-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Trait-oriented Programming in Java 8

Viviana Bono, Enrico Mensa, Marco Naddeo

» To cite this version:

Viviana Bono, Enrico Mensa, Marco Naddeo. Trait-oriented Programming in Java 8. PPPJ'14:
International Conference on Principles and Practices of Programming on the Java Platform: virtual
machines, languages, and tools, Sep 2014, Cracow, Poland. hal-01026531

HAL Id: hal-01026531
https://hal.inria.fr /hal-01026531

Submitted on 22 Aug 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/49609023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01026531
https://hal.archives-ouvertes.fr

Trait-oriented Programming in Java 8*

Viviana Bono

Dipartimento di Informatica,

Enrico Mensa

Marco Naddeo

University of Torino, Italy

{bono,naddeo}@di.unito.it, enrico.mensa@gmail.com

Abstract

Java 8 was released recently. Along with lambda expressiorey
language construct is introduced: default methods infates. The
intent of this feature is to allow interfaces to be extendedro
time preserving backward compatibility. In this paper, vwews

a possible, different use of interfaces with default methosle
introduce a trait-oriented programming style based on tanface-
as-trait idea, with the aim of improving code modularityai$ing
from the most common operators on traits, we introduce some
programming patterns mimicking such operators and disthss
approach.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guage§ Language Constructs and Features

Keywords Java 8, default method, trait, programming pattern,
code modularity.

1. Introduction

From the point of view of the language constructs, the masnpr
nent addition in Java 8 is thembda-expressioronstruct, that
comes along with an apparently secondary construct, thtaeide-
fault method(akavirtual extension methgadkadefender methgd
in interfaces. The primary intent of this feature is to alioterfaces
to be extended over time preserving backward compatibilitgse
features of Java 8 are described in the propdg&l 126(JDK En-
hancement Proposal 126ambda Expressions & Virtual Exten-
sions Method49]. JEP 126 is a follower of the Project Lambda,
that corresponds to JSR 335 (Java Specification Requesf1335)

A default methodis a virtual method that specifies a con-
crete implementation within an interface: if any class iempént-
ing the interface will override the method, the more spedifie
plementation will be executed. But if the default method @& n
overridden, then the default implementation in the inteefavill
be executed. An already paradigmatic example of use of de-
fault methods to preserve backward compatibility conceatres
interface Collection<T>, already present in previous releases
of Java. Thanks to lambda expressions, now it is possibl@-to i
troduce aforEach(LE) method that takes a lambda expression
LE as an argument, coding a function to be applied to all of the

* This material is based upon work supported by MIUR PRIN RitdENA
Prot. 2010LHT4KM and Ateneo/CSP Project SALT.

[Copyright notice will appear here once 'preprint’ optiGrémoved.]

elements in the collection. However, adding this method kas a
stract toCollection<T> interface would mean breaking back-
ward compatibility: in other words, every old class implertieg
Collection<T> interface would have to change by adding an im-
plementation oforEach (LE), unless a default method is present
in the interface. Moreover, default methods may help angjdiode
duplication.

In previous Java releases, interfaces were to provide pheilti
type inheritance, in contrast to the class-based singléeimgnta-
tion inheritance. Java 8 interfaces, instead, introducera bf mul-
tiple implementation inheritance, too. Therefore, they similar
to traits [10], which are sets of (required and supplied) methdds.
Java 8 interfaces, then, can be exploited to introducaitaoriented
programming style. Note that we are not proposing a linguest-
tension of Java 8 with traits, but programming patterns iwiflava
8, with the goal of improvingode modularityand, thereforecode
reuse Starting from operators on traits [10], we introduce some
Java 8 programming patterns mimicking such operators asid di
cuss this approach.

The paper is organized as follows: Section 2 illustratesflyri
the trait construct, Section 3 introduces Javal&ault methods
Section 4 proposes the programming patterns inspired birdite
operators, Section 5 shows an example of use, Section 6 makes
some comparisons with related work, and Section 7 draws some
conclusions.

2. What aretraits?

The possibility ofcompositioranddecompositiorof code are im-
portant characteristics to care about in a programminguage.
Let us point out some problems of (single and multiple) iithace
concerning composability:

¢ Duplicated featuresSingle inheritance is the basic form of in-
heritance; thanks to that we can reuse a whole class (and also
add some features). But sometimes we want to express some-
thing that is much too complex to be implemented with single
inheritance. For example, we could have a chsisiming (that
gives features for swimming animals) and a clBsging (that
gives features for flying animals). What if we want to create a
animal that can both swim and fly, as swans? We can inherit
only from Swimming or Flying but not both, so we will have
to duplicate some of the existing features in fw@n class.

Inappropriate hierarchiesInstead of duplicating methods in
the lower classes, we can bring those methods up in the hier-
archy; however, this way we violate the semantics of the uppe
classes.

Conflicting features!f we have multiple inheritance (as C++
does) a common problem is how to treat conflicts. Method
conflicts can be solved (for example, thanks to overridibg},

1This is pointed out in many places, see, for instance, [18].

2014/7/22

conflicting attributes are more problematic. It is neveaciéa
conflicting attribute should be inherited once or twice and/h
these attributes should be initialized.

