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Hybrid algorithms and models have received significant interest in recent years and are increasingly used to solve real-world
problems. Different from existing methods in radial basis transfer function construction, this study proposes a novel nonlinear-
weight hybrid algorithm involving the non-Gaussian type radial basis transfer functions. The speed and simplicity of the non-
Gaussian type with the accuracy and simplicity of radial basis function are used to produce fast and accurate on-the-fly model for
survivability of emergency mine rescue operations, that is, the survivability under all conditions is precalculated and used to train
the neural network. The proposed hybrid uses genetic algorithm as a learning method which performs parameter optimization
within an integrated analytic framework, to improve network efficiency. Finally, the network parameters including mean iteration,
standard variation, standard deviation, convergent time, and optimized error are evaluated using the mean squared error. The
results demonstrate that the hybrid model is able to reduce the computation complexity, increase the robustness and optimize its
parameters. This novel hybrid model shows outstanding performance and is competitive over other existing models.

1. Introduction

Hybrid algorithms are used in optimizing real-world imple-
mentations that is, it comes as the best optimization solution
tends to have challenges in implementation cost, time, and
so forth, that needs a solution by using another technique.
Hybrid algorithms have received significant interest in recent
years and are increasingly use to solve real-world problems.
These hybrid algorithms or models include combination
of two or more algorithms involving genetic algorithms
(GA) [1], particle swarm optimization (PSO) [2], and other
computational techniques such as, artificial intelligence or
neural networks including but not limited to multilayer
perceptrons (MLP) or sigmoid [3], radial basis functions
(RBF) [4, 5], fuzzy systems [6] and simulation annealing [7].

An artificial neural networks (ANNs) are techniques of
artificial intelligence (AI) that have the capability to learn
from experiences, it is robust [8] and improves performance
by adapting to the changes in the environment. The underly-
ing advantage(s) of ANNs are the possibility of efficient oper-
ation of large amounts of data and its ability to generalize the
outcome. This training algorithm, the ANNs, is largely used
in applications involving classification or function approxi-
mation, and it has been proved that several classes of ANNare
universal function approximations [9]. These include radial
basis function (RBF) and multilayer perceptrons’ (MLPs)
neural networks. Taking into consideration the great poten-
tial of these techniques, this paper aims to establish a hybrid
model using multilayer perceptron network (MLP) also
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called sigmoid basis function (SBF) and a radial basis func-
tion (RBF) network-both feed-forward learning. The RBF
and MLP networks are usually employed in the same kind
of applications. Examples include the nonlinear mapping
approximation and pattern recognition [10]; however their
internal calculation structures are different. In the multilayer
fully connected feed-forward networks, the nodal transfer
function activation flows from the input layer through a hid-
den layer to the output layer [10]. This functional description
process can be expressed as 𝑦

𝑖
= 𝑓 ⋅ ∑

𝑁

𝑖=1
𝑤
𝑖𝑗
𝑥
𝑖
+ 𝑏
𝑗
[11]

with typical processing node, where 𝑥
𝑖
is one of the𝑁 inputs

for processing, node 𝑗, 𝑤
𝑖𝑗
is the connection weight between

node 𝑖 and node 𝑗, 𝑏
𝑗
is the bias for node 𝑗, and 𝑦

𝑖
is the

output from node 𝑗. Each neuron in one layer is connected
in the forward direction to every nodal unit in the next layer.
One disadvantage in using most feed-forward layered neural
networks is the high degree of nonlinearity in the parameters.
Learning must be based on nonlinear optimization tech-
niques (i.e., back-propagation), and the parameter estimate
may become trapped at a local minimum of the selected
optimization criterion during the learning procedure.
Another option to such neural networks is to use the

radial basis function (RBF) as a transfer function. There is
a strong connection between the RBF and neural networks
and it is reasonable to believe that a radial basis network
(RBN) can offer approximation capabilities similar to other
feed-forward, layered neural networks [12], provided that the
hidden layer of the RBN is fixed appropriately. This belief is
strongly supported by the theoretical results from the RBF
method as a multidimensional interpolation technique [13].
A radial basis function neural network has an input, hidden,
and output layers. The input layer is composed of an input
vector 𝑖. The hidden layer consists of RBF activation function
as networks neuron.Thenet input to the RBF activation func-
tion is the vector distance between its weight𝑤 and the input
vector 𝑖, multiplied by the bias 𝑏. Detailedwork has been done
on advantages of both sigmoid and radial basis functions
[14]. Radial functions are a special class of functions whose
value increases or decreases in relation to the distance from
a central point. There are different types of radial basis func-
tions, but the most frequently used is the Gaussian function.
It is well known that the MLP networks have been applied
successfully in several difficult problems. MLP networks also
work globally and the network outputs are decided by all
the neurons [15]. Radial basis function (RBFs) act as local
approximation networks and their outputs are determined by
specified hidden units in certain local receptive fields. RBF
networks are simpler than MLP networks, in spite of having
more complex architectures and respond well to patterns that
were not used for training from the point of generalization
[15]. Comparing the properties of neural networks, fuzzy
inference systems, the RBF had the advantages of easy design,
stable and good generalization ability, good tolerance to input
noise, and online learning ability. RBF networks are strongly
recommended as an efficient and reliable way of designing
dynamic systems [15].
An important issue in the RBF neural network applica-

tions is the network learning, that is, the need to optimize the

adjustable parameters, the center vectors, the variances or the
widths of the basis functions, and the linear output weights
connecting the RBF hidden nodes to the output nodes and to
determine the network structure or the number of RBF nodes
[16]. Closely coupled are the determination of the network
size and the adjustment of parameters on the continuous
parameter space. In this wise evolutionary algorithms have
been used to address this problem, nonetheless they are
computationally very expensive in its implementation [16]
which results in slow and premature convergence and this
has attracted attention in literature. The center location and
clustering techniques have been proposed [17]. An identical
width can be set for all the basis functions if the input
samples are uniformly distributed, otherwise a particular
width has to be set for each individual basis function to
reflect the input distribution [18]. Once the centers and the
widths are determined, the linear output weights can be
determined using Cholesky factorization, orthogonal least
squares, or singular value decomposition [19]. In contrast to
the conventional two-stage learning procedure, supervised
learningmethods aim to optimize all the network parameters
[20]. Various techniques have been introduced to improve
the network convergence and these include hybrid algorithms
to improve the convergence; various techniques combine
the gradient-based search for the nonlinear parameters (the
widths and centers) of the RBF nodes and the least squares
estimation of the linear output weights [18] and combing the
merits of fuzzy and crisp clustering [21].
Supervised learning is thought to be superior to conven-

tional two-stage approaches but it can be more demanding
computationally. The Akaike information criterion was used
when dealing with different network size; however, it is
equally computational demanding [21]. With respect to the
determination of the RBFneural network structure, a popular
approach is to formulate it as a linear-in-the parameters’
problem, where all the training patterns/samples are usually
used as the candidate RBF centers. To improve the network
generalization, the regularized forward selection algorithm
has been proposed [22], which combines subset selection
with zero-order regularization. Backward selection methods
have also been used in RBF center selection [23]. However,
forward selection algorithms are thought to be superior
to backward methods in terms of computational efficiency,
however these methods have several major disadvantages
such as being computationally too expensive or sometimes
impossible to implement. The search for the optimal values
of the nonlinear parameters (RBF centers and widths) is a
continuous optimization problem. In order to optimize the
RBF center and width parameters along with the network
structure determination process, a sparse incremental regres-
sion (SIR) modeling method was proposed very recently to
determine the network structure and the associated nonlinear
parameters simultaneously [24]. This can deal with large
dataset and improve the network significantly. Others include
the moving k-means clustering to position the RBF centres
with givens least squares to estimate the weights [25] and
forward algorithm in RBF construction [9], to mention a few.
Different from existing methods in RBF neural network

construction and multilayer perceptron, this paper proposes
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a novel hybrid (HSRF) feed-forward algorithm involving
the multilayer perceptron (sigmoid) and non-Gaussian type
radial basis transfer functions which is robust and performs
parameter optimization within an integrated analytic frame-
work, leading to two main technical advantages.

(1) The network can be significantly improved through
the optimization of the nonlinear RBF parameters on
the continuous parameter space.

(2) Using the speed of the multilayer perceptron and
the simplicity and accuracy of RBF to produce fast
and accurate model for rescue operations. In addition
the paper uses coded genetic algorithm to train the
proposed hybrid algorithm. Finally, network out-
comes including mean iteration, standard variation,
standard deviation, convergent time, and optimized
error are evaluated using 5th order polynomial.

