
Citation: Kaya, E. A New Neural

Network Training Algorithm Based

on Artificial Bee Colony Algorithm

for Nonlinear System Identification.

Mathematics 2022, 10, 3487. https://

doi.org/10.3390/math10193487

Academic Editors: Nicholas

Christakis, George Kossioris and

Mayur Patel

Received: 22 August 2022

Accepted: 17 September 2022

Published: 24 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A New Neural Network Training Algorithm Based on Artificial
Bee Colony Algorithm for Nonlinear System Identification
Ebubekir Kaya

Department of Computer Engineering, Engineering Architecture Faculty, Nevsehir Haci Bektas Veli Univesity,
50300 Nevsehir, Turkey; ebubekir@nevsehir.edu.tr or ebubekirkaya@yandex.com

Abstract: Artificial neural networks (ANNs), one of the most important artificial intelligence tech-
niques, are used extensively in modeling many types of problems. A successful training process
is required to create effective models with ANN. An effective training algorithm is essential for
a successful training process. In this study, a new neural network training algorithm called the
hybrid artificial bee colony algorithm based on effective scout bee stage (HABCES) was proposed.
The HABCES algorithm includes four fundamental changes. Arithmetic crossover was used in the
solution generation mechanisms of the employed bee and onlooker bee stages. The knowledge
of the global best solution was utilized by arithmetic crossover. Again, this solution generation
mechanism also has an adaptive step size. Limit is an important control parameter. In the standard
ABC algorithm, it is constant throughout the optimization. In the HABCES algorithm, it was deter-
mined dynamically depending on the number of generations. Unlike the standard ABC algorithm,
the HABCES algorithm used a solution generation mechanism based on the global best solution in
the scout bee stage. Through these features, the HABCES algorithm has a strong local and global
convergence ability. Firstly, the performance of the HABCES algorithm was analyzed on the solution
of global optimization problems. Then, applications on the training of the ANN were carried out.
ANN was trained using the HABCES algorithm for the identification of nonlinear static and dynamic
systems. The performance of the HABCES algorithm was compared with the standard ABC, aABC
and ABCES algorithms. The results showed that the performance of the HABCES algorithm was
better in terms of solution quality and convergence speed. A performance increase of up to 69.57%
was achieved by using the HABCES algorithm in the identification of static systems. This rate is
46.82% for the identification of dynamic systems.

Keywords: artificial bee colony algorithm; artificial neural network; global optimization; nonlinear
system identification

MSC: 68T07

1. Introduction

ANN is one of the most important artificial intelligence techniques. It has been used to
solve many real-world problems [1]. Its popularity is a result of its strong structure. Security,
science, engineering, medical science, finance, education, energy, and manufacturing are
some of the areas where ANN is used. One of the important capabilities of ANN is
the learning feature. It can provide modeling of problems using existing data and can
give information about data that it has never seen. The training process of ANN is very
important. Successful modeling of a problem is directly related to the successful training
process of ANN. One of the artificial intelligence approaches used extensively in ANN
training is meta-heuristic algorithms [2–4].

Meta-heuristic algorithms have been used successfully in solving many real-world
problems [5–8]. The success of meta-heuristic algorithms has increased the interest in this
field. Currently, there are more than 200 meta-heuristic algorithms in the literature. The

Mathematics 2022, 10, 3487. https://doi.org/10.3390/math10193487 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10193487
https://doi.org/10.3390/math10193487
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8576-7750
https://doi.org/10.3390/math10193487
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10193487?type=check_update&version=3

Mathematics 2022, 10, 3487 2 of 27

equilibrium optimizer (EO) [9], the marine predators algorithm (MPA) [10], the slime mould
algorithm (SMA) [11], the reptile search algorithm (RSA) [12], the dandelion optimizer [13],
the runge kutta optimizer (RUN) [14], and weighted mean of vectors (INFO) [15] are some
of the current meta-heuristic algorithms recommended in 2020 and beyond. Artificial bee
colony (ABC) [16,17], cuckoo search (CS) [18], particle swarm optimization (PSO) [19],
differential evolution algorithm (DE) [20] and flower pollination algorithm (FPA) [21] are
some of the very popular meta-heuristic algorithms proposed in recent years.

One of the popular meta-heuristic algorithms used in ANN training is the ABC al-
gorithm. The ABC algorithm is used to solve many real-world problems [22]. The strong
global and local convergence ability of the ABC algorithm is one of the important reasons
for its popularity. This strong structure of the ABC algorithm has also enabled it to be used
extensively in ANN-based studies. Some ANN studies based on the ABC algorithm are
as follows: Karaboga and Akay [23] evaluated the performance of the ABC algorithm in
ANN training and compared it with different algorithms. They reported that the ABC
algorithm was successful in training ANN. Karaboga et al. [24] trained feed-forward neu-
ral networks (FFNNs) using the ABC algorithm. Ozturk and Karaboga [25] proposed
a hybrid training algorithm based on Levenberg–Marquardt (LM) and ABC algorithm.
Karaboga and Ozturk [26] evaluated its performance on classification problems by training
FFNN with the ABC algorithm. Kaya [27] compared the performance of several meta-
heuristic algorithms in ANN training for nonlinear system identification. It was reported
that the ABC algorithm is among the most successful training algorithms. Uzlu et al. [28]
used an approach based on the ABC algorithm and ANN for the prediction of hydroelectric
generation in Turkey. They stated that their proposed approach was effective. Xu et al. [29]
proposed a modified ABC algorithm to train FFNN. Kaya and Baştemur Kaya [30] pro-
posed a novel neural network training algorithm called artificial bee colony algorithm
based on effective scout bee stage (ABCES) for the identification of nonlinear static sys-
tems. Ghanem and Jantan [31] introduced a hybrid training algorithm based on the ABC
algorithm and monarch butterfly optimization for cyberattack classification applications.
Shah et al. [32] presented a quick gbest guided artificial bee colony algorithm to train FFNN
for Saudi stock market prices prediction. They reported that their proposed approach was
more effective than typical computational algorithms.

Many variants have been proposed to obtain more effective solutions with the ABC
algorithm. At the same time, hybrid approaches have also been suggested using differ-
ent meta-heuristic algorithms and some of their features. Yildiz [33] developed a new
hybrid algorithm based on the ABC algorithm and the Taguchi method for a structural
design optimization of a vehicle component and a multi tool milling optimization problem.
Karaboga and Kaya [34] proposed a hybrid ABC algorithm using arithmetic crossover to
train ANFIS. Jadon et al. [35] suggested a novel hybrid algorithm (HABCDE) based on the
ABC algorithm and DE. The performance of HABCDE was compared with different variant
and meta-heuristic approaches for solving various science and engineering optimization
problems. Li et al. [36] presented a hybrid feature selection algorithm (MFABC) based on
a discrete ABC algorithm for Parkinson’s disease diagnosis. The performance of MFABC
was compared with meta-heuristic approaches such as PSO, GWO, GA, ABC, QPSO, DE,
FIREFLY, BAT, FWA and BBO. It was reported that MFABC was effective. Kefayat et al. [37]
suggested a hybrid optimization approach including ant colony optimization and the ABC
algorithm for probabilistic optimal placement and sizing of distributed energy resources.
Duan et al. [38] proposed a hybrid algorithm based on the ABC algorithm and the quantum
evolutionary algorithm to solve continuous optimization problems. Awadallah et al. [39]
used the hill climbing optimizer in the process of the employed bee and proposed a hybrid
algorithm (HABC) based on the hill climbing optimizer and ABC algorithm for a nurse
rostering problem. Apart from these, there are also different hybrid approaches [40–46].

In light of the above information, it can be seen that the ABC algorithm has an
important area of use in ANN training. To improve the performance of the ABC algorithm
in ANN training, variants possessing improved global and local convergence capability are

Mathematics 2022, 10, 3487 3 of 27

needed. Therefore, in this study, the HABCES algorithm, which a powerful variant of the
ABC algorithm, is proposed. For the analysis of the performance of the HABCES algorithm
in ANN training, it was applied for modeling parity problems and the identification of
nonlinear static and dynamic systems. This study makes important contributions to the
literature and has many innovative aspects. These are summarized below:

• The study uses one of the most effective variants of the ABC algorithm proposed for
ANN training. The HABCES algorithm is proven to be effective by comparing it with
different variants.

• It is one of the most comprehensive studies on the identification of nonlinear static
and dynamic systems.

• The study uses an important variant in which both global convergence and local conver-
gence ability are developed. It can be used to solve many different real-world problems.

• Unlike other variants of ABC algorithms in the literature, the related algorithm is
improved by using adaptive arithmetic crossover, adaptive step size, an adaptive limit
parameter, and an effective scout bee solution generation mechanism.

2. Materials and Methods
2.1. Standard Artificial Bee Colony (ABC) Algorithm

The ABC algorithm models the foraging behavior of honey bees [16,17]. Unlike the
behavior of real bees, the ABC algorithm makes some assumptions. The ABC algorithm
includes three different types of bee, including employed bees, onlooker bees and scout
bees. Half of a colony consists of employed bees. The other half includes onlooker bees.
The position of a food source corresponds to a candidate solution of a problem. The
nectar amount of a food source corresponds to the solution quality. The ABC algorithm
has three basic control parameters. These are colony size, limit, and maximum number
of generations.

In the ABC algorithm, the process starts with the random determination of the posi-
tions of the food sources using (1). xmin

j is the lower bound and xmax
j is the upper bound. xi

corresponds to the ith solution. To produce new solutions in the employed bee onlooker
bee phases, the solution generation mechanisms given in (2) are used. Here, ∅ij is a ran-
dom number in the range [−1, 1] and k is an integer number in the range [1, number of
employed bees].

xij = xmin
j + rand(0, 1)

(
xmax

j − xmin
j

)
(1)

vij = xij +∅ij

(
xij − xkj

)
(2)

Pi =
f itnessi

∑SN
j=1 f itnessj

(3)

A comparison is made as to whether the nectar amount of the candidate source is
better than the previous one. If the nectar amount of the candidate source is better, the
information of the previous source is deleted from the memory and the information of the
candidate source is written. In the standard ABC algorithm, a selection process is carried
out using the roulette wheel method. The selection probability of sources is computed by (3).
Here, f itnessi represents the quality of the ith source. SN is the number of employed bees.

The ABC algorithm has a failure counter. If the value of the failure counter reaches the
limit value, a new solution is randomly generated by the scout bees using (1). This process
is repeated until the maximum number of generations is reached.

2.2. Hybrid Artificial Bee Colony Algorithm Based on Effective Scout Bee Stage (HABCES)

The hybrid artificial bee colony algorithm based on effective scout bee stage (HABCES)
improves both the global and local search capability of the standard ABC algorithm. The
aABC algorithm [34] and ABCES algorithm [30] are two important variants of the ABC

Mathematics 2022, 10, 3487 4 of 27

algorithm. The HABCES algorithm was created by combining the innovative features of
these variants and adding new additional features.

