public boolean getLocked ()

{return this.locked ;}

9 2014/7/22

/* Glue code for TCounter */
public int getCounter ()

{return this.counter ;}
public void setCounter (int c)

{this.counter = c;}
public int getLimit ()

{return this.limit ;}
/* Glue code for coin management */
public int getDoorMaxCoins()

{return 120;}
public int getCounterMaxCoins ()

{return 500;}
/* Constructor */
public KnockDoor (boolean l, int li) {

setCounter (0);
setLocked (l);
setLimit (li);

}
/* Other helpful methods */
private void setLocked (boolean l)

{this.locked = l;}
private void setLimit (int l)

{this.limit = l;}
}

public class DoorsRoom {
private TDoor leftDoor ;
private TDoor rightDoor ;
private TDoor frontDoor ;
/* Constructor */
public DoorsRoom (TDoor l,

TDoor r,
TDoor f) {

leftDoor = l;
rightDoor = r;
frontDoor = f;

}
/* Getters */
public TDoor getLeftDoor ()

{return leftDoor ;}
public TDoor getRightDoor()

{return rightDoor ;}
public TDoor getFrontDoor()

{return frontDoor ;}
}

public class Player {
private final String nickname ;
private int bag = 150; // contains the coins
/* Constructor */
public Player (String n) {

nickname = n;
}
/* Setters and getters */
public int getCoins ()

{return bag ;}
public String getNickname ()

{return this.nickname ;}
/* Helpful methods */
public void addInBag (int amount)

{this.bag += amount ;}
public void removeFromBag(int amount)

{this.bag -= amount ;}
public String toString () {

String s = "I’m "+ getNickname ();
s += " and i’ve got "+ getCoins ();
s += " coins in my bag .";
return s;

}
}

public class Game {

private Player player ;
private DoorsRoom doorsRoom ;
private final String version = "0.0";
/* Constructor */
public Game(Player p, DoorsRoom dr) {

player = p;
doorsRoom = dr;

}
/* Setters and getters */
public Player getPlayer ()

{return player ;}
public DoorsRoom getDoorsRoom()

{return doorsRoom ;}
}

10 2014/7/22