1.1. Problem Statement and Objective. There are generally
heavy casualties and tremendous loss of property in the event
of accident such as fire, rock fall, flooding, or poisonous
gasses as well as lose of human life in the mining sector [26].
This calls for a model that is fast and robust for monitoring
and locating survivors to safety in times of accident. The
justification of this work is that, the focus of current research
is moving from system analysis of small-world networks to
that of millions of nodes. This will demand large computers
to process, and even if those computers are available, it will
demand considerable time to run. This implies that there is
the need for fast prediction algorithm using NN tomemorize
precalculated results to deal with large number of sensors
(i.e., as sensors grow so rapidly to thousands and millions
that battery drain will not permit calculations on the spot of
a problem). In addition the base station can be destroyed in
times of accident.
Further justification for a research like this is that the

simple imitations of the human brain (called neural network
models) demonstrate fast and accurate learning and classifi-
cation properties in problems that otherwise require human
experts. Although such tools cannot obviously replace human
experts, they are used as on-the-fly diagnostic tools and
supporting evidences in quick decision making. With these
in mind the main objective of this study is to investigate and
improve upon the Gaussian radial basis function and develop
a non-Gaussian hybrid of MLP (sigmoid or SBF) and the
compact radial basis functions (CRBF) with enhanced opti-
mization features. From this an optimized hybrid model is
assessed that has the highest predicted survival probability for
an emergency rescue operation in an underground mining
with genetic algorithm.The twomain objectives examined in
this paper are as follows.

(i) To investigate the radial basis function of Gaussian
model and remove the additional computation bur-
den on the model by paralyzing the power operation
on Gaussian model to generate a compact radial basis
functions (non-Gaussian) literally but novel to reduce
computational cost and increase processing efficiency.
The study focuses on the use of absolute operation
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Figure 1: The effect of using power operation instead of absolute
operation.

instead of square operation. In Figure 1 the green
outline (for online viewing) represents additional
requirement of resources in terms of time, cost, and
so forth, assuming the resource is proportional to the
calculated value, that is, zeros are not stored.

(ii) To develop an optimized hybrid neural network
called HSRF model with nonlinear weights of neg-
ative cosine, imposed on new compact radial basis
function. This nonlinear weight was introduce to
further reduce the RBF magnitude or element in the
model for accuracy and maintained speed.

2. Preliminary Consideration

2.1. Deployment of Sensors and Connection. Topological
deployment of sensor nodes affects the performance of the
routing protocol [27]. The ratio of communication range to
sensing range as well as the distance between sensor nodes
can affect the network topology. To get the right deployment,
the following are essential.

(i) Initialise the mean iteration (MI), standard deviation
(Std var), standard deviation (SD), average conver-
gent time (CT), epoch, and gbest-fitness.

(ii) State the relative rock hardness parameters, that is,
hardness or softness of rock is chosen to be in the
range 0.7 and 0.9 and 6 values are chosen to reflect 6
types of rocks obtained from the industry in Table 1.

(iii) Initialise matrix index as 0.
(iv) State the 3 dimensions of the mine or field: depth (𝐷),

length (𝐿), and width (𝑊).
(v) 𝑇 is total number of nodes deployed in 3D view (𝑇 =

𝐷 ∗ 𝐿 ∗𝑊).

The sensor sequence location explains the shortest search
path criteria of the robot. The robot’s job is to make sure
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Table 1: Common rocks found in typical mines in relation to hardness or softness.

Nonlinear mapping Mica Coal Granite Feldspar Quartz Mineral
Softness 0.70 0.80 0.83 0.86 0.875 0.90
Hardness 2 3 5 6 7 9
Distance 750m 470m 390m 315m 278m 78m
Data was collected fromWang Xing village, located in Xinzhen City, Henan Province, China.
The table identifies 6 common rocks found in mines in relation to hardness or softness of each rock.

Initialize the following
For 𝑖 = 1: Depth
For 𝑗 = 1: Length
For 𝑘 = 1: Width
𝑡 = 𝑡 + 1; % the index of the 𝑇 by 𝑇matrix later on
(𝑡, 1) = 𝑖; % used to find the Depth/level.
tog𝐽 = ceil(𝑡/Width/Length);

node(𝑡, 2) = abs (−(Depth + 1) ∗ (1 + (−1)tog𝐽)) /(2 + 𝑗). % used to find the row.
tog𝐾 = ceil(𝑡/Width),

node(𝑡, 3) = abs (−(Width + 1) ∗ (1 + (−1)tog𝐾)) /(2 + 𝑘). % used to find the column.
End

End
End.

Algorithm 1

every sensor is working. It moves to the first level, searches
the row(s) and the respective column(s) and proceeds to the
next level to repeat the procedure.
The sensor sequence position is expressed inMatlab code

as shown in Algorithm 1.

2.2. Communication and Transmission Range. TheThrough-
the-Earth (TTE) communication system transmits voice and
data through solid earth, rocks, and concrete and is suitable
for challenging underground environments such as mines,
tunnels, and subways [28, 29]. There are stationary sensor
nodes as well as mobile sensors (humans and vehicles)
distributed uniformly. The survivability of the mobile sensor
is the main concern of this paper; we need to predict the
survivability based on the rock type and location that the
sensor sees, using the NN which is trained ahead of time.
Both stationary and mobile sensor nodes are connected to
either the access point (AP) and/or access point heads (AP
Heads) based on transmission range requirements. The AP
heads serve as cluster leaders and are located in areas where
the rock is relatively soft (large size resting and eating room)
or has relatively better signal penetration to ensure optimum
transmission. The TTE is dropped through a drilled hole
on top of the large size room or bay, approximately 300
metres beneath the ground based on the rock type. The
depth and rock type determine the required number of
TTEs needed. Next the DATA-mule is discharged to carry
items such as food, water, and equipment to the miners
underground and return with underground information to
rescue team. Minimizing the transmission range of wireless
sensor networks is vital to the efficient routing of the network.
This is because the amount of communication energy that

each sensor consumes is highly related to its transmission
range or signal reach [30].The node signal reach𝑁 is defined
as the absolute difference of the minimum signal reach and
maximum signal reach of nodes plus the minimum signal
reach, taking into consideration the 6 cases of the rock
structure 𝛽, where 𝛽 lies between the soft-rock 0.7 and the
hardest rock 0.9. Routing is also limited to the load of the
nodes and the distance each node travels [31]. The minimum
and maximum signal reach of nodes (𝑁min and𝑁max) and𝑁
are calculated in Matlab code below.
Initialize the connection matrix
Mc = zeros (𝑇, 𝑇); rock = rock cases

𝑁min = min (Depth,min (Length,Wight)) ,

𝑁max = max (Depth,max (Length,Width)) ,
(1)

for 𝑖 = 1 :𝑇, and for 𝑗 = 1 :𝑇

𝑁 = 𝑁min +
󵄨󵄨󵄨󵄨𝑁min − 𝑁max

󵄨󵄨󵄨󵄨

∗ a random number from hardness of rock.
(2)

The relationship between rock hardness/softness (𝛽) and
the signal reach is a complicated nonlinear function. It
is related to the skin depth of the rock with alternating
currents concentrated in the outer region of a conductor
(skin depth), by opposing internal magnetic fields [32] as
follows: Skin depth = √2/(𝜌 ∗ 𝜔 ∗ 𝜎), where 𝜌 is material
conductivity, 𝜔 is frequency, 𝜎 is magnetic permeability, the
signal (B-field) is attenuated by cube of distance expressed as:
signal reach (distance) = 3 ∗ skin depth [33]. The common
rocks identified for this work are presented in Table 1.
To depict how the deployed sensor nodeswere connected,

the connection matrix is introduced before transmission of
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data can be made. Similarly, to depict the path in which data
is transferred from source to destination and vice versa, the
routing matrix is introduced. Let 𝐾 denote the connection
matrix, a sensor node is named by its 3D integer (𝑥, 𝑦, 𝑧)
coordinates, where 1 ≤ 𝑥 ≤ length, 1 ≤ 𝑦 ≤ width,
1 ≤ 𝑧 ≤ depth and 𝑇 = Legth ⋅ Width ⋅ Depth is the
total number of nodes. Node (𝑎, 𝑏, 𝑐) is connected with node
(𝑑, 𝑒, 𝑓), if the element on ((𝑎−1) ⋅𝐶 ⋅ 𝐿+ (𝑏−1) ⋅ 𝐿+ 𝑐)th row
and ((𝑑 − 1) ⋅ 𝐶 ⋅ 𝐿 + (𝑒 − 1) ⋅ 𝐿 + 𝑓)th column is 1, otherwise
0; therefore

𝐾
𝑖,𝑗
= {

1,
󵄩󵄩󵄩󵄩𝑖 − 𝑗

󵄩󵄩󵄩󵄩 ≤ 𝑁

0,
󵄩󵄩󵄩󵄩𝑖 − 𝑗

󵄩󵄩󵄩󵄩 ≥ 𝑁 for 𝑖, 𝑗 = 1, 2, . . . , 𝑇,
(3)

where 𝑁 is the node signal reach. The routing matrix R is
limited to total multiple points’ connections to be made. In
arriving at the final optimized vector for transmission, each
matrix was generated 𝜏 times, where 𝜏 is the number of cases
it iterates before producing the final survival rate vector (𝑅),
𝑀
𝜌
is point-to-multi-point connection (hub or switch) are

less or equal 4 and is an even number allowing bidirectional
communication, thus, between the source and destination of
nodes. Consider

R
𝑖,𝑗
=

{{{{

{{{{

{

1,
󵄩󵄩󵄩󵄩𝑖 − 𝑗

󵄩󵄩󵄩󵄩 ≥
𝑀
𝜌

2
,

0,
󵄩󵄩󵄩󵄩𝑖 − 𝑗

󵄩󵄩󵄩󵄩 ≤
𝑀
𝜌

2
, for 𝑖, 𝑗 = 1, 2, . . . , 𝑇,

(4)

where 𝑖, 𝑗 are the source and destination nodes respectively.

