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ABSTRACT OF DISSERTATION 
 
 
 
 

DYNAMIC FREEWAY TRAVEL TIME PREDICTION USING  
SINGLE LOOP DETECTOR AND INCIDENT DATA 

 

The accurate estimation of travel time is valuable for a variety of 
transportation applications such as freeway performance evaluation and real-time 
traveler information.  Given the extensive availability of traffic data collected by 
intelligent transportation systems, a variety of travel time estimation methods have 
been developed.  Despite limited success under light traffic conditions, traditional 
corridor travel time prediction methods have suffered various drawbacks.  First, most 
of these methods are developed based on data generated by dual-loop detectors that 
contain average spot speeds.  However, single-loop detectors (and other devices that 
emulate its operation) are the most commonly used devices in traffic monitoring 
systems.  There has not been a reliable methodology for travel time prediction based 
on data generated by such devices due to the lack of speed measurements.  Moreover, 
the majority of existing studies focus on travel time estimation.  Secondly, the effect 
of traffic progression along the freeway has not been considered in the travel time 
prediction process.  Moreover, the impact of incidents on travel time estimates has not 
been effectively accounted for in existing studies. 

The objective of this dissertation is to develop a methodology for dynamic 
travel time prediction based on continuous data generated by single-loop detectors 
(and similar devices) and incident reports generated by the traffic monitoring system.  
This method involves multiple-step-ahead prediction for flow rate and occupancy in 
real time.  A seasonal autoregressive integrated moving average (SARIMA) model is 
developed with an embedded adaptive predictor.  This predictor adjusts the prediction 
error based on traffic data that becomes available every five minutes at each station.  
The impact of incidents is evaluated based on estimates of incident duration and the 
queue incurred. 

Tests and comparative analyses show that this method is able to capture the 
real-time characteristics of the traffic and provide more accurate travel time estimates 
particularly when incidents occur.  The sensitivities of the models to the variations of 
the flow and occupancy data are analyzed and future research has been identified. 

The potential of this methodology in dealing with less than perfect data 
sources has been demonstrated.  This provides good opportunity for the wide 
application of the proposed method since single-loop type detectors are most 
extensively installed in various intelligent transportation system deployments. 
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CHAPTER 1  

INTRODUTION 

1.1 BACKGROUND 

Travel time can be defined as the period of time to transverse a route between any two 

points of interest.  It is a fundamental measure in transportation.  Travel time is also one of 

the most readily understood and communicated measure indices by a wide variety of users, 

including transportation engineers, planners, and consumers, yet it is rigorous enough for 

technical analyses. 

Travel time data is useful for a wide range of transportation analyses including 

congestion management, transportation planning, and traveler information.  Congestion 

management systems commonly use travel time-based performance measures to evaluate and 

monitor traffic congestion.  Planners use travel time to evaluate transportation facilities and 

plan improvements.  In addition, some metropolitan areas provide real-time travel time 

prediction as part of their advanced traveler information systems (ATIS).  By obtaining short-

term predictive travel times for several candidate routes between their origin and destination, 

travelers are able to make smart decisions on route choice, and hence possibly avoid 

congestion.  Alternatively, as a key input for dynamic route guidance systems, travel time-

based measurements also enable generation of the shortest paths between an origin and 

destination. 

Travel time data can be obtained through a number of methods.  Some of the methods 

involve direct measures of travel times along with test vehicles, license plate matching 

technique, and Intelligent Transportation System (ITS) probe vehicles.  Additionally, various 

sensors (e.g. inductance loop detectors, acoustic sensors) in ITS deployment collect a large 

amount of traffic data every day, especially in metropolitan areas.  Such data can be used for 

travel time estimation for extensive applications when direct measurements of travel times 

are not available. 
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1.2 THEORETICAL TRAVEL TIME DEFINITION 

On a macroscopic level, the temporal and spatial characteristics of traffic are usually 

described by three fundamental variables: flow rate (the number of vehicles passing a point, 

such as vehicle detector station, per unit time), speed (the distance per unit time), and density 

(the number of vehicles per unit distance) or occupancy (the percentage of time the detector 

is occupied by vehicles).  Among the three traffic variables, speed is closely related to the 

concept of travel time.  Travel time is the inverse of space-mean speed. 

A link is defined as the section between two consecutive stations with positions ux  

and dx  in a discrete time-space domain as shown in Figure 1.1, the representative travel time 

of the link during the time interval from t  and 1t +  can be calculated as the mean travel time 

within the area (i.e zone ABCD). 

Space

Timet t+1

xu

xd

Vehicle
Trajectories

A B

CD

 
Figure 1.1 A Temporal and Spatial Illustration of Link Travel Time 

 

From time  to , assume that there are  vehicles traversing the link between t 1t + N ux  

and dx , the true space-mean speed for vehicles is equal to total traveled distance divided by 
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the total travel time of all vehicles in zone ABCD (Gerlough and Huber 1975, ITE 1976).  An 

estimate of the space-mean speed over the link is defined as: 

{ }

{ }

1
1

1

min( , ) max( , )

min( 1, ) max( , )

N
i i
t d t u

i
N

i i
d u

i

x x x
V

t t t t

+
=

=

−
=

+ −

∑

∑

x
      (1.1) 

where, 

V :  space-mean speed of the link during the time interval from time t  to time 1t + ; 

i
tx :  position of the vehicle i  at time t ; 

i
dt :  time when vehicle i  passes through the downstream station; 

i
ut :  time when vehicle  i  passes through the upstream station. 

The true travel time calculated from the space-mean speed is defined as:  

u dx x
tt

V
−

=          (1.2) 

where, 

tt :  representative travel time of the link during the time interval from time t  to time 

; 1t +

V :  space-mean speed of the link during the time interval t  to 1t + . 

1.3 STATEMENT OF THE PROBLEM 

Since the trajectories of individual vehicles are not available, various methods have 

been proposed to approximately estimate the travel time from traffic measurements collected 

by the advance surveillance technologies.  Most of these methods were developed based on 

data generated by dual-loop detectors, which contain average spot speeds.  Such methods are 

limited for extensive applications because single-loop detectors (and similar devices) are the 

most commonly used devices in traffic monitoring systems. 

Currently, a reliable methodology has not been developed for travel time prediction 

based on data generated by single loop detectors due to the lack of speed measurements.  
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Much of the work performed to date focuses on travel time estimation instead of prediction.  

These works merely report the travel time at the time traffic data are collected.  While this is 

important for the application of traffic system monitoring and performance evaluation, there 

is a need for research that studies the short-term prediction of travel time for various 

applications such as a route guidance system. 

Previous work has not effectively considered the effects of traffic progression along 

the freeway in the travel time estimation process as well.  The corridor travel time is simply 

estimated as the total of the link travel times estimated during the same time interval.  This 

may cause significant divergence of the estimated travel time from the “ground truth”.  

Consideration of traffic progression along a freeway is clearly of value for corridor travel 

time estimation and prediction.  In this sense, there is also a need to acknowledge the effects 

of traffic progression in the short-term prediction of corridor travel time. 

Furthermore, most previous methods for travel time estimation were developed under 

normal traffic conditions or during recurrent congestion.  The impact of incidents on travel 

time estimates has not been effectively considered.  Under incident situations, sudden 

changes are often observed in traffic measurements, and long, unanticipated delays are often 

caused by accidents when non-recurrent congestion forms.  Although incidents have nearly 

negligible effects on the overall performance of these methods because of the low probability 

of incident occurrence on freeways, for traveler information purposes, incident impacts need 

to be accounted for in the development of a travel time prediction model. 

1.4 RESEARCH OBJECTIVES AND CONTRIBUTION  

This research aims to develop a robust online short-term corridor travel time 

prediction system based on continuous traffic flow data generated by single loop detectors 

and incident data generated by the traffic monitoring system.  The research objectives are 

expected to provide valuable information in the areas of: 

o Dynamic prediction of flow rate and occupancy over time using traffic 

measurements from single loop detectors; 

o Short-term prediction of corridor travel time integrating the dynamic traffic flow 

predictor and accounting for the effects of traffic progression along a freeway in 

model development; and 
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o Short-term corridor travel time adjustments under an incident. 

Compared with previous work for corridor travel time prediction from single loop 

detectors, there are several contributions from this study.  First, this dissertation integrates 

dynamic traffic flow prediction and the effects of traffic progression along a freeway into the 

model development for corridor travel time prediction.  Moreover, this study integrates the 

impacts of incidents on the traffic in the corridor travel time prediction system for online 

implementation.  Both contributions are valuable to improve corridor travel time prediction 

accuracy, particularly under congested traffic conditions, or with the occurrence of an 

incident.  Additionally, the proposed methodology can work with less than perfect data 

sources.  This provides a good opportunity for the wide application of the proposed method. 

1.5 RESEARCH METHDOLOGIES 

A corridor is selected for data collection in this dissertation.  Both traffic flow 

measurements and incident information are collected from California Freeway Performance 

Measurement System (PeMS) along I-80 in the Bay Area of California.  The collected traffic 

flow data are aggregated in 5-minute intervals.  Each record provides aggregated flow rate, 

occupancy, and average spot speed.  Flow rate and occupancy are used as traffic 

measurements for model development, while the average spot speed is used for the estimation 

of actual corridor travel time for model performance evaluation.  The incident data includes 

the start time, location, actual incident duration, and incident type.  After these data are 

obtained, they are stored and pre-processed in an operational database for model testing. 

The proposed corridor travel time prediction model starts with the model development 

for dynamic traffic flow prediction.  This model involves the multi-step-ahead prediction of 

flow rate and occupancy in real time.  A seasonal autoregressive integrated moving average 

(SARIMA) model is developed with an embedded adaptive predictor.  This predictor adjusts 

the prediction error based on traffic flow data that becomes available every five minutes at 

each vehicle detector station. 

The corridor travel time prediction model is developed based on short-term prediction 

of link travel times, in which a link is defined as the section between two consecutive vehicle 

detector stations.  Beginning from the first link, the corridor travel time prediction model 

predicts the link travel time in sequence until the last link travel time has been predicted.  To 
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consider the effects of traffic progression along the corridor, the dynamic traffic flow 

predictor is embedded in the corridor travel time prediction model with a varied number of 

steps in advance.  

The proposed model also considers the incident impacts on traffic.  When an incident 

happens on the corridor, its impact on the traffic is first identified.  If the incident affects 

traffic significantly, the predicted corridor travel times within the influence time of the 

incident are adjusted.  Otherwise, it is assumed that the incident has little impact on the traffic.  

To adjust the corridor travel times, incident duration is predicted based on a look-up table by 

incident type and day-of-week from historical incident information.  The final corridor travel 

time prediction adjustment is performed based on shock wave analysis. 

1.6 ORGANIZATION OF THE DISSERTATION 

This dissertation has been organized into seven chapters.  Chapter 1 includes an 

introduction to the research and discusses the background, problem statement, research 

objectives, methodologies, contribution of research, and the organization of the dissertation.  

Chapter 2 provides a literature review of previous work on travel time data collection with 

emphasis on the travel time estimation from ITS deployment.  Chapter 3 presents the study 

corridor and data collection for testing the proposed corridor travel time prediction 

methodology.  Chapter 4 presents the dynamic traffic flow prediction model.  Model 

adequacy and performance analysis are included.  Chapter 5 presents the corridor travel time 

prediction model without considering the incident impacts on the traffic and the testing 

results.  Chapter 6 presents the method for the corridor travel time prediction adjustment due 

to the occurrence of an incident.  Sensitivity analysis is also included to identify the most 

important factors for using the proposed method in corridor travel time prediction.  

Furthermore, comparative analysis is also performed.  Finally, conclusions and 

recommendations for future researches are presented in Chapter 7. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 INTRODUCTION 

There have been various studies involving travel time estimation and prediction.  The 

methods used can generally be grouped based on data source.  For applications with direct 

travel time measurements, such as those obtained from probe vehicles or license plate 

matching techniques, the method of averaging measured travel times has been used.  When 

direct measurement of travel time is not available, various methods have been employed to 

perform an estimate using traffic measurements from advanced traffic surveillance 

technologies such as dual loop detectors and single loop detectors.  These methods were 

mainly developed based on relationships between traffic variables. 

Relevant literature on travel time estimation and prediction for both groups of 

methods is described in this chapter.  Previous works on travel time estimation from direct 

measurement of travel times is presented along with travel time estimates from floating cars 

or test vehicles, ITS probe vehicles, and license plate matching.  Methods for travel time 

estimation from traffic measurements (e.g. flow rate, occupancy, and speed) measured by 

field sensors and similar devices are also presented.  Furthermore, previous work related to 

obtaining more accurate travel times by fusing multiple data sources from multiple 

technologies is reviewed. 

2.2 TRAVEL TIME ESTIMATION FROM DIRECT TRAVEL TIME 

MEASUREMENT 

Techniques for direct travel time data collection include methods utilizing floating 

cars or test vehicles, intelligent transportation system (ITS) probe vehicles, and license plate 

matching.  The relevant literature using these technologies for travel time estimation is 

described as follows. 
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2.2.1 Travel Time Estimation from Floating Car or Test Vehicle 

The floating car or test vehicle technique for travel time data collection and estimation 

was adopted in the 1920’s, but the first comprehensive research was performed in the late 

1940’s (Berry and Green 1949) and early 1950’s (Berry 1952).  Travel time estimation from 

floating car or test vehicle was the most common method for travel time data collection and 

estimation for early research.  It utilizes data collection vehicles containing an observer who 

records cumulative travel time at predefined checkpoints along a travel route. 

In order to accurately estimate travel time using test vehicles, a minimum sample size 

is necessary.  This dictates a required number of test vehicles must transverse a given 

roadway during the time period of interest, such as time-of-day and day-of-week.  The 

equation to calculate the minimum sample size is given as 2.( )T statistics c v
e

− ×  (Turner et al. 

1998), in which T-statistic is the value from the Student’s distribution for  degrees of 

freedom,  is the coefficient of variation, and  is the maximum specified relative error. 

1n −

.c v e

The coefficient of variation for travel time varies widely, depending upon the physical 

and traffic control characteristics as well as traffic conditions.  A study by Berry and Green 

(1949) of three arterial corridors in California found that the coefficient of variation for urban 

arterials ranged from 9 to 16 percent.  A subsequent study by Berry (1952), which utilized the 

same methods, found that the coefficient of variation for urban arterials ranged from 5 to 17 

percent.  Several other empirical studies indicate that the coefficient of variation ranged from 

8 to 17 percent (May 1990).  A recent study by the National Cooperative Highway Research 

Program (NCHRP) (Lomax et al. 1997) not only confirmed these estimates, but also 

suggested that the coefficient of variation for freeways ranges from 9 to 17 percent, 

depending upon the average daily traffic volume per lane. 

Given the ranges of coefficients of variation, a range representing the number of test 

vehicles can be obtained, but the maximum number of vehicles is often adapted with test 

vehicles driving on roadways with evenly distributed headway of 30 minutes (Turner et al. 

1998).  The Institute of Transportation Engineers (ITE 1994) suggested that the calculation of 

sample size should be based upon the average range of the coefficient of variation.  

Subsequent research by Quiroga and Bullock (1998) questioned the validity of ITE’s sample 

size, but both sets of research suggested conducting several travel time runs and then 

computing range values and corresponding travel times.  The Federal Highway 
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Administration (FHWA) provided completely updated sample size information as well as the 

procedure for travel time data collection using test vehicles for both arterial and freeway 

corridors (Turner et al. 1998). 