To increase the local search capability of the ABC algorithm, two fundamental inno-
vations were made in the structure of the aABC algorithm. Firstly, arithmetic crossover
was used in the solution generation mechanisms of the employed and onlooker bee phases.
An arithmetic crossover was applied between the instantaneous solution and the global
best solution. The second is the adaptive adjustment of the step size according to the
failure counter. To strengthen the local search capability of the HABCES algorithm, the
solution search mechanism of the aABC algorithm specified in (4) and (5) was used. γ is the
crossover rate and α is the adaptivity coefficient. One of the major drawbacks of the aABC
algorithm is the manual setting of these parameters. The optimum values of the γ and α
parameters may change according to the problem type. For the best results, it is necessary
to try all alternatives. This disadvantage is eliminated with the HABCES algorithm. In
each iteration, the values of γ and α are adjusted adaptively according to the number of
iterations as noted in (6) and (7). iter is the current number of iterations and maxCycle is the
maximum number of iterations. As can be understood from (6), the effect of the global best
solution on the new solution increases as the number of iterations increases. Namely, better
solutions are sought around the global best solution. At first, the effect of the global best
solution is minimal. With this approach, new solutions are prevented from being similar to
the global best solution. (7) shows the adaptive adjustment of the step size (α). α changes
according to the number of iterations and approaches from 0 to 1. Its value is initially 0.
It reaches 1 when iter and maxCycle are equal. This approach allows searching for a new
solution in remote region of the existing solution in the initial iterations. As the number of
iterations increases, the search region narrows.

vij = xijγ + xgj(1− γ) + Bi∅ij

(
xij − xkj

)
(4)

Bi =

(
1

1 + triali

)α

(5)

γ = rand ∗ maxCycle− iter
maxCycle

(6)

α =
iter

maxCycle
(7)

Limit = 1 + w × D × FoodNumber ×
(

maxCycle− iter
maxCycle

)
(8)

vij =

{
xijε + xgj(1− ε), r1 < r2

xij + xij δ, other
(9)

r2 = rand +

(
maxCycle− iter

maxCycle

)
(10)

Limit is one of the important control parameters of the ABC algorithm. When the limit
value reaches the failure counter, a random new solution is generated in the scout bee stage.
Random generation of the new solution means abandoning previously achieved gains.
This is a situation that negatively affects the global convergence ability of the algorithm. In
the ABC algorithm, the value of the limit parameter is fixed. Large or small limit values
can turn into a disadvantage depending on the development of the solution. The two
main issues mentioned here are solved in the ABCES algorithm. As stated in (8), the limit
value is dynamically adjusted depending on the current iteration number. Here, w is a
random number in the range [0,1]. D is the number of parameters of the problem to be
optimized. The ABCES algorithm utilizes a solution generation mechanism that uses the
current solution and the global best solution instead of randomly determining the solutions
in the scout bee phase. In (9) and (10), r1 and ε are random numbers in the range [0,1]. δ is

Mathematics 2022, 10, 3487 5 of 27

the step size and is accepted as 0.01. In this way, it is ensured that the gains obtained are
transferred to the new generations. At the same time, the global convergence capability of
the algorithm has been increased. The two stated strengths of the ABCES algorithm are
integrated into the HABCES algorithm to strengthen its global search capability.

In light of this information, the basic architecture of the HABCES algorithm can be
summarized as follows:

• Arithmetic crossover is used in the solution generation mechanism of the employed
and onlooker bee stages and an adaptive local search is adopted.

• Arithmetic crossover and adaptivity parameters are adjusted dynamically.
• Limit, one of the important control parameters, is dynamically adjusted depending on

the number of iterations. Its value changes with each iteration.
• In the scout bee stage, instead of randomly generating new solutions, a strong solution

generation mechanism including the global best solution and the current solution
is used.

3. Results
3.1. Applications on the Solution of the Global Optimization Problems

In this section, the performance of the HABCES algorithm on solving global optimiza-
tion problems was evaluated. For this purpose, the 43 benchmark test functions given in
Table 1 were used. The first 20 (F1–F20) test functions are suitable for high-dimensional
problems. The other test functions (F21–F43) are low-dimensional optimization prob-
lems. For high-dimensional problems, colony size and maximum number of generations
were taken as 50 and 500, respectively. The maximum number of generations for low-
dimensional optimization problems is 100. Each application was run 30 times, and the
mean fitness values were calculated.

Table 1. Benchmark functions used for solving global optimization problems.

Function Function Name Formulation

F1 Sphere f (x) =
n
∑

i=1
x2

i

F2 Exponential f (x) = −exp
(
−0.5

n
∑

i=1
x2

i

)
F3 High Conditioned Elliptic f (x) =

n
∑

i=1

(
106) i−1

n−1 x2
i

F4 Ackley f (x) = −20exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e

F5 Schwefels 1.2 f (x) =
n
∑

i=1

(
i

∑
j=1

xj

)2

F6 Step f (x) =
n
∑

i=1
(bxi + 0.5c)2

F7 Sum of Different Powers f (x) =
n
∑

i=1
|xi |i+1

F8 Griewank f (x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1

F9 Sum Squares f (x) =
n
∑

i=1
ix2

i

F10 Rastrigin f (x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

Mathematics 2022, 10, 3487 6 of 27

Table 1. Cont.

Function Function Name Formulation

F11 Penalized 1

f (x) = π
n

{
10 sin2(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi , a, k, m)

yi = 1 + 1
4 (xi + 1)

u(xi , a, k, m) =

 k(xi − a)m xi > a
0 −a ≤xi ≤ a

k(−xi − a)m xi < −a

F12 Penalized 2

f (x) = 0.1
{

sin2(3πx1) +
n−1
∑

i=1
(xi − 1)2[1 + sin2(3πxi+1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+

n
∑

i=1
u(xi , a, k, m)

u(xi , a, k, m) =

 k(xi − a)m xi > a
0 −a ≤xi ≤ a

k(−xi − a)m xi < −a

F13 Rosenbrock f (x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

F14 Levy f (x) = sin2(πw1) +
n−1
∑

i=1
(wi − 1)2[1 + 10 sin2(πwi + 1)

]
+ (wd − 1)2 +

[
1 + sin2(2πwd)

]
wi = 1 + xi−1

4

F15 Zakharov f (x) =
n
∑

i=1
xi

2 +

(
n
∑

i=1
0.5ixi

)2

+

(
n
∑

i=1
0.5ixi

)4

F16 Rotated Hyper-Ellipsoid f (x) =
n
∑

i=1

i
∑

j=1
x2

j

F17 Styblinski–Tang f (x) = 1
2

n
∑

i=1

(
x4

i − 16x2
i + 5xi

)
F18 Cigar f (x) = x1

2 + 106
n
∑

i=2
xi

2

F19 Qing f (x) =
n
∑

i=1

(
x2

i − i
)2

F20 Yang 1 f (x) =
n
∑

i=1
εi |xi |i

F21 Bartels Conn f (x) =
∣∣x2

1 + x2
2 − x1x2

∣∣+ |sin(x1)|+ |cos(x2)|

F22 Beale f (x) = (1.5− x1 + x1x2)
2 +

(
2.25− x1 + x1x2

2)2
+
(
2.625− x1 + x1x2

3)2

F23 Bohachevsky 1 f (x) = x2
1 + 2x2

2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7

F24 Bohachevsky 2 f (x) = x2
1 + 2x2

2 − 0.3 cos(3πx1) cos(4πx2) + 0.3

F25 Camel Function—Three
Hump f (x) = 2x2

1 − 1.05x4
1 +

x6
1

6 + x1x2 + x2
2

F26 Egg Crate f (x) = x2
1 + x2

2 + 25
(
sin2(x1) + sin2(x2)

)
F27 Himmelblau f (x) =

(
x2

1 + x2 − 11
)2

+
(
x1 + x2

2 − 7
)2

F28 Leon f (x) = 100
(

x2 − x2
1
)2

+ (1− x1)
2

F29 Matyas f (x) = 0.26
(

x2
1 + x2

2
)
− 0.48x1x2

F30 Mishra 3 f (x) =
√∣∣∣cos

√∣∣x2
1 + x2

2

∣∣∣∣∣+ 0.01(x1 + x2)

F31 Price 1 f (x) = (|x1| − 5)2 + (|x2| − 5)2

F32 Price 2 f (x) = 1 + sin2 x1 + sin2 x2 − 0.1e−x2
1−x2

2

F33 Scahffer 1 f (x) = 0.5 +
sin2(x2

1+x2
2)

2−0.5

1+0.001(x2
1+x2

2)
2

F34 Scahffer 2 f (x) = 0.5 +
sin2(x2

1−x2
2)

2−0.5

1+0.001(x2
1+x2

2)
2

F35 Trecanni f (x) = x4
1 + 4x3

1 + 4x2
1 + x2

2

Mathematics 2022, 10, 3487 7 of 27

Table 1. Cont.

Function Function Name Formulation

F36 Branin’s RCOS 1 f (x) =
(

x2 −
5.1x2

1
4π2 + 5x1

π − 6
)2

+ 10
(

1− 1
8π

)
cos(x1) + 10

F37 Easom f (x) = − cos(x1) cos(x2)e[−(x1−π)2−(x2−π)2]

F38 Six Hump Camel Function f (x) =
(

4− 2.1x2
1 +

x4
1

3

)
x2

1 + x1x2 +
(
−4 + 4x2

2
)
x2

2

F39 Cube f (x) = 100
(

x2 − x3
1
)2

+ (1− x1)
2

F40 Hartmann 3 f (x) = −
4
∑

i=1
aie

(−∑3
j=1 Aij(xj−Pij)

2)

F41 Hartmann 6 f (x) = −
4
∑

i=1
aie

(−∑6
j=1 Aij(xj−Pij)

2)

F42 Colville
f (x) = 100

(
x1 − x2

2
)2

+ (1− x1)
2 + 90

(
x4 − x2

3
)2

+ (1− x3)
2

+10.1
(
(x2 − 1)2 + (x4 − 1)2

)
+ 19.8(x2 − 1)(x4 − 1)

F43 Miele Cantrell f (x) = (e−x1 − x2)
4
+ 100(x2 − x3)