2.3. Fault Tolerant Considerations. Fault tolerant considera-
tions for hardware, software, and network security are critical
areas in emergency situations as they significantly affect the
efficiency of the communication, andmany key management
schemes have been proposed to mitigate the constraints [34,
35]. In an event of accident, let𝜓 be the probability of accident
occurring, then routing path or matrixR would be affected
by (1−𝜓), where𝜓 is any random value within 𝛽 (i.e., relative
rock hardness or softness), that would cause explosion. Let
𝑋 be explosion matrix whose elements depict the level of
damage to the sensor nodes or routing path caused by the
explosion and𝑋 is defined in the following:

𝑋 = (1 − 𝜓)R. (5)

The damage of explosion will consequently result in the
failure of the routing path and matrix 𝐹 is introduced to
depict the signal status of the sensor nodes which is used as
new generated connection matrix. The matrix 𝐹 is defined as

𝐹
𝑖,𝑗
=

{{{{

{{{{

{

1, 𝑋
𝑖,𝑗
≤ 𝜆
𝐿

0, 𝑋
𝑖,𝑗
≥ 𝜆
𝐻

𝜆
𝐿

𝑋
𝑖,𝑗

, 𝜆
𝐿
< 𝑋
𝑖,𝑗
< 𝜆
𝐻
,

(6)

where 𝜆
𝐿
and 𝜆

𝐻
represent the lower and higher accident

impact thresholds, respectively.
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For example, 𝑋
𝑖,𝑗
≤ 𝜆
𝐿
implies that the number of nodes

will be 0, 1, 2, and 3; when 𝑋
𝑖,𝑗
≥ 𝜆
𝐻
the number of nodes

is expected to be 7, 8, and above. Whiles 𝜆
𝐿
< 𝑋
𝑖,𝑗
< 𝜆
𝐻
is

expected to be 4, 5, and 6. Figure 2 explains the effect of the
explosion on the transmission link in three regions. Region 1
of the figure implied the link(s) were not affected. Nodes with
numbers 4, 5, and 6 in region 2 represent a probability that the
links will be able to transmit/receive data while nodes above
number 7 in region 3 signal dead links (Figure 2).
To find the matrix with the maximum survival probabil-

ity, a new set of routing path is defined after the damage. To
optimize transmission after damage caused by explosion, the
hope matrix was introduced whose elements indicate status
of hope of signals to reorganize the routing path. To describe
the success rate of signal from each node to the sink(s), the
exitmatrix is introduced. Inmost practical applications,more
than one sink is used, and sink’s node is either through the
fiber or through the earth (TTE).
Let 𝐻 be the hope matrix, and let 𝐸 be the exit matrix.

Then𝐻 and 𝐸 are, respectively, defined as

𝐻 = 𝐹 ⋅R,

𝐸 = (𝑛
𝑒
− 𝜓
2
)𝐻,

(7)

where matrix R and 𝐹 are respectively given in (4) and (6),
𝑛
𝑒
is the total number of safe exits available for use, and 𝜓

2
is

the probability of additional error that miners may commit
in trying to escape danger.

2.4. Hardware and Software Considerations. In real rescue
situations, software and hardware, including radio frequency
identification (RFID) [36], can fail as a result of accidents or
explosion which can significantly affect the routing path and
thwart the efforts of the rescue team. Equally, miners as well
as personnel can make other mistakes in the face of accident
that can compound the existing problem(s), especially where
miners find themselves more than 4,000 feet underground,
as it is in the case of one of the mine-fields used for this
study. In addition personnel may also fail to cope with the
stress that comes with accident. It is therefore imperative
to consider such failures in developing rescue models. Let
𝑆 represent the software survival rate matrix. A matrix 𝑆 is
used to describe software or relational database management
systems (RBDMS) survival rate including effects from bugs
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or attacks. Let 𝑆
𝑖,𝑗
represent elements of matrix 𝑆 in row 𝑖 and

column 𝑗, then 𝑆 is defined as

𝑆
𝑖,𝑗
= 1 − (

1

𝑇 +𝑀
𝑖,𝑗

) , (8)

where 𝑇 is the total number of nodes deployed and 𝑀
𝑖,𝑗
is

the element of matrix of the random hardness of rock that
is generated as a 𝑇 by 𝑇 matrix according to the geometric
distribution. The maximum probability of survivability to
rescue miners is defined by vector 𝑅. To obtain 𝑅, it is
assumed that each miner will have an RFID. To describe
probability of the survival rate, including risks of running out
of battery, we introduce the row vector 𝛼. Let 𝛼

𝑖
represent

element of 𝛼 (i.e., survival rate of each miner to be rescued)
in column 𝑖, then 𝛼

𝑖
is defined in the following:

𝛼
𝑖
= 1 − (

1

𝑇 + 𝛾
𝑖

) , 𝑖 = 1, 2, . . . , 𝑇, (9)

where the 𝛾
𝑖
is 𝑖th element of a vector of the random hardness

of rock generated according to the geometric distribution. To
measure the hardware survival rate of miners to be rescued,
the vector 𝛿 is introduced, and 𝛿 is closely related to the exit
matrix and is defined in the following:

𝛿
𝑖
= min{1, (𝛼 ⋅ 𝐸

𝜌
𝑚

)

𝑖

} , 𝑖 = 1, 2, . . . , 𝑇, (10)

where 𝛿
𝑖
and (𝛼 ⋅ (𝐸/𝜌

𝑚
))
𝑖
were, respectively, 𝑖th element of

row vectors 𝛿 and 𝛼 ⋅ (𝐸/𝜌
𝑚
), 𝐸 is the exit matrix given by

expression (7), and 𝜌
𝑚
is the total number of hubs used. To

ensure that a reliable system is in place for emergencies, the
final survival rate vector is (𝑅) introduced by the following
equation:

𝑅 = 𝜇(
1

𝑇

𝑇

∑

𝑖=1

𝑇

∑

𝑗=1

𝑆
𝑖,𝑗
)𝛿, (11)

where 𝜇 is the mean and the vector 𝑅 represents the highest
survival probability to ensure miners safety.

3. Related Work

3.1. MLP (Sigmoid Basis Function). A sigmoid basis func-
tion (SBF) is a mathematical function having an “S” shape
(sigmoid curve) and is related to brain reasoning and the
structure favours the computational believers. Often, sigmoid
function refers to the special case of the logistic function. It is
used in modeling systems that saturate at large input values,
for example, the ogee curve as used in the spillway of some
dams [37]. Wide varieties of sigmoid functions have been
used as activation functions of neurons, including the logistic
and hyperbolic tangent weight functions. Sigmoid curves
are also common in statistics such as integrals and logistic
distribution, normal distribution, and Student’s probability
density functions [37]. The generalized function and the

sigmoid output function [10] can be expressed, respectively,
as

𝑢 =

𝑛

∑

𝑖=1

𝑤
𝑖
𝑥
𝑖
,

𝑦 = 𝑓 (𝑢) =
1

(1 + 𝑒−𝑐𝑢)
.

(12)

In the above formula, the initial inputs 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
are

summed together where 𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
are weights of the

neurons for the 𝑖th input, 𝑢 is the activation level scaled
according to the output function 𝑓(𝑢), giving the actual
output 𝑦 of the neuron. A positive constant 𝑐 controls the
slope or steepness of the sigmoid; the sigmoid function
amplifies the small activation levels and limits the high
activation levels. In practice; the output 𝑦 lies between 0
and 1 [38] however, outputs requiring negative values use the
hyperbolic tangent as expressed below:

𝑦 = 𝑓 (𝑢) = tanh (𝑐𝑢) ,

or 𝑓 (𝑢) =
𝑒
𝑐𝑢
− 𝑒
−𝑐𝑢

𝑒𝑐𝑢 + 𝑒−𝑐𝑢
.

(13)

The initial stage of the sigmoid basis function (SBF) grows
relatively exponential as 𝑥 touches the zero (0) line, and then
the growth begins to slow down towards saturation and stops
at maturity as 𝑥 goes to 1.