2.2.2 Travel Time Estimation from ITS Probe Vehicle  

Since the early 1990’s, travel time estimation from probe vehicles has drawn lots of 

concerns with the increasing development of ITS technologies.  Compared with floating cars 

or test vehicles designed for travel time data collection only, intelligent transportation system 

(ITS) probe vehicles were not initially designed for real time travel time data collection, but 

for other specific data collection purposes, such as real-time traffic operations monitoring, 

incident detection, and route guidance (Turner et al. 1998).  However, the information 

collected by ITS probe vehicles may be used for travel time estimations as well.   

Depending on the technologies used in the ITS probe vehicle system, the methods for 

travel time data collection can be classified into two groups: automatic vehicle location (AVL) 

systems and automatic vehicle identification (AVI) systems.  AVL systems measure travel 

times by identifying probe vehicle positions through in-vehicle systems.  Specific 

technologies include ground-based radio navigation (Vaidya et al. 1996), global positioning 

systems (GPS) (Guo and Poling 1995, Roden 1996, Gallagher 1996, Laird 1996, Quiroga and 

Bullock 1999, James et al. 2000, Choi and Chung 2001, Yim and Cayford 2001, Ngo 2005), 

and cellular phone tracking (Levine et al. 1993, Larsen 1996, Ygnace et al. 2000, Yim and 

Cayford 2001, Smith et al. 2003).  Ground-based radio navigation is often used for transit or 

commercial fleet management, where data are collected by communication between probe 

vehicles and a radio tower infrastructure.  Similarly, probe vehicles equipped with GPS 

receivers send and receive signals from earth-orbiting satellites to collect travel times 

between two locations along the roadway.  Cellular phone tracking methods collect travel 

time by discretely tracking cellular telephone call transmissions.  Comparatively, AVI 

systems identify vehicles through fixed roadside systems.  One example of AVI is probe 

vehicles that are equipped with electronic tags, which can be used to communicate with 

roadside transceivers to identify unique vehicles and collect travel times between transceivers. 

The key idea behind using ITS probe vehicles for travel time estimation is that a 

probe vehicle traveling in traffic should be a reasonable representation of the characteristics 

of the traffic.  A sufficiently large number of probe vehicles should be representative of the 

traffic conditions experienced.  There have been several studies discussing the appropriate 
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probe vehicle percentage, as well as reporting frequency to ensure reliable travel time 

estimation (Van Aerde et al. 1993, Turner 1995, Srinvasan and Jovanis 1995, Sen et al. 1997, 

Hellinga and Lu 1999, Chen and Chien 2000, Cheu et al. 2002).   

Van Aerde et al. (1993) developed an analytical expression for the reliability of probe 

vehicle travel times for signalized links and verified these expressions using simulated data.  

This study indicated that as the number of probe vehicles increases, the sample mean 

approaches the population mean.  A similar result was reached by Srinivasan and Jovanis 

(1995), but concluded that the number of probe vehicles increases non-linearly as the 

reliability criterion is made more stringent, and that more probe vehicles are required for 

shorter measurement periods.  A subsequent study by Sen et al. (1997) questioned the 

conclusion reached by Van Aerde et al. (1993) and Srinivasan and Jovanis (1995), and 

concluded that the standard error was not substantially improved by making the number of 

probe vehicles much larger.  All conclusions reached by Van Aerde et al (1993) Srinivasan 

and Jovanis (1995), and Sen et al. (1997) were proved to be correct, but each was appropriate 

only for specific traffic and sampling conditions (Hellinga and Fu 1999).   

Factors that affect the minimum sample size required for probe vehicle travel time 

were also studied.  Based on the examination of probe vehicle travel time data from the 

Houston AVI traffic monitoring system, Turner (1995) recommended the minimum required 

sample size for different roadways in the Houston area, and concluded that the average 

segment speed would be required to estimate the probe vehicle sample sizes.  The coefficient 

of determination, 2R , between the travel time variation and the average speed was found to 

be 0.60, which means that 60% of the variability in travel times can be described as the 

average segment speed.  Subsequent studies showed that other variables might also be used 

for the variation of probe vehicle travel times.  For example, a study by Chen and Chien 

(2000) suggested that link travel time variation depends on traffic demand levels and the 

geometric conditions. 

Due to the limitation of minimum sample size requirements for probe vehicle travel 

time estimation, numerous attempts were made to find alternatives for probe vehicles.  

Sanwal and Walrand (1995) developed a framework for the operation of a scheme using 

moving vehicles as traffic probes.  The evaluation results indicated that the fractions of 

vehicles required to serve as probes is a function of the desired performance.  Some recent 

work performed at the University of Washington developed a method to estimate travel time 

using transit vehicles as probes in which a mass transit tracking system was developed based 
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on the automatic vehicle location data and Kalman filter to estimate vehicle position and 

speed, and thus travel times (Cathey and Dailey 2002, Dailey and Cathey 2002, Cathey and 

Dailey 2003). 

2.2.3 Travel Time Estimation from License Plate Matching  

Estimation of travel time from license plate matching is another common method for 

directly collecting travel time.  It consists of collecting vehicle license plate numbers and 

arrival times at various checkpoints along the roadway.  By matching license plate numbers 

between two consecutive checkpoints, travel times can be calculated from the difference in 

arrival times.  Earlier studies include that performed by Berry and Green (1949) and Berry 

(1952), in which a thorough analysis and comparison of license plate matching and floating 

car and test vehicle techniques was performed.   

Compared with the technologies of test vehicles and ITS probe vehicles, license plate 

matching does not suffer from the concern of sample size because data collection includes a 

large number of vehicles.  However, the number and location of checkpoints should be 

designed along a route varying with the character of the roadway and street network 

configurations.  The FHWA provided a complete, updated list for number and location of 

checkpoints for travel time data collections using license plate matching techniques for both 

arterial and freeway corridor (Turner et al 1998). 

There are various ways for collecting license plates.  Typically, manual, portable 

computer and video can be used.  Manual methods collect license plate numbers via pen and 

paper.  Guidelines for collecting travel time data from the manual collection of license plates 

were provided by Schaefer (1988), in which practical issues and detailed considerations were 

discussed.  Portable computer methods collect license plate numbers in the field using 

portable computers that automatically provide an arrival time stamp.  Such a method drew a 

lot of concerns in the 1990’s.  Studies include those by Rickman et al. (1990) and Washburn 

and Nihan (1997) in Seattle area, and Bailey and Rawling (1991) in Chicago area, Liu and 

Haines (1996) in Seattle, Washington, and Lexington, Kentucky, and Lomax (1997) and 

Turner et al (1994) in Texas around Houston area.  Due to the limitation of under-developed 

technology for transcribing license plates automatically, this method was not commonly used 

until a decade ago with the increasing developments of image recognition technologies.  

From then on, various algorithms for license plate recognition were developed (Shuldiner et 
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al. 1996, Turner and Woodson 1996, Washburn and Nihan 1999, Dailey and Li 2000, Angel 

and Hickman 2002, Gupta et al. 2002, Chang et al. 2004). 

2.3 TRAVEL TIME ESTIMATION FROM TRAFFIC MEASUREMENTS OTHER 

THAN TRAVEL TIMES  

Although direct measures of travel time can be employed to obtain more accurate 

travel time, they have shown several shortcomings: 1) special equipment is commonly 

required which may only cover a small area of the highway system if placed on roadsides, or 

is installed in a low percentage of vehicles; 2) limited data is available; and (3) active 

participation from vehicle owners is generally required, which may compromise personal 

privacy.  With the increasing applications of advanced surveillance technologies, which 

provide traffic flow data enhanced in terms of consistency and efficiency, estimation of travel 

times from aggregated traffic measurements was proposed by a lot. 

Although there are a large number of advanced surveillance technologies that can be 

used to generate traffic measurements, most of them, such as ultrasonic- or infrared-based 

surveillance, provide only point measurements of flow rate, occupancy, and average speed 

(Nam et al. 1996).  Consequently, the methods for travel time estimation were developed 

mostly from these point traffic measurements.   

Methods for estimating travel time from traffic measurements other than travel time 

can be classified into two groups.  One group uses point traffic measurements of flow rate, 

occupancy and average spot speed from dual loop detectors (or similar devices).  The other 

estimates travel time merely by using point traffic measurements of flow rate and occupancy 

from single loop detectors (or similar devices).  

2.3.1 Travel Time Estimation from Dual Loop Detectors 

Dual loop detectors are placed on a freeway a fixed distance apart, approximately 12 

feet, producing a more accurate spot speed estimate between the loop detectors.  Provided 

that the average spots speed over short periods is accurate (if the detector spacing is small) 

estimates of the true travel time can be obtained based upon the known distance between two 

adjacent loop detectors (Coifman 2002, Van Lint and Van Der Zijpp 2004, Chen 2004). 
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A widely used method to estimate travel time from dual loop detector measurements 

is using piece-wise constant speeds.  Assuming an individual vehicle driving on a link during 

period  at a constant speed , the travel time required for the vehicle to pass through the 

link can be described by 

h hV

h

ltt
V

=           (2.1) 

where l  is the link length.  This equation allows one to compute the travel times on the link 

during different periods.  However, the constant speed  may fluctuate among different 

drivers (Van Lint and Van Der Zijpp 2004).   

hV

Since the time-mean speeds averaged over fixed time intervals are provided by the 

dual loop detectors, the individual speeds  are often substituted by a harmonic time-mean 

speed given by (Thijs et al. 1999, Van Der Zijpp and Lindveld 1999, Lindveld et al. 2000, 

Kazimi et al. 2000, Van Lint and Van Der Zijpp 2004) 

hV

1
1 12

( , ) ( 1, )hV
V d h V d h

−
⎛ ⎞

= +⎜ +⎝ ⎠
⎟       (2.2) 

in which the link is considered as the segment enclosed between detector  and , and 

 equals the time-mean speed measured at detector d  during period h .. 

d 1d +

( , )V d h

Lindvels and Thijs (1999) demonstrated that when the time-mean speeds over fixed 

time intervals are stationary, the harmonic time-mean speed is equal to the space-mean speed.  

Otherwise, significant bias might be caused by the difference between the space-mean and 

time-mean speeds.  This may deteriorate the travel time estimation performance.   

Travel time estimation using the piece-wise constant speed results in piece-wise 

speeds over the different roadway links, where vehicles are thought to instantaneously change 

their driving speed once they enter a new roadway link.  In order to utilize the average speed 

in a smoother fashion, a liner function of speed is provided by Van Lint and Van Der Zijpp 

(2004) to substitute the constant speed .  The function is given by  hV

[( )( ) ( , ) ( 1, ) ( , )d

c

x t xV t V d h V d h V d h
l
−

= + + − ]      (2.3) 

where,  
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( )V t : the average spot speed at time  during period ; t h

( )x t : the location of vehicle at time t  during period h  on the link; 

dx : the location of detector . d

Evaluation of the travel time estimation using one-minute aggregated data from 

simulation shows that the method using a linear function of speed outperformed that using the 

harmonic time-mean speed, where residual error is significantly reduced (Van Lint and Van 

Der Zijpp 2004).   

Chen (2004) improved the method by interpolating the average speed as a linear 

function of both distance and time by iteratively calculating the actual link travel times.  First, 

the time mean speeds at detector d  and 1d +  respectively at time t  during period  as a 

function of time can be estimated as 

h

0( , ) ( , 1) [ ( , ) ( , 1)t tV d t V d h V d h V d h
T
−

= − + − −
∆

]     (2.4) 

0( 1, ) ( 1, ) [ ( 1, ) ( 1, 1)t tV d t V d h V d h V d h
T
−

+ = + + + − + −
∆

]

)

   (2.5) 

where, 

( , )V d t : the average spot speed at time  during period  at detector ; t h d

( 1,V d t+ : the average spot speed at time  during period  at detector ; t h 1d +

0t : the starting time of period ; h

T∆ : the duration of report period. 

Second, the time-mean speed is estimated as a function of distance as  

( )( , ) ( , ) [ ( 1, ) ( , )]dx t xV t x V d t V d t V d t
l
−

= + + −     (2.6) 

in which,  is the link length with boundaries at detector  and l d 1d + . 

2.3.2 Travel Time Estimation from Single Loop Detectors 

Single loop detectors are placed on a freeway with random distance apart depending 

upon roadway geometry, and on-ramp and off-ramp locations, etc.  Similar to dual loop 

 14



detectors, only point traffic measurements are provided by single loop detectors.  These 

measurements include flow rate and occupancy over fixed time intervals.   

Previous work for travel time estimation from single loop detectors can be classified 

into two groups: 1) estimating travel time by estimating speed from flow rate and occupancy: 

and 2) directly estimating travel time from flow rate and occupancy without estimating 

average speed. 

2.3.2.1 Travel Time Estimation from Speed Estimation 

A commonly adopted method of estimating average speed from flow rate and 

occupancy is to seek the fundamental relationship among space-mean speed, flow rate and 

occupancy.  Assuming a mean effective vehicle length (MEVL) at detector d  during period 

, the basic form used to describe such relationship among average speed, flow rate, and 

occupancy is given as  

h

( , )( , )
( , ) ( , )
N d hV d h

T o d h g d h
=
∆ × ×

      (2.7) 

where 

( , )V d h : the time-mean speed at detector d  during period ; h

( , )N d h : the vehicles at detector  during period ; d h

T∆ : the duration of report period; 

( , )o d h : the measured average occupancy at detector  during period ; d h

( , )g d h : the mean effective vehicle length at detector d  during period . h

This formulation was first developed in the 1960’s, beginning with an estimator that 

uses a constant MEVL over time to estimate the time-mean speed, based on the assumption 

that occupancy is linearly proportional to density (Athol 1965).  Because of its simplicity, it 

has been applied extensively to estimate the mean speed from single loop outputs (Mikhalkin 

et al. 1972, Gerlough and Huber 1976, Courage et al. 1976, Hall and Persaud 1989, Dailey 

1997, Ishimaru and Hallenbeck 1999, Wang and Nihan 2000, Jia et al 2001, Coifman 2001, 

Eisele (2001), Lin et al. 2003, Van Zwet et al. 2003).  

The process treating MEVL as a constant has been challenged extensively.  Collecting 

data from several traffic stations, Hall and Persaud (1989) plotted MEVL versus occupancy 
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and found that the value of MEVL is not a constant but varies with occupancy.  Jia et al. 

(2001) stated that the constant mean effective vehicle length might result in error in speed 

estimates of more than 50 percent.  The analysis also showed that the mean effective vehicle 

length for the same detector could vary by as much as 50 percent over a 24-hour period.  

Because of this, algorithms have been proposed for estimating dynamic MEVL based on the 

traffic characteristics investigation.  

An example of the use of the dynamic MEVL for the mean speed estimation is given 

by Wang and Nihan (2000).  By collecting traffic flow data from dual loop detectors in which 

the mean effective vehicle length can be directly estimated, the mean effective vehicle length 

was found to be a function of occupancy and flow rate.  The relationship among the mean 

effective vehicle length, flow rate, and occupancy was then applied to the mean speed 

estimation from single loop measurements.  Results indicated that the standard error of the 

mean speed can be improved from 4.17 to 3.47 mph.   

Coifman (2001) presented another example to provide the dynamic value of mean 

effective length for speed estimation.  Assuming the value of free-flow speed of a specific 

freeway, the mean effective vehicle length under uncongested traffic conditions can be 

calculated using equation (2.7). Under congested traffic conditions, the mean effective 

vehicle length was extended from the uncongested traffic conditions.  This method was 

developed based on the verification of little variation of mean effective vehicle length from 

uncongested to congested traffic conditions.   

2.3.2.2 Directly Estimating Travel Time from Single Loop Measurements 

Methods assuming a constant or dynamic mean effective vehicle length may cause 

flawed estimates for average speed.  In order to avoid using the flawed estimate speed for 

travel time estimation, new attempts were made to estimate travel time directly from flow 

measurements. 

