3,895 research outputs found

    A stigmergy-based analysis of city hotspots to discover trends and anomalies in urban transportation usage

    Full text link
    A key aspect of a sustainable urban transportation system is the effectiveness of transportation policies. To be effective, a policy has to consider a broad range of elements, such as pollution emission, traffic flow, and human mobility. Due to the complexity and variability of these elements in the urban area, to produce effective policies remains a very challenging task. With the introduction of the smart city paradigm, a widely available amount of data can be generated in the urban spaces. Such data can be a fundamental source of knowledge to improve policies because they can reflect the sustainability issues underlying the city. In this context, we propose an approach to exploit urban positioning data based on stigmergy, a bio-inspired mechanism providing scalar and temporal aggregation of samples. By employing stigmergy, samples in proximity with each other are aggregated into a functional structure called trail. The trail summarizes relevant dynamics in data and allows matching them, providing a measure of their similarity. Moreover, this mechanism can be specialized to unfold specific dynamics. Specifically, we identify high-density urban areas (i.e hotspots), analyze their activity over time, and unfold anomalies. Moreover, by matching activity patterns, a continuous measure of the dissimilarity with respect to the typical activity pattern is provided. This measure can be used by policy makers to evaluate the effect of policies and change them dynamically. As a case study, we analyze taxi trip data gathered in Manhattan from 2013 to 2015.Comment: Preprin

    2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018

    Get PDF
    The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies. As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency. In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community. In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor

    DYNAMIC FREEWAY TRAVEL TIME PREDICTION USING SINGLE LOOP DETECTOR AND INCIDENT DATA

    Get PDF
    The accurate estimation of travel time is valuable for a variety of transportation applications such as freeway performance evaluation and real-time traveler information. Given the extensive availability of traffic data collected by intelligent transportation systems, a variety of travel time estimation methods have been developed. Despite limited success under light traffic conditions, traditional corridor travel time prediction methods have suffered various drawbacks. First, most of these methods are developed based on data generated by dual-loop detectors that contain average spot speeds. However, single-loop detectors (and other devices that emulate its operation) are the most commonly used devices in traffic monitoring systems. There has not been a reliable methodology for travel time prediction based on data generated by such devices due to the lack of speed measurements. Moreover, the majority of existing studies focus on travel time estimation. Secondly, the effect of traffic progression along the freeway has not been considered in the travel time prediction process. Moreover, the impact of incidents on travel time estimates has not been effectively accounted for in existing studies.The objective of this dissertation is to develop a methodology for dynamic travel time prediction based on continuous data generated by single-loop detectors (and similar devices) and incident reports generated by the traffic monitoring system. This method involves multiple-step-ahead prediction for flow rate and occupancy in real time. A seasonal autoregressive integrated moving average (SARIMA) model is developed with an embedded adaptive predictor. This predictor adjusts the prediction error based on traffic data that becomes available every five minutes at each station. The impact of incidents is evaluated based on estimates of incident duration and the queue incurred.Tests and comparative analyses show that this method is able to capture the real-time characteristics of the traffic and provide more accurate travel time estimates particularly when incidents occur. The sensitivities of the models to the variations of the flow and occupancy data are analyzed and future research has been identified.The potential of this methodology in dealing with less than perfect data sources has been demonstrated. This provides good opportunity for the wide application of the proposed method since single-loop type detectors are most extensively installed in various intelligent transportation system deployments

    Making Transport Safer: V2V-Based Automated Emergency Braking System

    Get PDF
    An important goal in the field of intelligent transportation systems (ITS) is to provide driving aids aimed at preventing accidents and reducing the number of traffic victims. The commonest traffic accidents in urban areas are due to sudden braking that demands a very fast response on the part of drivers. Attempts to solve this problem have motivated many ITS advances including the detection of the intention of surrounding cars using lasers, radars or cameras. However, this might not be enough to increase safety when there is a danger of collision. Vehicle to vehicle communications are needed to ensure that the other intentions of cars are also available. The article describes the development of a controller to perform an emergency stop via an electro-hydraulic braking system employed on dry asphalt. An original V2V communication scheme based on WiFi cards has been used for broadcasting positioning information to other vehicles. The reliability of the scheme has been theoretically analyzed to estimate its performance when the number of vehicles involved is much higher. This controller has been incorporated into the AUTOPIA program control for automatic cars. The system has been implemented in Citroën C3 Pluriel, and various tests were performed to evaluate its operation

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing
    corecore