Traits are a possible solution to these problems. A trait'&m@ple
conceptual model for structuring object-oriented proggirfi0]
and itis a collection of methods. This is very importantsinéraits
are statless, they cointain only methods, therefore evemglict of
state is avoided. Only method name conflicts must be deatt, wit
explicitly, by the programmer.

Every trait can defineequired methodsindrequired fields In
the considered model, required fields are indirectly medellia
required setter and getter methods. A trait can be definedttir
(by specifying its methods) or by composing one or moregrdibe
composition is performed by means of the following opersator

e Symmetric Suma new trait is defined by combining two or
more existing traits whose method sets are disjoint. In #sec
the sets are not disjoint, conflicts arise.

o Trait overriding a new trait is defined by adding method(s) to
an existing trait. If an already present method is addedolthe
version is overridden.

e Exclusion a new trait is defined by excluding a method from an
existing trait.

e Aliasing a new trait is defined by adding a second name to a
method from an existing trait. This is useful if the origimalme
was excluded after resolving a conflict. Note that, if a reiar
method is aliased, the recursive call will be done on themaig
method.

These operators are from the original proposal [10]. Otlpera-
tors were introduced in further works (a comprehensiveolisip-
erators with relations among them can be found in [5]). Wei$oc
on this particular set as we think they are the most interggines
from a programming point of view.

The original definition of traits says that trait and clasages
are separated: the first ones are units of reuse, while tbadenes
are generator of instances. A class can be specified by camgpos
a superclass with a set of traits and soghge methodgakaglue
code. Glue methods are written inside a class and make it pdssibi
the connection between different traits. An example of glode
are the setter/getter methods, that allow methods in t@@&scess
the fields.

Trait composition respects the following three rules [10]:

¢ Methods defined in a class itself take precedence over method
provided by a trait. This allows glue methods defined in the

class to override methods with the same name provided by the)

traits.

¢ Flattening property: a non-overridden method in a traitthas
same semantics as if it were implemented directly in thesclas

e Composition order is irrelevant. All the traits have the sam
precedence, and hence conflicting trait methods must beexpl
itly disambiguated.

Method name conflicts can be resolved by introducing appatsor
glue methods in classes which redefine the conflicting methard
thanks to two operators:

e with trait override, by adding one method with the same
name, which hides the previous implementations and may call
whichever of them;

¢ with exclusion, by excluding all but one of the conflictingtime
ods.

3. On default methods

The role of an interface up to Java 7 was to give a contracteo th
user (that is, a type), but not to specify any detail of thetiaan it-
self (that is, the implementation). The main characteristidefault
methods (introduced by a keywoddfault) is that they are virtual
like all methods in Java, but they provide a default impletagon
within an interface.

Java 8 method resolution is defined in [12] and its formaitirat
in a Featherweight-Java style [14] can be found in [13]. Tasa-
rize it, we take the four (informal) rules about method ligkdrom
[13]:

¢ A method defined in a type takes precedence over methods
defined in its supertypes.

e A method declaration (concrete or abstract) inherited faom
superclass takes precedence over a default inherited from a
interface.

* More specific default-providing interfaces take precedener
less specific ones.

o Ifwe are to linkm () to a default method from an interface, there
must be a uniqgue most specific default-providing interface t
link to, otherwise the compiler signals a conflict.

From these dispatch rules, we can extrapolate some exaofples
behaviour that can help the reader to understand the defatiiod
construct.

A first example. If the class that implements the interface using
default methods does not override those methods, the téfiaul
plementation provided in the interface will be executed.

interface A {
default void m()
{out.println("Hi, I’m interface A");}
}
class B implements A {}

//doesn’t override m

public class FirstDM {
public static void main(String[] args) {
B b new BQ);
b.m();

}

The output will beHello from interface A.
Classes always win. Here there is an example:

interface A {
default void m()
{out.println("Hi, I’m interface A");}
class B implements A {
//overrides m
public void m()
{out.println("Hi, I’m class B");}
public class SecondDM {
public static void main(String[] args) {
B b new B();
b.m();

}
}

The output willbeHi, I’m class B.

The most specific interface wins.If no class overrides a default
method, the default method with the most specific implentemta
will be executed:

interface A {

2014/7/22

default void m()
{out.println("Hi I’m interface A");}
}
interface B extends A {
default void m()
{out.println("Hi I’m interface B");}
} //more specific because of the ’extends’

class C implements A, B { }

public class ThirdDM {
public static void main(Stringl[] args) {
C c = new CQO;
c.m();
}
}

The output willbeHi, I’m interface B.

Conflicts are not always avoidable.If a unique most specific
default-providing interface is not found, an error will occ

interface A {
default void m()
{out.println("Hi I’m interface A");}
}
interface B {
default void m()
{out.println("Hi I’m interface B");}
}

class C implements A, B { }

public class FourthDM {
public static void main(String[] args) {
C c¢c = new CQ);
c.m();
}
}

The compiler saysclass C inherits unrelated defaults
for m() from types A and B - class C implements A,
B

How to resolve conflicts. The construct X.super.m() can be
used, wher« is one of the direct superinterfaces containing the
default methodh ():

interface A {
default void m()
{out.println("Hi I’m interface A");}
}
interface B {
default void m()
{out.println("Hi I’m interface B");}
}
class C implements A, B {
//calls m in A
public void m()
{A.super.m();?}
}
public class FifthDM {
public static void main(Stringl[] args) {
C c = new CQO;
c.m();
}
}

The output willbeHi I’m interface A.
Note that this new construct is just for resolving conflictsiler
using default methods and not for a general purpose [12].