6 + (tan(x3 − x4))
4 + x8

1

The performance of the HABCES algorithm was compared with the standard ABC,
aABC and ABCES algorithms. The results obtained for the first 20 test functions are given
in Table 2. In addition to the results, Table 2 also includes the search range, dimensions,
and optimal values. The best results on all test functions were obtained with the proposed
HABCES algorithm. A value of 5.7× 10−2 was reached using the HABCES algorithm for F1.
For the ABCES and aABC algorithms, the fitness values were at 10−6 and 10−5 levels. Only
the HABCES algorithm reached the optimal value for F2. After the HABCES algorithm,
ABCES had the best fitness value, with a standard deviation value of 3.0 × 10−7. Although
very high error values were obtained with the ABC, ABCES and aABC algorithms for F3,
very successful results were found when utilizing the HABCES algorithm. The best fitness
value for F4 was obtained by using HABCES algorithm as 3.0 × 10−5. Due to the difficulty
of the problem for F5, high fitness values were generally achieved in all algorithms. The
best result was obtained using the HABCES algorithm. The optimal value of F6 is 0, and
the optimal value was achieved by the HABCES and ABCES algorithms. Interestingly,
the least successful result was obtained using the aABC algorithm for this function. The
best result for F7 was found to be 9.1 × 10−18 and it was obtained using the HABCES
algorithm. The fitness value of the HABCES algorithm for F8 was at the 10−3 level. For
other algorithms, it was greater than 10−3. The HABCES algorithm was very successful
for F9. Its fitness value was 2.4 × 10−10. The closest result for F9 was obtained using the
ABCES algorithm. The fitness value of the ABCES algorithm was 1.2 × 10−5. While the
fitness value of the HABCES algorithm was at the 10−2 level for F10, it was greater than 1
for the other algorithms. The best result after the HABCES algorithm was obtained when
using the ABC algorithm. The best fitness value found for F11 was 5.9 × 10−11 and was
obtained when utilizing the HABCES algorithm. A value of 2.2 × 10−10 was obtained
by using the HABCES algorithm for F12. The fitness values of the other algorithms were
greater than 10−5. The fitness values found for F13 was between 22 and 32. The best result
was achieved when using the HABCES algorithm. The least successful result was obtained
with ABC algorithm.

Mathematics 2022, 10, 3487 8 of 27

Table 2. Comparison of the results of the ABC, aABC, ABCES and HABCES algorithms for solving high-dimensional global optimization problems.

Function Search Range D Optimal
Value

ABC ABCES aABC HABCES (Proposed)

Mean Std. Mean Std. Mean Std. Mean Std.

F1 [−5, 5] 30 0 3.0 × 10−4 1.1 × 10−3 2.5 × 10−6 2.4 × 10−6 2.2 × 10−5 6.7 × 10−5 5.7 × 10−12 8.2 × 10−12

F2 [−1, 1] 30 −1 −0.999972 8.4 × 10−5 −1 3.0 × 10−7 −0.999995 1.0 × 10−5 −1 0

F3 [−10, 10] 30 0 4.8 × 10−1 1.15215 2.4 × 10−2 7.2 × 10−2 2.7 × 10−1 6.9 × 10−1 9.0 × 10−9 2.0 × 10−8

F4 [−32, 32] 30 0 5.3 × 10−1 6.0 × 10−1 1.0 × 10−1 7.5 × 10−2 3.7 × 10−1 1.59738 3.0 × 10−5 1.4 × 10−5

F5 [−10, 10] 30 0 1.8 × 102 3.6 × 101 7.7 × 101 3.1 × 101 1.1 × 102 2.8× 101 4.7 × 101 2.1 × 101

F6 [−100, 100] 30 0 1.3 × 10−1 4.3 × 10−1 0 0 2.7 × 10−1 5.7 × 10−1 0 0

F7 [−1, 1] 30 0 9.4 × 10−9 2.9 × 10−8 1.5 × 10−12 2.8 × 10−12 6.9 × 10−12 2.6 × 10−11 9.1 × 10−18 8.0 × 10−18

F8 [−600, 600] 30 0 1.7 × 10−1 2.8 × 10−1 1.7 × 10−2 2.2 × 10−2 5.3 × 10−2 6.7 × 10−2 2.5 × 10−3 6.8 × 10−3

F9 [−10, 10] 30 0 2.8 × 10−1 1.48421 1.2 × 10−5 9.3 × 10−6 2.1 × 10−3 6.8 × 10−3 2.4 × 10−10 7.2 × 10−10

F10 [−5, 5] 30 0 4.46395 1.67945 5.64602 1.7277 6.35917 2.26352 6.9 × 10−2 2.3 × 10−1

F11 [−50, 50] 30 0 1.8 × 10−4 4.0 × 10−4 1.9 × 10−5 1.6 × 10−5 4.3 × 10−5 9.6 × 10−5 5.9 × 10−11 2.0 × 10−10

F12 [−50, 50] 30 0 4.9 × 10−3 2.0 × 10−2 1.4 × 10−4 1.0 × 10−4 8.3 × 10−4 2.5 × 10−3 2.2 × 10−10 2.9 × 10−10

F13 [−5, 5] 30 0 3.2 × 101 2.8 × 101 2.7 × 101 2.5 × 101 2.4 × 101 2.0 × 101 2.2 × 101 2.1 × 101

F14 [−10, 10] 30 0 7.1 × 10−4 2.1 × 10−3 3.8 × 10−5 3.9 × 10−5 7.3 × 10−5 1.3 × 10−4 1.1 × 10−10 2.3 × 10−10

F15 [−5, 10] 30 0 3.1 × 102 3.6 × 101 9.3 × 101 3.4 × 101 2.3 × 102 3.9 × 101 8.0 × 101 2.5 × 101

F16 [−100, 100] 30 0 1.33847 7.19865 1.4 × 10−5 1.8 × 10−5 2.0 × 10−3 4.7 × 10−3 1.2 × 10−10 2.4 × 10−10

F17 [−5, 5] 30 −1174.98 −1142.88 33.1328 −1171.84 6.70843 −1174.18 2.03502 −1174.98 0

F18 [−10, 10] 30 0 2.9 × 101 6.2 × 101 8.7 × 10−2 2.7 × 10−1 3.0 × 101 1.1 × 102 3.1 × 10−7 3.0 × 10−7

F19 [−100, 100] 30 0 3.92817 6.78767 6.3 × 10−1 6.3 × 10−1 1.9 × 10−1 3.7 × 10−1 2.7 × 10−4 6.8 × 10−4

F20 [−5, 5] 30 0 5.7 × 10−2 3.5 × 10−2 1.5 × 10−3 1.1 × 10−3 4.1 × 10−2 1.6 × 10−2 2.3 × 10−4 2.6 × 10−4

Mathematics 2022, 10, 3487 9 of 27

The most successful algorithm for F14 was the HABCES algorithm. Generally, large
fitness values were achieved for F15. The best result was 8.0 × 101 and was obtained when
using the HABCES algorithm. The most successful algorithm after HABCES was ABCES.
Its fitness value was 9.3 × 101. For F16, the difference between the fitness values of the
HABCES algorithm and the ABC algorithm was very large. The HABCES algorithm was
better than the other algorithms tested here. The optimal value of F17 was −1174.98. Only
the HABCES algorithm reached this value. The best result after the HABCES algorithm was
obtained with aABC algorithm. The best fitness value for F18 was found to be 3.1 × 10−7,
and was obtained when using the HABCES algorithm. For F19 and F20, the HABCES
algorithm was more effective than the other algorithms.

The results obtained for functions between F21 and F43 are presented in Table 3. The
optimum value was achieved with all algorithms for F21, F33, F37 and F38. The best result
for F22 was found to be 4.4 × 10−6, and was obtained when using the HABCES algorithm.
The optimum value was achieved when utilizing the ABCES, aABC and the HABCES
algorithms for F23. The fitness value of the ABC algorithm was 7.1 × 10−15. The best
result for F24 was found with the HABCES algorithm. The HABCES algorithm achieved
the optimal value here. After the HABCES algorithm, the best result was obtained when
using the aABC algorithm. Effective fitness values were obtained when using the HABCES
and aABC algorithms for F25. Although the HABCES algorithm had the best fitness value
for F26, the results obtained when using the other algorithms were also successful. The
HABCES algorithm was better than the other algorithms for F27. The best fitness value
for F28 was obtained when using the aABC algorithm. After the aABC algorithm, the best
result was found by utilizing the HABCES algorithm. The best results for F29 were obtained
via the HABCES and aABC algorithms. The fitness values achieved were 7.5 × 10−6 and
3.2 × 10−5, respectively. The optimal value of F30 is −0.18465. The closest result to the
optimal value was obtained when using the HABCES algorithm. The best result for F31
was found to be 1.7 × 10−18, and was obtained when using the HABCES algorithm. The
least successful algorithm was ABCES. The optimal value of F32 is 0.9. The best result for
F32 was obtained by using the aABC algorithm. The fitness value of the HABCES algorithm
was 0.906667. The fitness values obtained with the aABC and HABCES algorithms for F34
were both 0. Other algorithms were less successful. Generally effective fitness values were
obtained for F35. The most successful was the HABCES algorithm. The best fitness value
for F36 was found to be 0.397887 by utilizing the aABC and the HABCES algorithms. The
fitness value of the HABCES algorithm for F39 was 1.2 × 10−3, and was the best result. For
F40, the fitness value of all algorithms is the same. The best value for F41 was obtained
when using the ABC algorithm. For F42, the best fitness value was found to be 4.1 × 10−1,
and was obtained with the HABCES algorithm. The performance of the HABCES algorithm
for F43 was better than that of other algorithms. The fitness value obtained when using
the HABCES algorithm was 1.8 × 10−7. The best result after the HABCES algorithm was
found with the ABCES algorithm.

Mathematics 2022, 10, 3487 10 of 27

Table 3. Comparison of the results of the ABC, aABC, ABCES and the HABCES algorithms when solving low-dimensional global optimization problems.

Function Search Range D Optimal
Value

ABC ABCES aABC HABCES (Proposed)

Mean Std. Mean Std. Mean Std. Mean Std.