The most commonly used method estimates travel time directly from single loop 

measurements by estimating density from the difference of cumulative traffic counts by 

applying the principle of vehicle conservation (Nam and Drew 1996, Chu and Recker 2004).  

Initially proposed by Lighthill and Whitham (1957), the concept of vehicle conservation 

states that the difference between the number of vehicles entering the link and those leaving it 

during the time interval equals to the changes in the number of vehicles traveling on the link 
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(Gerlough and Huber 1975).  In other words, the change of number of vehicle on the roadway 

link over a short time interval equals to the difference of flow rates at upstream and 

downstream stations.  Given a typical roadway link and traffic condition changes, as shown 

in Figure 2.1, the principle of vehicle conservation can be represented in the form (Nam and 

Drew 1996) 

1 2( , ) ( , ) ( ) (f x t t f x t t k t t k t
x t

+ ∆ − + ∆ )+ ∆ −
=

∆ ∆
     (2.8) 

where, 

f : the flow rate(vehicles/hour/lane); 

k : is the density on the link (vehicles/mile/lane); 

x : the location; 

t : the time.  
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Figure 2.1 General Traffic Changes over a Short Link during a Short Time Interval 

 

When  and , the general form of vehicle conservation can be obtained 

(Lighthill and Whitham 1957, Richards 1956) as 

0x∆ → 0t∆ →
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( , ) ( , ) 0f x t k x t
x t

∂ ∂
+

∂ ∂
=         (2.9) 

For a link with detector stations i  and 1i +  at its boundaries, the traffic flow passing 

this link is often estimated as a linear function of the traffic flow passing the upstream and 

downstream station flow rates as 

1(1 )i if f fϖ ϖ += + −                  (2.10) 

where, 

f : the flow rate passing through the link; 

if : the measured flow rate at upstream station i ; 

1if + : the measured flow rate at downstream station 1i + ; 

ϖ : a smoothing parameter. 

Given the density and flow rate of the link during period h , the estimate of travel 

time can be computed based on the relationship f k V= ×  as 

h

h h

l kltt
V f

×
= =                  (2.11) 

where, 

tt :  the travel time on the link; 

l :  the short link length; 

hV : the average speed on the link during period h ; 

hk : the density(vehicles/mile/lane) on the link during period ; h

hf : the flow rate(vehicles/hour/lane) on the link during period . h

In Equation (2.11), the density on the link is obtained from the difference between the 

cumulative traffic counts at the upstream and downstream stations.   

Applications of the principle of vehicle conversation by earlier works usually assume 

the same values for inflow rate and outflow rate at time t  and time t t+ ∆  (Nam and Drew 

1996).  By definition, this is correct only when the link length x∆  and the small change of 

time  approach zero.  In reality, this is not true, and the link length and small change of t∆
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time are often processed as the detector-controlled link length l  and the aggregated interval 

of traffic measurements, both of which might be much larger than zero.  In other words, the 

temporal fluctuations were ignored and spatial fluctuations were only partially considered by 

making such an assumption (Nam and Drew 1996). 

Two other shortcomings have also been shown using the principle of vehicle 

conservation for travel time estimation or other applications (Nam and Drew 1996, Chu and 

Recker 2004).  First, density estimation from the principle of vehicle conservation requires a 

known initial number of vehicles on the link, which is very hard to estimate.  Second, the 

system error in field detectors often causes an unrealistic density in the real world.  Although 

adjustment by introducing a feedback control mechanism can be made to make up under-or 

over-measured traffic counts at the downstream station (Chu and Recker 2004), the full 

system error cannot be completely solved. 

2.4 TRAVEL TIME ESTIMATION FROM DATA FUSION TECHNOLOGIES 

Methods presented so far use data sources from only single surveillance technology 

such as ITS probe vehicle.  Numerous attempts have also been made to estimate travel time 

by fusing data sources from single or multiple technologies to improve the estimation 

accuracy.   

Depending upon the data fusion technologies used, methods for travel time estimation 

from fusing multiple data sources include weighted average models (Tarko and Rouphail 

1993, Barka et al. 1995, Choi and Chung 2001, and Xie et al. 2004), Kalman filtering models 

(Takahashi et al. 1996, Arem et al. 1997, Al_Deek 1998, Pourmollem et al. 2004, and Chu 

and Recker 2004), and historic and real-time profile models (Hoffman and Janko 1990, Rilett 

1992, Boyce et al. 1993, and Tarko et al. 1993). 

The basic idea of weighted average approach is that travel time is estimated by 

assigning different weights to the travel time estimates from different data sources.  A typical 

example of this approach is given by a recent research by Choi and Chung (2001).  Consider 

there are  estimates of travel times with each estimator  given a value at , 

the resulting value of travel time estimation TT  from the weighted average approach is given 

by  

n ( )iTT x 1,2,( )i i nx x ==
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where  is the weight reflecting the reliability of the travel time estimates from a specific 

data sources.  

iw

Kalman filtering approaches focus on the construction of state and measurement 

equations for travel time estimation from different data sources.  Chu and Recker (2004) 

estimates travel times from both ITS probe vehicle data and single loop measurements.  By 

constructing the state and measurement equations using the principle of vehicle conservation, 

and considering the travel time estimate from ITS probe vehicle as the measurement variable, 

travel time estimation accuracy is enhanced from the single loop detector measurements.  

Historical profile approaches assume that historical traffic flow data can be used to 

reflect traffic characteristics over days.  Thus, the classification of days into day types with 

similar profiles can be developed.  Similar to these models, both historical and real time 

profiles are integrated in the neural network models developed by Nelson et al. (1993), 

Rouphail et al. (1993), Florio and Mussone (1994), Hua and Faghri (1994), Blue et al. (1994), 

Pourmollem et al. (1997), Park and Rilett (1998), Park et al. (1998), and Rilett and Park 

(1999) for travel time estimation and prediction.  In all of these studies, historical profiles are 

used for developing the travel time estimation and prediction model.  Based on a well-

developed model, travel time can be estimated or predicted based on the given real-time 

traffic measurements. 

2.5 SHORTCOMINGS OF EXISTING RESEARCH 

Given the extensive availability of traffic data collected by intelligent transportation 

systems, a variety of travel time estimation methods have been developed.  Despite limited 

success under light traffic conditions, traditional corridor travel time prediction methods have 

suffered various drawbacks. 

The first shortcoming is that most of the methods for travel time estimation are 

developed based on data generated by dual-loop detectors which contain average spot speeds.  

However, single-loop detectors (and other devices that emulate its operation) are the most 
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commonly used devices in traffic monitoring systems.  There has not been a reliable 

methodology for travel time prediction based on data generated by such devices due to the 

lack of speed measurements.   

Second, the majority of existing studies focus on travel time estimation instead of 

travel time prediction when using traffic measurements from single loop detectors.  These 

methods merely report the travel time at the time the traffic flow data are collected. Moreover, 

the effect of traffic progression along the freeway has not been considered in the corridor 

travel time prediction process.   

Finally, all the methods for travel time estimation were developed under normal 

conditions or for recurrent congestion.  The performance therein is not good under traffic 

congestion, especially when an incident occurs (Xie et al. 2004).  Sudden changes are often 

observed in traffic measurements, and long, unanticipated delays are often caused by 

accidents where non-recurrent congestion forms.  Although incidents have nearly negligible 

effects on the overall performance of these methods because of the low probability of 

incident occurrence on freeways, they do affect travel times from a traveler’s perspective.  

Existing research on travel time estimation/prediction has given limited attention to the 

integration of incident information.  Among the most relevant work, Cohen (1999) presented 

a method to estimate delay due to accidents as a function of the volume-to-capacity ratio and 

fitted equations in different situations.  However, the equations are not applicable when a 

queue occurs even if there is no incident.  Skabardonis et al. (2003) investigated a 

methodology to measure total recurrent, and non-recurrent (incident related) delay on urban 

freeways using data from loop detectors and calculated the average and the probability 

distribution of delays.  This method is promising, but it merely provides the estimation of 

average incident delay.  For a corridor travel time prediction at different time steps, this 

method is not suitable. 
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CHAPTER 3  

DATA COLLECTION AND PRE-PROCESSING 

The implementation and testing of corridor travel time prediction model requires 

extensive traffic flow data at very detailed levels over a reasonably long corridor with 

corresponding supplementary incident data.  The data collection effort in this case consists of 

two different phases executed simultaneously.  One phase consists of collecting traffic flow 

data that contains flow rate and occupancy.  The other phase consists of collecting incident-

related data.  The data collected in both phases are described in detail in the following sub-

sections.  Data pre-processing including data storage, screening, and imputation for further 

corridor travel time prediction is also described.  

3.1 DESCREPTION OF STUDY CORRIDOR 

The corridor selected for this study is located in the Bay area of California on 

eastbound Interstate-80.  It is a 9.006-mile long corridor in the urban area, consisting of four-

lane freeway sections with abs milepost between 11.95 and 20.956.  This is one of the more 

heavily traveled and heavily congested corridors in this urban area freeway system.  

Commuter traffic predominates during the morning and afternoon peaks, and a number of 

incidents are often observed.  Furthermore, this is a freeway corridor with dual loop detectors 

installed, which not only provide the flow rate and occupancy used for testing the proposed 

methodology, but also provide average spot speed for the model evaluation.  

Along the study corridor, there are a total of 25 vehicle detector stations (VDS) where 

one loop detector is embedded underground per lane at each station.  The distance between 

two consecutive vehicle detector stations varies with a range from 0.05 to 0.91 miles.  A map 

of the Bay area is provided in Figure 3.1 to give an overall view of the location of the study 

corridor, which is denoted by a bold black curve with the origin VDS number 401079 and 

destination VDS number 400865.  
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VDS: 401079

VDS: 400865

 
 

 

Figure 3.1 Study Corridor Map 

3.2 DATA DESCRIPTION  

3.2.1 Flow Data Description 

In order to enhance freeway systems productivity based on real time traffic 

surveillance, traffic flow data including flow rate and occupancy on the study corridor are 

collected and stored by California Performance Measurement System (PeMS) — a system 

that continuously collects and stores data from California embedded lane specific loop 
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detectors, and converts these data into useful information.  By extracting traffic flow data in 

the background, lane-specific traffic flow data are reported to the California PeMS every 30 

seconds.  This data is aggregated at 5-minute intervals.  Both 30-sencond and 5-minute traffic 

flow data can be downloaded from the California PeMS site (ftp://128.32.48.245/) where 

traffic flow data is stored in the format of comma-delimited ASCII text.  In this study, the 5-

minute flow data are selected for the testing of the proposed corridor travel time prediction 

model.  The detailed fields in a typical sample of 5-minute traffic flow data are demonstrated 

in Table 3.1 as follows: 

Table 3.1 Traffic Flow Data File Format 

Column Description 

Time_Stamp 

Start time of the sample, e.g., 01/28/2006 13:00:00.  The 
data is reported by the start time of sampling and not the 
end time of the sample. So for data between 13:00:00 and 
13:05:00 the start time would be 13:00:00. 

VDS_ID Unique identifier of vehicle detector station, e.g. 401079. 
FLOW Flow (vehicles/5-minutes). 
OCCUPANCY Average occupancy as a percentage (0 - 1) 
Speed Flow-weighted average of lane speeds 
VMT Total vehicle miles traveled over this section of freeway 
Q Measure of freeway quality (VMT/VHT) 
TRAVEL_TIME Not in use 
DELAY Vehicle hours of delay 
NUM_SAMPLES Number of samples received in the 5-minute period 

PCT_OBSERVED 
Percentage of individual lane points from working 
detectors that were rolled into the station's 5-minute 
values. 

 

Traffic flow data collected from May 4th, 2006 to July 3rd, 2006 are used for this 

study.  Among the 25 vehicle detector stations, 20 vehicle stations are selected for the testing 

of the corridor travel time prediction system.  The other 5 vehicle detector stations are 

discarded because they were either closed or did not work properly during the data collection 

period.  Configurations of the selected vehicle detector stations and loop detectors are 

described in Table 3.2, which contains VDS identification, loop detector identification, and 

both California and abs mileposts. 

 24

ftp://128.32.48.245/


Table 3.2 Selected Dual Loop Detector Configurations within the Study Corridor 

VDS ID Lane Loop ID CA MP ABS MP VDS ID Lane Loop ID CA MP ABS MP
1 404241 6.64 11.95 1 403477 4.06 17.406 
2 404242 6.64 11.95 2 403478 4.06 17.406 
3 404243 6.64 11.95 3 403479 4.06 17.406 

401079 

4 404244 6.64 11.95 

401228

4 403480 4.06 17.406 
1 404119 7.35 12.66 1 401668 4.2 17.546 
2 404120 7.35 12.66 2 401669 4.2 17.546 
3 404121 7.35 12.66 3 401670 4.2 17.546 401239

4 404122 7.35 12.66 

400081

4 401671 4.2 17.546 
1 401797 0.06 13.406 1 404855 4.3 17.646 
2 401798 0.06 13.406 2 404856 4.3 17.646 
3 401799 0.06 13.406 3 404857 4.3 17.646 401052

4 401800 0.06 13.406 

400770

4 404858 4.3 17.646 
1 402796 0.44 13.786 1 404264 5.5 18.846 
2 402797 0.44 13.786 2 404265 5.5 18.846 
3 402798 0.44 13.786 3 404266 5.5 18.846 401329

4 402799 0.44 13.786 

401243

4 404267 5.5 18.846 
1 401489 1.12 14.466 1 402104 5.94 19.286 
2 401490 1.12 14.466 2 402105 5.94 19.286 
3 401491 1.12 14.466 3 402106 5.94 19.286 401195

4 401492 1.12 14.466 

401209

4 402107 5.94 19.286 
1 405108 1.54 14.886 1 405136 6.2 19.546 
2 405109 1.54 14.886 2 405137 6.2 19.546 
3 405110 1.54 14.886 3 405138 6.2 19.546 401558

4 405111 1.54 14.886 

401260

4 405139 6.2 19.546 
1 403018 2.05 15.396 1 405734 6.57 19.916 
2 403019 2.05 15.396 2 405735 6.57 19.916 
3 403020 2.05 15.396 3 405736 6.57 19.916 400378

4 403021 2.05 15.396 

400976

4 405737 6.57 19.916 
1 403337 2.62 15.966 1 405174 6.89 20.236 
2 403338 2.62 15.966 2 405175 6.89 20.236 
3 403339 2.62 15.966 3 405176 6.89 20.236 400445

4 403340 2.62 15.966 

400838

4 405177 6.89 20.236 
1 403330 2.97 16.316 1 403274 7.29 20.636 
2 403331 2.97 16.316 2 403275 7.29 20.636 
3 403332 2.97 16.316 3 403276 7.29 20.636 400443

4 403333 2.97 16.316 

400430

4 403277 7.29 20.636 
1 402905 3.41 16.756 1 405275 7.61 20.956 
2 402906 3.41 16.756 2 405276 7.61 20.956 
3 402907 3.41 16.756 3 405277 7.61 20.956 401221

4 402908 3.41 16.756 

400865

4 405278 7.61 20.956 
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3.2.2 Incident Data Description 

The website maintained by California Traffic Incident Information System 

(http://cad.chp.ca.gov/) provides valuable information regarding time, location, incident type 

and severity of real-time incidents on the freeway network under surveillance where real-time 

incident information is updated every 1-minute.  The California Incident Information System 

is also integrated in the California PeMS.  Table 3.3 presents a description of the fields from 

the database maintained by PeMS from which data is obtained for this study: 

Table 3.3 Incident Data File Format 

Column Description 
District District number, defined by California PeMS. 
Area County name that an incident happens. 
Freeway Freeway name and its traffic direction. 
Start Incident start time. 
Duration (mins) Time that an incident takes to be cleared. 
CA Postmile CA milepost of an incident on a freeway. 
Abs Postmile Abs milepost of an incident on a freeway. 
Location Description of an incident location, e.g. “EB I80 at I580”. 
Description Description of incident type, e.g. “Disabled vehicle”. 