About abstract methods. We said that classes always win over
interfaces. This is true also when classes are abstract:

interface A {
default void m()
{out.println("Hi I’m interface A");}
}
abstract class B {
abstract void m();

}
class C extends B implements A { }

public class SixthDM {
public static void main(Stringl[] args) {
C c = new CQO;
c.m();
}
}

The compiler say< is not abstract and does not override
abstract method m() in B - class C extends B implements
A. This happens because the abstract declaratiar{)ofn B takes
precedence over the default declaratiot.in

4. A guidetotrait-oriented programming

Java 8 interfaces play the role of traits, with default mdthas
provided methods and abstract methods as required metids.
will refer to an interface with this role with the term “traiand
we introduce the convention that such an interface will b@ewh
with a nhame starting witlT or Trait. As within stateless traits,
required fields are encoded as required accessory (gettasetier)
methods, that is, as abstract methods, whose implemeantatib
be provided as glue code by the class implementing the. traits

In order to introduce the trait-oriented programming style
propose some programming patterns to match the trait aperat
listed in Section 2.

Symmetric sum. This provides the fundamental feature of multi-
ple inheritance. With “symmetric” it is meant that all thededids
of a sum are peers, implying that, in the case of a conflics, it

to the developer to deal with it. The first example shows a oése
a sum without conflicts. We have three traifouth, TEyes and
TTail:

public interface TMouth {
default void makeASound ()
{out.println ("Yaaaawn");}
default void eat(String s)
{out.println("I’m eating

"+s);}

public interface TEyes {
default void lookAround ()
{out.println("I’m looking");}
default void blink ()
{out.println("I’m blinking");}

public interface TTail {
default void shakeTail () {
out .println ("Wuush, I’m shaking my tail.");
}
}

Then a new traitTCat, puts together all the features previously
defined, and a class implements it:

public interface TCat
extends TEyes, TMouth, TTail {
default public void purr()
{out.println ("PuUurRrRr");}
}

2014/7/22

public class MyCat implements TCat { public interface TraitA {

private String name; default void m()
public MyCat (String n) {out.println("I am m in TraitA");}
{this.name = n;} default void q()

{out.println("I am q in TraitA");}
public static void main(Stringl[] args) { }
MyCat jacky = new MyCat ("Jacky");

jacky .eat ("Meat"); If we want to excluden (), we can do as follows:

b public interface TraitB extends TraitA {
b default void m() {
TheCanUtMM|beI’m eating Meat". String s = "Method not understood";
throw new UnsupportedOperationException(s);
Trait overriding. The override operator defines a new trait by }
adding one or more methods to an existing trait: }
public interface TraitA {
default void m() public class C implements TraitB {
{out.println("I am m in TraitA");} public static void main(String[] args){
) C c =new CQO;
c.m();
public interface TraitB extends TraitA { c.q0;
/** overrides TraitA, adding }
a new feature **/ b

default void m2() _) The first method call throws the exception. The second onedvou
{out.println("I am m2 in TraitB");}

} printI am q in TraitA
Note that this programming pattern works well with respect t

public class C implements TraitB { symmetric sum: if in all summed traits we have a method that we

public static void main(String[] args) { want to exclude, then this pattern will exclude simultargipall
C c = new CQ); upper method versions. However, we do not exclude the métnod
c.m(Q; real, we just make unavoidable the upper implementatiornviey-o
c.m2Q); riding it, therefore Java introspection can still detea é&xcluded
by method:C. class.getMethod(’m’) still gets an answer.
¥ Notice, however, that it is not possible to call in a new tthé
Both methods: andm?2 are callable, therefore the output will be: excludedTraitA version of the method:

am m in Tra;tA,I am m2 in TraitB. . public interface TraitBl extends TraitB {
Trait overriding can be used to solve conflicts. If we add /%% It tries to rehabilitate the version

a method close() in both traits TMouth and TEyes (intro- from TraitA, excluded by TraitB #*%/
duced above), we get from the compilByCat . java:1: error: default void m() {

class MyCat inherits unrelated defaults for close() TraitA.super.m(); //does not compile
from types TEyes and TMouth public class MyCat }

implements TCat. b

Notice that in the overriding version eflose (), we use the

CONSIUCK . super .m () If we try to compile the above code, we obtain an ermet: an

enclosing class: TraitA.
public interface TCat

extends TEyes, TMouth, TTail { Aliasing. The alias operator provides another, alternative, name

for referring to a certain method. Consider this trait:

/** Confli?t resolution x*/ public interface TraitA {
default void close () default void mOneA ()
{TEyes.super.close ();} {out.println("I’m mOneA in A");}
)) default void mTwoA ()
default public void purr () {out.println("I’m mTwoA in A");}
{out.println ("PuUurRrRr");} }

¥
. . Now, in a new trait, we create an alias for thiEwoA () and we test
The methodclose () that will be executed is the one from the ;- °0AQ)

TEyes trait. The close() method from theTMouth trait is not o) _
lost, as it can be aliased. However, notice that the use of the public interface TraitB extends TraitA {