3.2. Gaussian RBF. The use of RBF kernels, mainly Gaussian
and its global acceptance into various applications, cannot
be overemphasized. However the model carries additional
power computational burden that is translated into cost. The
objective is to explore and remove this power computation
burden and apply it in an emergency rescue system. The sec-
tion discusses many related works to the proposed approach;
this includes the Gaussian radial basis function (GRBF)
neural network; radial basis function neural network consists
of the input layer, the hidden layer, and the output layer. The
inputs of hidden layer are the linear combinations of scalar
weights and input vector, where the scalar weights are usually
assigned as unit values, that is, the whole input vector appears
to each neuron in the hidden layer. The incoming vectors are
being mapped by the radial basis functions in each hidden
node. The output layer yields a vector by linear combination
of the outputs of the hidden nodes to produce the final output
[39]. The structure of an 𝑛 inputs and 𝑚 outputs RBFNN is
depicted as

𝑦 = 𝑓
𝑗 (𝑢) =

𝑔

∑

𝑘=1

𝑤
𝑘

𝑗
𝜑
𝑘 (𝑢) , for 𝑗 = 1, . . . , 𝑚, (14)

where 𝑢 = {𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
} denotes the input vector for 𝑛

inputs and 𝑦 = {𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
} denotes the output vector

for 𝑚 outputs, 𝑤𝑘
𝑗
denotes the weight of the 𝑘th hidden

nodes and the 𝑗th output node, and 𝑔 is the total number
of hidden nodes, 𝜑

𝑘
(⋅) denotes the radial basis function of

the 𝑘th hidden node. The final output of the 𝑗th output node
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𝑓
𝑗
(𝑢), is the linear combination of all hidden nodes. Using

the summation as the denominator, expression (14) can be
normalized as

𝑦 = 𝑓
𝑗 (𝑢) =

∑
𝑛

𝑘=1
𝑤
𝑘

𝑗
𝜑
𝑘 (𝑢)

∑
𝑔

𝑘=1
𝜑
𝑘 (𝑢)

, for 𝑗 = 1, . . . , 𝑚. (15)

A multidimensional function RBF describing the distance
between a given input vector and a predefined center vector
is given as

𝜑
𝑘 (𝑢) = exp(−

󵄩󵄩󵄩󵄩𝑢 − 𝜇
󵄩󵄩󵄩󵄩
2

2𝜎2
𝑘

) for 𝑘 = 1, . . . , 𝑔. (16)

4. Training Methods

In a genetic algorithm (GA), a populace of candidate solu-
tions (individuals or creatures), to an optimization problem
is evolved toward better solutions. Each candidate solution
has a set of properties (its chromosomes or genotype) which
can be mutated and transformed. Traditionally solutions are
represented in binary as strings of “0s” and “1s” [40]. The
development usually starts from a population of arbitrarily
generated individuals and is an iterative process, with the
population in each iteration called a generation [41]. In each
generation, the fitness of every individual in the population
is evaluated; the fitness is usually the value of the objective
function in the optimization problem being solved. The
more fit individuals are stochastically selected from the
current population, and each individual’s genome ismodified
(recombined and possibly randomly mutated) to form a
new generation [42, 43]. The new generation of candidate
solutions is then used in the next iteration of the algorithm.
Generally, the algorithm terminates when either a maximum
number of generations has been produced, or a satisfactory
fitness level has been reached for the population.
A typical genetic algorithm requires a genetic representa-

tion of the solution domain and a fitness function to evaluate
the solution domain. A standard representation of each can-
didate solution is as an array of bits. Arrays of other types and
structures can be used in essentially the same way as used in
Hasan [44]. The main property that makes these genetic rep-
resentations convenient is that their parts are easily aligned
due to their fixed size, which facilitates simple crossover oper-
ations. Variable length representations may also be used, but
crossover implementation is more complex in this case. Tree-
like representations are explored in genetic programming
and graph-form representations are explored in evolutionary
programming, that is, a mix of both linear chromosomes
and trees is explored in gene expression programming [45].
Once the genetic representation and the fitness function are
defined, a GA proceeds to initialize a population of solutions
and then to improve it through repetitive application of
the mutation, crossover, inversion, and selection operators.
Parent chromosomes are selected with a probability related to
their fitness. The chromosomes with high fitness have higher
probability to be selected for mating than chromosomes with
less fitness. The mutation, crossover, and reproductive chart
is displayed by Wright [46] in Figure 3. The GA operates in

Reproduction
Manipulation

Decoded 
(strings)Offspring

new generation

Population
(chromosomes)

Parents

Genetic 
operators

Fitness
evaluation

Selection
(mating pool)

Figure 3: The mutation, crossover, and reproductive cycle of GA.

a very simple cycle of stages outlined below, creation of a
population of strings, evaluation of string, selection of best
string, and genetic manipulation to create new population
of strings. Each cycle of GA produces a new generation of
possible solution for a given problem. This describes the
representatives of potential solution to initiate the search
process.The population elements are encoded into bits-string
called chromosomes. The performance or fitness of each
string is evaluated. Based on the fitness of chromosomes,
selection is made for the next geneticmanipulation. Selection
is mainly responsible for survival of the best-fit individuals
and ends the population string. Here genetic manipulation
processes consisting of two steps are carried out.This includes
the crossover operation that combines the bits (genes) of each
two selected strings (chromosomes) to be executed.
However, there are several limitations of the use of

a genetic algorithm compared to alternative optimization
algorithms. Repeated fitness function evaluation for complex
problems is often the most prohibitive and limiting segment
of artificial evolutionary algorithms. Finding the optimal
solution to complex high dimensional, multimodal problems
often requires very expensive fitness function evaluations.
In real world problems such as structural optimization
problems, one single function evaluation may require several
hours to several days of complete simulation. Typical opti-
mizationmethods cannot deal with such types of problem. In
this case, it may be necessary to forgo an exact evaluation and
use an approximated fitness that is computationally efficient.
It is apparent that amalgamation of approximate models may
be one of the most promising approaches to realistically use
GA to explain complex real life problems. Genetic algorithms
donot scalewell with complexity.That is, when the number of
elements which are exposed tomutation is large, then there is
often an exponential increase in search space size.Thismakes
it extremely difficult to use the technique on problems such
as designing an engine, a house, or plane. In order to make
such problems tractable to evolutionary search, they must be
broken down into the simplest representation possible. The
second problem of complexity is the issue of how to protect
parts that have evolved to represent good solutions from
further destructive mutation, particularly when their fitness
assessment requires them to combine well with other parts.
The best solution is only in comparison to other solutions.
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As a result, the stop criterion is not clear in every problem.
In many problems, GAs may have a tendency to converge
towards local optima or even arbitrary points rather than
the global optimum of the problem [42]. Various types of
crossover operators are used such as the single-point and two-
point crossover operators among others [47].
In this paper the coded genetic algorithm was used to

further optimize the parameters.
Research has shown that a small population size with

relatively large mutation rate is far superior to large popu-
lation sizes and low mutation rates [48]. The paper argued
that the best mutation rate for GAs falls between 5% and 20%
while the population size should be less than 16. However in
choosing the population size that optimizes theGA, a number
of options were considered. The total input elements chosen
is 300which corresponds to thematrix size or the dimensions
of the field space giving by depth (𝐷), length (𝐿), and width
(𝑊) that is 10, 6, and 5 respectively. To balance the speed and
accuracy we took the square root of the total element of the
matrix size to obtain the optimum size of 17.32. Guided by this
figure a population size of 20 is used. In addition 10% of the
matrix size (i.e., 30) is also used as a basis for comparison.