F21 [−500, 500] 2 1 1 0 1 0 1 0 1 0

F22 [−4, 4] 2 0 1.5 × 10−3 1.5 × 10−3 3.5 × 10−4 7.1 × 10−4 1.2 × 10−4 2.2 × 10−4 4.4 × 10−6 1.4 × 10−5

F23 [−100, 100] 2 0 7.1 × 10−15 3.5 × 10−14 0 0 0 0 0 0

F24 [−100, 100] 2 0 1.1 × 10−9 4.8 × 10−9 2.3 × 10−10 8.5 × 10−10 4.8 × 10−14 2.6 × 10−13 0 0

F25 [−5, 5] 2 0 1.7 × 10−9 5.8 × 10−9 1.4 × 10−10 5.4 × 10−10 1.1 × 10−17 8.1 × 10−18 2.9 × 10−18 3.1 × 10−18

F26 [−5, 5] 2 0 1.9 × 10−17 6.5 × 10−17 4.9 × 10−18 4.7 × 10−18 7.5 × 10−18 8.4 × 10−18 1.5 × 10−18 1.4 × 10−18

F27 [−5, 5] 2 0 1.5 × 10−7 3.5 × 10−7 3.3 × 10−6 1.3 × 10−5 3.7 × 10−11 2.0 × 10−10 3.1 × 10−18 2.9 × 10−18

F28 [−1, 1] 2 0 1.1 × 10−2 2.6 × 10−2 2.7 × 10−2 4.1 × 10−2 1.1 × 10−3 1.9 × 10−3 5.9 × 10−3 1.6 × 10−2

F29 [−10, 10] 2 0 1.8 × 10−3 3.8 × 10−3 1.5 × 10−4 2.7 × 10−4 3.2 × 10−5 4.7 × 10−5 7.5 × 10−6 1.1 × 10−5

F30 [−10, 10] 2 −0.18465 −0.152569 0.027513 −0.175058 0.0269035 −0.148548 0.0326784 −0.186899 0.0396051

F31 [−10, 10] 2 0 8.8 × 10−14 2.4 × 10−13 8.6 × 10−11 1.8 × 10−10 1.7 × 10−17 2.1 × 10−17 1.7 × 10−18 1.7 × 10−18

F32 [−10, 10] 2 0.9 0.90009 4.5 × 10−4 0.9 5.6 × 10−7 0.9 4.4× 10−16 0.906667 2.5 × 10−2

F33 [−100, 100] 2 0 0 0 0 0 0 0 0 0

F34 [−100, 100] 2 0 5.6 × 10−14 2.3 × 10−13 7.4 × 10−18 2.8 × 10−17 0 0 0 0

F35 [−2, 2] 2 0 2.1 × 10−18 2.8 × 10−18 4.9 × 10−19 8.1 × 10−19 5.1 × 10−19 6.2 × 10−19 2.5 × 10−20 4.7 × 10−20

F36 [−5, 15] 2 0.397887 0.397887 6.0 × 10−7 0.397887 3.40 × 10−7 0.397887 1.67 × 10−16 0.397887 1.67 × 10−16

F37 [−10, 10] 2 −1 −1 0 −1 0 −1 0 −1 0

F38 [−5, 5] 2 −1.03163 −1.03163 0 −1.03163 0 −1.03163 0 −1.03163 0

F39 [−10, 10] 2 0 2.7 × 10−2 3.4 × 10−2 5.5 × 10−3 9.1 × 10−3 1.7 × 10−3 3.5 × 10−3 1.2 × 10−3 2.4 × 10−3

F40 [0, 1] 3 −3.86278 −3.86278 4.4 × 10−16 −3.86278 4.4 × 10−16 −3.86278 4.4 × 10−16 −3.86278 4.4 × 10−16

F41 [0, 1] 6 −3.32237 −3.32232 7.0 × 10−5 −3.32231 1.1 × 10−4 −3.3031 4.3 × 10−2 −3.29058 5.3 × 10−2

F42 [−10, 10] 4 0 2.41054 2.5185 7.1 × 10−1 6.8 × 10−1 8.4 × 10−1 8.1 × 10−1 4.1 × 10−1 5.3 × 10−1

F43 [−10, 10] 4 0 1.1 × 10−3 3.9 × 10−3 2.3 × 10−5 5.8 × 10−5 7.9 × 10−4 4.1 × 10−3 1.8 × 10−7 4.6 × 10−7

Mathematics 2022, 10, 3487 11 of 27

The fitness values obtained on 43 test functions showed that the performance of the
HABCES algorithm was the best. However, solution quality is not the only criterion.
The convergence graphs of the algorithms also give an idea of their performance. In
Figures 1 and 2, the convergence of the ABC, aABC, ABCES and the HABCES algorithms
is compared for the first 20 test functions. For F1, F3, F4, F7, F9, F14, F16, F17, F18 and F19,
the HABCES algorithm showed a fast convergence and reached the effective solution in a
short time. For F2, all algorithms approached the optimal value in a short time. For F5, F6,
F8, F10, F11, F12 and F20, the initial convergence speeds of the algorithms are similar. With
increasing number of generations, the convergence speed of the HABCES algorithm became
more effective than the others. For F13, the convergence speeds of the algorithms are close
to one another. Due to the structure of F15, the convergence graphs of the algorithms
showed a different appearance. The convergence graphics for the functions between F21
and F32 are compared in Figure 3. The HABCES algorithm converged rapidly for F22,
F23, F24, F27, F29, F30 and F31. For F21, the convergence speeds of the algorithms are
close to one another. For F25 and F26, the HABCES algorithm converged rapidly in a short
time. Then, the speed of convergence decreased. For F28, the convergence speed of the
HABCES algorithm was fast at first, and then decreased. The convergence graphics for the
functions between F33 and F43 are compared in Figure 4. The HABCES algorithm showed
fast convergence for F33, F34 and F35. In general, the convergence speeds were close for
F36, F37, F38, F39 and F40. For F41, the HABCES algorithm reached a good solution in a
short time. For F42, the convergence speed of the HABCES algorithm was better than for
the others. For F43, it was seen that the convergence of the ABCES and HABCES algorithms
was more effective. When the convergence graphs and solution qualities were evaluated
together, it was concluded that the performance of the HABCES algorithm was better than
the others.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 25

Figure 1. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms
when solving high-dimensional global optimization problems (F1–F15).

Figure 1. Cont.

Mathematics 2022, 10, 3487 12 of 27

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 25

Figure 1. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms
when solving high-dimensional global optimization problems (F1–F15).

Figure 1. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms when
solving high-dimensional global optimization problems (F1–F15).

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 25

Figure 1. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms
when solving high-dimensional global optimization problems (F1–F15).

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 25

Figure 2. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms
when solving high-dimensional global optimization problems (F16–F20).

Figure 3. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms
when solving low-dimensional global optimization problems (F21–F32).

Figure 2. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms when
solving high-dimensional global optimization problems (F16–F20).

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 25

Figure 2. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms
when solving high-dimensional global optimization problems (F16–F20).

Figure 3. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms
when solving low-dimensional global optimization problems (F21–F32).

Figure 3. Cont.

Mathematics 2022, 10, 3487 13 of 27

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 25

Figure 2. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms
when solving high-dimensional global optimization problems (F16–F20).

Figure 3. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms
when solving low-dimensional global optimization problems (F21–F32).

Figure 3. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms when
solving low-dimensional global optimization problems (F21–F32).

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 25

Figure 2. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms
when solving high-dimensional global optimization problems (F16–F20).

Figure 3. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms
when solving low-dimensional global optimization problems (F21–F32).

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 25

Figure 4. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms in
solving low-dimensional global optimization problems (F33–F43).

3.2. Applications for the Training of the Neural Network
In this section, the performance of the HABCES algorithm regarding neural network

training was evaluated. In this context, the algorithm was applied to three different
groups of problems. These were the modeling of parity problems, the identification of
nonlinear static systems, and the identification of nonlinear dynamic systems. The mean
square error (MSE) was used as the error metric. Each application was run 30 times, and
the mean error was calculated. The summing function was used as the transfer function.
The sigmoid function was chosen as the activation function. The maximum number of
generations was considered as the stopping criterion.

The results obtained when using the ABC, aABC, ABCES and the proposed HABCES
algorithms for modeling of XOR, 3-bit parity and 4-bit parity problems are compared in
Table 4. For each problem, 5 and 10 neurons were used in the hidden layer. For the XOR
problem, the number of generations was taken to be 50. In the others, it was 100. A colony
size of 20 was adopted. In the XOR problem, increasing numbers of neurons decreased
the error value. The error values obtained when using the HABCES algorithm for 2-5-1
and 2-10-1 network structures were 0.00406869 and 0.000516968, respectively. After the
HABCES algorithm, the best results were found with the ABCES algorithm. As in the XOR
problem, the increase in the number of neurons improved the quality of the solution in
the 3-bit parity problem. The best result obtained was 0.00855215, which was achieved
when using the HABCES algorithm with the 3-10-1 network structure. The 4-bit parity
problem was more difficult than the other problems. This situation can also be observed
from the error values found. The error values found for the 4-5-1 and 4-10-1 network struc-
tures when using the HABCES algorithm were 0.118425 and 0.0913625, respectively. The
performance of the other algorithms was worse. Table 4 shows that the solution quality

Figure 4. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms in
solving low-dimensional global optimization problems (F33–F43).

Mathematics 2022, 10, 3487 14 of 27

3.2. Applications for the Training of the Neural Network

In this section, the performance of the HABCES algorithm regarding neural network
training was evaluated. In this context, the algorithm was applied to three different groups
of problems. These were the modeling of parity problems, the identification of nonlinear
static systems, and the identification of nonlinear dynamic systems. The mean square error
(MSE) was used as the error metric. Each application was run 30 times, and the mean error
was calculated. The summing function was used as the transfer function. The sigmoid
function was chosen as the activation function. The maximum number of generations was
considered as the stopping criterion.

The results obtained when using the ABC, aABC, ABCES and the proposed HABCES
algorithms for modeling of XOR, 3-bit parity and 4-bit parity problems are compared in
Table 4. For each problem, 5 and 10 neurons were used in the hidden layer. For the XOR
problem, the number of generations was taken to be 50. In the others, it was 100. A colony
size of 20 was adopted. In the XOR problem, increasing numbers of neurons decreased
the error value. The error values obtained when using the HABCES algorithm for 2-5-1
and 2-10-1 network structures were 0.00406869 and 0.000516968, respectively. After the
HABCES algorithm, the best results were found with the ABCES algorithm. As in the XOR
problem, the increase in the number of neurons improved the quality of the solution in
the 3-bit parity problem. The best result obtained was 0.00855215, which was achieved
when using the HABCES algorithm with the 3-10-1 network structure. The 4-bit parity
problem was more difficult than the other problems. This situation can also be observed
from the error values found. The error values found for the 4-5-1 and 4-10-1 network
structures when using the HABCES algorithm were 0.118425 and 0.0913625, respectively.
The performance of the other algorithms was worse. Table 4 shows that the solution quality
of the HABCES algorithm was better for all problem and network structures. Figure 5
provides a comparison of the convergences of the ABC, aABC, ABCES and HABCES
algorithms when solving parity problems. The fastest and most efficient convergence for
each problem was achieved using the HABCES algorithm.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 25

of the HABCES algorithm was better for all problem and network structures. Figure 5
provides a comparison of the convergences of the ABC, aABC, ABCES and HABCES al-
gorithms when solving parity problems. The fastest and most efficient convergence for
each problem was achieved using the HABCES algorithm.

Table 4. Comparison of the results of the ABC, aABC, ABCES and HABCES algorithms when solv-
ing parity problems.

Examples
Number of

Genera-
tions

Network
Structure

ABC ABCES aABC HABCES (Proposed)

Mean Std. Mean Std. Mean Std. Mean Std.