X.super.m() feature reduces the low coupling betwasht and /#* Aliasing mTwoA() in
TEyes: if some day thelose () in TEyes method will change (for aliasMTuoA () ++/
- - default void aliasMTwoA ()
example by adding a parameter to it), also #i®se() method {mTwoh O}
insideTCat must change. } ’
Exclusion. Exclude is a tough operator. In [12], it was described
the possibility to remove a default method by using de¢ault public class MyB implements TraitB {
none keyword, but this has not made its way in the official Java public static void main(String[] args) {
8 release (dealing with negative information is never easy) MyB mc = new MyBQ);
proposal for an exclude programming pattern, then, can wssla mc.aliasMTwoA ();
know workaround, i.e., we can exclude a method by redefirting i mc.mTwoA () ;
with an empty body or by throwing an exception. We prefer the }
second alternative. Consider this trait: }

4 2014/7/22

The output willbeI’m mTwoA in A, twice.

be paid to the alias name, as it is possible to override byafksst
another method of the upper trait.

4.1 Onthereturn type of methods

In Java, the name of a method is bound forever to its firstduice
tion in terms of the return type. This makes the reuse of tteena
fragile, if we want to change the return type. We discussigsise

Notice that both methods$sEmpty () andpush() were already
When applying the alias programming pattern, attentiontmus implemented inside thetack class and we had to re-implement
them inside theStackAlt class.

We exploit now our trait-oriented approach to promote code

reuse and backward compatibilty when possible, while jprogrdut
the problems related to override.

From a non-void method to a void one.First of all, we introduce
aTStack trait that defines all the operations:

by means of an example. We want to develop a stack data struc-public interface TStack {

ture (this example is taken from [5]). First of all, we showirzgée
inheritance version:

public interface IStack {

/* Tells if the stack is empty */

public boolean isEmpty ();

/* Adds one item on the stack */

public void push(Object obj);

/* Removes and returns the first
object on the stack */

public Object pop();

public class Stack implements IStack {

List<0Object> 1;

public Stack()
{ 1 = new LinkedList<0Object>(); }
public boolean isEmpty ()
{ return 1.isEmpty (); }
public void push(Object obj)
{ 1.add(obj); }
public Object pop() {
if (!'isEmpty ())
return 1l.remove(l.size()-1);
else
return null;
}
}

Now, suppose that we want to implement another stack, wigh th

interface:

public interface IStackAlt {
public boolean isEmpty ();
public void push(Object obj);
/* Removes the first object on the stack */
public void pop ();
/* Returns the first object on the stack
(without removing it) */
public Object getTop ();
}

As we can see, this interface is different fralfBtack because
of two methodspop () is now void, and we have an additional
methodgetTop (). We can implement this interface as follows:

public class StackAlt
List<0Object> 1;

implements IStackAlt {

public StackAlt ()
{ 1 = new LinkedList<0Object>(); 1}
public boolean isEmpty ()
{ return 1.isEmpty (); }
public void push(Object obj)
{ 1.add(obj); }
public void pop ()
{ if (!isEmpty ()) 1l.remove(l.size()-1); }
public Object getTop ()
{ if (!isEmpty()) return l.get(l.size()-1);
else return null; }

}

public List<Object> getStructure();

default boolean isEmpty ()
{ return getStructure().isEmpty (); }
default void push(Object obj)
{ getStructure().add(obj); }
default Object pop() {
if ('isEmpty) {
int pos = getStructure.size()-1;
Object o = getStructure().get(pos);
getStructure (). remove (pos);
return o;
}
return null;

}

Notice the abstract methggtStructure(): itis a getter method
to access the stack structure, that will be implemented asddaifi
a class, together with this method. The implementationsafck
is as follows:

public class Stack implements TStack {

}

List<0Object> 1;
public Stack()
{ 1 = new LinkedList <Object>(); }
/* Glue Code */
public List<Object> getStructure()
{ return 1; }

Note we put some glue code to provide the previously mentione
getStructure () method.

Now, we want to introduce a new methgdtTop() and we

want to change the olpop () that was returning abject into a
void version. The first goal is easy, we can use the trait override
pattern, however we encounter some problems withphe()
method:

public interface TStackAlt extends TStack {

/** We redefine pop simulating
the void return type *x*/
default Object pop() {
if ('isEmpty O) {
int pos = getStructure.size()-1;
getStructure().remove (pos);
}
return null;

}

/*x If we could, we would have done:
default Object pop() {
String s = "Message not understood";
throw new UnsupportedOperationException(s);

}

default void pop() {
int pos = getStructure.size()-1;
getStructure().remove (pos);
}
but in Java we cannot have two methods
with same name and number of parameters

which differ only for their return types. *x*/

2014/7/22

/** We make the old pop still available
(optional) *x/
default Object popTop () {
return TStack.super.pop();
}
/** Trait Override *x*/
default Object getTop () {
if ('isEmpty) {

int pos = getStructure.size()-1;
return getStructure().get (pos);
}
return null;

}
}

In Java we cannot have two methods with same name and number

of parameters which differ only for their return types. We,dn
fact, provide an ad-hoc solution, by returningll in the new
version ofpop (). Thisis an implementing class:

public class StackAlt
List<0Object> 1;
public StackAlt ()
{ 1 = new LinkedList<0Object>(); 1}
/* Glue Code */
public List<Object> getStructure()
{ return 1; }

implements TStackAlt {

}

Notice that this solution preserves backward compatbitind

it can be applied in similar cases. With respect to the single
inheritance version, the methodsEmpty () andpush() are not
duplicated anymore, the class tree is clearer, we provideewa
pop () method but we also made the old one still accessible.