5. Proposed Hybrid Non-Gaussian
Model Based on Compact Radial Basis
Function (CRBF)

As already stated, this proposed novel hybrid involving a
special mix of the multilayer perceptron and radial basis
transfer functions is an empirical study to initiate and
determine such guidelines (e.g., how much of the MLP or
RBF should be included and vice versa) of mixing two major
transfer functions. It will also examine several parameter
combinations to find the one that will give the right mix to
keep the error atminimum,maintain speed and accuracy, and
optimize various parameters well, in one engineering design
problem. The Gaussian-like kernel was adapted because it
has gained global acceptance.The paper paralyzed the power
parameter arbitrary but novelly as expressed below:

𝑘
𝑃
(𝑥, 𝑥
󸀠
) = exp(

−
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩

𝛿2
) , (17)

which is in the form 𝑘
𝑃
(𝑥, 𝑥
󸀠
) = exp(−abs(𝑥−𝑥󸀠)), 𝑥, 𝑥󸀠 ∈ R𝑛

and 𝑘
𝑃
(𝑥, 𝑥
󸀠
) = log sig(𝑥, 𝑥󸀠), 𝑥, 𝑥󸀠 ∈ R𝑛, respectively. The

function MLP and RBF are given as

𝑦
1
= log sig (𝑅) ,

𝑦
2
= exp (−abs (𝑅)) ,

(18)

where log sig(𝑅) is the function for multilayer perceptron
or sigmoid (SBF) and exp(−abs(𝑅)) is the function for RBF,
respectively (in Matlab code). The 𝑅 is the optimum set
of the routing table with the maximum survival probability
which is used as an input for the neural network; 𝑦

1
and 𝑦

2

are the transfer functions for the new sigmoid and compact
radial basis functions, respectively.The hybrids of the transfer

function are summarized; with a weight of −cos(R) on CRBF,
the HSRF

− cos is given as

HSRF
− cos = log sig (𝑅) + [exp (− ‖𝑅‖)] ∗ [− cos (𝑅)] . (19)

The study also investigated a parameter between the Gaus-
sian models (GRBF) and proposed compact radial function
(CRBF) model (with a power of 2 and 1 resp.), for simplicity
we referred to it as a reduced parameter (ZRBF)

ZRBF = exp (− ‖𝑅‖)1.5 . (20)

Finally a hybrid of Gaussian RBF using our model is also
investigated as follows:

HSGF
− cos = log sig (𝑅) + [exp (− ‖𝑅‖)

2
] ∗ [− cos (𝑅)] .

(21)

The GA-neural network (GA-NN) is used to train the
neurons such that the initial error will be minimized and
make themodelmore reliable [49]. Now itmust be noted that
the MLP is also referred to as SBF is a complete function and
so is the RBF, and therefore adding these will be an abuse
of usage of the transfer functions. Other options include
considering 50% of each transfer function and considering
some percentages of each as well. The conceptual view of
the model can be seen in at the top section of the semantic
structure in Figure 4. To examine the position of each neuron,
let PN denote the position of the 𝑛th genome, then PN is
expressed as follows:

ΡN =

𝑇

∑

𝑖=1

𝑅
𝑖
𝑆
𝑖
+

2

∑

𝑖=1

𝑆
𝑖
+

2

∑

𝑖=1

𝑆
𝑖
𝑆
𝑖
+ 1, (22)

where 𝑅
𝑖
, 𝑆
1
, 𝑆
2
are number of neurons at input, hidden, and

output layers, respectively.
The initial population is made up of randomly deter-

mined parameters within specified boundaries.These param-
eters are called the genes of the chromosome or the genes
of an individual [50, 51]. Assuming a population 𝑃 of three
random individuals with genes that represent the values of
three design variables, the selection of an individual is done
by evaluating the performance of each one and then ranking
them from best to worst. Finally an individual is chosen
for production [52]. The performance of the individuals,
in this case, is the difference between the measured (or
desired) value of the spectrum and the calculated value.
This is measured by using the mean square error. Generally
there are three methods to diagnose the fitness and these
include the mean cubic error (MCE), the mean absolute
error (MAE), and the mean squared error (MSE). The mean
cubic error (MCE) will allow for fast convergence at the
expense of accuracy, making the process unstable.Whiles the
mean absolute error (MAE) is stable but converges slowly
[53]. A midway between these two is the MSE. Therefore
the goodness of the fit in this study is diagnosed using
mean squared error (MSE) as against the other two. In
addition other parameters includingmean iteration, standard
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Conceptual view of the HSRF model

Y(out1)

(out1)

=

Y(out1)
SBF

Routing path
(R)

Hybrid
GA

training
Y(out3)

Performance

Y(out3) = + [exp(−abs(R)) ∗−cos(R)]

Y(out2) = exp(−abs(R)) CRBF

Y(out2)
Neural network training

y =

y(hybrid) = y(out1)+ (y( ) ( )) ...

y(out2) = exp(−abs(R))

y

Inputs layer Hidden layer Output layer

HSRF neural network architecture with genetic algorithm

∙ SBF,
∙ CRBF,
∙ HYBRID

log sig(R)

log sig(R)

log sig(R)

out2 ∗ −cos

Figure 4: The conceptual view with GA semantic structure of the proposed hybrid neural network.

variation, standard deviation, and convergent time are also
evaluated. The MSE is given as

MSE = 1

𝑛𝑠

𝑛

∑

𝑗=1

𝑠

∑

𝑖=1

(𝑌
𝑗,𝑖
− 𝑦
𝑗,𝑖
)
2

, (23)

where𝑌
𝑗,𝑖
is the ideal value of 𝑗th sample at 𝑖th output and 𝑦

𝑗,𝑖

is the actual value of 𝑗th sample at 𝑖th output, 𝑛 is number of
samples, and 𝑠 is the number of neurons at output layer.
The individual with the best performance receives a

relative weight (RW) of (𝜏𝑎), where 𝜏 is the number of indi-
viduals in the population and 𝑎 is the weight that is usually
between 1.0 and 1.5 [51]. The next best individual receives
a RW of (𝜏 − 1)

𝑎, and so forth, until the worst individual
receives a RW of 1. The probability of reproduction rate of
each individual is given as PR

𝑗
= RW

𝑗
/(1/𝜏)∑RW, where

PR
𝑗
is the probability of reproduction for individual 𝑗, and

𝑗 = 0, 1, . . . , 𝜏. Individuals selected are made to reproduce.
Reproduction involves randomly selecting two parents to
form the reproduction pool to cross and create offspring.
The performances of each offspring are evaluated and the
best offspring selected. Mutation permits the introduction of
extra variability into the population. Here the study permits
20% of those with worse performance to mutate for faster

convergence; greater percentage will equally present slow
convergence. The semantic structure of the proposed hybrid
neural network with GA is presented in Figure 4.
The performance of the model is measured using polyno-

mial or curvilinear trendline to examine the contributions of
the wholemodels as well as themodel parameters. Trendlines
also called regression analysis estimates the relationship
between variables so that a given variable can be predicted
from one or more other variables. By using regression
analysis, you can extend a trend line in a chart beyond the
actual data to predict future values. A polynomial trendline
is used for this work and the closer the 𝑅-square value is
to 1, the trend is better, that is, if 𝑅-squared value is 0.979,
then the corresponding trend is a good fit of the line to
the data. A polynomial or curvilinear trendline is given by
𝑝(𝑥) = 𝑐

0
+ 𝑐
1
𝑥 + 𝑐

2
𝑥
2
+ 𝑐
3
𝑥
3
+ ⋅ ⋅ ⋅ + 𝑐

6
𝑥
6 to calculate

the least squares fit through points, where 𝑐
0
, 𝑐
1
, 𝑐
2
, . . . , 𝑐

6

are constants. The 5th order polynomial is used to examine
the performance among the individual parameters in each
model because it has a higher predictive power over the 3rd
and 2nd orders and it is the best fit for the proposed model,
especially where the environments are highly controlled and
observations are made to a specified level of tolerance. In
addition the 5th order gives amore reliable result than the 2nd
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and 3rd degrees. The expression of the 5th order is displayed
as

𝑌
𝑟
= 𝛽
5
𝑋
5

1
+ 𝛽
4
𝑋
4

1
+ 𝛽
3
𝑋
3

1
+ 𝛽
2
𝑋
2

1
+ 𝛽
1
𝑋
1
+ 𝛽
0
, (24)

where 𝑋
1
is time (seconds) and 𝛽

𝑖
is the coefficient of the

polynomial, 𝑖 = 0, 1, . . . , 5.

6. Simulation Results and Discussion

The simulation results are based on the following: the total
nodes used for the simulation is 300 with underground mine
dimensions of 𝐿 = 10, 𝑅 = 6 and 𝐶 = 5 for depth (level),
length (row), and width (column) respectively. The intervals
between sensors in all directions are 100 meters. Multipoint
connection (hubs/switches) used is 4. It is assumed that 2 exits
are safe for miners to escape after accident. The GA training
used population size of 20. The thresholds 𝜆𝐿 and 𝜆𝐻 are 3
and 6, respectively. Six cases of routing paths 𝑅 are estimated
base on relative rock hardness/softness between 0.7 and 0.9.
The number of neurons is 6.
It must be noted that in presenting the matrices only 6

nodes are used 𝐿 = 3, 𝑅 = 2, and 𝐶 = 1 for the dimensions.
After simulation the sensor location sequence 𝑆eq is gen-

erated for the three rows represent the depth (level), length
(row), and width (column), respectively, in underground
mine space, as indicated earlier this explains the shortest
search path criteria of the robot. The following matrices
and vectors are also generated and represent the connection
𝐾 and routing R matrices. Element “1” in the connection
matrix and routing matrix represent signal reach and routing
(transmission links), whiles “0”means there is no signal reach
or transmission link is down. Consider

Seq = (

(

1 1 1

1 2 1

2 2 1

2 1 1

3 1 1

3 2 1

)

)

,

𝐾 = (

(

1 1 1 0 0 1

1 1 1 1 1 0

0 1 1 1 0 0

0 1 1 1 1 0

0 1 0 1 1 1

0 0 1 0 1 1

)

)

,

R = (

(

1 1 1 0 0 0

1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 1 1 1 1

0 0 0 0 1 1

)

)

.