XOR 50
2-5-1 0.0270955 0.0653951 0.0134276 0.024631 0.0106609 0.0167402 0.00406869 0.00643696
2-10-1 0.00440856 0.00875478 0.00370912 0.0070464 0.00124831 0.00196459 0.00051696 0.00079469

3 bit
parity

100
3-5-1 0.0370702 0.0325831 0.0413162 0.0306131 0.031667 0.0318723 0.023972 0.0280218
3-10-1 0.0252005 0.0380509 0.0170671 0.0263739 0.0200067 0.0234835 0.00855215 0.00924428

4 bit
parity

100
4-5-1 0.128162 0.0415436 0.135707 0.0390414 0.128552 0.0290362 0.118425 0.0281676
4-10-1 0.104024 0.0425457 0.115735 0.0388215 0.10854 0.0391539 0.0913625 0.0297292

Figure 5. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms
when solving parity problems.

Secondly, the performance of the HABCES algorithm was analyzed with respect to
the identification of nonlinear static systems. The information regarding the nonlinear
static systems used is given in Table 5. S1 has one input. S2 and S3 have two inputs. S4
and S5 have three inputs. S6 has four inputs. All systems have one output. Neural net-
works with 4, 8 and 12 neurons in the hidden layer were used for each system. Colony
size and the maximum number of generations belonging to the training algorithms were
taken as 20 and 1000, respectively. In general, 80% of the data were used for the training
process. The rest was reserved for the testing process. The results obtained when using

Figure 5. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms when
solving parity problems.

Mathematics 2022, 10, 3487 15 of 27

Table 4. Comparison of the results of the ABC, aABC, ABCES and HABCES algorithms when solving
parity problems.

Examples
Number
of Gener-

ations

Network
Structure

ABC ABCES aABC HABCES (Proposed)

Mean Std. Mean Std. Mean Std. Mean Std.

XOR 50
2-5-1 0.0270955 0.0653951 0.0134276 0.024631 0.0106609 0.0167402 0.00406869 0.00643696

2-10-1 0.00440856 0.00875478 0.00370912 0.0070464 0.00124831 0.00196459 0.00051696 0.00079469

3 bit
parity 100

3-5-1 0.0370702 0.0325831 0.0413162 0.0306131 0.031667 0.0318723 0.023972 0.0280218

3-10-1 0.0252005 0.0380509 0.0170671 0.0263739 0.0200067 0.0234835 0.00855215 0.00924428

4 bit
parity 100

4-5-1 0.128162 0.0415436 0.135707 0.0390414 0.128552 0.0290362 0.118425 0.0281676

4-10-1 0.104024 0.0425457 0.115735 0.0388215 0.10854 0.0391539 0.0913625 0.0297292

Secondly, the performance of the HABCES algorithm was analyzed with respect to the
identification of nonlinear static systems. The information regarding the nonlinear static
systems used is given in Table 5. S1 has one input. S2 and S3 have two inputs. S4 and S5
have three inputs. S6 has four inputs. All systems have one output. Neural networks with
4, 8 and 12 neurons in the hidden layer were used for each system. Colony size and the
maximum number of generations belonging to the training algorithms were taken as 20
and 1000, respectively. In general, 80% of the data were used for the training process. The
rest was reserved for the testing process. The results obtained when using the HABCES
algorithms for nonlinear static system identification are given in Table 6. It can be seen
that both the training and test results for S1 improve in parallel with increasing numbers
of neurons. The best results were found when using the 1-12-1 network structure. The
best training and test error values were 0.00072 and 0.00161, respectively. The effect of the
number of neurons on performance was the same for S2 as it was for S1. The best training
error value found was 0.00058. Additionally, the best test error value obtained was 0.00453.
Increasing the number of neurons in S3 worsened the solution quality. The best error values
for the training and testing process were found when using the 2-4-1 network structure.
The error values were 0.00014 and 0.00297, respectively. In S4, the 3-8-1 network structure
was more effective than the others. The training error value of the 3-8-1 network structure
was 0.00154. The test result was also 0.00207. The best results for S5 were obtained with a
network including four neurons in the hidden layer, similarly to the case of S3. The training
and test error values for S5 were 0.00082 and 0.00463, respectively. Reducing the number
of neurons in S6 improved performance. Effective results were achieved with the 4-4-1
network structure. The best training error value for S6 was 0.00148. Additionally, the test
error value was 0.001563. Table 7 compares the results obtained when using the ABC, aABC,
ABCES and HABCES algorithms for nonlinear static system identification. For all systems,
the best training error value was found when using the HABCES algorithm. Other than
for S1 and S6, the best test results were obtained when using the HABCES algorithm. The
best test results for S1 and S6 were obtained by using the aABC algorithm. Table 8 shows
the increase in performance achieved when using the HABCES algorithm. The HABCES
algorithm provided a performance improvement of up to 69.57% compared to using the
ABC algorithm for the training process. For the test process, this rate was 35.29%. With
respect to the aABC algorithm, performance improvements of up to 54.84% (training) and
23.05% (test), respectively, were achieved. When comparing the HABCES algorithm with
the ABCES algorithm, effective performance increases can be observed. A performance
increase of up to 32.56% was achieved for training. For the test process, this rate was
54.11%. Figure 6 presents a comparison of the convergences of the ABC, aABC, ABCES and
HABCES algorithms. For all systems, the HABCES algorithm obtained effective results by
achieving fast convergence. In particular, the convergence speeds for S1, S2, S3, S5 and S6
were much better than those of the other algorithms. In some iterations of S4, the ABCES
and the HABCES algorithms came close to one another. A comparison of the real output
and the predicted output for all nonlinear static systems is given in Figure 7. It can be

Mathematics 2022, 10, 3487 16 of 27

seen that the real and predicted outputs overlap with each other for all systems. This is an
indication that the HABCES algorithm can successfully solve the corresponding problems.

Table 5. Information on the nonlinear static systems used.

System Equation Inputs Output Number of
Training/Test Data Range

S1 y = 2 sin(πx1) x1 y 80/20 [0, 1]

S2 y = 10.391{(x1 − 0.4)(x2 − 0.6) + 0.36} x1, x2 y 80/20 [0, 1]

S3 y = tanh(x1 + x2 − 11) x1, x2 y 80/20 [0, 1]

S4 y = 1 + x1
0.5 + x2

−1 + x3
−1.5 x1, x2, x3 y 173/43 [1, 6]

S5 y = (x1 − 5.5)2 + (x2 − 5.5)2 + x3
2 x1, x2, x3 y 100/25 [0, 1]

S6 y = e2x1 sin (πx4) + sin(x2x3) x1, x2, x3, x4 y 100/25 [0.25, 0.25]

Table 6. The results obtained when using the HABCES algorithm for nonlinear static system identification.

System Network
Structure

Train Test

Mean Sd. Mean Sd.

S1

1-4-1 0.00150 0.00061 0.00258 0.00086

1-8-1 0.00109 0.00050 0.00201 0.00086

1-12-1 0.00072 0.00031 0.00161 0.00068

S2

2-4-1 0.00128 0.00063 0.00691 0.00312

2-8-1 0.00073 0.00063 0.00521 0.00494

2-12-1 0.00058 0.00027 0.00453 0.00233

S3

2-4-1 0.00014 0.00007 0.00297 0.00173

2-8-1 0.00016 0.00011 0.00332 0.00213

2-12-1 0.00025 0.00012 0.00404 0.00191

S4

3-4-1 0.00214 0.00073 0.00253 0.00075

3-8-1 0.00154 0.00068 0.00207 0.00078

3-12-1 0.00174 0.00085 0.00212 0.00109

S5

3-4-1 0.00082 0.00050 0.00463 0.00391

3-8-1 0.00085 0.00053 0.00893 0.00996

3-12-1 0.00129 0.00085 0.01145 0.00980

S6

4-4-1 0.00148 0.00053 0.001563 0.00086

4-8-1 0.00157 0.00044 0.00186 0.00071

4-12-1 0.00164 0.00056 0.00229 0.00081

Mathematics 2022, 10, 3487 17 of 27

Table 7. Comparison of the results of the ABC, aABC, ABCES and HABCES algorithms for nonlinear
static system identification.

Examples Network
Structure

ABC ABCES aABC HABCES (Proposed)

Train Test Train Test Train Test Train Test

S1 1-12-1 0.00099 0.00169 0.00100 0.00187 0.00086 0.00153 0.00072 0.00161

S2 2-12-1 0.00110 0.00590 0.00088 0.00585 0.00086 0.00480 0.00058 0.00453

S3 2-4-1 0.00046 0.00459 0.00031 0.00386 0.00019 0.00354 0.00014 0.00297

S4 3-8-1 0.00235 0.00278 0.00180 0.00220 0.00170 0.00211 0.00154 0.00207

S5 3-4-1 0.00183 0.00709 0.00128 0.00570 0.00118 0.01009 0.00082 0.00463

S6 4-4-1 0.00208 0.00227 0.00161 0.00167 0.00152 0.00152 0.00148 0.00156

Table 8. Performance increase achieved when using HABCES for nonlinear static system identification.

System
ABC-HABCES aABC-HABCES ABCES-HABCES

Train (%) Test (%) Train (%) Test (%) Train (%) Test (%)

S1 27.27 4.73 28.00 13.90 16.27 -

S2 47.27 23.22 34.09 22.56 32.56 5.62

S3 69.57 35.29 54.84 23.05 26.31 16.10

S4 34.47 25.54 14.44 5.91 9.41 1.90

S5 55.19 34.70 35.94 18.77 30.51 54.11

S6 28.85 31.27 8.07 6.58 2.63 -

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 25

2-12-1 0.00058 0.00027 0.00453 0.00233

S3
2-4-1 0.00014 0.00007 0.00297 0.00173
2-8-1 0.00016 0.00011 0.00332 0.00213
2-12-1 0.00025 0.00012 0.00404 0.00191

S4
3-4-1 0.00214 0.00073 0.00253 0.00075
3-8-1 0.00154 0.00068 0.00207 0.00078
3-12-1 0.00174 0.00085 0.00212 0.00109

S5
3-4-1 0.00082 0.00050 0.00463 0.00391
3-8-1 0.00085 0.00053 0.00893 0.00996
3-12-1 0.00129 0.00085 0.01145 0.00980

S6
4-4-1 0.00148 0.00053 0.001563 0.00086
4-8-1 0.00157 0.00044 0.00186 0.00071
4-12-1 0.00164 0.00056 0.00229 0.00081

Table 7. Comparison of the results of the ABC, aABC, ABCES and HABCES algorithms for nonlinear
static system identification.

Examples
Network
Structure

ABC ABCES aABC HABCES (Proposed)
Train Test Train Test Train Test Train Test

S1 1-12-1 0.00099 0.00169 0.00100 0.00187 0.00086 0.00153 0.00072 0.00161
S2 2-12-1 0.00110 0.00590 0.00088 0.00585 0.00086 0.00480 0.00058 0.00453
S3 2-4-1 0.00046 0.00459 0.00031 0.00386 0.00019 0.00354 0.00014 0.00297
S4 3-8-1 0.00235 0.00278 0.00180 0.00220 0.00170 0.00211 0.00154 0.00207
S5 3-4-1 0.00183 0.00709 0.00128 0.00570 0.00118 0.01009 0.00082 0.00463
S6 4-4-1 0.00208 0.00227 0.00161 0.00167 0.00152 0.00152 0.00148 0.00156

Table 8. Performance increase achieved when using HABCES for nonlinear static system identifi-
cation.