From a void method to a non-void one.Now TStack defines
a void pop() and TStackAlt defines a newdbject-returning
version of it. We have the two traits defined as follows:

public interface TStack {
public List<Object> getStructure();
default boolean isEmpty ()
{ return getStructure().isEmpty (); }
default void push(Object obj)
{ getStructure().add(obj); }
default void pop () {
if ('isEmpty) {
int pos = getStructure.size()-1;
getStructure (). remove (pos);
}
}
default Object getTop () {
if ('isEmpty OO) {

int pos = getStructure.size()-1;
return getStructure().get (pos);
}
return null;

}
}

public interface TStackAlt extends TStack {
/** We cannot change the return type
of the pop() method from void to

Object. So we make an alternative
pop, using another name.
*% /
default Object altPop() {
Object o = getTop();
pop O);
return o;
}

This case is similar to the previous one, however no workaaasi
possible. All we could do was to define another “pop” methat th
returns ardbject (methodaltPop()).

The implementing clasdtackAlt is the same as in the previ-
ous case. Notice, however, that any calptgp () in a client will
have to be changed into a calld@tPop () : backward compatibil-
ity is broken.

The covariant override. In Java the override behavesvariantly.
an overriding method may have a return type that is a subtfpe o
the method it overrides. Therefore, we may do somethinglile

public interface TraitA {
default Object m()
{ /* something */ }

public interface TraitB extends TraitA {
default String m()
{ /* something else */ }
}

This works becausgtring is a subtype ofibject. Of course we
cannot do the opposite, that is, change the return type $taning

to Object, but a case of trait manipulation requiring such a change
of signature would probably make little sense.

5. Anexample

We present now a small case study: the skeleton implementoti
a variant of a classic game (often used when presentingnattee
reuse mechanisms to inheritance and design patterns).avhe3]
code is presented in Appendix A and the corresponding diagga
shown in Figure??.

There is a character with the goal of collecting as many cains
possible while she is moving from one place to another. Sionest
the character enters a room with three doors to be chosengamon
A door can be opened only if it is unlocked, each door has its ow
features and provides a certain amount of coins. In padicule
develop a room with three different doors. This example iteduo
show code reuse as any kind of door can appear in differentsoo
and any feature of the doors can be exploited on elementatbat
not doors, in different situations during the game.

We start with a base door. If the door is not locked, it is palssi
to open it. Once opened, the door gives some coins (a negative
corresponds to “door still locked”). As an additional aatiat is
possible to knock the door and try to get some other coins., Now
we develop three features (we can, however, imagine a lbeof},
that can be applied to the doors but also to other elementseof t
game. These are a coin counter, a chest of coins, an ench@ntme
that can give or take coins, and they are represented wite thr
traits, TCounter, TChest, and TEnchanment. In the traits there
are some required methods suchgagEnchantMaxCoins () and
getDoorMaxCoins (): it is up to the developer of an element to
decide the maximum amount of coins that it can give.

We can compose ourDoor with different features and then
create a class implementing each door (and providing thanest
glue code): for example, an enchanted door, representeclags
EnchantedDoor that uses a traitEnchandedDoor. Note that the
classEnchantedDoor provides the required glue code by imple-
mentinggetEnchantMaxCoins () andgetDoorMaxCoins().

Similarly, we can implement a traitChestedDoor and a class
ChestedDoor. We solve a conflict between the twgpen()’s
methods (one fronTDoor and the other fronTChest). First, we
alias theopen() from the TChest trait asopenChest (). Then,
we use the trait overriding to reuse the conflicting name anad r
implement therDoor’s open().

We can also build a door that may give coins when knocked a
certain number of timesTknockDoor and a clas&nockDoor).

2014/7/22

Now we can create a room with three doors (an alternative im-

plementation could useToom trait that provides general methods
for a room and then a claBsorsRoom that implements it). Finally
we put everything together. We create&ame class that references
the rooms of the game and the playeRlayer class (again, we
could introduce aPlayer trait representing a basic player, that
could be combined with other traits to obtain different gatées
of players such as premium, demo, etc).

Every trait is reusable inside the project and every feaisire
stand-alone. However, there is a drawback: some of glue itcede
side the implementing classes is duplicated and, evendf fietes-
sory methods might be generated authomatically, this iindental
for the code reuse (even though it seems a good idea thatibk de
oper of a class can decide how to access its variables).riatety,
if trait composition is used in synergy with class inherintte, reuse
can be improved. In our case, it is enough to regroup all thi-re
cated glue code (and the relative fields) into a cla&ssmonDoor
(see Figure??).

6. Related work

Traits as in [10] have been fully implemented in SmalltaliaPo
[19]. A form of traits is present in PHP 5.4 [20], and in theldture
there are a few other different models and implementatitors:
instance, in [5] and [22] there are two proposals for traitsai
Java-like language, and [3] presents a version of traith atiate
(however, at the best of our knowledge, no satisfactoryiesssof
stateful traits have been proposed so far).