(25)

Elements in the explosion matrix 𝑋 show the effect as a
results of accident or explosion. If the number of a node is
7 and above, it implies that the link is totally down, 3 and
below means the link is good and has 100% assurance that
transmission can go on, and 4, 5, and 6 represent probabilities

of the link(s) being able to transmit. Equally in the failed
matrix 𝐹, the nodes “0,” “1” and fractions represent the link
is down (“0”), good (“1”) and the fraction, for example, 0.75,
represent the probability for transmission. Consider

𝑋 = (

(

1 5 1 2 2 9

0 1 6 1 0 0

4 6 2 2 2 0

2 1 0 6 0 3

1 0 1 5 1 1

4 0 3 1 2 3

)

)

,

𝐹 = (

(

1 .6 1 1 1 0

1 1 .5 1 1 1

.75 .5 1 1 1 1

1 1 1 .5 1 1

1 1 1 .6 1 1

.75 1 1 1 1 1

)

)

.

(26)

As discussed already in Figure 2, the nodes represent the
effect of the explosion in transmission of data and the number
of nodes 0, 1, 2, and 3 in Region 1 of the figure implied the
link(s) are not affected. Nodes with numbers 4, 5, and 6 in
region 2 represent a probability that the links will be able to
transmit/receive data while nodes with number 7 and above
in region 3 mean the links are totally dead as indicated on the
impact of explosion/accident on transmission link curve.The
remnant matrix called the hope matrix (𝐻) is optimized for
transmission.The nodes on the hope matrix indicate hope to
reorganize the routing path to get the optimized matrix (𝑂)
or a new routing path with the elements 0.4, 0.48, and “0.8”
strongly connected as the probability to be able to transmit
and receive data whiles “0” is not able to transmit or receive
data. Consider

𝐻 =(

(

1 .6 1 0 0 0

1 1 .5 1 0 0

0 .5 1 1 0 0

0 1 1 .5 1 0

0 0 0 .6 1 1

0 0 0 0 1 1

)

)

,

𝑂 =(

(

.8 .4 .8 0 0 0

.8 .8 .4 .8 0 0

0 .4 .8 .8 0 0

0 .8 .8 .4 .8 0

0 0 0 .48 .8 .8

0 0 0 0 .8 .8

)

)

.

(27)

In the exit matrix 𝐸 the resulting safe routes are 0.72, 0.864,
and 1.44 values whiles the values “0s” represent unsafe routes.
The values in the rest of the vectors infrared 𝛼, hardware
𝛿, and software matrices 𝑆 represent the probability of
successes of survival of the infrared, hardware, and software,
respectively; that is, the elements in the hardware survival
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Table 2: Parameters for SBF/CRBF Hybrid.

Parameter MI SD VAR SD CONV. TIME ERROR CPU
1 113.1 76.53 0.008482 75.00 0.0116 228
2 112.2 75.71 0.008769 60.00 0.0104 280
3 112.5 76.10 0.009036 60.00 0.0121 244
4 113.5 74.38 0.008666 80.00 0.0121 250
5 115.50 72.72 0.009078 88.00 0.0133 180
6 115.50 77.17 0.008584 80.00 0.0104 150
7 121.40 76.63 0.008244 85.00 0.0103 238
8 116.60 77.31 0.008806 80.00 0.0103 260
9 113.70 76.09 0.008485 75.00 0.0102 252
10 112.30 75.60 0.008300 100.00 0.0102 100
Total 579.5 758.24 0.08645 783.00 0.110903 1,954
Avg 114.63 75.824 0.008645 78.30 0.01109 217.1111

rate 𝛿 mean the probability that the hardware will not fail.
Consider

𝐸 =(

(

1.44 0.864 1.44 0 0 0

1.44 1.44 0.72 1.44 0 0

0 0.72 1.44 1.44 0 0

0 1.44 1.44 0.72 1.44 0

0 0 0 0.864 1.44 1.44

0 0 0 0 1.44 1.44

)

)

,

𝑆

=(

(

0.8571 0.9167 0.875 0.8889 0.8333 8333

0.8889 0.9545 0.8571 0.8333 0.8333 0.8333

0.8333 0.8333 0.875 0.875 0.8333 0.8571

0.8333 0.8333 0.871 0.875 0.8333 0.8571

0.875 0.8333 0.9231 0.8571 0.8889 0.9

0.8333 0.8571 0.8571 0.8571 0.8889 0.9231

)

)

,

𝛼 = (0.8333 0.9167 0.9333 0.8571 0.9412 0.8571) ,

𝛿 = (0.63 0.9866 1 1 0.956 0.6474) ,

𝑅
𝑖
= (0.5377 0.8597 0.8741 0.8644 0.8143 0.56157) ,

𝜙𝑅
𝑛.cases

=(

(

0.5377 0.8597 0.8741 0.8644 0.8143 0.5615

0.1706 0.4122 0.4628 0.6959 0.5594 0.1673

0.5450 1.8966 0.7650 0.7483 0.5712 0.2839

0.5579 0.8173 0.1457 0.4733 0.6451 0.2869

0.3076 0.5930 0.7958 0.5116 0 0.2988

0.5407 0.5026 0.8445 0.1875 0.7910 0

)

)

.

(28)

As noted already each iteration in generating the routing
path is 6, representing the six (6) types of rock identified for
the study. The 𝑅 is the mean or average of all the 6 cases
𝜙𝑅
𝑛.cases which is used as inputs to the neural network. The

nodes𝑅
𝑖
= (0.5377 0.8597 0.8741 0.8644 0.8143 0.5615)

represent the maximum survival probability for a total
of 6 nodes deployed, each row of the 𝜙𝑅

𝑛.cases matrix
represents a vector at each iteration (i.e., The elements

𝑅
𝑖
= (0.5377 0.8597 0.8741 0.8644 0.8143 0.5615) rep-

resent the probability of 54%, 86%, 87%, 86%, 81%, and 56%
success of each node transmitting data to and from its source
and destination resp.). It describes the success rate from each
node to the sink(s). In most practical applications, more than
one sink is used, and sink node is either through the fiber
or TTE connection, in this study TTE is used. The size of
the vector depends on the dimensions of the field. It assists
decision makers as to whether to send data through one or
more nodes or send each message twice.
Figures 5 and 6 represent the training results of both

basic and hybrid models. GA-SBF (Figure 5(a)), GA-CRBF
(Figure 5(b)), GA-Gaussian (Figure 5(c)), and GA-ZRBF
(Figure 5(d)) for the basic models and Figures 6(a) and 6(b)
for the two hybrids of CRBF and Gaussian. Figures 6 and
7 indeed represent the MSE convergence curves from the
simulation results for the proposed hybrid and the Gaussian
hybrid. This is so because the fitness value or the error is
obtained at convergence. These figures reveal three major
areas: (1) the MSE convergence curves which is plotted on
fitness value against iteration (top of each figure), (2) the
fitness values or the optimized error from the same curve,
and (3) the survival probabilities and scalability plotted on
survival probabilities over rock hardness values. The figures
recorded in (Figures 5 and 6) represent just one run in each
case. For example, in Table 2, the details for each parameter
for the proposed model are recorded from the 10 runs in
order to obtain a fair value since some converge earlier than
the others. It must be noted that Figures 6(a) and 6(b) are
indeed the MSE curves for the hybrid models HSRF

− cos and
HSGF

− cos respectively. It worth noting that 3D dimension
with total matrix size of 6 has the MSE convergent curve
displayed as in Figure 7.
Details of the survival probability and the scalability of the

GA algorithms are in Table 3, for 30, 120, 200, and 300 nodes,
respectively. The initial survival probability for the GA-SBF
is between 87.3% and 94.2% in soft rock layers declining to
68.7%–84.5% at harder rock layers (Figure 6(a)), the GA-
CRBF is 88.9%−100% at the soft rock layers and 66.0%–86.6%
at the harder rock layers.
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Figure 5: GA optimized error for basic models—SBF (a), CRBF (b), and GRBF (c).