System
ABC- HABCES aABC- HABCES ABCES- HABCES

Train (%) Test (%) Train (%) Test (%) Train (%) Test (%)
S1 27.27 4.73 28.00 13.90 16.27 -
S2 47.27 23.22 34.09 22.56 32.56 5.62
S3 69.57 35.29 54.84 23.05 26.31 16.10
S4 34.47 25.54 14.44 5.91 9.41 1.90
S5 55.19 34.70 35.94 18.77 30.51 54.11
S6 28.85 31.27 8.07 6.58 2.63 -

Figure 6. Cont.

Mathematics 2022, 10, 3487 18 of 27

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 25

Figure 6. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms for
nonlinear static system identification.

Figure 6. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms for
nonlinear static system identification.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 25

Figure 6. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms for
nonlinear static system identification.

Figure 7. Cont.

Mathematics 2022, 10, 3487 19 of 27Mathematics 2022, 10, x FOR PEER REVIEW 17 of 25

Figure 7. Comparison of the real output and the predicted output for nonlinear static system iden-
tification.

Thirdly, the algorithms were applied for the identification of nonlinear dynamic systems.
Eight nonlinear dynamic systems were used. The nonlinear dynamic systems utilized are
presented in Table 9. D3, D5 and D8 consist of two inputs. D1, D2, D4 and D7 have three
inputs. D6 consists of four inputs. Except for D6, 80% of the data were used for training.
The rest were designated for the testing process. For D6, these rates were 90% and 10%,
respectively. Network structures with 4, 8 and 12 neurons in the hidden layer were uti-
lized. The colony size and maximum number of generations used were 20 and 1000, re-
spectively, as in the identification of nonlinear static systems. The results obtained using
the HABCES algorithms in nonlinear dynamic system identification are given in Table 10.
The best training and test error values for D1 were obtained using the 3-8-1 network struc-
ture. The related error values were 0.00039 and 0.00072, respectively. Increasing the num-
ber of neurons in D2 decreased the error value. The best results were obtained when using
the 3-12-1 network structure. The training error value for the 3-12-1 network structure was
0.00066. The test error value was 0.00082. The most effective results for D3 and D4 were
obtained when using network structures featuring eight neurons in the hidden layer. The
training error values of D3 and D4 were 0.00057 and 0.00348, respectively. In addition,
their test error values were 0.00070 and 0.00367, respectively. For D5, effective results were
generally found when using all network structures. The 2-8-1 network structure was
slightly more successful than the others. Increasing the number of neurons in D6 de-
creased performance. Namely, the results got worse. The best training and testing results
were obtained when using the 4-4-1 network structure. The best training error value of D6

Figure 7. Comparison of the real output and the predicted output for nonlinear static system identification.

Thirdly, the algorithms were applied for the identification of nonlinear dynamic
systems. Eight nonlinear dynamic systems were used. The nonlinear dynamic systems
utilized are presented in Table 9. D3, D5 and D8 consist of two inputs. D1, D2, D4 and D7
have three inputs. D6 consists of four inputs. Except for D6, 80% of the data were used for
training. The rest were designated for the testing process. For D6, these rates were 90% and
10%, respectively. Network structures with 4, 8 and 12 neurons in the hidden layer were
utilized. The colony size and maximum number of generations used were 20 and 1000,
respectively, as in the identification of nonlinear static systems. The results obtained using
the HABCES algorithms in nonlinear dynamic system identification are given in Table 10.
The best training and test error values for D1 were obtained using the 3-8-1 network
structure. The related error values were 0.00039 and 0.00072, respectively. Increasing the
number of neurons in D2 decreased the error value. The best results were obtained when
using the 3-12-1 network structure. The training error value for the 3-12-1 network structure
was 0.00066. The test error value was 0.00082. The most effective results for D3 and D4
were obtained when using network structures featuring eight neurons in the hidden layer.
The training error values of D3 and D4 were 0.00057 and 0.00348, respectively. In addition,
their test error values were 0.00070 and 0.00367, respectively. For D5, effective results
were generally found when using all network structures. The 2-8-1 network structure
was slightly more successful than the others. Increasing the number of neurons in D6
decreased performance. Namely, the results got worse. The best training and testing results
were obtained when using the 4-4-1 network structure. The best training error value of
D6 was 0.00067. The test error value was also 0.00105. The 3-8-1 network structure was
effective for D7. There was a clear difference between the error values obtained for 3-8-1

Mathematics 2022, 10, 3487 20 of 27

and those obtained for the other network structures. The best training and test error values
for D7 were 0.00030 and 0.00050, respectively. According to the training and test results
in D8, the 2-8-1 network structure is more effective. The best training error value obtaind
for D8 was 0.00017. The test error value was 0.00031. The performance of the HABCES
algorithm was compared with the ABC, aABC and ABCES algorithms, and the results are
presented in Table 11. It can be seen that the HABCES algorithm is better than the others
with respect to the values of training and test error for all systems. A serious increase in
performance was achieved when using the HABCES algorithm. The performance increase
rates according to the systems are given in Table 12. With the HABCES algorithm, a
performance increase of up to 46.82% was achieved in the training process compared to
when using the ABC algorithm. This ratio was 39.53% for the test. Compared to the
aABC algorithm, the HABCES algorithm achieved performance improvements of up to
37.96% and 35.00%, respectively, for the training and testing processes. At the same time,
the HABCES algorithm was more successful than the ABCES algorithm. With respect
to the ABCES algorithm, a 20.48% performance increase was achieved in the training
process. For the testing process, this ratio was 25.77%. Figure 8 presents a comparison
of the convergences of the ABC, aABC, ABCES and HABCES algorithms. In D1, D2,
D4, D6, D7 and D8, the HABCES algorithm showed a rapid convergence and reached
effective solutions in a short time. In D3 and D5, the HABCES and ABCES algorithms
had good convergence. A comparison of the real output and the predicted output for
nonlinear dynamic system identification is given in Figure 9. It can be understood from the
overlapping output graphics that successful modeling for all systems was achieved when
using the HABCES algorithm.

Table 9. Nonlinear dynamic systems used.

System Equation Inputs Output Number of
Training/Test Data

D1

y(k + 1) = y(k)[y(k−1)+2][y(k)+2.5]
8.5+[y(k)]2+[y(k−1)]2

+ u(k)u(k) ={
2 cos(2πk/100), k ≤ 200

1.2 sin(2πk/20), 200 < k ≤ 500

y(k), y(k− 1), u(k) y(k + 1) 400/100

D2 y(k + 1) = y(k)y(k−1)[y(k)+2.5]
1+[y(k)]2+[y(k−1)]2

+ u(k)u(k) = sin(2πk/25) y(k), y(k− 1), u(k) y(k + 1) 200/50

D3 y(k + 1) = y(k)
1+y(k)2 + u(k)3u(k) = sin(2πk/100) y(k), u(k) y(k + 1) 200/50

D4 y(k + 1) = y(k)
1+y(k−1) + u(k)3u(k) = sin(πk/25) y(k), y(k− 1), u(k) y(k + 1) 200/50

D5 y(k + 1) = (1 + y(k)2)
−1

(−0.9y(k) + u(k))u(k) = 0.75 sin(π(k− 1)/180) y(k), u(k) y(k + 1) 400/100

D6

y(k + 1) = 0.72y(k) + 0.025y(k− 1)u(k) + 0.01u(k− 1)2 + 0.2u(k− 2)u(k) =
sin(πk/25), k < 250
1.0, 250 ≤ k < 500
−1.0, 500 ≤ k < 750

0.3 sin(πk/25) + 0.1 sin(πk/32) + 0.6 sin(πk/10), 750 ≤ k ≤ 1000

y(k), y(k− 1), u(k),
u(k− 1), y(k + 1) 900/100

D7
y(k + 1) = 0.3y(k) + 0.6y(k− 1) + N(u(k))N(u) =
0.6 sin(πu) + 0.3 sin(3πu) + 0.1 sin(5πu)u(k) = sin 2πk

250
y(k), y(k− 1), u(k) y(k + 1) 400/100

D8

y(k + 1) = y(k)y(k−1)y(k−2)u(k−1)[y(k−2)−1]+u(k)
1+y(k−1)2+y(k−2)2 u(k) ={

sin(2πk/250), k ≤ 500
0.8 sin(2πk/250) + 0.2 sin(2πk/25), k > 500

y(k), u(k) y(k + 1) 800/200

Mathematics 2022, 10, 3487 21 of 27

Table 10. The results obtained by using the HABCES algorithms in nonlinear dynamic system identification.

System Network
Structure

Train Test

Mean Sd. Mean Sd.

D1

3-4-1 0.00051 0.00024 0.00088 0.00032

3-8-1 0.00039 0.00015 0.00072 0.00030

3-12-1 0.00052 0.00022 0.00106 0.00075

D2

3-4-1 0.00084 0.00026 0.00093 0.00031

3-8-1 0.00075 0.00024 0.00096 0.00053

3-12-1 0.00066 0.00023 0.00082 0.00041

D3

2-4-1 0.00070 0.00021 0.00095 0.00046

2-8-1 0.00057 0.00009 0.00070 0.00022

2-12-1 0.00067 0.00017 0.00085 0.00039

D4

3-4-1 0.00426 0.00078 0.00440 0.00081

3-8-1 0.00348 0.00038 0.00367 0.00048

3-12-1 0.00354 0.00040 0.00367 0.00052

D5

2-4-1 0.00026 0.00012 0.00026 0.00014

2-8-1 0.00024 0.00013 0.00024 0.00011

2-12-1 0.00026 0.00011 0.00030 0.00022

D6

4-4-1 0.00067 0.00031 0.00105 0.00045

4-8-1 0.00079 0.00029 0.00133 0.00048

4-12-1 0.00086 0.00042 0.00121 0.00063

D7

3-4-1 0.00035 0.00017 0.00063 0.00031

3-8-1 0.00030 0.00014 0.00050 0.00022

3-12-1 0.00034 0.00020 0.00059 0.00031

D8

2-4-1 0.00021 0.00009 0.00040 0.00011

2-8-1 0.00017 0.00006 0.00031 0.00008

2-12-1 0.00017 0.00006 0.00035 0.00011

Table 11. Comparison of the results of the ABC, aABC, ABCES and HABCES algorithms for nonlinear
dynamic system identification.

