287 research outputs found

    A comprehensive comparison of the performance of metaheuristic algorithms in neural network training for nonlinear system identification

    Get PDF
    Many problems in daily life exhibit nonlinear behavior. Therefore, it is important to solve nonlinear problems. These problems are complex and difficult due to their nonlinear nature. It is seen in the literature that different artificial intelligence techniques are used to solve these problems. One of the most important of these techniques is artificial neural networks. Obtaining successful results with an artificial neural network depends on its training process. In other words, it should be trained with a good training algorithm. Especially, metaheuristic algorithms are frequently used in artificial neural network training due to their advantages. In this study, for the first time, the performance of sixteen metaheuristic algorithms in artificial neural network training for the identification of nonlinear systems is analyzed. It is aimed to determine the most effective metaheuristic neural network training algorithms. The metaheuristic algorithms are examined in terms of solution quality and convergence speed. In the applications, six nonlinear systems are used. The mean-squared error (MSE) is utilized as the error metric. The best mean training error values obtained for six nonlinear systems were 3.5×10−4, 4.7×10−4, 5.6×10−5, 4.8×10−4, 5.2×10−4, and 2.4×10−3, respectively. In addition, the best mean test error values found for all systems were successful. When the results were examined, it was observed that biogeography-based optimization, moth–flame optimization, the artificial bee colony algorithm, teaching–learning-based optimization, and the multi-verse optimizer were generally more effective than other metaheuristic algorithms in the identification of nonlinear systems

    A Modified Neuro-Fuzzy System Using Metaheuristic Approaches for Data Classification

    Get PDF
    The impact of innovated Neuro-Fuzzy System (NFS) has emerged as a dominant technique for addressing various difficult research problems in business. ANFIS (Adaptive Neuro-Fuzzy Inference system) is an efficient combination of ANN and fuzzy logic for modeling highly non-linear, complex and dynamic systems. It has been proved that, with proper number of rules, an ANFIS system is able to approximate every plant. Even though it has been widely used, ANFIS has a major drawback of computational complexities. The number of rules and its tunable parameters increase exponentially when the numbers of inputs are large. Moreover, the standard learning process of ANFIS involves gradient based learning which has prone to fall in local minima. Many researchers have used meta-heuristic algorithms to tune parameters of ANFIS. This study will modify ANFIS architecture to reduce its complexity and improve the accuracy of classification problems. The experiments are carried out by trying different types and shapes of membership functions and meta-heuristics Artificial Bee Colony (ABC) algorithm with ANFIS and the training error results are measured for each combination. The results showed that modified ANFIS combined with ABC method provides better training error results than common ANFIS model

    "Training ANFIS Using Genetic Algorithm for Dynamic Systems Identification

    Get PDF
    In this study, the premise and consequent parameters of ANFIS are optimized using Genetic Algorithm (GA) based on a population algorithm. The proposed approach is applied to the nonlinear dynamic system identification problem. The simulation results of the method are compared with the Backpropagation (BP) algorithm and the results of other methods that are available in the literature. With this study it was observed that the optimisation of ANFIS parameters using GA is more successful than the other method

    A new neural network training algorithm based on artificial bee colony algorithm for nonlinear system identification

    Get PDF
    Artificial neural networks (ANNs), one of the most important artificial intelligence techniques, are used extensively in modeling many types of problems. A successful training process is required to create effective models with ANN. An effective training algorithm is essential for a successful training process. In this study, a new neural network training algorithm called the hybrid artificial bee colony algorithm based on effective scout bee stage (HABCES) was proposed. The HABCES algorithm includes four fundamental changes. Arithmetic crossover was used in the solution generation mechanisms of the employed bee and onlooker bee stages. The knowledge of the global best solution was utilized by arithmetic crossover. Again, this solution generation mechanism also has an adaptive step size. Limit is an important control parameter. In the standard ABC algorithm, it is constant throughout the optimization. In the HABCES algorithm, it was determined dynamically depending on the number of generations. Unlike the standard ABC algorithm, the HABCES algorithm used a solution generation mechanism based on the global best solution in the scout bee stage. Through these features, the HABCES algorithm has a strong local and global convergence ability. Firstly, the performance of the HABCES algorithm was analyzed on the solution of global optimization problems. Then, applications on the training of the ANN were carried out. ANN was trained using the HABCES algorithm for the identification of nonlinear static and dynamic systems. The performance of the HABCES algorithm was compared with the standard ABC, aABC and ABCES algorithms. The results showed that the performance of the HABCES algorithm was better in terms of solution quality and convergence speed. A performance increase of up to 69.57% was achieved by using the HABCES algorithm in the identification of static systems. This rate is 46.82% for the identification of dynamic systems