The average performance trends of each parameter of
each model after a number of simulations are displayed in
Table 3. The performance of the model parameters using the
5th order polynomial reveals that SBF and CRBF are almost
at par with 𝑅2 value for SBF 0.8228, 0.8513, 0.8337, 0.6544,
0.6373, and 0.9293 and CRBF 𝑅2 values of 0.8463, 0.8642,
0.8025, 0.6025, 0.7230, and 0.8457 (Table 2) represent the
mean iteration (MI), standard variance (SD VAR), standard
deviation (SD), convergent time (conv. time), optimized
error (ERROR), and central processing unit or time (CPU),
respectively. It must be noted that 𝑅2 values indicate the
strength or contribution as well as weakness of the model or
model parameters, that is, the higher the value is close to 1
the better the trend. The GA-ZRBF and GA-GRBF followed

in decreasing order of performance. Computationally, the
performance of themodels is SBFwith𝑅2 value of 0.9292 and
CRBF 𝑅2 value of 0.9022 and the rest follow in descending
order in Table 3.
FromTable 3 the nonlinear hybrid has𝑅2 value of 0.9022,

0.8102, 0.5716, 0.5558, 0.9087, and 0.7975, for HSRF-CRBF,
performed better than HSRF-GRBF with 𝑅2 value of 0.7515,
0.8584, 0.246, 0.5743 0.5094, and 0.3708 for mean iteration,
standard variance, standard deviation, convergent time, opti-
mized error, and central processing time, respectively.
Again the optimized errors recorded from MSE conver-

gence curves were in order of best performance HSRF-GRBF
(0.01076), HSRF-CRBF (0.01109), ZRBF (0.012183), GRBF
(0.012291), SBF (0.0126), andCRBF (0.0129).The trends of the
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Figure 6: GA Convergence and optimized error for hybrids.
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optimized errors of the basicmodels are displayed in Figure 8
using the fifth order polynomial. The scalability of the basic
model is displayed in Table 4, for 30, 120, 200, and 300 nodes
and the results indicate strong scalability with respect to rock
types and rock hardness.
The relationship between the variousmodels with respect

to the central processing unit (CPU)was profiled for different
runs to assess its scalability (Table 5). The proposed GA-SBF
and GA-CRBF have better usage of CPU time, and optimizes
its parameters with 𝑅

2
= 1. It was very comparative to

the PSO-CRBF in addition the PSO-CRBF was outstanding
among the swarm search whiles the SBF is outstanding in the
GA.

SBF, 0.6373,
26%

CRBF, 0.7230,
30%

ZRBF, 0.6353,
26%

GRBF, 0.4250,
18%

Genetic algorithm:
efficiency of optimized error for basic models

SBF
CRBF

ZRBF
GRBF

Figure 8: The optimized error for GA trained model.

Comparing the GA trained in this work and PSO trained
[54], the GA-SBF has better utilization of resources (e.g.,
processing time) among the basic models in the genetic
algorithm, whilst the PSO-CRBF was outstanding in keeping
the error at minimum. The GA-SBF shows outstanding
performance in terms of processing time which was slightly
higher than that of the CRBF as in Figures 9 and 10. Again
the results reveal that both GA-SBF and GA-CRBF with the
absolute operation have efficient resource utilization better
than that of Gaussian RBF. It has been ascertained that RBF
produces more accurate predictions than other models such
as MLP, RBFNN-MQ when applied to other applications.
This is also true in the basic PSO models displayed in [54].
Similar works in evacuation procedures including that of [55]
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Table 3: Efficiency of CPU time and other parameters for the Genetic Algorithm.

𝐵
5

𝐵
4

𝐵
3

𝐵
2

𝐵
1

𝐵
0

𝑅
2

Basic Models
CRBF
MI 0.2387𝑥 −6.7183𝑥 69.811𝑥 −327.23𝑥 670.01𝑥 −401.21 0.8228
SD VAR 0.4104𝑥 −11.516𝑥 119.15𝑥 −555.26𝑥 1127.8𝑥 −676.67 0.8642
SD 1𝐸 − 06𝑥 −4𝐸 − 05𝑥 0.0004𝑥 −0.0022𝑥 0.0048𝑥 0.0044 0.8025
CONV TIME −0.0036𝑥 0.0871𝑥 −0.7031𝑥 2.0152𝑥 −1.0244𝑥 6.9667 0.6025
ERROR 9𝐸 − 06𝑥 −0.0002𝑥 0.0015𝑥 −0.0031𝑥 −0.0038𝑥 0.0243 0.6705
CPU TIME 0.0234𝑥 −0.7047𝑥 8.0295𝑥 −41.794𝑥 93.664𝑥 11.913 0.8457

GRBF
MI −0.0291𝑥 0.4358𝑥 0.3208𝑥 −29.708𝑥 134.9𝑥 −89.869 0.5841
SD VAR −0.0719𝑥 2.1191𝑥 −22.04𝑥 94.541𝑥 −141.9𝑥 125.91 0.7413
SD −8𝐸 − 07𝑥5 2𝐸 − 05𝑥 −0.0003𝑥 0.0012𝑥 −0.0025𝑥 0.009 0.3639
CONV TIME −0.0012𝑥 0.025𝑥 −0.1077𝑥 −0.6216𝑥 4.0274𝑥 4.7333 0.6921
ERROR 2𝐸 − 05𝑥 −0.0005𝑥 0.0047𝑥 −0.021𝑥 0.0402𝑥 −0.0136 0.4250
CPU TIME −0.0048𝑥 0.0185𝑥 1.7387𝑥 −21.473𝑥 80.745𝑥 46.753 0.5226

MLP/SBF
MI 0.2387𝑥 −6.7183𝑥 69.811𝑥 −327.23𝑥 670.01𝑥 −401.2 0.8228
SD VAR 0.4142𝑥 −11.635𝑥 120.49𝑥 −561.86𝑥 1140.9𝑥 −684.67 0.8513
SD 1𝐸 − 06𝑥5 −3𝐸 − 05𝑥 0.0004𝑥 −0.0024𝑥 0.0053𝑥 0.004 0.8337
CONV TIME −0.1348 3.3687𝑥 −29.916𝑥 114.35𝑥2 −187.89𝑥 227.07 0.6544
ERROR 3𝐸 − 05𝑥 −0.0008𝑥 0.008𝑥 −0.0365 0.0722𝑥 −0.0336 0.6373
CPU TIME 0.262𝑥 −7.2534 73.789𝑥 −336.13 661.68𝑥 −299.77 0.9293

ZRBF
MI 0.0027𝑥 −0.118𝑥 1.2589𝑥 −5.4278𝑥 21.815𝑥 −5.806 0.6852
SD VAR −0.0604𝑥 1.8218𝑥 −20.244𝑥 98.534𝑥 −182.06𝑥 113.65 0.5061
SD 5𝐸 − 07𝑥 −1𝐸 − 05𝑥 9𝐸 − 05𝑥 −0.0003𝑥 0.0005𝑥 0.0069 0.9609
CONV TIME 0.006𝑥 −0.108𝑥 0.3516𝑥 2.5529𝑥 −13.913𝑥 26.633 0.5668
ERROR 9𝐸 − 06𝑥 −0.0002𝑥 0.0015𝑥 −0.0037𝑥 0.0029𝑥 0.0087 0.6353
CPU TIME 0.1515𝑥5 −3.9365𝑥 36.494𝑥 −147.02𝑥 262.11𝑥 −54.847 0.6764

HYBRIDS
HSBF-CRBF
MI 0.0084𝑥 −0.2218𝑥 2.049𝑥 −7.8279𝑥 12.126𝑥 106.78 0.8102
SD VAR 0.0054𝑥 0.1557𝑥 1.6269𝑥 −7.278𝑥 12.885𝑥 69.237 0.5716
SD −6𝐸 − 07𝑥 2𝐸 − 05𝑥 −0.0001𝑥 0.0004𝑥 −0.0002𝑥 0.0084 0.5558
CONV TIME −0.0042𝑥 0.3085𝑥 −5.3823𝑥 35.963𝑥 −91.22𝑥 135.47 0.9087
ERROR −6𝐸 − 06𝑥 0.0002𝑥 −0.0017𝑥 0.0078𝑥 0.0148𝑥 0.0201 0.7975
CPU TIME −0.0862𝑥 1.3547𝑥 −2.4501𝑥 −42.277𝑥 174.77𝑥 96.533 0.9022

HSBF-GRBF
MI −0.0008𝑥 −0.1558𝑥 3.962𝑥 −33.969𝑥 119.01𝑥 −25.5 0.7515
SD VAR 0.0092𝑥 −0.3751𝑥 5.3891𝑥 −34.64𝑥 98.858𝑥 −23.064 0.8584
SD 6𝐸 − 07𝑥 −2𝐸 − 05𝑥 0.0002𝑥 −0.001𝑥 0.0019𝑥 0.0074 0.246
CONV TIME 0.0367𝑥 −1.1456𝑥 13.231𝑥 −70.314𝑥 171.94𝑥 −39.933 0.5743
ERROR 2𝐸 − 06𝑥 −6𝐸 − 05𝑥 0.0006𝑥 −0.0029𝑥 0.0063𝑥 0.0058 0.5094
CPU TIME −0.2077𝑥 4.9802𝑥 −41.885𝑥 149.4𝑥 218.83𝑥 355.33 0.3708

have been done; however underground characteristics and
limitation of choice of safe exits makes it impractical.
Furthermore, the results indicate that both the PSO and

the GA have strong survival probabilities and are scalable.
The future trend of the models for the PSO and GA are
good. In addition the model as a whole in both cases had

the trend of the 𝑅2 value of 1 which implies that both can
stand the test of time. However the PSO trained models
are more accurate in terms of the optimized errors, that is,
CRBF (0.0108), SBF (0.016), GRBF 0.013, ZRBF (0.012109),
and CRBF with nonlinear weight hybrid of negative cosine
(0.009) [56]. On the other hand, the optimized errors of the
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Table 4: Scalability of model to survival probability range, robot location, and rock type.