Traits andmixinsare related. Both constructs exploits composi-
tion instead of inheritance as a mechanism for softwarecrans
they are alternatives to multiple inherintance. Mixins416, 7, 11,
24] are essentially subclasses parametric over their siagsrand
can be seen as a form of linearized multiple inheritance. Wtline
the three main differences between traits and mixins:

¢ Mixins are stateful, as they can define fields (providing eeafs
behaviourand state), while traditional traits do not.

e Mixins useimplicit conflict resolution (the resolution is based
on the semantics of the language, for instance, it depentieeon
relative order of the components in a composition), whiésr
useexplicit conflict resolution via the application of operators
(the responsability of solving the conflicts is of the depel).

¢ Mixins depend on linearization, traits are flattened [10].

There are libraries for modifying classes via bytecode mani
lation [15] and to extend classes and implement interfatesma
time [8], performing then a sort of runtime code compositidfe
believe that trait/mixin composition can be used sometitnsslve
problems similar to those solved by this kind of runtime cosip
tion; still, this is far from trait/mixin composition, asyét of all, it
is not type-checked. Moreover, if traits and mixins arerinsients
for software modularization and reuse, these librariesraant to
solve different problems, such as run-time code debugging.

Aspect-oriented programming [2, 16] shares with traits and
mixins the goal of software reuse, moreover aspects, aadsnix-
ins can be all statically typed. However, its applicatioiffed as
traits and mixins have the goal of organizing code, whilecatp
contain those parts of code that are cross-cutting concknaits
and mixins can have a more general application, the code @asimp
tion based on aspects is more fine-grained, as it is perfotrthbe a
level of methods (via pointcut definitions) and not at theeclesf
the containers of the methods.

In[21] there are two proposals to model a mixin-based progra
ming style in Java 8, that is, a stateful approach. The firetenr
ploits lambda expressions to model the state but suffers fmme
problems related to the runtime semantics of lambda exipress

The second (successful) proposal relies onvitteial field pattern
which is nothing else than the trait glue-code techniquee, @ field
is requested by defining one or more required accessory aetho
in the trait, that will be implemented in the class) that wsoadx-
ploit. However, this proposal does not consider the tragrafors
in detail.

Another approach for a trait-oriented programming stylédva
8 is from [23]. Here conflicts are solved by applying an inseof
the Decorator pattern. However, with this solution, no neatdires
of Java 8 are used. Still, this would be a solution in Scald, [2¢
with Scala traits (which are, indeed, mixins) it is stragffard to
program such a pattern.

7. Conclusions

Traits (and mixins) help the developer in thinking the elatse

of a project as stand-alone units of reuse that can be compose
together, changed and remodelled. This paper does notlutteo

a trait-based language, but offers a view on how default austh
can be exploited to promote and improve code modularizatian

an interface-as-trait programming approach. To this a@waB
interfaces play, then, the role of traits, where abstracthous

are therequired methods (including the field accessory methods),
and default methods are tipeovidedmethods. We have described
some programming patterns inspired by the trait operatasent

in [10]: symmetric sum (to form a new trait by composing two
or more existing traits), trait overriding (to form a newitray
adding methods to an existing trait), exclusion (to form & t&it

by deleting a method from an existing trait), aliasing (tonfoa
new trait to give a method an alternative name). The symmetri
sum might introduce conflicts among method names, that must
be solved by the programmer with the use of trait overriding a
exclusion. Our programming patterns rely heavily on Jaeride,
therefore some attention must be paid when there is not only a
change of name, but also a change of signature (being in a type
setting). In Section 4.1, we described the possible probldrat

can arise and hinted some solutions.

As our interfaces-as-traits are stateless and accessahpdse
are the only (indirect) way to specify fileds in trait, our apgch
imposes a restriction on visibility of fields. However, tligxactly
how it works within stateless traits [10].

As itis usual with traits (and mixins), it seems that our agmwh
has an impact on code modularity (see Section 5), which aapli
more reusability and maintainability. It would be also netgting
to refactor a large-scale, real-world example by applying ro-
gramming patterns and then use appropriate metrics (60f) ito
measure the before- and after-factorization performances

At the best of our knowledge, our proposal is the first one to
explore the possibilty of a trait-oriented programmindestp Java
8. We have shown that it is possible to implement the standard
operators on traits with little work-around. A formal mapgifrom
traits to Java 8 may be achieved by using Featherweightsisie-
calculi [14].

Another possible direction to explore is the possibilityesf
cluding default methods (starting from [12], where it wasatéded
adefault none keyword). Moreover, we believe that our work
could be also the base for reflecting about which form ofgr@t
even mixins) might be good to be added as a language construct
future releases of Java.

References

[1] D. Ancona, G. Lagorio, and E. Zucca. Jam — a smooth extensf
Java with mixins. IProc. ECOOP '0Qvolume 1850 ot NCS pages
145-178. Springer-Verlag, 2000.

2014/7/22

(2]

(3]

(4

(5]

(6]

(7]

(8]
El

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

(23]

[24]

A.

AspectJ Documentation.
http://www.eclipse.org/aspectj/docs.php

A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts.
ful traits and their formalization. Computer Languages, Sys-
tems and Structures34(2-3):83-108, 2008. ISSN 1477-8424.
http://dx.doi.org/10.1016/j.c1.2007.05.003.

V. Bono, A. Patel, and V. Shmatikov. A Core Calculus of €as and
Mixins. In Proc. ECOOP '99 volume 1628 olLNCS pages 43-66.
Springer-Verlag, 1999.