 

Although the incident information is updated per minute on the website, the incident 

description is found in a text format and is quite ambiguous.  This may degrade the utilization 

of more detailed incident information.  In addition, this description is not integrated in the 

database of California PeMs.  Therefore, excessive manual efforts are required for collecting 

more incident data such as the number of lanes blocked.  In this study, only incident 

information available from the California PeMS database is applied for the corridor travel 

time prediction. 

3.3 DATA PRE-PROCESSING 

Data pre-processing consists of traffic flow data pre-processing and incident pre-

processing for extracting valuable information to test the proposed methodology for corridor 

travel time prediction.  Traffic flow data pre-processing consists of data storage, data 

screening, and data imputation for missing and erroneous data records.  While incident data 

pre-processing consists of extracting valuable information that affect the incident duration. 
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3.3.1 Traffic Flow Data Pre-Processing 

3.3.1.1 Data Storage 

The first step of traffic flow data pre-processing involves data storage for further 

analysis.  The raw data comes into the data server as compressed comma-delimited ASCII 

files which contain individual data for all detectors for each timestamp.  Each can be 

identified by a file name, for example: “5minagg-yyyymmddhhmmss.txt”.   Each file 

contains traffic flow data at a timestamp for all detectors in the district as defined in the 

California PeMS.  Figure 3.2 shows a sample of the ASCII data file, which begins with 

timestamp “02/28/2005 06:00:00” and then follows the data fields of VDS_ID, FLOW, 

OCCUPANCY, SPEED, and so on.  These data files are updated on the PeMS website every 

30-minute.  Given the downloaded ASCII files, traffic flow data on the study corridor are 

extracted and stored in the MySQL database for this study. 

 

 
 

Figure 3.2 Sample of 5-Minute Traffic Flow Data 
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3.3.1.2 Data Screening 

Traffic flow data screening in this study is performed to identify and eliminate 

suspicious or erroneous data such that the accuracy of corridor travel time prediction that 

relies on these data can be improved. 

In this study, a set of data screening criteria are extracted from those developed by 

Lomax et al. (2004) for the mobility monitoring program, in which both consistencies 

between traffic variables, and threshold values for traffic variables are provided.  The data 

screening process consists of 6 tests, as shown in Table 3.4.  The first test checks the volume 

and occupancy values to identify whether data records are missing.  The second test checks 

whether there are duplicate records.  Test 3 checks the volumes to identify whether there are 

continuous identical values.  Test 4 and test 5 check the volume and occupancy values against 

a maximum value threshold.  Test 6 checks the consistency between volume and occupancy. 
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Table 3.4 Data Screening Criteria Used in This Study 

Quality Control Test and 
Description 

Sample Code with 
Threshold Values Action 

Test 1: No vehicles present 
Indicates that no vehicles passed 
the detection zone during the 
detection time period. 

If VOLUME=0 and 
OCC=0 

Assign QC flag to VOLUME 
and OCCUPANCY; set 
VOLUME and 
OCCUPANCY to erroneous 

Test 2: Duplicate records 
Caused by errors in data 
archiving logic or software 
process. 

Detector and date/time 
stamp are identical. 

Remove/delete duplicate 
records. 

Test 3: Consecutive identical 
volume values 
Research and statistical 
probability indicates that 
consecutive runs of identical data 
values are suspect. 
Typically caused by hardware 
failures. 

No more than 8 
consecutive identical 
volume values 

Assign QC flag to VOLUME 
and OCCUPANCY; set 
VOLUME and 
OCCUPANCY to erroneous 

Test 4: Maximum volume 
Traffic flow theory suggests a 
maximum traffic capacity. 

If VOLUME > 250 (5 
min) 
 

Assign QC flag to VOLUME, 
set VOLUME to erroneous 

Test 5: Maximum occupancy 
Empirical evidence suggests that 
all data values at high occupancy 
levels are suspect. 
Caused by detectors that may be 
“stuck on.” 

If OCC > 80% (5 min.) Assign QC flag to VOLUME 
and OCCUPANCY; set 
VOLUME and 
OCCUPANCY to erroneous 
 

Test 6: Multi-variate consistency 
Zero values when occupancy is 
non-zero. 
Unknown cause. 

If VOLUME = 0 and 
OCC > 0 

Assign QC flag to VOLUME 
and OCCUPANCY; set 
VOLUME and 
OCCUPANCY to erroneous 

Sources: Monitoring urban roadways in 2002: using archived operations data for reliability and mobility 

measurement (Lomax et al.  2004) 

 

3.3.1.3 Data Imputation 

The final step of data pre-processing involves imputation and replacement of missing 

and erroneous or suspicious traffic flow data, which is also recommended by ITS as a data 

resource: Preliminary Requirements for a User Service (FHWA 1998). 

A review of existing imputation methods indicate that there are a number of 

imputation methods that can be applied for continuous data.  Considering that the missing 

volumes and occupancy are randomly distributed in the whole data set, the methods of 
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average of surrounding time periods (SurT), average of surrounding detectors (SurD), and 

historic average (Hist) are applied.  The first two methods are developed based on the method 

of temporal and spatial nearest neighbors, respectively.  Comparatively, the method of 

historical average is developed based on the classification method where missing volumes 

and occupancies are imputed from the historic averages for a given time-of-day and day-of-

week.  The priority sequence for implementing these imputation methods is determined as 

SurT, SurD, and Hist based on the research by Chen and Xia (2006).  More details about 

these methods are described as follows. 

Average of Surrounding Time Periods (SurT) 

In this method, the missing value is imputed using the average of its preceding and 

succeeding values.  For example, if the 45th time period flow rate of a Tuesday in February is 

missing, then that flow rate is imputed by the average of 44th time period and 46th time 

period flow rates of the same Tuesday of that week in February.   

Average of Surrounding Detectors (SurD) 

The method of average of surrounding detectors imputes missing flow rates and 

occupancies by averaging the flow rates or occupancies collected at upstream and 

downstream stations during the same period.  For example, if 45th time period flow rate of a 

Tuesday in February is missing, then the missing flow rate is imputed and replaced by the 

average of the flow rates corresponding to the 45th time period of the same Tuesday of 

February of immediate upstream and downstream detectors. 

Historical Average (HIST) 

Historical average mainly uses the available historic data related to the missing values.  

It assumes that the flow rate tend to be stable over time.  In this study, the time of a day and 

the day of a week of the correct data are considered, where the missing flow rate or 

occupancy was imputed and replaced by averaging flow rates or occupancies with the same 

time-of-day and day-of-week.   

3.3.2 Incident Data Pre-Processing 

Incident data pre-processing involves defining the categories for categorical variables 

for further analysis.  In this study, incident type, time of day, and day of week of an incident 

are considered as the potential factors that affected its duration, which is required for further 
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corridor travel time adjustment under an incident.  The categories of these variables are 

defined as shown in Table 3.5.  It is noted that there are more incident types found in the 

incident database maintained by California PeMS, but few incident records on the study 

corridor during the data collection period for this study is found to be related to them.  These 

incident types contained debris, loose animal, pedestrian, and traffic control.  These either 

had little impact on traffic or had known duration.  Therefore, incident types of debris, loose 

animal, pedestrian, and traffic control are not defined in the categories of incident type for 

this study.   

Table 3.5 Definitions of Categories of the Potential Variables 

Variable Category Description 

1 6:00~9:00 and 16:00~19:00 Time of Day 
2 Others 
1 Weekday Day of Week 0 Weekend 
1 Disabled vehicle 
2 Traffic hazard of vehicle 
3 Hit and run 
4 Collision with ambulance responding 
5 Collision with no details 
6 Collision with property damage 

Incident Type 

7 Vehicle fire 
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CHAPTER 4  

DYNAMIC TRAFFIC FLOW PREDICTION 

4.1 OVERVIEW 

The accurate estimation of travel time is valuable for a variety of transportation 

applications such as freeway performance evaluation and real-time traveler information.  

Given the extensive availability of traffic data collected by intelligent transportation systems, 

a variety of travel time estimation methods have been developed.  Despite limited success 

under light traffic conditions, traditional corridor travel time prediction methods have 

suffered various drawbacks.  For example, most of these methods were developed based on 

data generated by dual-loop detectors, which contain average spot speeds.  However, single-

loop detectors (and other devices that emulate its operation) are the most commonly used 

devices in traffic monitoring systems.  There has not been a reliable methodology for travel 

time prediction based on data generated by such devices due to the lack of speed 

measurements.  The majority of existing studies focus on travel time estimation instead of 

prediction.  Additionally, the effect of traffic progression along the freeway has not been 

considered in the travel time prediction process.  Moreover, the impact of incidents on travel 

time estimates has not been effectively accounted for in existing studies.  Much of previous 

work performed to date took no consideration of the incident impacts for the estimation of 

travel time. 

The objective of this dissertation is to develop a methodology for dynamic corridor 

travel time prediction based on continuous data generated by single-loop detectors (and 

similar devices) and incident reports generated by the traffic monitoring system.  This method 

involves multiple-step-ahead prediction for flow rate and occupancy in real time.  A seasonal 

autoregressive integrated moving average (SARIMA) model is developed with an embedded 

adaptive predictor.  This predictor adjusts the prediction error based on traffic data that 

becomes available every five minutes at each station.  Based on this, a corridor travel time 

prediction model is developed integrating the embedded predictor for flow rate and 

occupancy.  In order to incorporate the incident impacts on traffic, a corridor travel time 

adjustment model is also developed by conducting queuing analysis based on the prediction 

of incident duration. 
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The components of the proposed methodology are illustrated in Figure 4.1 to achieve 

the final goal of predicting corridor travel time. 

 

 

Data Pre-Processing

Flow Rate and Occupancy Prediction

Corridor Travel Time Prediction

Corridor Travel Time Adjustment under an
Incident

Final Corridor Travel Time
 

 

Figure 4.1 Components of the Proposed Methodology for Corridor Travel Time 

Prediction 

 

The problem addressed in this chapter is that of dynamic prediction of flow rate and 

occupancy since it is of great importance for further corridor travel time prediction and 

adjustment under an incident.  The rest of this chapter is organized as follows.  Section 4.2 

presents the adoption of SARIMA model for flow rate and occupancy prediction.  Section 4.3 

and section 4.4 present the seasonal operator and short-term operator of the SARIMA model, 

respectively.  Section 4.5 presents the model adequacy analysis.  Section 4.6 presents the 

traffic flow prediction, in which both one-step and multi-step-ahead prediction of flow rate 

and occupancy is performed.  Finally, a summary of traffic flow prediction is presented in 

section 4.7. 
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4.2 ADOPTION OF THE SARIMA MODEL 

The problem of multi-step-ahead prediction of flow rate and occupancy is defined as: 

given 5-minute flow rate and occupancy series [ , ]t t tX f o ′=  up to time step t , to predict 

t mX + , where m  is the number of steps in advance.   

There are various ways to predict future traffic flow values.  Using 15-minute flow 

rate series, Willams (1999) and Guo (2005) provided a thorough analysis of the SARIMA 

model based on the Box-Jenkins approach, and a weekly model SARIMA(1,0,1)(0,1,1)672, 

was identified to be the most suitable for flow rate prediction.  However, both of them 

predicted flow rate values with only one-step in advance, while multiple-step-ahead 

prediction was not proposed.  In this study, a weekly SARIMA model is adopted using 5-

minute flow rate and occupancy series since data for both show weekly seasonality and local 

variation.  As illustrated in Figure 4.2 when using the flow rate data collected at VDS 401079 

between May 6, 2006 and June 2, 2006, we can find daily similarity and instant dynamics in 

both daily and weekly patterns. 
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Figure 4.2 Weekly and Daily Variation in Flow Rate Series 
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Due to the fact that 2016  records of 5-minute traffic flow data were collected for one 

week by a field vehicle detector, this study proposes a SARIMA(1,0,1)(0,1,1)2016 model for 

flow rate and occupancy prediction 

4.2.1 SARIMA Model Introduction 

To introduce a SARIMA model, the key concept of stationarity in time series is 

necessary to be introduced firstly since it is the basic requirement in time series models. 

There are two kinds of stationarity in time series defined as tX : strictly stationary and 

weakly stationary.  A process tX  is strictly stationary if its statistical properties do not 

change over time, i.e. the probability distributions of the process are time-invariant.  While, a 

process tX  is weakly stationary if it satisfies conditions: (1) the expectation of the value of 

tX  is a constant µ  for all t ; (2) the variance of the process given by 

22 ))(()()( tXEXVart tt µσ −==  is a constant for all t ; (3) the covariance of the process 

given by 
1 2 1 21 2 1 2( , ) ( , ) ( ( ))( ( ))t t t tt t Cov X X E X t X tγ µ= = − − µ  is a function of ( 1 2t t− ) only.  

In practice, a time series tX  is very difficult to meet the conditions of strict stationarity.  A 

stationary process herein always refers to a weakly stationary process.  

For stationary time series, the fundamental assumption of time series modeling is that 

the value of the series at time t  depends on the its p  previous values and on a random 

disturbance as defined as  

tptpttt ZXXXX &&K ++++= −−− φφφ 2211      (4.1) 

where },,,{ 21 pφφφ K  are real constants, tZ&&  is the disturbance at time step t , usually modeled 

as a linear combination of a zero-mean white noise process as  

qtqtttt ZZZZZ −−− +++= θθθ K&&
2211       (4.2) 

where q  is the number of past disturbance values, and { }tZ is a white noise process with zero 

mean and variance 2σ .  Constants },,,{ 21 pφφφ K  and },,,{ 21 qθθθ K  are called autoregressive 

(AR) and moving average (MA) coefficients, respectively.  Combining equation (4.1) and 

(4.2), time series tX  can be modeled as  

qtqtttptpttt ZZZZXXXX −−−−−− ++++++++= θθθφφφ KK 22112211  (4.3) 
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This defines a zero-mean autoregressive moving average (ARMA) process of orders 

p  and q  or a ARMA( qp, ).  By introducing the backshift operator B , which is defined by 

jtt
j XXB −= , equation (4.3) can be rewritten as  

t
q

qtttt
p

pttt ZBZBBZZXBXBBXX θθθφφφ ++++=−−−− KK 2
21

2
21   

          (4.4) 

An autoregressive polynomial )(Bφ  can be defined as 
p

p BBBB φφφφ −−−−= K2
211)(  and a moving average polynomial )(Bθ  can be defined as 

q
q BBBB θθθθ ++++= K2

211)( , then equation (4.4) is written in the form of  

tt ZBXB )()( θφ =         (4.5) 

When 0=q , only the AR part of the equation remains.  Equation (4.5) would reduce 

to a pure autoregressive process of order p , denoted by AR( p ).  Similarly, if 0=p , a pure 

moving average process of order q denoted by MA( q ) can be obtained. 

If the series tX  is not stationary, an ARMA model cannot be used directly.  However, 

if the differenced series { : (1 )d
t t tM M B= − X } is stationary, then we can obtain 

tt
d ZBXBB )()()1( θφ =−        (4.6) 

where d  is the order of differencing on tX .  Using the definition of the backshift operator B , 

one order of differencing time series is defined as 1(1 ) t t tB X X X −− = − .  Similarly, two 

orders of differencing of time series is defined as 
2

1 1 1 2 1 2(1 ) (1 )( ) ( ) ( ) 2t t t t t t t t t tB X B X X X X X X X X X− − − − −− = − − = − − − = − − − . 

