1,100 research outputs found

    Real-Time Detection System of Driver Distraction Using Machine Learning

    Get PDF

    Shallow and deep networks intrusion detection system : a taxonomy and survey

    Get PDF
    Intrusion detection has attracted a considerable interest from researchers and industries. The community, after many years of research, still faces the problem of building reliable and efficient IDS that are capable of handling large quantities of data, with changing patterns in real time situations. The work presented in this manuscript classifies intrusion detection systems (IDS). Moreover, a taxonomy and survey of shallow and deep networks intrusion detection systems is presented based on previous and current works. This taxonomy and survey reviews machine learning techniques and their performance in detecting anomalies. Feature selection which influences the effectiveness of machine learning (ML) IDS is discussed to explain the role of feature selection in the classification and training phase of ML IDS. Finally, a discussion of the false and true positive alarm rates is presented to help researchers model reliable and efficient machine learning based intrusion detection systems

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Proposed Network Intrusion Detection System ‎In Cloud Environment Based on Back ‎Propagation Neural Network

    Get PDF
    الحوسبة السحابية  هي هيكيلة موزعة توفر قدرات حسابية, موارد تحزين كخدمة عبر الانترنت للأيفاء بمتطلبات المستخدم بسعر منخفض .بسبب طبيعة الحوسبة السحابية المفتوحة والخدمة المقدمة المتسللين ينتحلون المستخدمين المخولين وبعد ذلك يسيئون استخدام موارد وخدمات الحوسبة السحابية . لكشف المتسللين والانشطة المشبوة في بيئة الحوسبة السحابية ،نظام كشف التطفل يستخدم لكشف المستخدمين الغير مخولين والانشطة المشبوهة بواسطة فحص نشاطات المستخدم على الشبكة .في هذا البحث استخدمت خوارزمية الشبكات العصبية الاصطناعية (BP) لبناء نظام كشف تطفل في بيئة السحابية  .النظام المقترح اختبر باستخدام بيانات KDD99 . اظهرت النتائج ان النظام المقترح يشكل طريقة واعدة تتميز بدقة عالية مع نسبة انذار كاذبة منخفضةCloud computing is distributed architecture, providing computing facilities and storage resource as a service over the internet. This low-cost service fulfills the basic requirements of users. Because of the open nature and services introduced by cloud computing intruders impersonate legitimate users and misuse cloud resource and services. To detect intruders and suspicious activities in and around the cloud computing environment, intrusion detection system used to discover the illegitimate users and suspicious action by monitors different user activities on the network .this work proposed based back propagation artificial neural network to construct t network intrusion detection in the cloud environment. The proposed module evaluated with kdd99 dataset the experimental results shows promising approach to detect attack with high detection rate and low false alarm rat

    Financial predictions using cost sensitive neural networks for multi-class learning

    Get PDF
    The interest in the localisation of wireless sensor networks has grown in recent years. A variety of machine-learning methods have been proposed in recent years to improve the optimisation of the complex behaviour of wireless networks. Network administrators have found that traditional classification algorithms may be limited with imbalanced datasets. In fact, the problem of imbalanced data learning has received particular interest. The purpose of this study was to examine design modifications to neural networks in order to address the problem of cost optimisation decisions and financial predictions. The goal was to compare four learning-based techniques using cost-sensitive neural network ensemble for multiclass imbalance data learning. The problem is formulated as a combinatorial cost optimisation in terms of minimising the cost using meta-learning classification rules for Naïve Bayes, J48, Multilayer Perceptions, and Radial Basis Function models. With these models, optimisation faults and cost evaluations for network training are considered