Examples Network
Structure

ABC ABCES aABC HABCES (Proposed)

Train Test Train Test Train Test Train Test

D1 3-8-1 0.00061 0.00095 0.00046 0.00087 0.00047 0.00097 0.00039 0.00072

D2 3-12-1 0.00092 0.00105 0.00082 0.00090 0.00083 0.00101 0.00066 0.00082

D3 2-8-1 0.00070 0.00090 0.00070 0.00098 0.00060 0.00077 0.00057 0.00070

D4 3-8-1 0.00372 0.00389 0.00370 0.00384 0.00367 0.00375 0.00348 0.00367

D5 2-4-1 0.00039 0.00043 0.00034 0.00040 0.00028 0.00029 0.00026 0.00026

D6 4-4-1 0.00126 0.00143 0.00108 0.00160 0.00079 0.00110 0.00067 0.00105

D7 3-8-1 0.00049 0.00067 0.00041 0.00064 0.00036 0.00056 0.00030 0.00050

D8 2-8-1 0.00028 0.00045 0.00023 0.00039 0.00019 0.00037 0.00017 0.00031

Mathematics 2022, 10, 3487 22 of 27

Table 12. Performance increase achieved using HABCES for nonlinear dynamic system identification.

System
ABC-HABCES aABC-HABCES ABCES-HABCES

Train (%) Test (%) Train (%) Test (%) Train (%) Test (%)

D1 36.06 24.21 15.21 17.24 17.02 25.77

D2 28.26 21.90 19.51 8.89 20.48 18.81

D3 18.57 22.22 18.57 28.57 5.00 9.09

D4 6.45 5.65 5.94 4.42 5.17 2.13

D5 33.33 39.53 23.53 35.00 7.14 10.34

D6 46.82 26.57 37.96 34.37 15.19 4.55

D7 38.77 25.37 26.82 21.87 16.66 10.71

D8 39.28 31.11 26.08 20.51 10.52 16.21
Mathematics 2022, 10, x FOR PEER REVIEW 20 of 25

Figure 8. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms for
nonlinear dynamic system identification.

Figure 8. Cont.

Mathematics 2022, 10, 3487 23 of 27

Mathematics 2022, 10, x FOR PEER REVIEW 20 of 25

Figure 8. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms for
nonlinear dynamic system identification.

Figure 8. Comparison of the convergences of the ABC, aABC, ABCES and HABCES algorithms for
nonlinear dynamic system identification.

Mathematics 2022, 10, x FOR PEER REVIEW 21 of 25

Figure 9. Comparison of the real output and the predicted output for nonlinear dynamic system
identification.

4. Discussion
This study aims to develop a variant with strong global and local search capability

for neural network training. The HABCES algorithm is a hybrid algorithm consisting of a
combination of the aABC algorithm and ABCES algorithm. The strengths of both

Figure 9. Comparison of the real output and the predicted output for nonlinear dynamic system identification.

Mathematics 2022, 10, 3487 24 of 27

4. Discussion

This study aims to develop a variant with strong global and local search capability
for neural network training. The HABCES algorithm is a hybrid algorithm consisting
of a combination of the aABC algorithm and ABCES algorithm. The strengths of both
algorithms have been taken, making the HABCES algorithm a powerful algorithm with
effective global and local convergence capability.

The arithmetic crossover feature was adapted for the HABCES algorithm, and knowl-
edge of the global best solution was used. At the same time, the width of the search area
was determined adaptively. This adaptive feature generally resulted in improved solution
quality at each iteration. These two features provided a strong convergence feature. In
particular, the determination of the solutions in the scout bee phase by means of an ef-
fective solution generation mechanism, rather than being randomly generated, ensured
the preservation of the gains obtained. All of these changes strengthened the convergence
ability of the HABCES algorithm and improved its solution quality. Although the HABCES
algorithm was developed as a neural network training algorithm, it should be emphasized
that it was also successful at solving global optimization problems. This fact expands the
usage area of the algorithm. To interpret the performance of the HABCES algorithm with
respect to different variants, it was compared with the standard ABC, aABC and ABCES
algorithms. The results showed that the HABCES algorithm was more successful than the
aABC and ABCES algorithms both at solving global optimization problems and at training
the neural network.

The HABCES algorithm was first applied to solving global optimization problems.
Forty-three benchmark test functions were used. These test functions were examined
under two groups: high-dimensional and low-dimensional problems. High-dimensional
problems can be more difficult or complex due to their higher number of dimensions.
Due to the fast convergence of the HABCES algorithm, it was found that it was able to
approach the optimal solution within a short period of time. The other variants fell short of
the performance achieved by the HABCES algorithm. For low-dimensional optimization
problems, it may be easier to reach the optimal result in a low number of iterations.
Therefore, with increasing difficulty or size of a problem, the success of the HABCES
algorithm could be more clearly observed.

In the training of neural networks, the algorithm was applied for the modeling of
parity problems, the identification of nonlinear static systems, and the identification of
nonlinear dynamic systems. The amount of data used in the training process for solving
XOR, 3-bit parity, and 4-bit parity problems was limited. At the same time, the problem
became more complex with increasing numbers of inputs. Parallel to this situation, the error
value also increased. For these problems, there was a significant performance advantage
compared to the other variants of the HABCES algorithm. In particular, the results were
obtained with a low number of iterations. The fact that the HABCES algorithm was able to
achieve an effective solution in a short time is an important indicator of its success.

Most of the problems encountered in daily life exhibit nonlinear behavior. Therefore,
it is important to identify nonlinear systems. Nonlinear systems are inherently difficult
problems. Effective training algorithms are required in order to obtain successful results.
Nonlinear systems can be static or dynamic. In this study, the algorithm was applied for
both system types. It can be observed that the HABCES algorithm was able to achieve
effective results in a short period of time for the identification of nonlinear systems. When
examining the output graphs obtained for these systems, the HABCES algorithm can be
seen to have been successful. The graphs of real and predicted output overlap. The success
of the HABCES algorithm at performing neural network training for the identification of
these systems shows that it can also be used for solving different problems. The aABC
algorithm stands out as a result of its arithmetic crossover and adaptive step size. The
ABCES algorithm also stands out due to its adaptive limit value, as well as its solution
generation mechanism at the scout bee stage. These features affect the result differently. In
the identification of static systems, it can be seen that adaptive limit values and the effective

Mathematics 2022, 10, 3487 25 of 27

scout bee stage have a more significant positive effect on the results than the arithmetic
crossover and adaptive step size. In the identification of dynamic systems, different system
behaviors are observed depending on the type of system.

One of the important parameters is standard deviation. In all problem types, effective
standard deviation values were obtained in parallel with the solution. Each application
was repeated 30 times, and the mean error/fitness values were obtained. The effective
standard deviation values show that the obtained results can be achieved again within
a certain tolerance. In particular, meta-heuristic algorithms usually start with random
solutions. The closeness of the obtained results to one another also increases the confidence
in the algorithm.

It can be observed that the network structures created in these applications affect the
performance. In particular, an increase in the number of neurons resulted in an increase in
performance in some cases, while decreasing the quality of the solution in other cases. This
is related to the difficulty of the problems.

This study has limitations in terms of population size, maximum number of genera-
tions, network structures, and problem types. A value of 20, one of the values for which
the ABC algorithm is effective, was used as the colony size. For the maximum number of
generations, different values were selected depending on the problem type. In neural net-
work training, it is known that the network structure affects performance. In this study, the
applications were realized using a limited number of network structures for each problem.
Two different types of problem were used. These were the solving of global optimization
problems and the training of a neural network. The success of the HABCES algorithm
should be evaluated within the context of these limitations.

5. Conclusions

This study proposed a new variant referred to as the HABCES algorithm for neural
network training. Effective solution generation mechanisms were used in the employed
bee, onlooker bee, and scout bee stages of the HABCES algorithm. The algorithm basically
incorporates four changes. The first is the usage of arithmetic crossover between the
current solution and the global best solution. Secondly, an adaptive approach was used
in the selection of the local search area. Specifically, it changes depending on the number
of generations. This can be thought of as a dynamic step size. Third, the limit control
parameter was dynamically adjusted depending on the generation number. Fourth, in
the scout bee stage, new solutions were created using an effective solution generation
mechanism instead of randomly generating them.

Unlike the standard ABC algorithm, the HABCES algorithm was able to reach effective
solutions in a short time as a result of these four fundamental innovations. In particular,
as the dimensions and difficulty of the problem increased, the success of the HABCES
algorithm could be more clearly observed. This was particularly evident with the solution
of global optimization problems. At the same time, the HABCES algorithm was generally
more successful than the standard ABC, ABC and ABCES algorithms for solving global
optimization problems.

To create effective models with ANN, a successful training algorithm is required.
Therefore, this study focused on developing a more successful algorithm for ANN training.
In ANN training, there are different parameters that affect performance in addition to the
training algorithm. Number of inputs, number of layers, number of neurons, activation
function, and transfer functions are among them. This was observed in application. The
structure of the neural network affected the performance. This effect varied depending
on the type of problem. In some problems, increasing the number of neurons improved
the solution quality. In others, the opposite situation was observed. Within its limitations,
the HABCES algorithm seemed to be effective on the basis of convergence graphs, output
graphs, and simulation results.

Nonlinear systems are inherently complex and difficult. Effective results were ob-
tained when using the HABCES algorithm for the identification of the related systems. In

Mathematics 2022, 10, 3487 26 of 27

particular, it had a significant advantage over variants such as aABC and ABCES. In non-
linear static systems, although it varies according to the system, the training performance
increased by up to 54.84% with reference to the aABC algorithm. In comparison with the
ABCES algorithm, this improvement reached 32.56%. Similar success was achieved for
nonlinear dynamic systems. For nonlinear dynamic systems, these improvements were
37.96% and 20.48%, respectively. These rates increased even more with respect to the
standard ABC algorithm. Compared to the ABC algorithm, performance increases of up to
69.57% and 46.82% were achieved.

The proposed variant was used for ANN training for the identification of nonlinear
systems in this study. As is widely known, ANN is used in modeling of many systems. In
future studies, the HABCES algorithm can be used as a training algorithm for modeling
different systems, or new variants can be suggested by creating new updates to increase
the performance of the HABCES algorithm.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network

applications: A survey. Heliyon 2018, 4, e00938. [CrossRef] [PubMed]
2. Devikanniga, D.; Vetrivel, K.; Badrinath, N. Review of meta-heuristic optimization based artificial neural networks and its

applications. J. Phys. Conf. Ser. 2019, 1362, 012074. [CrossRef]
3. Nur, A.S.; Radzi, N.H.M.; Ibrahim, A.O. Artificial neural network weight optimization: A review. TELKOMNIKA Indones. J. Electr.

Eng. 2014, 12, 6897–6902. [CrossRef]
4. Kumar, D. Meta-heuristic Techniques to Train Artificial Neural Networks for Medical Image Classification: A Review. Recent Adv.