V. Bono, F. Damiani, and E. Giachino. On traits and types Java-
like setting. In G. Ausiello, J. Karhumki, G. Mauri, and C.-H.
Ong, editors|FIP TCS volume 273 of FIP, pages 367—382. Springer,
2008. ISBN 978-0-387-09679-7.

V. Bono, J. Kusmierek, and M. Mulatero. Magda: A new laage for
modularity. INECOOR, pages 560-588, 2012.

G. Bracha. The Programming Language Jigsaw: Mixins, Modularity
and Multiple Inheritance PhD thesis, The University of Utah, 1992.

Code Generation Libranhttp://cglib.sourceforge.net/.

J. D. Darcy. JEP 126: Lambda Expressions & Virtual Extems
Methods.http://openjdk. java.net/jeps/126

S. Ducasse, O. Nierstrasz, N. Scharli, R. Wuyts, anBlack. Traits:
A mechanism for fine-grained reuseACM Transactions on Pro-
gramming Languages and Systems (TOPL#&) 28, no. 2:331-388,
2006.

M. Flatt, S. Krishnamurthi, and M. Felleisen. A program
mer's reduction semantics for classes and mixins. Hor-
mal Syntax and Semantics of Javaages 241-269, Lon-
don, UK, UK, 1999. Springer-Verlag. ISBN 3-540-66158-1.
http://dl.acm.org/citation.cfm?id=645580.658808

B. Goetz. Interface evolution via virtual extensionset
ods. http://cr.openjdk.java.net/~briangoetz/lambda/
Defender%20Methods%20v4.pdf, June 2011.

B. Goetz and R. Field.
formal model for virtual extension methods in
http://cr.openjdk. java.net/~briangoetz/lambda/
featherweight-defenders.pdf, March 2012.

A. lgarashi, B. Pierce, and P. Wadler. Featherweigh&:JA minimal
core calculus for Java and GDOPLAS 23(3):396-450, 2001.
Javassist.
http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. rRal
and W. Griswold. Getting started with AspectJ. Com-
mun. ACM 44(10):59-65, 2001. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/383845.383858.

Lambda Expressions. Lambda Expressions for the Jaxgr&nming
Languagehttp://openjdk. java.net/projects/lambda/

A. C. Oliver. Love and hate for Java 8.
http://m.javaworld.com/javaworld/jw-07-2013/130725-

Java.

love-and-hate-for-java-8.html?mm_ref=https://www.google.it.

Pharo.http://www.pharo-project.org/home
PHP 5.4.0 Release Announcement.
http://php.net/releases/5_4_0.php.

F. Sarradin. Java 8: Now you have mixins?
http://kerflyn.wordpress.com/2012/07/09/java-8-now-
you-have-mixins/

C. Smith and S. Drossopoulou. Chai: Traits for Jave-likan-
guages. IrProc. ECOOP '05volume 3586 of NCS pages 453-478.
Springer-Verlag, 2005.

R. Sollid. Java 8 and mixin with default methods.
http://reidarsollid.com/2013/03/28/java-8-and-mixin-
with-default-methods/, March 2013.

The Scala Group. Scala Websitettp: //www.scala-lang.org/.

The example's code

State

import java.lang.Math;
/* Defines a base-door with

no particular features */

public interface TDoor {

Featherweight Defenders: A ¥

/* State references */
public boolean getLocked ();
/* Coin management */
public int getDoorMaxCoins();
/* Tells if the door is locked or not */
default boolean isLocked ()
{return getLocked ();}
/* Tries to open the door */
default int open() {
if (1isLocked ()) {
out.println ("The door has been opened!");
double rnd = Math.random();
int cns = (int)(rnd * getDoorMaxCoins ())+1;

out.println ("You got "+ cns +" coins.");
return cns;

}

else {
out.println ("This door is locked.");
return -1;

}

}
/* Performs a knock on the door */
default int knock () {
out .print ("Door says: ");
out .print ("How you dare, ");
out .println ("I am the one who knocks!");
int ¢ = (Math.random()<0.8)7 0 : 1;
if(c > 0)
out .println ("0Ow!
return c;

You got a free coin!");

}

import java.lang.Math;
/* Provides a counter that after

a limit releases coins */

public interface TCounter {

}

/* State references */

public int getCounter ();

public void setCounter (int c);

public int getLimit ();

/* Coin management */

public int getCounterMaxCoins ();

default void incrementCounter () {
setCounter (getCounter ()+1);

}

default void decrementCounter () {
setCounter (getCounter () -1);

default boolean hasReachedLimit () {
return getCounter () >= getLimit ());

}
default int releaseCoins () {
double rnd = Math.random();
int cns = (int)(rnd * getCounterMaxCoins ())+1;
out .println ("You got "+cms+" coimns.");
return cns;
}

import java.lang.Math;
/* Provides a chest that contains coins */
public interface TChest {

/* Coin management */
public int getChestMaxCoins();
/* Opens the chest x*/
default int open() {
out .print ("The chest is now opened!");