    The use of computational intelligence for security in named data networking

    Get PDF
    Information-Centric Networking (ICN) has recently been considered as a promising paradigm for the next-generation Internet, shifting from the sender-driven end-to-end communication paradigma to a receiver-driven content retrieval paradigm. In ICN, content -rather than hosts, like in IP-based design- plays the central role in the communications. This change from host-centric to content-centric has several significant advantages such as network load reduction, low dissemination latency, scalability, etc. One of the main design requirements for the ICN architectures -since the beginning of their design- has been strong security. Named Data Networking (NDN) (also referred to as Content-Centric Networking (CCN) or Data-Centric Networking (DCN)) is one of these architectures that are the focus of an ongoing research effort that aims to become the way Internet will operate in the future. Existing research into security of NDN is at an early stage and many designs are still incomplete. To make NDN a fully working system at Internet scale, there are still many missing pieces to be filled in. In this dissertation, we study the four most important security issues in NDN in order to defense against new forms of -potentially unknown- attacks, ensure privacy, achieve high availability, and block malicious network traffics belonging to attackers or at least limit their effectiveness, i.e., anomaly detection, DoS/DDoS attacks, congestion control, and cache pollution attacks. In order to protect NDN infrastructure, we need flexible, adaptable and robust defense systems which can make intelligent -and real-time- decisions to enable network entities to behave in an adaptive and intelligent manner. In this context, the characteristics of Computational Intelligence (CI) methods such as adaption, fault tolerance, high computational speed and error resilient against noisy information, make them suitable to be applied to the problem of NDN security, which can highlight promising new research directions. Hence, we suggest new hybrid CI-based methods to make NDN a more reliable and viable architecture for the future Internet.Information-Centric Networking (ICN) ha sido recientemente considerado como un paradigma prometedor parala nueva generación de Internet, pasando del paradigma de la comunicación de extremo a extremo impulsada por el emisora un paradigma de obtención de contenidos impulsada por el receptor. En ICN, el contenido (más que los nodos, como sucede en redes IPactuales) juega el papel central en las comunicaciones. Este cambio de "host-centric" a "content-centric" tiene varias ventajas importantes como la reducción de la carga de red, la baja latencia, escalabilidad, etc. Uno de los principales requisitos de diseño para las arquitecturas ICN (ya desde el principiode su diseño) ha sido una fuerte seguridad. Named Data Networking (NDN) (también conocida como Content-Centric Networking (CCN) o Data-Centric Networking (DCN)) es una de estas arquitecturas que son objetode investigación y que tiene como objetivo convertirse en la forma en que Internet funcionará en el futuro. Laseguridad de NDN está aún en una etapa inicial. Para hacer NDN un sistema totalmente funcional a escala de Internet, todavía hay muchas piezas que faltan por diseñar. Enesta tesis, estudiamos los cuatro problemas de seguridad más importantes de NDN, para defendersecontra nuevas formas de ataques (incluyendo los potencialmente desconocidos), asegurar la privacidad, lograr una alta disponibilidad, y bloquear los tráficos de red maliciosos o al menos limitar su eficacia. Estos cuatro problemas son: detección de anomalías, ataques DoS / DDoS, control de congestión y ataques de contaminación caché. Para solventar tales problemas necesitamos sistemas de defensa flexibles, adaptables y robustos que puedantomar decisiones inteligentes en tiempo real para permitir a las entidades de red que se comporten de manera rápida e inteligente. Es por ello que utilizamos Inteligencia Computacional (IC), ya que sus características (la adaptación, la tolerancia a fallos, alta velocidad de cálculo y funcionamiento adecuado con información con altos niveles de ruido), la hace adecuada para ser aplicada al problema de la seguridad ND

    Non-Gaussian Hybrid Transfer Functions: Memorizing Mine Survivability Calculations

    Get PDF
    Hybrid algorithms and models have received significant interest in recent years and are increasingly used to solve real-world problems. Different from existing methods in radial basis transfer function construction, this study proposes a novel nonlinear-weight hybrid algorithm involving the non-Gaussian type radial basis transfer functions. The speed and simplicity of the non-Gaussian type with the accuracy and simplicity of radial basis function are used to produce fast and accurate on-the-fly model for survivability of emergency mine rescue operations, that is, the survivability under all conditions is precalculated and used to train the neural network. The proposed hybrid uses genetic algorithm as a learning method which performs parameter optimization within an integrated analytic framework, to improve network efficiency. Finally, the network parameters including mean iteration, standard variation, standard deviation, convergent time, and optimized error are evaluated using the mean squared error. The results demonstrate that the hybrid model is able to reduce the computation complexity, increase the robustness and optimize its parameters. This novel hybrid model shows outstanding performance and is competitive over other existing models

    Network Attack Detection using an Unsupervised Machine Learning Algorithm

    Get PDF
    With the increase in network connectivity in today\u27s web-enabled environments, there is an escalation in cyber-related crimes. This increase in illicit activity prompts organizations to address network security risk issues by attempting to detect malicious activity. This research investigates the application of a MeanShift algorithm to detect an attack on a network. The algorithm is validated against the KDD 99 dataset and presents an accuracy of 81.2% and detection rate of 79.1%. The contribution of this research is two-fold. First, it provides an initial application of a MeanShift algorithm on a network traffic dataset to detect an attack. Second, it provides the foundation for future research involving the application of MeanShift algorithm in the area of network attack detection
    corecore