Comput. Sci. Commun. (Former. Recent Pat. Comput. Sci.) 2022, 15, 513–530.
5. Tayarani-N, M.-H.; Yao, X.; Xu, H. Meta-heuristic algorithms in car engine design: A literature survey. IEEE Trans. Evol. Comput.

2014, 19, 609–629. [CrossRef]
6. Yang, B.; Wang, J.; Zhang, X.; Yu, T.; Yao, W.; Shu, H.; Zeng, F.; Sun, L. Comprehensive overview of meta-heuristic algorithm

applications on PV cell parameter identification. Energy Convers. Manag. 2020, 208, 112595. [CrossRef]
7. Wu, Y. A survey on population-based meta-heuristic algorithms for motion planning of aircraft. Swarm Evol. Comput. 2021,

62, 100844. [CrossRef]
8. Yang, B.; Wang, J.; Yu, L.; Shu, H.; Yu, T.; Zhang, X.; Yao, W.; Sun, L. A critical survey on proton exchange membrane fuel cell

parameter estimation using meta-heuristic algorithms. J. Clean. Prod. 2020, 265, 121660. [CrossRef]
9. Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based

Syst. 2020, 191, 105190. [CrossRef]
10. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic.

Expert Syst. Appl. 2020, 152, 113377. [CrossRef]
11. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future

Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]
12. Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired

meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [CrossRef]
13. Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications.

Eng. Appl. Artif. Intell. 2022, 114, 105075. [CrossRef]
14. Ahmadianfar, I.; Heidari, A.A.; Gandomi, A.H.; Chu, X.; Chen, H. RUN beyond the metaphor: An efficient optimization algorithm

based on Runge Kutta method. Expert Syst. Appl. 2021, 181, 115079. [CrossRef]
15. Ahmadianfar, I.; Heidari, A.A.; Noshadian, S.; Chen, H.; Gandomi, A.H. INFO: An efficient optimization algorithm based on

weighted mean of vectors. Expert Syst. Appl. 2022, 195, 116516. [CrossRef]
16. Karaboga, D. Artificial bee colony algorithm. Scholarpedia 2010, 5, 6915. [CrossRef]
17. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)

algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
18. Yang, X.-S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired

Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.
19. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.

http://doi.org/10.1016/j.heliyon.2018.e00938
http://www.ncbi.nlm.nih.gov/pubmed/30519653
http://doi.org/10.1088/1742-6596/1362/1/012074
http://doi.org/10.11591/telkomnika.v12i9.6264
http://doi.org/10.1109/TEVC.2014.2355174
http://doi.org/10.1016/j.enconman.2020.112595
http://doi.org/10.1016/j.swevo.2021.100844
http://doi.org/10.1016/j.jclepro.2020.121660
http://doi.org/10.1016/j.knosys.2019.105190
http://doi.org/10.1016/j.eswa.2020.113377
http://doi.org/10.1016/j.future.2020.03.055
http://doi.org/10.1016/j.eswa.2021.116158
http://doi.org/10.1016/j.engappai.2022.105075
http://doi.org/10.1016/j.eswa.2021.115079
http://doi.org/10.1016/j.eswa.2022.116516
http://doi.org/10.4249/scholarpedia.6915
http://doi.org/10.1007/s10898-007-9149-x

Mathematics 2022, 10, 3487 27 of 27

20. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 1997, 11, 341–359. [CrossRef]

21. Yang, X.-S. Flower pollination algorithm for global optimization. In Proceedings of the International Conference on Unconven-
tional Computing and Natural Computation, Orléan, France, 3–7 September 2012; pp. 240–249.

22. Karaboga, D.; Gorkemli, B.; Ozturk, C.; Karaboga, N. A comprehensive survey: Artificial bee colony (ABC) algorithm and
applications. Artif. Intell. Rev. 2014, 42, 21–57. [CrossRef]

23. Karaboga, D.; Akay, B. Artificial bee colony (ABC) algorithm on training artificial neural networks. In Proceedings of the 2007
IEEE 15th Signal Processing and Communications Applications, Eskisehir, Turkey, 11–13 June 2007; pp. 1–4.

24. Karaboga, D.; Akay, B.; Ozturk, C. Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks.
In Proceedings of the International Conference on Modeling Decisions for Artificial Intelligence, Kitakyushu, Japan, 16–18 August
2007; pp. 318–329.

25. Ozturk, C.; Karaboga, D. Hybrid artificial bee colony algorithm for neural network training. In Proceedings of the 2011 IEEE
Congress of Evolutionary Computation (CEC), New Orleans, LA, USA, 5–8 June 2011; pp. 84–88.

26. Karaboga, D.; Ozturk, C. Neural networks training by artificial bee colony algorithm on pattern classification. Neural Netw. World
2009, 19, 279.

27. Kaya, E. A Comprehensive Comparison of the Performance of Metaheuristic Algorithms in Neural Network Training for
Nonlinear System Identification. Mathematics 2022, 10, 1611. [CrossRef]

28. Uzlu, E.; Akpınar, A.; Özturk, H.T.; Nacar, S.; Kankal, M. Estimates of hydroelectric generation using neural networks with the
artificial bee colony algorithm for Turkey. Energy 2014, 69, 638–647. [CrossRef]

29. Xu, F.; Pun, C.-M.; Li, H.; Zhang, Y.; Song, Y.; Gao, H. Training feed-forward artificial neural networks with a modified artificial
bee colony algorithm. Neurocomputing 2020, 416, 69–84. [CrossRef]

30. Kaya, E.; Baştemur Kaya, C. A novel neural network training algorithm for the identification of nonlinear static systems: Artificial
bee colony algorithm based on effective scout bee stage. Symmetry 2021, 13, 419. [CrossRef]

31. Ghanem, W.A.; Jantan, A. Training a neural network for cyberattack classification applications using hybridization of an artificial
bee colony and monarch butterfly optimization. Neural Process. Lett. 2020, 51, 905–946. [CrossRef]

32. Shah, H.; Tairan, N.; Garg, H.; Ghazali, R. A quick gbest guided artificial bee colony algorithm for stock market prices prediction.
Symmetry 2018, 10, 292. [CrossRef]

33. Yildiz, A.R. A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing. Appl. Soft Comput. 2013,
13, 2906–2912. [CrossRef]

34. Karaboga, D.; Kaya, E. An adaptive and hybrid artificial bee colony algorithm (aABC) for ANFIS training. Appl. Soft Comput.
2016, 49, 423–436. [CrossRef]

35. Jadon, S.S.; Tiwari, R.; Sharma, H.; Bansal, J.C. Hybrid artificial bee colony algorithm with differential evolution. Appl. Soft
Comput. 2017, 58, 11–24. [CrossRef]

36. Li, H.; Pun, C.-M.; Xu, F.; Pan, L.; Zong, R.; Gao, H.; Lu, H. A hybrid feature selection algorithm based on a discrete artificial bee
colony for Parkinson’s diagnosis. ACM Trans. Internet Technol. 2021, 21, 1–22. [CrossRef]

37. Kefayat, M.; Ara, A.L.; Niaki, S.N. A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic
optimal placement and sizing of distributed energy resources. Energy Convers. Manag. 2015, 92, 149–161. [CrossRef]

38. Duan, H.-B.; Xu, C.-F.; Xing, Z.-H. A hybrid artificial bee colony optimization and quantum evolutionary algorithm for continuous
optimization problems. Int. J. Neural Syst. 2010, 20, 39–50. [CrossRef]

39. Awadallah, M.A.; Bolaji, A.L.; Al-Betar, M.A. A hybrid artificial bee colony for a nurse rostering problem. Appl. Soft Comput. 2015,
35, 726–739. [CrossRef]

40. Mazini, M.; Shirazi, B.; Mahdavi, I. Anomaly network-based intrusion detection system using a reliable hybrid artificial bee
colony and AdaBoost algorithms. J. King Saud Univ. Comput. Inf. Sci. 2019, 31, 541–553. [CrossRef]

41. Stephan, P.; Stephan, T.; Kannan, R.; Abraham, A. A hybrid artificial bee colony with whale optimization algorithm for improved
breast cancer diagnosis. Neural Comput. Appl. 2021, 33, 13667–13691. [CrossRef]

42. Gaidhane, P.J.; Nigam, M.J. A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of
complex systems. J. Comput. Sci. 2018, 27, 284–302. [CrossRef]

43. Gupta, S.; Deep, K. Hybrid sine cosine artificial bee colony algorithm for global optimization and image segmentation. Neural
Comput. Appl. 2020, 32, 9521–9543. [CrossRef]

44. Badem, H.; Basturk, A.; Caliskan, A.; Yuksel, M.E. A new hybrid optimization method combining artificial bee colony and
limited-memory BFGS algorithms for efficient numerical optimization. Appl. Soft Comput. 2018, 70, 826–844. [CrossRef]

45. Mallala, B.; Papana, V.P.; Sangu, R.; Palle, K.; Chinthalacheruvu, V.K.R. Multi-Objective Optimal Power Flow Solution Using a
Non-Dominated Sorting Hybrid Fruit Fly-Based Artificial Bee Colony. Energies 2022, 15, 4063. [CrossRef]

46. Zhang, L.; Xuan, J.; Shi, T. Obtaining More Accurate Thermal Boundary Conditions of Machine Tool Spindle Using Response
Surface Model Hybrid Artificial Bee Colony Algorithm. Symmetry 2020, 12, 361. [CrossRef]

http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1007/s10462-012-9328-0
http://doi.org/10.3390/math10091611
http://doi.org/10.1016/j.energy.2014.03.059
http://doi.org/10.1016/j.neucom.2019.04.086
http://doi.org/10.3390/sym13030419
http://doi.org/10.1007/s11063-019-10120-x
http://doi.org/10.3390/sym10070292
http://doi.org/10.1016/j.asoc.2012.04.013
http://doi.org/10.1016/j.asoc.2016.07.039
http://doi.org/10.1016/j.asoc.2017.04.018
http://doi.org/10.1145/3397161
http://doi.org/10.1016/j.enconman.2014.12.037
http://doi.org/10.1142/S012906571000222X
http://doi.org/10.1016/j.asoc.2015.07.004
http://doi.org/10.1016/j.jksuci.2018.03.011
http://doi.org/10.1007/s00521-021-05997-6
http://doi.org/10.1016/j.jocs.2018.06.008
http://doi.org/10.1007/s00521-019-04465-6
http://doi.org/10.1016/j.asoc.2018.06.010
http://doi.org/10.3390/en15114063
http://doi.org/10.3390/sym12030361

	Introduction
	Materials and Methods
	Standard Artificial Bee Colony (ABC) Algorithm
	Hybrid Artificial Bee Colony Algorithm Based on Effective Scout Bee Stage (HABCES)

	Results
	Applications on the Solution of the Global Optimization Problems
	Applications for the Training of the Neural Network

	Discussion
	Conclusions
	References