Equation (4.6) defines an ARIMA process of orders p , d , q , or simply 

ARIMA( qdp ,, ).  When , it is an ARMA model.  Therefore, an ARMA model is a 

special case of the ARIMA model.  

0d =

A SARIMA model is further expanded from an ARIMA model when seasonal or 

cyclic components exist in a time series tX .  A seasonal autoregressive integrated moving 

average process of a time series tX  with regular and seasonal AR orders p  and P , and 

regular and seasonal MA orders q  and Q , is defined as 
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(1 ) (1 ) ( ) ( ) ( ) ( )d s D s s
t tB B B B X B Bφ θ− − Φ = Θ Z     (4.7) 

where, 

B :  the backward shift operator; 

d  and D : the regular and seasonal differencing orders; 

φ  and Φ :  the regular and seasonal AR parameters; 

θ  and Θ : the regular and seasonal MA parameters; 

s : the seasonal process period that a season cycle covers. 

This defines a SARIMA( qdp ,, )( sQDP ),, model.  When 0s = , i.e. there are no 

seasonal trends existing in the process of series tX , a SARIMA model becomes an ARIMA 

model.  Therefore, both ARMA models and ARIMA models are special cases of SARIMA 

models. 

4.2.2 Data Transformation 

After the process of seasonal and regular differencing, traffic flow data series, 

including flow rate and occupancy, is required to be stationary to be fitted in an ARMA 

model.  Unfortunately, real-world data does not often satisfy this condition because of the 

nonlinear relationship or heteroscedasticity in flow rate and occupancy series.  To make the 

traffic flow series tX  “well-behaved”, data transformation is incorporated in flow rate and 

occupancy prediction such that the transformed traffic flow series tY  can be modeled by a 

zero-mean stationary ARMA type of process, after performing the process of seasonal and 

regular differencing. 

In this study, Box-Cox transformation (Box and Cox 1964), a general class of power 

transformations, is applied.  Given the traffic flow series tX , the Box-Cox transformation is 

defined as 

( ) 1 0

ln( ) 0

t

t

t

X forY
X for

λ

λ
λ

λ

⎧ −
≠⎪= ⎨

⎪ =⎩

      (4.8) 

where, 
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tX :  the traffic flow series; 

tY :  the transformed traffic flow series; 

λ :  the transformation parameter; 

The parameter λ  controls the shape of transformation.  If λ =0, it produces a 

logarithmic transformation, while if λ =0.5, it results in a square root transformation. 

The value of λ  is determined by fitting the SARIMA(1,0,1)(0,1,1)2016 model 

typically in a range from -3 to 3 (MathWorks 1994).  The λ  value producing the maximum 

likelihood is reported as the optimal Box-Cox transformation.  Given the observations 1X , 

2X , … , nX , the log-likelihood of original data series tX  is constructed from the log-

likelihood for the transformed traffic flow series tY  as:  

1
l ( ) ( ) ( 1)( ln( )))

n

X Y i
i

l λ
=

⋅ = ⋅ + − ∑ X       (4.9) 

where  is the log-likelihood of the original traffic flow series, ( )Xl ⋅ ( )Yl ⋅  is the log-likelihood 

of the transformed traffic flow series.   

Although the log-likelihood is a continuous function of λ  and the local optimal value 

for λ  can be obtained by solving the differential equation of λ , simple method by specifying 

a range of λ  and trying different λ  values with a small increment difference is often 

performed.  This estimation method is used, because the practical difference between 0.5 and 

0.55, for example, is likely to be very small (MathWorks 1994).  This is also verified by this 

study, in which the range of the λ values is specified from -2 to 2 with an increment change 

of 0.05, and for each λ  value, the log likelihood for the original series are collected.   

At different vehicle detector stations, flow rate and occupancy series produce a 

different value of λ .  The value of λ  merely depends upon the flow rate or occupancy series 

itself at the specific vehicle detector station. 

4.2.3 Model Decomposition 

Following the notations of a SARIMA model, a SARIMA(1,0,1)(0,1,1)2016 model for 

the process of transformed traffic flow series tY  is defined as  
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2016 2016(1 ) ( ) ( ) ( )t tB B Y B Bφ θ− = Θ Z                (4.10) 

where, 

B : the backward shift operator; 

2016: the seasonal process period; 

φ : the short-term AR parameters; 

θ : the short-tem MA parameters; 

Θ : the seasonal MA parameters; 

tZ : the random error or noise. 

The proposed SARIMA(1,0,1)(0,1,1)2016 model can be interpreted as a cascade of a 

seasonal operator and a short-term operator.  The seasonal operator separated from the 

SARIMA(1,0,1)(0,1,1)2016 model is used to extract the seasonal trend in the flow rate and 

occupancy series.  It is characterized by nonzero correlations only at lag 2016 in the form of  

2016 2016(1 ) (1 )t tB Y B− = +Θ W                 (4.11) 

where,  

tW : the random error series from the seasonal operator; 

Θ : the seasonal MA parameters. 

After subtracting the seasonal trend in traffic flow series, the short-term operator is 

interpreted by an ARMA(1,1) model to the seasonally adjusted series .  The short-term 

operator of the proposed SARIMA model is used to capture the local variation in traffic flow 

series in the form of 

tW

tt BWB εθφ )1()1( +=−                 (4.12) 

where,  

tW : the seasonally adjusted series; 

φ :  the short-term AR parameter; 

θ :  the short-tem MA parameter; 

tε :  the random error or noise series output from the short-term operator. 
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4.3 SEASONAL OPERATOR 

Following the notations of a SARIMA model, equation (4.11) can be rewritten as  

2016 2016
t t tY B Y B W W= +Θ + t                (4.13) 

Using the definition of backward shift operator B , it is obtained that 2016
2016t tB Y Y −=  

and 2016
2016t tB W W −= .  Thus, equation (4.13) can be written as 

2016 2016t t tY Y W W− −= +Θ + t                (4.14) 

Since tW  is the random error of the predicted values at time step t , the term 

2016 2016tY M− +Θ t−  is actually the predicted value of tY  due to the process of seasonal operator.  

Let 2016 2016t t tS Y W−= +Θ − , we can obtain t tW Y St= − .  Thus, equation (4.14) can be written in 

an iterative format as  

2016 1 2016( )t t t tS Y S Y− − −= +Θ −                (4.15) 

Equation (4.15) is a standard form of simple exponential smoothing, indicating that 

we can fit a simple exponential smoothing model for the process of the seasonal operator of 

the proposed SARIMA(1,0,1)(0,1,1)2016 model. 

Let 1α = −Θ , equation (4.15) is written as 

2016 2016(1 )t t tS Y Sα α− −= + −                 (4.16) 

This is the final equation for the seasonal operator of the flow rate and occupancy 

prediction model.  The parameter α  is called the smoothing constant with a value between 0 

and 1.  If 1=α , equation (4.16) describes a random walk model, where the predicted value 

tS  simply equals the observed value 2016tY − .  Comparatively, if 0=α , the predicted value tS  

remains the predicted value at time step 2016t − , i.e., .  In this study, the best value for 2016tS −

α  is selected as 0.15 for three reasons.  Firstly, due to the findings in Williams (1999) and 

Williams and Hoel (2003), α is fairly stable at 0.15 across locations.  Secondly, the 

sensitivity analysis conducted by Guo (2005) concludes that different α  values have little 

impact on traffic flow prediction when using SARIMA model.  Additionally, using the 

limited traffic flow data collected on the study corridor, this study also presents a similar 

conclusion where α  is selected as value which results in the smallest mean square error 
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(MSE).  Given the transformed traffic flow series  with observations , tY 1Y 2Y , … , nY , the 

mean square error is calculated as 

2

1
( )

n

i i
i

Y S

n
=

−∑
  

4.4 SHORT-TERM OPERATOR 

Following the notation of an ARMA model, the short-term operator of the proposed 

SARIMA model as described in equation (4.12) can be written in the form of  

tttt WW εθεφ ++= −− 11                  (4.17) 

In this equation, the parameters φ  and θ  are required to be estimated from time to 

time to predict the value of .  In order to estimate these two time-varying parameters, 

adaptive algorithms such as the Kalman filter, least mean square (LMS), and recursive least 

square (RLS) can be adopted.  In mean square sense, the adaptive Kalman filter is optimal 

and it is applied in this study since both LMS and RLS are the special cases of a Kalman 

filter method (Travainen et al. 2003). 

tW

4.4.1 Kalman Filter Design 

The Kalman filter was first introduced in the early of 1960’s (Kalman 1960).  Since 

that time, the Kalman filter has been the subject of extensive research and application, 

particularly in the area of autonomous or assisted navigation (Welch and Bishop 1995).  The 

process of Kalman filtering involves two steps.  First, an estimate of the present state of the 

system is refined based on some observations of the system.  Second, the refined estimate of 

the present state is extrapolated to the next observation by the use of the evolution operator 

(DeSila 2006).  These two steps are repeated when new observations are available. 

The use of Kalman filtering techniques requires deriving a stochastic state-space 

representation of the robot model and of the measurement process.  For our case, the 

measurement equation is derived from the time-varying ARMA(1,1) model to series  in 

the form of 

tW

1 1t t t t tW W tφ θ ε ε− −= + +                 (4.18) 
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where tφ  and tθ  are the time-varying AR and MA parameters, and tε  is the random noise. 

Let [ , ]t t tδ φ θ ′=  and 1 1[ ,t t tW ]ϕ ε− − ′= , equation (4.18) can be written as 

'
t t tW tϕ δ ε= +                   (4.19) 

This equation forms a linear observation model with '
tϕ being the regression vector, 

tε  being the observation error, and tδ  being a state vector.  When there is no prior 

information available, the state vector is typically described as a random walk model in the 

form of  

1t t tδ δ ω+ = +                   (4.20) 

where tω  is the state noise. 

Equations (4.19) and (4.20) form a structure of the general state-space equations for 

the adaptive Kalman filter.  tε  and tω  denote the measurement and state noises with zero 

means, with covariance 
t

Cε  and 
t

Cω , respectively. 

4.4.2 Adaptive Kalman Filter Implementation 

In order to start the process of an adaptive Kalman filter, initialization of tδ , tϕ , 
t

Cε , 

t
Cω , and the state error covariance 

t
Cδ%  are required.  In this study, all the initializations are 

achieved by fitting the one-day seasonally adjusted series  in an ARMA(1,1) model, in 

which both AR and MA parameters 

tW

φ  and θ  are treated as constants, using the maximum 

likelihood method.  Given an ARMA(1,1) model as described in equation (4.12), the log 

likelihood function of the model can be written as  

1
2

1 1( 1 ) ( 1 ) ln( ) ln( )
2 2

nW u W u 2

2
σ

σ
−′− − Σ − − Σ −              (4.21) 

where,  is the number of observations, n 2σ Σ  is the variance of as a function of the φ  and θ  

parameters, • denotes the determinant, u  is the mean, and the vector W  is the time series 

 written as a column vector. tW
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By treating the maximum likelihood estimate (MLE) of 2σ  as 

2 11 ( 1 ) ( 1s W u W
n

−′= − Σ − )u , the log likelihood concentrated with respect to 2σ  can be 

written as  

1 1ln( 1 ) ( 1 ) ln( )
2 2
n W u W u−′− − Σ − − Σ

)

               (4.22) 

Let  be the lower triangular matrix with positive elements on the diagonal such that 

, and e  be the vector .  Equation (4.22) can be written as  

H

H H′ = Σ 1( 1H W u− −

1/ 1/1ln( ' ) ln( ) ln( ' )
2 2 2

nn ne e H H e e H− − = − n              (4.23) 

The MLE is produced by using a Marquardt algorithm (Moré 1978) to minimize the 

sum of squares 1/ 1/'nH e e H n  (SAS 2002). 

After the ARMA(1,1) model is fitted, initializations of tδ ; 
t

Cδ% ; tϕ ; 
t

Cε  are performed.  

tδ  is initialized as the estimates of AR and MA parameters.  
t

Cδ%  is initialized as the AR and 

MA parameter error covariance, which is also provided in the fitness of the ARMA(1,1) 

model.  tϕ  is initialized as the vector of predicted  and the error tW tε .  
t

Cε  is initialized as 

the covariance matrix of the predicted error tε .  
t

Cω  is initialized as 0.95 (Karjalainen 1996). 

The state-space equations can then be readily solved using the well-known time-

update recursions given in Figure 4.3 (Myers and Tapley (1976). 
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Time Update ("Predicted")

Measurement Update ("Corrected")

  (1) priori estimate of state vector

  (2) priori estimate of state error
       covariance

1|
ˆ ˆ
t t tδ δ+ =

1| tt t t
C C Cωδ δ+

= +% %

  (1) Calculate meseurement noise with
        measurement

  (2) Calculate measurement noise covariance

  (3) Compute Kalman gain

  (4) Posterior estimate of state vector

  (5) Posterior estimate of state error covariance

  (6) Compute measurement error

  (7) Update measurement noise covariance

1tW +

'
1 1 1 1|

ˆ
t t t t tWε ϕ δ+ + + += −

1 | 1

' '

1

1 1( )( )
1t i i

n
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n nε δε ε ε ε δ δ

+ −
=

−⎧ ⎫= − − −⎨ ⎬
− ⎩ ⎭∑ %

11| 1|

' ' 1
1 1 1 1( )
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−
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'
1 1( )

t t tt tC I K Cδ δϕ
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Cδ% tϕ t
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Figure 4.3 Adaptive Kalman Filter Operation 

 

In this diagram, n  is a prescribed parameter indicating the memory size.  The 

memory size of the estimator is given by 2
1

n
κ

=
−

, where κ  is the forgetting factor with 

typical values between 0.90 and 1.0 (Tarvainen et al. 2003).  If λ =1.0, n will be infinitely 

large, and both measurement error covariance and stat noise covariance noise will be 
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calculated based on all samples up to time step t .  In this work, a 0.95 value of  is applied, 

and the number of memory size is calculated as 

κ

2 40
1 0.95

=
−

. 

4.5 PROPOSED SARIMA MODEL ADEQUACY ANALYSIS 

Model adequacy analysis is the most important step in the model building sequence.  

It is also one of the most overlooked.  To check whether the proposed 

SARIMA(1,0,1)(0,1,1)2016 model is adequate for 5-minute flow rate and occupancy 

prediction, model adequacy analysis is performed using 19 full days traffic flow series 

collected on the study corridor. 

The model adequacy analysis for the proposed SARIMA model consists of two steps.  

First, the seasonally adjusted series  is inspected through the autocorrelation function 

(ACF) plots to verify that the series are stationary as inputs for an ARMA(1,1) model.  

Secondly, the residual series 

tW

tε  from the short-term operator is checked to verify that they are 

white noise, indicating that there is no need to use a more complicated model on the samples. 

4.5.1 Inspection of Seasonally Adjusted Series  tW

The purpose of the inspection of residual series  is to check whether the series is 

stationary as required by an ARMA(1,1) model through the check of sample autocorrelation 

function (ACF) plots.  The plots are called autocorrelation functions because they show the 

degree of correlation with past values of the series as a function of the number of lags in the 

past at which the correlation is computed. 

tW

The autocorrelation function plots are formed by a vertical axis: autocorrelation 

coefficient and a horizontal axis: time lag L  ( L =1, 2, 3,...).  The autocorrelation coefficient 

is calculated by 0/L LC Cρ = , where LC  is the autocovariance function and 0C  is the variance 

function given by following equations, respectively: 

1

1 ( )(
n L

L i i L
i

C W W W
n

−

+
=

= − −∑ )W               (4.24) 
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2

0
1

1 ( )
n

i
i

C W
n =

= −∑ W                  (4.25) 

where  is the number samples and n W  is the mean of samples. 