Location Mica Coal Granite Feldspar Quartz Mineral
GA-CRBF

(10, 6, 5) 0.8828–1 0.9022–1 0.873–1 0.7822–0.9675 0.7323–0.9369 0.6566–0.8449
(10, 5, 4) 0.9194–0.9795 0.9032–0.9505 0.8946–0.9522 0.8763–0.9665 0.7977–0.9695 0.7973–0.8689
(6, 5, 4) 0.9705–0.9936 0.8928–0.9815 0.8977–0.9576 0.8626–0.9710 0.7911–0.9431 0.6589–0.7931
(3, 1, 10) 0.7232–0.8348 0.6655–0.7914 0.6542–0.7874 0.6613–0.7448 0.5841–0.7291 0.4883–0.5702

GA-SBF
(10, 6, 5) 0.8911–0.9259 0.8808–0.9235 0.8592–0931 0.82–0.9287 0.8075–0.935 0.7222–0.8286
(10, 5, 4) 0.8943–0.9292 0.8683–0.9342 0.8711–0.9256 0.8454–0.9262 0.7926–0.922 0.7286–0.8443
(6, 5, 4) 0.8875–0.9384 0.8811–0.9773 0.8310–0.8997 0.8227–0.9035 0.6995–0.9467 0.7562–0.8163
(3, 1, 10) 0.7944–0.8455 0.7533–0.7924 0.7372–0.7461 0.5982–0.6947 0.5626–0.7153 0.5546–0.6857

GA-GRBF
(10, 6, 5) 0.8819–1 0.8819–0.9789 0.8521–0.994 0.8021–0.936 0.7237–0.9466 0.6609–0.8658
(10, 5, 4) 0.8819–0.9295 0.8733–0.915 0.8761–0.9133 0.8332–0.9068 0.8119–0.9169 0.7208–0.8717
(6, 5, 4) 0.7685–0.9384 0.7711–0.9773 0.7310–0.8997 0.6927–0.8935 0.6995–0.8467 0.5562–0.8453
(3, 1, 10) 0.6844–0.8455 0.6633–0.7924 0.6322–0.7461 0.5582–0.6947 0.5126–0.59153 0.5346–0.5857

Table 5: Average performance of the models CPU time (GA).

Models 𝐵
5

𝐵
4

𝐵
3

𝐵
2

𝐵
1

𝐵
0

𝑅
2

Average performance of cpu time (after 10 runs)
SBF 0.262𝑥 −7.2534𝑥 73.789𝑥 −336.13𝑥 661.68𝑥 −299.77 0.9293
CRBF 0.0234𝑥 −0.7047𝑥 8.0295𝑥 −41.794𝑥 93.664𝑥 11.913 0.8457
ZRBF 0.1515𝑥 −3.9365𝑥 36.494𝑥 −147.02𝑥 262.11𝑥 −54.847 0.6764
GRBF −0.0048𝑥 0.0185𝑥 1.7387𝑥 −21.473𝑥 80.745𝑥 46.753 0.5226
CRBF HYB −0.0862𝑥 1.3547𝑥 −2.4501𝑥 −42.277𝑥 174.77𝑥 96.533 0.9022
GRBF HYB −0.2077𝑥 4.9802𝑥 −41.885𝑥 149.4𝑥 −218.83𝑥 355.33 0.3708

Average performance of the models
SBF 12.601𝑥 −217.38 1403𝑥 −4170.3𝑥 5585.3𝑥 −2558 1
CRBF 4.1824𝑥 −75.171𝑥

4
512.36𝑥 −1624.6𝑥 2310.9𝑥 −1072.5 1

ZRBF 4.5959𝑥 −79.917𝑥 526.65𝑥 −1615.4𝑥 2231.7𝑥 −1019.9 1
GRBF 5.3574𝑥 −95.466𝑥 646.21𝑥 −2038.5𝑥 2890.4𝑥 −1341.4 1
CRBF HYB 10.527𝑥 −178.75𝑥 1135𝑥 −3306.1𝑥 4288.6𝑥 −1833.3 1
GRBF HYB 13.263𝑥 −224.22𝑥 1415.3𝑥 −4096.5𝑥 5297.6𝑥 −2298.8 1

Table 6: Comparing the two population sizes.

Run/PopnSize CPU TIME 30 CPU TIME 20 Error 30 Error 20 SD 30 SD 20
1 408.77 293.27 0.01122 0.009856 0.008483 0.008628
2 349.41 208.515 0.01178 0.01001 0.008237 0.00886
3 216.81 226.515 0.009872 0.01103 0.008768 0.008956
4 464.5 254.49 0.007898 0.01179 0.008337 0.008761
5 192.82 181.17 0.0014 0.02014 0.008318 0.008786
6 319.36 330.87 0.01756 0.01017 0.008072 0.00851
7 304.38 264.15 0.01006 0.01962 0.008702 0.009362
8 322.18 259.2 0.1639 0.0107 0.00851 0.009586
9 469.86 113.14 0.01318 0.01001 0.008743 0.008618
10 331.21 106.75 0.01075 0.0100013 0.008719 0.007096
Total 3379.3 2238.07 0.25762 0.1233273 0.084889 0.087163
Average 337.93 223.807 0.025762 0.01233273 0.0084889 0.0087163
5th order
𝑅
2 value 0.3667 0.7475 0.3968 0.4194 0.4212 0.9206
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Figure 9: Computational efficiency of GA trained model.
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Figure 10: Computational efficiency of PSO trained model.

GA trainedmodels are CRBF (0.012923), SBF (0.0126), GRBF
(0.01229), ZRBF (0.012183), and nonlinear hybrid of negative
cosine weight CRBF (0.012291). In terms of training, the GA
trains better than the PSO but the PSO’s signal transmission
is better in terms of harder rock areas. Generally the errors
were higher in GA than in PSO. For more information on the
particle swarm models, and the hybrids, readers may refer
to the following references [54, 56]. It must be noted that
the GA-SBF performed well with genetic algorithm.This was
demonstrated in the computational efficiency in Figures 8
and 9. The GA’s values were 31%, 28%, 23%, and 18% for SBF,
CRBF, ZRBF, and GRBF, respectively, while the PSO values
were 31%, 26%, 27%, and 16% for CRBF, SBF, ZRBF, and
GRBF, respectively. The PSO favoured the CRBF and the GA
favoured the SBF.
To verify the optimal parameters the study used both pop-

ulation sizes 20 and 30 to simulate the results.The differences
of the CPU time, SD, and the error for the population sizes
of 20 and 30 as seen in Table 6. The population size of 20
is outstanding in all the three outcomes: CPU time, SD, and
error as 223.807, 0.0087163, and 0.01233273, respectively. The
simulated results (CPU time, SD, and the error) for the two

population sizes are displayed in Table 6. These results reveal
that there ismuch demand onCPU timewith errormore than
twice compared with target set for population size of 30.

7. Conclusion

This study has been able to construct a hybrid neural
network for underground rescue system using absolute oper-
ation with non-Gaussian and compact radial basis transfer
functions. This novel hybrid transfer function model shows
outstanding performance over the non-Gaussianmodels.The
study has discussed the new model using GA training and
has compared it with the PSO training in previous work.
The proposed model is very competitive and efficient to
existing models like the Gaussian. The results of the GA
show an alternative training method for rescue system for
emergency operation for mining grounds and tunnels, where
rock hardness is relatively constant. It can also be used for
hospitals, building surveillance, and evacuation situations.
The processing efficiency in the models is better as compared
with Gaussian model.
The challenge is that the optimized errors obtained from

the models with genetic algorithm are high (note that this is
only in comparison with the PSO) and future work should
address this limitation.
For future work there is the need to use the trained

NN to predict the survivability with instant inputs of com-
plete/correct and/or incomplete/incorrect location and rock
type from the randomly picked mobile sensor, to further ver-
ify the accuracy and robustness of the prediction. In addition,
more hybrids will need to be investigated with the GA of both
linear and nonlinear weights to further optimize the error as
well as investigate the signal sensitivity of the model.
It is envisioned that this model is a good alternative in the

mining industry and can go a long way to help save lives. It
is robust, fault tolerant, and competitive to the Gaussian and
non-Gaussian models.
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