2014/7/22

double rnd = Math.random();

int ¢ = (int) (rnd * getChestMaxCoins ());
out.print ("You got "+c);

out.println (" coins from the chest.");
return c;

import java.lang.Math;
/* Provides an enchantment that
can give or take coins x/
public interface TEnchantment {
/* Coin management */
public int getEnchantMaxCoins ();
/** An enchantment can give coins
(max getEnchantMaxCoins()) or
remove coins (max -getEnchantMaxCoins ())
default int applyEnchantment () {
out.println ("\nThis is an enchantment !");
out .print ("\"If the luck is up, ");
out.println ("of coins you’ll have a cup,");
out.print ("but if no luck you got, ");
out.println ("you are gonna lose a lot.\"");

int max = getEnchantMaxCoins ();
double rnd = Math.random();
int cns = -max + (int) (rnd*((max*2)+1));
if (cns >= 0) {
out .print ("Ohoh! You got "+cns);
out .println (" coins!");
}
else {

out .print ("You lost "+Math.abs(cns));
out .println (" coins!");
}

return cns;

/* Puts together a door and an enchantment */
public interface TEnchantedDoor
extends TDoor, TEnchantment {

/** When you open an enchanted door,
you break the enchantment and so
you apply it.

*% /

default int open() {
int coins = TDoor.super.open();
if (coins > 0) //if the door is open

coins += applyEnchantment ();
return coins;

}

}

public class EnchantedDoor

implements TEnchantedDoor {

/* Fields for the door x/

private boolean locked;

/* Glue Code for TDoor */

public boolean getLocked ()
{return locked;}

/* Glue code for coin management

public int getDoorMaxCoins ()
{return 120;}

public int getEnchantMaxCoins ()
{return 150;}

/* Constructor */

public EnchantedDoor (boolean 1)
{setLocked (1);}

/* Other helpful methods */

public void setLocked (boolean 1)
{this.locked = 1;}

*/

*% /

/* Puts together a door and a chest */
public interface TChestedDoor
extends TDoor, TChest {

/** When you open a chested door,
you also get the prize from the chest.
This overrides the TDoor’s open().

*% /

default int open() {

int coins = TDoor.super.open();

if (coins > 0) //if the door is open
coins += openChest ();

return coins;

}

/* Alias for open() from TChest */

default int openChest ()

{return TChest.super.open();}

public class ChestedDoor

implements TChestedDoor {

/* Fields for the door x/

private boolean locked;

/* Glue Code for TDoor */

public boolean getLocked ()
{return this.locked;}

/* Glue code for coin management

public int getDoorMaxCoins ()
{return 120;}

public int getChestMaxCoins ()
{return 250;}

/* Constructor */

public ChestedDoor (boolean 1)
{setLocked (1);}

/* Other helpful methods */

public void setLocked (boolean 1)
{this.locked = 1;}

*/

/* Puts together a door and a counter */
public interface TKnockDoor
extends TDoor, TCounter A{
/** Every knock makes the counter increment.
If the limit is reached, more coins are
released. *x*/
default int knock () {
int coins = TDoor.super.knock();
incrementCounter () ;
if (hasReachedLimit ()) {
out.print ("Ohh! A special drop for you!");
coins += releaseCoins();

}

else {
//Let’s give a suggestion to the player
out.print ("Don’t challenge me... ");
int ¢ = getLimit ();
String sug = "never knock a door ";
sug = sug + "more then "+c+" times.";
out .println (sug);

}

return coins;

public class KnockDoor implements TKnockDoor {
/* Fields for the door x*/
private boolean locked;
/* Fields for the counter */
private int counter;
private int limit;
/* Glue Code for TDoor */
public boolean getLocked ()
{return this.locked;}

2014/7/22

/* Glue code for TCounter */

public int getCounter ()
{return this.counter;}

public void setCounter (int c)
{this.counter = c;}

public int getLimit ()
{return this.limit;}

/* Glue code for coin management */

public int getDoorMaxCoins ()
{return 120;}

public int getCounterMaxCoins ()
{return 500;}

/* Constructor */

public KnockDoor (boolean 1,
setCounter (0);
setLocked (1);
setLimit (11i);

int 1i) {

}

/* Other helpful methods */

private void setLocked (boolean 1)
{this.locked = 1;}

private void setLimit (int 1)
{this.limit = 1;}

public class DoorsRoom {

private TDoor leftDoor;
private TDoor rightDoor;
private TDoor frontDoor ;
/* Constructor x*/

public DoorsRoom (TDoor 1,

TDoor r,
TDoor f) {
leftDoor = 1;
rightDoor = r;
frontDoor = f;

}

/* Getters */

public TDoor getLeftDoor ()
{return leftDoor;}

public TDoor getRightDoor ()
{return rightDoor ;}

public TDoor getFrontDoor ()
{return frontDoor ;}

public class Player {

private final String nickname;
private int bag = 150; //contains the coins
/* Constructor x/
public Player (String n) {
nickname = n;
}
/* Setters and getters */
public int getCoins ()
{return bag;}
public String getNickname ()
{return this.nickname ;}
/* Helpful methods */
public void addInBag (int amount)
{this.bag += amount;}
public void removeFromBag(int amount)

{this.bag -= amount;}

public String toString () {
String s = "I’m "+getNickname ();
s += " and i’ve got "+getCoins ();

s += " coins in my bag.";
return s;

public class Game {

10

private Player player;

private DoorsRoom doorsRoom;

private final String version = "0.0";

/* Constructor */

public Game (Player p, DoorsRoom dr) {
player = p;
doorsRoom = dr;

}

/* Setters and getters x/

public Player getPlayer ()
{return player;}

public DoorsRoom getDoorsRoom()
{return doorsRoom;}

2014/7/22