Figure 4.4 shows the sample autocorrelation function plots using the seasonally 

adjusted series  at VDS 401079 on May 11, 2006.  This figure shows how values of the 

series are correlated with past values of the series at different lags.  For example, the 

autocorrelation value 0.23213 for lag 1 of the flow rate plots means that the correlation 

between flow rate and the past value at lag 0 is 0.23213.  By examining these plots, one can 

judge whether the series is stationary or not.  If the ACF decays slowly from lag 0 to other 

lags, the series is nonstationary.  Otherwise, it is stationary.  In this case, inspection of the 

autocorrelation function plots indicates that both flow rate and occupancy series after 

removing the seasonal trends are stationary since the ACFs decrease rapidly from lag 0 

(correlation = 1.0) to other lags. 

tW
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Figure 4.4 Autocorrelation Function Plots of the Seasonally Adjusted Series  at VDS 

401079 on May 11, 2006 

tW
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4.5.2 Inspection of Residual Series tε  from the Short-Term Operator 

The purpose of the inspection of residual series tε  from the short-term operator is to 

statistically identify whether the series tε  are uncorrelated (white noise) or contain additional 

information that might be utilized by a more complex model. 

Figure 4.5 shows both flow rate and occupancy residual series output from the short-

term operator using traffic flow data collected at VDS 401079 on May 11, 2006 on the study 

corridor.  Both residual series of flow rate and occupancy seem to be random (i.e. white noise) 

distributed around the value of zero, indicating that an ARMA(1,1) model for capturing the 

local variation in the flow rate and occupancy series might be appropriate.  
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Figure 4.5 Seasonally Adjusted Series of Flow Rate and Occupancy at VDS 401079 on 

May 11, 2006 
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To test whether the residuals series from the ARMA(1,1) model are uncorrelated, a 

value 2 / n±  is used as rough guide to see if the correlations are significant from zero 

(Wolfram Research Inc. 2006).  Figure 4.6 show the autocorrelation plots of the residuals 

series from the ARMA(1,1) model using both flow rate and occupancy data collected at VDS 

401079 May 11, 2006.  Since a full day of traffic flow data consists of a total number of 288 

5-minute traffic flow series, the bound values are calculated as 

2 / 2 / 288 0.1179n± = ± = ± .  The figures show that all sample autocorrelations, except 

those for flow rate at lag 7 and those for occupancy at lag 9 and lag 46, fall inside the bound 

values.  This indicates that both flow rate and occupancy residuals from the ARMA(1,1) 

model appear to be random, and there is no need to utilize a more complex model to capture 

the local variation in the traffic flow series. 
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Figure 4.6 Autocorrelation Plots of the flow rate and Occupancy Residuals from 

ARMA(1,1) Model at VDS 401079 on May 11, 2006 
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Alternatively, the first ξ  correlation values together can be checked and tested to see 

if the first ξ  correlations are significant from zero (null hypothesis) based on the statistics 

2

1
( 2) /(i

i
)j j

ξ

ξ ρ
=

ϒ = + −∑ j i , which has an asymptotic 2χ distribution with p qξ − −  degrees 

of freedom (Wolfram Research Inc. 2006).  At a significance level of 0.05Γ = , if 
2
1 ( )p qξ χ ξ−Γϒ > − − , the null hypothesis is rejected, indicating that an ARMA(1,1) model is 

not adequate for a short-term operator of the proposed model. 

Table 4.1 and Table 4.2 present the 2χ  test results of the autocorrelation of the 

residual series from the ARMA(1,1) model in this study using the traffic flow data collected 

at VDS 401079.  The test statistics accept the no-autocorrelation hypothesis of the residual 

series (all p-values are greater than 0.05).  This means that the residual series from the 

ARMA(1,1) are random (white noise) at a significance level 0.05.  Hence, the ARMA(1,1) 

model is an adequate model for the short-term operator of the proposed SARIMA model for 

flow rate and occupancy prediction. 

Table 4.1 Autocorrelation Check of Flow Rate Residuals from ARMA(1,1) Model at 

VDS 401079 on May 11, 2006 

To Lag Chi-Square DF P-Value Autocorrelation 

6 1.12 4 0.8914 0.000 -0.004 0.009 0.026 -0.055 0.006 
12 10.69 10 0.3820 -0.053 -0.151 0.005 0.062 0.012 -0.055
18 12.93 16 0.6775 -0.003 0.036 0.021 -0.050 -0.002 -0.055
24 16.67 22 0.7815 -0.017 -0.017 0.052 -0.093 -0.007 -0.004
30 18.42 28 0.9151 0.065 -0.001 -0.002 -0.022 0.014 0.025 
36 21.92 34 0.9455 0.031 0.034 -0.071 0.037 -0.044 -0.016
42 25.66 40 0.9617 0.004 0.027 -0.013 0.072 -0.066 0.025 
48 32.31 46 0.9368 0.034 -0.032 -0.046 0.039 -0.038 -0.109

 

 

 

 

 

 

 53



Table 4.2 Autocorrelation Check of Occupancy Residuals from ARMA(1,1) Model at 

VDS 401079 on May 11, 2006 

To Lag Chi-Square DF P-Value Autocorrelation 

6 1.12 4 0.1914 0.002 0.003 -0.101 -0.094 -0.003 0.042 
12 10.69 10 0.0594 -0.034 -0.100 -0.132 0.034 -0.023 0.092 
18 12.93 16 0.0748 0.003 0.096 0.101 -0.031 0.030 -0.041
24 16.67 22 0.1931 -0.003 -0.007 0.052 -0.063 -0.043 -0.016
30 18.42 28 0.4391 -0.021 -0.032 -0.023 -0.013 0.030 -0.006
36 21.92 34 0.4523 0.030 0.098 0.005 0.045 -0.062 -0.038
42 25.66 40 0.3093 -0.073 -0.068 -0.045 -0.028 0.008 -0.125
48 32.31 46 0.4350 0.033 0.071 0.010 0.222 0.040 0.016 

4.6 TRAFFIC FLOW PREDICTION 

The dynamic traffic flow prediction model is tested in this section. The testing 

emphasis consists of one-step-ahead and multi-step-ahead prediction.   

Traffic flow data used in this testing contains 60 full days aggregated flow rate and 

occupancy series collected by all 20 vehicle detector stations on the study corridor.  Station-

specific transformation parameter λ  is estimated using two full months traffic flow data.  

The estimation results are presented in the Appendix A.  For simple exponential smoothing, 

traffic flow data collected between May 4, 2006 and May 10, 2006 are used for initialization, 

in which both flow rate and occupancy prediction series tS due to the process of seasonal 

operator are set to be the transformed series tY .  Traffic flow data collected on May 11, 2006 

are used for the initializations of the adaptive Kalman filtering.  The actual dynamic traffic 

flow prediction starts from May 12, 2006 through July 3, 2006. 

4.6.1 One-Step-Ahead Prediction 

4.6.1.1 Structure of One-Step-Ahead Prediction System  

The structure of the proposed one-step-ahead traffic flow prediction system is 

presented in Figure 4.7.  Note that all symbols in the figure are consistent with those 

described previous sections.  For seasonal operator, both tS  and 1tS +  should be obtained from 

the simple exponential smoothing model.  tS  is used to calculate the seasonally adjusted 

 54



residual tW  for the process of short-term operator.  While the 1tS +  is used for the calculation 

of final predicted value 1
ˆ

tX + .  For short-term operator, the parameters tφ  and tθ  are predicted 

for system update.  Given the parameters tφ  and tθ  , 1
ˆ

tW + is generated for calculating the final 

predicted flow rate and occupancy. 
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Figure 4.7 Structure of Online One-Step-Ahead Traffic Flow Prediction System 
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4.6.1.2 Performance Analysis 

Results Illustration 

A results illustration of the one-step-ahead (5-minute) prediction of flow rate and 

occupancy uses two full days traffic flow data on both weekday (05/17/2006, Wednesday) 

and weekend (05/13/2006, Saturday) at vehicle detectors station 401079, as shown in Figure 

4.8 and Figure 4.9.   
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Figure 4.8 Predicted and Observed Flow Rate at VDS 401079  
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Figure 4.9 Predicted and Observed Occupancy at VDS 401079 
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From these two figures, several observations are found.  Under the lighter traffic 

conditions with flow rates not as large as those collected on Wednesday midday and 

afternoon, sudden changes of flow rate and occupancy between two consecutive time points 

are seldom found, and the predicted flow rates and occupancies match the observed values 

very well.  Comparatively, when sudden changes between two consecutive flow rates and 

occupancies are observed, the worse prediction performance reaches.   This is caused by the 

mechanism of the adaptive Kalman filter.  For recursive algorithms such as the proposed 

adaptive Kalman filtering algorithm, the underlying idea is to calculate the gradient of a cost 

function at time t  under the assumption that the gradient at time 1t − is zero (that is, the 

previous parameter vector is optimal) so that a cost function of the prediction errors is 

minimized (Bohn and Unbehauen 2001).   Taking the flow rates collected from 10:45 to 

11.10 as an example, the observed flow rates at 10:45, 10:50, 10:55, 11:00, 11:05, and 11:10 

are 402 veh/5min, 421 veh/5min, 449 veh/5min, 422 veh/5min, 430 veh/5min, and 427 

veh/5min, respectively, without incidents occurring.  From 10:45 to 10:55, the flow rates 

show an increasing trend.  By capturing this pattern, the Kalman filtering algorithm predicts 

the flow rate at 11:00 with a value 516 veh/5min.  Since the flow rates from 10:55 to 11:00 

decreases from 449 veh/5min to 422 veh/5min, a bad prediction performance reaches at 11:00. 

Flow rate and occupancy prediction at all other vehicle detector stations shows similar 

observations.  This indicates that except for a few random sudden changes occurring in the 

observed measurements, the model can capture the weekly and local variation in flow rate 

and occupancy series. 

Performance Evaluation 

The performance of one-step-ahead flow rate and occupancy prediction at all vehicle 

detector stations is presented in Table 4.3.  It can be seen that the performances of both flow 

rate and occupancy prediction accuracy vary across vehicle detector stations.  The MAPE 

values of flow rate and occupancy prediction range from 7.13% to 10.63% and 9.45% to 

12.49%, respectively.  The worst performance for flow rate and occupancy prediction 

happens at vehicle detector stations 400976 and 401209 with MAPE values of 10.63% and 

12.49%, respectively. 
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Table 4.3 Performance Evaluation of Flow Rate and Occupancy Prediction 

Flow Rate Occupancy 
VDS_ID MAPE 

(%) 
MAE 

(veh/5min)
RMSE 

(veh/5min) 
MAPE 

(%) MAE RMSE 

401079 7.13 22.07 39.52 9.45 0.0063 0.0120 
401239 9.36 23.58 34.24 10.63 0.0037 0.0070 
401052 8.52 23.02 33.03 11.11 0.0064 0.0170 
400329 9.03 21.96 32.79 11.76 0.0074 0.0245 
401195 8.84 23.31 40.53 11.92 0.0085 0.0196 
401558 8.77 23.09 34.29 10.33 0.0061 0.0116 
400378 8.18 17.80 25.77 9.99 0.0038 0.0067 
400445 8.76 23.04 37.11 11.57 0.0084 0.0421 
400443 8.18 22.29 35.60 11.23 0.0088 0.0288 
401221 8.45 24.81 40.03 11.3 0.0088 0.0204 
401228 8.02 21.90 31.25 10.37 0.0065 0.0133 
400081 8.96 22.27 35.34 11.51 0.0069 0.0158 
400770 8.89 22.17 33.81 10.93 0.0054 0.0116 
401243 9.43 24.41 37.81 12.48 0.0084 0.0191 
401209 9.19 22.67 33.54 12.49 0.0083 0.0208 
401260 8.83 22.56 34.43 11.78 0.0076 0.0251 
400976 10.63 20.86 31.41 11.73 0.0065 0.0164 
400838 8.85 22.02 32.42 11.40 0.0077 0.0323 
400430 9.79 24.15 39.75 12.06 0.0072 0.0164 
400865 8.77 22.31 63.62 11.57 0.0078 0.0180 

 

4.6.2 Multi-Step-Ahead Prediction 

There are two ways for predicting values of a variable over several steps: direct multi-

step prediction and iterated multi-step prediction.  Direct multi-step prediction is constructed 

based on the process of treating the several steps as a longer step in horizon (Chevillon and 

Hendry 2004).  However, the number of steps is required to be determined before developing 

a direct multi-step prediction model.  Furthermore, as the number of steps increases, the 

performance of a direct multi-step prediction model may fade rapidly by increasing the step 

size, where the features of the series data existing in finer steps are smoothed.  Comparatively, 

the iterated multi-step prediction model is constructed based on one-step prediction model, 

iterated forward to the desired number of steps in horizon.   

In this study, the iterated multi-step prediction model is applied for two reasons.  First, 

the number of steps m  in advance is required to be predetermined by a direct multi-step 

prediction model.  However, the number of m  cannot be determined because it varies with 

the links of the corridor for the corridor travel time prediction.  Second, only 5-minute flow 
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rate and occupancy in the future are used for the travel time prediction, but a direct multi-step 

prediction model predicts the future values over a longer step.  

4.6.2.1 Iterated Multi-Step Prediction Method 

Seasonal Operator 

Based on the equation (4.16), the multi-step-ahead prediction of the seasonal trends of 

the flow rate and occupancy is defined in the form: 

2016 2016(1 )t m t m t mS Y Sα α+ + − + −= + −                (4.26) 

where m  is the number of steps in advance from current time t .  Since both 2016t mX + −  and 

2016t mS + −  are available at time t , multi-step prediction of the seasonal trends of flow rate and 

occupancy can be obtained. 

Short-Term Operator 

For short-term operator of the SARIMA(1,0,1)(0,1,1)2016 model, an adaptive Kalman 

filter model has been developed.  With repeated substitution into the measurement equation 

1t t tδ δ ω+ = +  for m  times, multiple step prediction of the state vector for the short-term 

operator is obtained as 

1

1
1

ˆ ˆ
m

t m t t i
i

δ δ ω
−

+ +
=

= +∑ +                  (4.27) 

where m  is the number of steps in advance and t̂ mδ +  is the  multi-step predictions of t mδ + at 

time t . 

Similarly, with repeated substitution into the state error covariance 

equation
1| tt t t

C C Cωδ δ+
= +% % for m  times, the expectation of the multi-step-ahead prediction error 

covariance for the time-variant system is given by 

| 1

1

1
t m t t t i

m

i
C C Cωδ δ+ +

−

=

= +∑% % +
                (4.28) 

Equations (4.27) and (4.28) show a cumulative error occurring in both state vector 

prediction and the prediction error covariance.  This is reasonable since the uncertainty 

increases with the increase of the number of steps in advance. 
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Given these calculations, the procedure of AKF can be used for multi-step-ahead 

prediction of the series t mW + . 