    Component-wise analysis of metaheuristic algorithms for novel fuzzy-meta classifier

    Get PDF
    Metaheuristic research has proposed promising results in science, business, and engineering problems. But, mostly high-level analysis is performed on metaheuristic performances. This leaves several critical questions unanswered due to black-box issue that does not reveal why certain metaheuristic algorithms performed better on some problems and not on others. To address the significant gap between theory and practice in metaheuristic research, this study proposed in-depth analysis approach using component-view of metaheuristic algorithms and diversity measurement for determining exploration and exploitation abilities. This research selected three commonly used swarm-based metaheuristic algorithms – Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Cuckoo Search (CS) – to perform component-wise analysis. As a result, the study able to address premature convergence problem in PSO, poor exploitation in ABC, and imbalanced exploration and exploitation issue in CS. The proposed improved PSO (iPSO), improved ABC (iABC), and improved CS (iCS) outperformed standard algorithms and variants from existing literature, as well as, Grey Wolf Optimization (GWO) and Animal Migration Optimization (AMO) on ten numerical optimization problems with varying modalities. The proposed iPSO, iABC, and iCS were then employed on proposed novel Fuzzy-Meta Classifier (FMC) which offered highly reduced model complexity and high accuracy as compared to Adaptive Neuro-Fuzzy Inference System (ANFIS). The proposed three-layer FMC produced efficient rules that generated nearly 100% accuracies on ten different classification datasets, with significantly reduced number of trainable parameters and number of nodes in the network architecture, as compared to ANFIS

    A self-adaptive artificial bee colony algorithm with local search for TSK-type neuro-fuzzy system training

    Full text link
    © 2019 IEEE. In this paper, we introduce a self-adaptive artificial bee colony (ABC) algorithm for learning the parameters of a Takagi-Sugeno-Kang-type (TSK-type) neuro-fuzzy system (NFS). The proposed NFS learns fuzzy rules for the premise part of the fuzzy system using an adaptive clustering method according to the input-output data at hand for establishing the network structure. All the free parameters in the NFS, including the premise and the following TSK-type consequent parameters, are optimized by the modified ABC (MABC) algorithm. Experiments involve two parts, including numerical optimization problems and dynamic system identification problems. In the first part of investigations, the proposed MABC compares to the standard ABC on mathematical optimization problems. In the remaining experiments, the performance of the proposed method is verified with other metaheuristic methods, including differential evolution (DE), genetic algorithm (GA), particle swarm optimization (PSO) and standard ABC, to evaluate the effectiveness and feasibility of the system. The simulation results show that the proposed method provides better approximation results than those obtained by competitors methods

    A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems

    Get PDF
    The use of artificial intelligence (AI) is increasing in various sectors of photovoltaic (PV) systems, due to the increasing computational power, tools and data generation. The currently employed methods for various functions of the solar PV industry related to design, forecasting, control, and maintenance have been found to deliver relatively inaccurate results. Further, the use of AI to perform these tasks achieved a higher degree of accuracy and precision and is now a highly interesting topic. In this context, this paper aims to investigate how AI techniques impact the PV value chain. The investigation consists of mapping the currently available AI technologies, identifying possible future uses of AI, and also quantifying their advantages and disadvantages in regard to the conventional mechanisms

    Konaklama işletmelerinde doluluk oranının tahmini için yapay arı koloni (abc) algoritması kullanarak ANFIS eğitimi

    Get PDF
    Bu çalışmada, konaklama işletmelerindeki doluluk oranının tahmini için ABC algoritması kullanılarak, ANFIS eğitimi gerçekleştirilmiştir. 1990 - 2014 yılları arasındaki tesis sayısı, yatak sayısı, konaklayan yabancı ziyaretçi sayısı, geceleme sayısı ve ortalama kalış süresi giriş değişkeni olarak alınarak 5 giriş ve 1 çıkıştan oluşan ANFIS yapısı oluşturulmuştur. Çıkış olarak ise doluluk oranı kullanılmıştır. ANFIS'in yapısında bulunan başlangıç ve sonuç parametrelerinin optimizasyonu, ABC algoritması kullanılarak gerçekleştirilmiştir. Elde edilen sonuçlar regresyon ve ANFIS tabanlı diğer yöntemlerle (ANFIS-PSO, ANFIS-DE) karşılaştırılmıştır. Simülasyon sonuçları konaklama işletmelerindeki doluluk oranının tahmininde önerilen yöntemin etkili olduğunu göstermektedir
    corecore