4.6.2.2 Structure of Proposed Multi-Step-Ahead Prediction System  

The structure of the proposed multi-step-ahead traffic flow prediction system is 

presented in Figure 4.10.  In this diagram, i  represents the index of number of steps in 

advance, and it is initialized as zero before the algorithm starts.  For seasonal operator, both 

t iS +  and t mS +  should be obtained from the simple exponential smoothing model.  1tS +  is used 

to calculate the seasonally adjusted t iW + from the seasonal operator and thus for the process of 

short-term operator.  t mS +  is used for the calculation of final predicted value ˆ
t mX + .  For the 

process of short-term operator, the time varying parameters of the ARMA(1,1) model are 

updated at all steps 1, 2, …, m .  At the same time, 1
ˆ

tW + , 2
ˆ

tW + ,… ˆ
t mW +  are generated since the 

iterated multi-step prediction is constructed by repeating the process of one-step-ahead 

prediction. 
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Current Observation: Xt+i
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No

Box-Cox Transformation: Yt+i

Short-Term Operator:

       Calculate Residual:
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i = i + 1
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                          Output: ˆ
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Figure 4.10 Structure of Online Multi-Step-Ahead Traffic Flow Prediction System 
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4.6.2.3 Performance Analysis 

To illustrate the prediction accuracy evolution with the increase in number of steps, 

steps from 1 to 15 are tested at vehicle detector station 401079 using two full days’ flow rate 

data collected on May 12, 2006 and May 13, 2006.  The test results are presented in Table  

4.4.   

Table 4.4 Performance of Multi-Step-Ahead Prediction of Flow Rate at VDS 401079 on 

May 12, and May 13, 2006 

Step MAE(veh/5min) MAPE(%) RMSE(veh/5min) 
1 27.69 8.51 37.95 
2 36.26 11.09 49.51 
3 35.68 10.93 47.76 
4 35.83 10.84 47.77 
5 34.86 10.58 46.46 
6 35.08 10.64 46.20 
7 35.10 10.62 46.58 
8 34.78 10.59 45.81 
9 34.83 10.60 46.04 
10 34.99 10.61 46.38 
11 34.69 10.53 45.88 
12 34.53 10.51 45.75 
13 34.7 10.55 45.77 
14 34.46 10.51 45.33 
15 34.73 10.55 45.85 

 

With the increase of number of steps, it is expected that the performance of the multi-

step prediction model fades with increasing uncertainty.  However, the test results do not 

show this expectation.  Although the performance degrades significantly from step 1 to step 2, 

the performance from step 2 to other steps is fairly stable.  Equation 
1

1
1

ˆ ˆ
m

t m t t i
i

δ δ ω
−

+ +
=

= +∑ +  

indicates that the expectation of the parameters of the time-varying ARMA(1,1) model is a 

constant.  With the increase of number of steps in advance, the term 
1

1

m

t i
i
ω

−

+
=
∑  might either 

increase or decrease.  The increasing uncertainty as show in equation (4.28) only increases 

the confidence interval of the predicted value at a given significance level. 
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4.7 SUMMARY 

Using the traffic flow data collected by single loop detectors, this chapter presents a 

dynamic traffic flow prediction model, which can be readily implemented in real time.  This 

method involves multi-step-ahead prediction for flow rate and occupancy in real time.  A 

seasonal autoregressive integrated moving average (SARIMA) model is developed with an 

embedded adaptive predictor.  This predictor adjusts the prediction error based on traffic data 

that becomes available every five minutes at each vehicle detector station.  The involvement 

of multi-step-ahead prediction provides good opportunity for further development of a 

corridor travel time prediction system considering the traffic progression along the corridor, 

which is often ignored by other methods when using traffic measurements from single loop 

detectors. 

Model adequacy is also analyzed using the traffic flow data collected on the study 

corridor.  Testing results show that the proposed model is adequate for dynamic flow rate and 

occupancy prediction.  Performance analysis shows that the proposed model with the 

embedded predictor can provide good estimates of flow rate and occupancy with one or more 

steps in advance. 
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CHAPTER 5  

CORRIDOR TRAVEL TIME PREDICTION WITHOUT 

CONSIDERING INCIDENTS 

5.1 OVERVIEW 

The objective of this chapter is to develop a methodology that integrates the dynamic 

traffic flow predictor in the model development while considering the traffic progression 

along the corridor. 

This proposed methodology involves the multiple-step-ahead prediction of flow rate 

and occupancy and corresponding mean effective vehicle length (MEVL) estimation.  For a 

specific link defined as the freeway segment between two consecutive vehicle detector 

stations, the number of steps varying from link to link is used to account for the traffic 

progression along the corridor for further link travel time prediction.  The final 5-minute-

ahead prediction of corridor travel time is achieved by adding all predicted link travel times. 

5.2 MEVL ESTIMATION 

There are various ways to estimate MEVL using traffic flow data from single loop 

detectors, but the basic idea is to seek the fundamental relationship among the average speed, 

flow rate and occupancy.  The basic form to present such a relationship is given by  

V og
f
×

=          (5.1) 

where  is the mean effective vehicle length, V  is the average speed,  is the occupancy, 

and 

g o

f  is the flow rate.  

It is acknowledged that the mean effective vehicle length varies with traffic conditions 

or time-of-day.  Using a fixed free-flow-speed (FFS), Coifman (2001) estimated the MEVL 

under uncongested traffic conditions using equation (5.1), and extended the predicted MEVL 

to congested time periods.  This requires free-flow-speed to be known.  A free-flow-speed 
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that cannot represent the average speed under light traffic may result in significant errors 

under both uncongested and congested traffic conditions.  

This work adopts Coifman’s approach but incorporates an accurate estimation of free-

flow-speed using traffic flow data from single loop detectors.  The basic assumption of 

Coifman’s approach is that the traffic compositions tend to be stable under congested traffic 

conditions.  This is reasonably accepted and has been verified by Coifman (1996). 

5.2.1 Free-Flow-Speed Estimation 

Free-flow-speed is defined by the Highway Capacity Manual (HCM) as the average 

speed of vehicles on a given facility measured under low-volume conditions, when drivers 

are able to drive at their desired speed and are not constrained by control delays (TRB 2000).  

This indicates that the estimation of FFS requires a low-volume condition on the given 

facility. 

To define the free-flow condition, traffic characteristics have been studied extensively.  

In this study, a nested clustering technique presented by Xia and Chen (2006) is applied for 

classifying freeway operation conditions into different flow phases.  The method is 

advantageous in that it does not require a prior knowledge of the number of clusters.  Stating 

with the set of traffic flow data collected at each vehicle detector station, the number of 

clusters (i.e., subsets of data with distinct traffic characteristics) that these data points should 

be grouped into is automatically determined based on the statistical characteristics of the data. 

Under free-flow traffic conditions, it is observed that almost all heavy vehicles drive 

in the shoulder and/or middle lane.  Seldom do heavy vehicles drive in the median lane.  This 

provides a good opportunity to estimate FFS by using sensor data collected from the median 

lane when we assume that there is no large difference among the speeds at different lanes.  

Knowing that that the mean effective length of an average passenger car is about 20 feet 

(Kwon 2003), we estimate the FFS on the median lane at time step t  by 

t
t

t

f gFFS
o
⋅

=          (5.2) 

where,  

tFFS : the FFS of a given roadway station at time step t ; 

tf :  the flow rate of a given roadway station at time step t  in the median lane; 
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g :  the MEVL of a passenger car; 

to :  the occupancy of a given roadway station at time step t  for median lane.  

The station-specific free-flow-speed can be calculated by 

1

1 n

i
i

FFS FFS
n =

= ∑         (5.3) 

where n  is the number of samples representing the free-flow traffic conditions. 

5.2.2 MEVL Estimation 

The detailed method for the estimation of MEVL presented by Coifman is described 

as follows.  

In the case of free-flow traffic conditions, station-specific MEVL at time step t  is 

calculated by 

ˆ t
t

t

FFS og
f
⋅

=          (5.4) 

where  is the mean effective vehicle length at time step ˆtg t ,  is the estimated station-

specific free-flow-speed,  is the occupancy at time step 

FFS

to t , and tf  is the flow rate. 

In the case of congested conditions, the estimate of MEVL from immediately 

previous uncongested traffic condition is extended.  This is because the traffic compositions 

tend to be stable over short time periods and the MEVL varies little under the congested 

traffic conditions (Cofman 1996).  The stable features of traffic compositions under 

congested traffic conditions is also verified using real vehicle classification data measured in 

2003 on freeways around Louisville, Kentucky.  It is observed that the percentage of vehicles 

other than passenger cars varies significantly during light traffic conditions varying from 4% 

to 11%.  Comparatively, the percentage of vehicles other than passenger cars varies less 

under congested traffic conditions ranging from 4% to 6%.    

The MEVL estimation method can be used for each vehicle detector station 

corresponding to the predicted flow rate and occupancy at time step t . 
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5.3 CORRIDOR TRAVEL TIME ESTIMATION MODEL 

5.3.1 Link Travel Time Derivation 

Figure 5.1 shows a typical corridor link i  between two consecutive vehicle detector 

stations without showing on- and/or off-ramps. , , ,( , , )i t i t i tf o g  and  represent 

flow rate, occupancy, and MEVL entering and exiting the link during time step 

1, 1, 1,( , ,i t i t i tf o g+ + + )

t  at upstream 

station and downstream stations, respectively. 

 

 

l

, , ,( , , )i t i t i tf o g 1, 1, 1,( , , )i t i t i tf o g+ + +

 
 

Figure 5.1 Typical Link of Freeway 

 

Given the flow rate, occupancy, and estimated MEVL at time step , the average spot 

speed at a specific station can be calculated as 

t

ti

titi
ti o

fg
V

,

,,
,

⋅
=          (5.5) 

The travel time of link i  at time step t  can be calculated as the link length divided by 

the space-mean speed .  When ),( tiV 0il → , the link space-mean speed can be approximated 

as the harmonic average spot speeds at stations  and i 1+i  as 

1

,1,

)11(2),( −

+

+=
titi VV

tiV        (5.6) 

The link travel time at time step t  can be represented as 

)11(
2),( ,1, titi

ii

VV
l

tiV
l

tt
+

+==        (5.7) 

Note that in the real world, it is impossible for the link length to approach zero.  

However, it is reasonable to maintain these approximations if the link length  and the il
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reported duration  (5 minutes in this study) of the time step satisfy the condition T∆

5 10 minil T
FFS

< ∆ ≤ −  (Nam and Drew 1996).  

5.3.2 Corridor Travel Time Prediction 

One-step-ahead prediction of corridor travel time at time step 1t +  with traffic 

measurements up to time step t  can be readily obtained by adding all link travel times based 

on the predicted flow rate, occupancy, and corresponding MEVL at time step 1t + .  However, 

this corridor travel time prediction method takes no consideration for traffic progression 

along the corridor.  Since the driver needs some time to arrive at the upstream station of a 

specific link i  from the start point of the corridor, the link travel time should be calculated 

using the predicted traffic measurements at the time step 11 ++ −imt , where  is the 

number of steps that the time covers for the driver arriving at the upstream station of link 

1im −

i .  

The proposed corridor travel time prediction model is used to predict link travel times 

while considering the effects of traffic progression along the corridor.  As shown in Figure 

5.2, suppose that we have a corridor consisting of j  links, and that a driver would like to 

leave the origin of the corridor at time step 1t + .  Let itt  denote the predicted travel time of 

link i  , and iTT  denote the predicted travel time from the start point of the corridor to the 

downstream of link i .  Let 0t  denote the actual time at the end of time step 1t + .  Given the 

traffic measurements up to time step t , the procedure for predicting the corridor travel time at 

time step 1t +  is described as follows. 
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↓

↓

1 1TT tt=

0time t=

0 1t TT+

1 1 2 1...j jTT tt tt tt− −= + + +

0 1jtime t TT −= +

...

↓

0 jtime t TT= +

jtt

 
Figure 5.2 Illustration of Corridor Travel Time Prediction 

 

For the first link of the corridor, only one-step ahead prediction of flow rate and 

occupancy at stations 1 and 2 is required for estimating the corresponding MEVL 1, 1tg +  and 

2, 1tg + , and thus computing the travel time  as  1tt

)11(
2)1,1( 1,21,1

11
1

++

+=
+

=
tt VV

l
tV
ltt       (5.8) 

For the second link of the corridor, it is known that the driver needs time  to 

reach its upstream.  Thus, the flow rate and occupancy at stations 2 and 3 at time step 

1TT tt= 1

2t m+  

are required to be predicted for calculating its travel time, where  is the number of steps 

that  covers.  The number of steps  is obtained by rounding 

2m

1TT 2m 1 1TT
T
+

∆
to an integer. 

Repeat the process of link 2.  The travel times of link 3,4,..., j  can be predicted in 

sequence consistent with the time steps 3t m+ , 4t m+ ,…, jt m+ .  , ,…,  are 3m 4m jm
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calculated by rounding 132 1, 1,..., 1jTTTTTT
T T T

−+ +
∆ ∆ ∆

+

TT tt−= +

 to integers, where , , is 

calculated as iTT  in sequence.  The final predicted corridor travel time is  at 

time step 

iTT 2,3,...,i j=

1i i jTT

1t +  given the flow rate and occupancy measurements up to time step . t

5.4 PERFORMANCE ANALYSIS 

5.4.1 MEVL Estimation 

5.4.1.1 Free-Flow-Speed Estimation Results 

Station-specific free-flow-speeds are estimated using all 3 months of traffic flow data, 

including 5-minute aggregated flow rate and occupancy data, collected for the median lane of 

the study corridor. 

Figure 5.3 presents the two cluster results in the plots of flow rate versus occupancy at 

VDS 400329.  It is observed that a linear relationship exists in the left portion of the diagram, 

indicating light traffic conditions.  While the low-volume and low occupancy as plotted in 

Figure 5.3 represents the free-flow conditions.  Note, in this case, the boundary value 

occupancy and flow rate is about 0.05 and 60~70 veh/5min/lane.  Variation of the plots 

representing the flow-flow traffic conditions also represents the traffic variation under free-

flow traffic conditions. 
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Figure 5.3 Cluster Results in the Plots of Flow Rate versus Occupancy at VDS 400329 

 

Station-specific free-flow-speed estimates and their standard deviations are calculated 

using equation (5-3) and presented in Table 5.1.  It can be seen that the estimates of free-

flow-speeds vary at different vehicle detector stations.  Even for two consecutive vehicle 

detector stations with a short distance between them, the difference between the estimates of 

free-flow-speed may be very large.  Take VDS 400081 and VDS 400770 as examples, the 

distance between them is 0.10 mile, but the estimates of free-flow-speed for daytime are 

65.64 mph and 77.97 mph, respectively. 
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Table 5.1 Results of Free-Flow-Speed Estimation 

Estimated “Actual” 

VDS_ID ABS 
Milepost FFS 

(mph) 

Standard 
Deviation 

(mph) 

FFS 
(mph) 

Standard 
Deviation 

(mph) 
401079 11.95 74.11 6.16 72.59 3.69 
401239 12.66 104.19 5.46 68.97 2.26 
401052 13.406 90.19 7.60 71.04 2.30 
400329 13.786 70.36 5.84 70.15 3.56 
401195 14.466 66.09 6.30 69.61 3.62 
401558 14.886 68.04 7.88 70.36 3.29 
400378 15.396 79.47 4.34 68.06 2.63 
400445 15.966 69.88 5.98 69.89 3.55 
400443 16.316 64.19 5.32 69.54 3.61 
401221 16.756 66.46 6.66 69.69 3.58 
401228 17.406 64.88 3.68 69.76 2.38 
400081 17.546 65.64 5.29 70.67 3.45 
400770 17.646 77.97 5.48 69.64 2.76 
401243 18.846 64.88 5.93 70.46 3.55 
401209 19.286 63.42 6.55 69.90 3.70 
401260 19.546 67.39 7.08 70.14 4.95 
400976 19.916 70.64 5.27 69.83 3.33 
400838 20.236 66.15 6.08 72.71 3.52 
400430 20.636 74.31 6.04 68.93 3.47 
400865 20.956 64.68 6.07 73.09 3.21 

 

The “actual” free-flow speeds are also calculated using the measured spot speeds.  

Comparison between the estimated and actual free-flow speeds shows that the overall 

performance of the free-flow speed estimation is good.  However, at some specific stations, 

such as VDS 401239 and 401052, the estimates of free-flow speed are very poor, largely 

deviating from the actual free-flow speeds.  The check of the traffic flow data shows that the 

data quality is suspicious although they both pass the criteria for flow rate and occupancy 

data screening.  The mean effective vehicle lengths calculated from the measured flow rate, 

occupancy, and spot speed are 13.24 ft and 15.75 ft at VDS 401239 and 401052, respectively.  

Considering the possible data quality problems in estimating free-flow speed, the mean free-

flow speed across all vehicle detector stations is taken for further travel time prediction, as 70 

mph since the mean estimates of free-flow speeds across all vehicle detector stations is about 

71.65 mph. 
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5.4.1.2 MEVL Estimation Results 

The testing of mean effective vehicle length estimation uses traffic flow data from 

May 12, 2006 to July 3, 2006, collected on the study corridor for all vehicle stations.  Actual 

mean effective vehicle lengths are computed using equation (5.1), where the average speed is 

measured from dual loop detectors. 

Table 5.2 presents the estimation performance at all vehicle detector stations based on 

53 full days of traffic flow data.  It is observed that the proposed method has the worst 

performance at VDS 400430.  Its MAPE value under congested traffic conditions is 8.93%.  

In considering that the difference between the estimate and “actual” free-flow speeds (70 

mph and 68.93 mph, respectively) at VDS 400430 is not as large as those stations such as 

VDS 400430 and VDS 400838, the worst performance might be caused by the extension of 

MEVL from uncongested traffic conditions to congested traffic conditions. 

Table 5.2 Performance of MEVL Estimation at All Vehicle Detector Stations 

VDS_ID MAE (ft) MAPE (%) RMSE (ft) 
401079 1.26 5.73 1.71 
401239 0.58 3.88 0.95 
401052 0.77 4.14 1.68 
400329 1.24 5.46 1.86 
401195 1.60 6.61 2.52 
401558 1.26 5.61 1.78 
400378 1.18 6.24 1.58 
400445 1.30 5.70 1.98 
400443 1.56 6.37 2.38 
401221 1.54 6.67 2.50 
401228 0.96 3.95 1.34 
400081 1.34 5.49 1.87 
400770 0.91 4.42 1.48 
401243 1.57 6.46 2.27 
401209 1.63 7.69 2.76 
401260 1.55 6.68 2.13 
400976 1.14 4.96 1.81 
400838 1.72 7.15 2.68 
400430 1.79 8.93 2.36 
400865 1.44 5.66 2.29 
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5.4.2 Corridor Travel Time Prediction 

Testing of the proposed corridor travel time prediction model uses the traffic flow 

data collected from May 4, 2006 to July 3, 2006 on the study corridor.  The traffic flow data 

collected from May 4, 2006 to May 11, 2006 is used to obtain the parameters for stating the 

embedded dynamic traffic flow predictor.  The actual corridor time prediction starts from 

May 12, 2006.  The prediction results from June 1, 2006 to June 30, 2006 are presented in 

Appendix B for further reference in data analysis. 

In order to compare the predicted corridor travel times with the actual corridor travel 

times for performance analysis, actual travel times should be provided.  However, the actual 

travel times are generally not available.  On the other hand, the dual loop detectors embedded 

on the study corridor collect spot speeds from vehicle detector stations at 5-minute 

increments.  Using the measured average spot speed, the actual travel times are computed in 

this study using the method presented by Chen (2004) as described in Chapter 2, Section 

2.3.1.  Research has shown that with intelligent interpolation between the measurement 

locations and times, accurate estimates of the true travel time can be obtained (Coifman 2002, 

Van Lint and Van Der Zijpp 2004). 

5.4.2.1  Structure of Corridor Travel Time Prediction System 

The structure of the proposed 5-minute-ahead corridor travel time prediction system 

integrating the dynamic traffic flow predictor and MEVL estimator is presented in Figure 5.4.  

Note that all symbols in Figure 5.4 are consistent with those described in section 5.2. 
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Traffic Measurements up to Time t Parameters up to Time t

Link i = 1

One-Step-Ahead Prediction of Flow Rate and Occupancy at Stations 1 and 2 at
Time  t

Calculate link 1 Travel Time : tt1

MEVL Estimation at Stations 1 and 2 at Time t +1

Calculate the Travel Time from Station 1 to Station i +1 : TTi

Determination of Number of Steps that TTi Covers:  m

m-Step-Ahead Prediction of Flow Rate and Occupancy at Stations i+1, and  i+2

i = i + 1

i = j +1?
No

Calculate  link i+1 Travel Time: tti+1

Yes

MEVL Estimation at Stations i+1, and  i+2  at Time t + m

Output: TTj  
 

 

 

Figure 5.4 Structure of Online One-Step-Ahead Corridor Travel Time Prediction 

System 
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5.4.2.2 Performance Analysis 

Results Illustration 

Figure 5.5 and Figure 5.6 demonstrate the predicted and actual corridor travel times 

by time-of-day, where a weekend day and a weekday are randomly selected; on Sunday, June 

11, 2006 and Wednesday, June 7, 2006.  In each diagram, the actual and predicted corridor 

travel times are plotted. 
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Figure 5.5 Predicted and Real Corridor Travel Time by Time-of-Day on June 11, 2006, 

Sunday 

 

 

 

 
 

Figure 5.6 Predicted and Real Corridor Travel Time by Time-of-Day on June 7, 2006, 

Wednesday 
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From Figure 5.5, it can be seen that the proposed corridor travel time prediction 

model works well on weekends without a significant difference between the predicted and 

real corridor travel times.  The maximum difference between the predicted and actual travel 

times on June 11, 2006 is 0.41 minutes with predicted and actual travel times of 8.24 minutes 

and 7.83 minutes, respectively. 

On the other hand, a larger difference between the predicted and actual travel times is 

observed on the weekday of June 7, 2006, Wednesday in Figure 5.6.  The maximum 

difference occurs at around 18:30 at ABS milepost 16.63.  Inspection of the incident log 

shows that a traffic collision occurred at that time staring at 17:46 and being cleared at 17:55.  

Correspondingly, the prediction performance becomes worse from 17:50 until 18:45 as 

presented in Table 5.3.  Except for the time at 18:00, the predicted travel times are always 

smaller than the actual one during this period.  This means that the proposed corridor travel 

time prediction method without considering the incident effects tends to underestimate the 

travel times. 

Table 5.3 Predicted and Actual Corridor Travel Time from 17:45 to 18:50 on June 7, 

2006 

Time Predicted Corridor 
Travel Time (min) 

Actual Travel 
Time (min) 

Difference between the Predicted 
and Actual Travel Time (min) 

17:45:00 16.23 17.00 0.77 
17:50:00 15.82 17.00 1.18 
17:55:00 15.29 16.67 1.38 
18:00:00 15.96 15.83 -0.13 
18:05:00 14.55 15.17 0.62 
18:10:00 13.76 14.83 1.07 
18:15:00 13.15 13.83 0.68 
18:20:00 12.09 13.17 1.08 
18:25:00 11.62 12.5 0.88 
18:30:00 10.53 12.17 1.64 
18:35:00 10.96 11.67 0.71 
18:40:00 10.24 11.17 0.93 
18:45:00 9.66 10.67 1.01 
18:50:00 9.70 10.00 0.30 
18:55:00 9.32 9.00 -0.32 
19:00:00 8.18 8.33 0.15 

 

Another big difference between the predicted and actual times is observed at around 

9:25.  Inspection of the incident log indicates that no incident happened at that time.  A check 

of the traffic flow measurements from single loop detectors shows that the difference 
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between the estimate of free-flow speed and measured spot speed leads to the large error in 

corridor travel time prediction. The underestimated corridor travel time is caused by the 

travel time prediction of two consecutive links between vehicle detector stations 401239 and 

400329.  The first link is between VDS 401221 and 401052, and the second link is between 

VDS 401052 and 400329.  Table 5.4 presents the traffic measurements including flow rate, 

occupancy and average spot speed for these stations.  From time 9:20 to 9:35, both flow rates 

and occupancies are very low, and the traffic conditions are classified as free-flow traffic 

conditions. However, when looking at the measured spot speeds, it is found that such 

measured spot speeds are also lower than the estimated free-flow speed.  When using free-

flow speed for link travel time prediction, the underestimated link travel time is obtained.  

Since the overestimated or underestimated free-flow speed is unavoidable because of the 

uncertain factors such as the weather conditions, the overestimated or underestimated 

corridor travel time is also understandable.  

Table 5.4 Traffic Measurements from 9:20 am to 9:35 am at VDS 401239, 401052 and 

400329  

VDS ID Date Time Milepost Flow Rate 
(veh/5min) Occupancy Speed 

(mph) 
401239 2006-06-07 09:20:00 12.66 351 0.0415 68.3 
401239 2006-06-07 09:25:00 12.66 353 0.0428 67.1 
401239 2006-06-07 09:30:00 12.66 378 0.0465 66.8 
401239 2006-06-07 09:35:00 12.66 317 0.0430 62.9 
401052 2006-06-07 09:20:00 13.406 449 0.0687 59.8 
401052 2006-06-07 09:25:00 13.406 448 0.0673 64.4 
401052 2006-06-07 09:30:00 13.406 457 0.0726 64.3 
401052 2006-06-07 09:35:00 13.406 441 0.0683 65.3 
400329 2006-06-07 09:20:00 13.786 283 0.0593 65.5 
400329 2006-06-07 09:25:00 13.786 319 0.0698 63.3 
400329 2006-06-07 09:30:00 13.786 311 0.063 65.1 
400329 2006-06-07 09:35:00 13.786 328 0.065 66.3 

 

Performance Evaluation 

Table 5.5 presents the performance of the corridor travel time prediction model by 

time-of-day using the 30 days of traffic flow data from June 1, 2006 to June 30, 2006.  It is 

observed that the performance of corridor travel time prediction varies from time to time.  

The best performance can be seen at night, while the worst performances are obtained during 

the daytime particularly during afternoon peak periods.  Based on the 30 day corridor travel 
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time prediction results, the worst performance occurs during the period between 16:00 to 

17:00 with the MAE, MAPE, and RMSE values of 1.16 minutes, 9.84%, and 1.64 minutes, 

respectively.  The check of measured traffic flow data indicates that it is a peak afternoon 

period, especially on weekdays, when the mean effective vehicle length is estimated by 

extending the mean effective vehicle length from previous uncongested traffic conditions.  

The other possible reason that causes the large error in corridor travel time prediction is the 

more steps involved in flow rate and occupancy prediction for link travel time prediction in 

the peak period when compared to the off-peak period. 

Table 5.5 Performance of the Corridor Travel Time Prediction by Time of Day 

Time of Day MAE(min) MAPE(%) RMSE(min) 

0:00~1:00 0.21 2.70 0.26 
1:00~2:00 0.27 3.40 0.35 
2:00~3:00 0.34 4.12 0.44 
3:00~4:00 0.43 5.16 0.61 
4:00~5:00 0.50 5.79 0.70 
5:00~6:00 0.46 5.37 0.63 
6:00~7:00 0.46 5.44 0.60 
7:00~8:00 0.57 6.43 0.73 
8:00~9:00 0.74 8.25 0.98 
9:00~10:00 0.56 6.40 0.78 
10:00~11:00 0.55 6.43 0.66 
11:00~12:00 0.56 6.64 0.65 
12:00~13:00 0.51 6.12 0.58 
13:00~14:00 0.56 6.54 0.69 
14:00~15:00 0.57 6.60 0.49 
15:00~16:00 0.71 6.76 1.12 
16:00~17:00 1.16 9.84 1.64 
17:00~18:00 0.91 7.53 1.33 
18:00~19:00 0.63 6.40 0.85 
19:00~20:00 0.21 2.58 0.33 
20:00~21:00 0.21 2.56 0.36 
21:00~22:00 0.32 3.65 0.67 
22:00~23:00 0.18 2.21 0.21 
23:00~24:00 0.15 1.86 0.19 
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5.5 SUMMARY 

Using the traffic flow data collected by single loop detectors (and other devices that 

emulate its operation), this chapter presents a dynamic corridor travel time prediction model, 

which can be readily implemented in real time integrating the dynamic predictor for traffic 

flow prediction.  Traffic progression along corridor is considered by adjusting the number of 

steps for dynamic flow rate and occupancy prediction.  

Testing of the proposed corridor travel time prediction is performed using the traffic 

flow data collected on the study corridor.  Performance results shows that the proposed 

corridor travel time prediction model can capture both the seasonal and local variation of 

traffic flow.  The performance also shows that the proposed model has the best performance 

at light traffic conditions, but degrades for the congested traffic conditions.  The larger error 

in corridor travel time prediction for congested traffic is caused by two reasons.  The first 

reason is less accuracy of MEVL estimation for congested traffic, where the MEVL is 

estimated by extending the estimate of MEVL from previously uncongested traffic.  The 

other reason is more steps are involved in flow rate and occupancy prediction for link travel 

time prediction under congested traffic when compared to uncogested traffic.  
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CHAPTER 6  

CORRIDOR TRAVEL TIME PREDICTION 

CONSIDERING INCIDENTS 

6.1 OVERVIEW 

Once an incident occurs on the freeway and has significant impacts on the traffic, 

traffic begins backing up behind the incident.  The amount and the extent of the backup is a 

function of factors including the approaching traffic volume, number of lanes blocked, 

incident type, time-of-day, day-of-week, etc.  Consequently, the backup of physical queue 

affects corridor travel times.  Chapter 5 demonstrated that the proposed method without 

considering incident impacts for corridor travel time prediction is not fully capable of 

capturing the traffic characteristics under an incident, causing some large difference between 

the actual and predicted corridor travel times within incident influence time.  The limitation 

of the method without considering incidents is that it uses the multiple-step-ahead predicted 

flow rate and occupancy to calculate travel times for those links that are actually affected by 

the incident.  Unfortunately, there is a large difference between the multiple-step-ahead 

predicted and measured flow rate and occupancy because the sudden changes in flow rate and 

occupancy cannot be fully predicted by the dynamic traffic flow predictor. 

As an example, a selected incident occurred at 17:01 on June 30, 2006 on the study 

corridor at milepost 16.43. According to the corridor travel time prediction method, as 

presented in Chapter 5, the travel time prediction for the link, on which the incident occurred, 

involves the prediction of flow rate and occupancy two steps in advance.  At the upstream 

station to the incident, flow rate prediction results indicate that the maximum absolute 

percentage error reaches 31% within the incident influence time.  By using such predicted 

flow rate and occupancy, the predicted link travel time greatly diverges from the “actual” link 

travel time because both flow rate and occupancy prediction are not so accurate as that those 

without incident impacts on traffic. 

In this chapter, a methodology is developed that adjusts the predicted corridor travel 

time within the incident influence time.  This method involves the estimation of incident 

duration from historical incidents colleted on the study corridor, such that the duration of a 

new incident occurring in real time can be predicted.  The proposed method also involves 
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identifying the impact of an incident on traffic.  If an incident significantly affects the traffic, 

the predicted corridor travel time is adjusted.  Otherwise, the predicted corridor travel time is 

not adjusted.  Adjustment of corridor travel time within incident influence time is performed 

based on the queuing analysis. 

6.2 PREDICTION OF INCIDENT DURATION 

Figure 6.1 presents the timeline for the duration of an incident (Hagen 2005).  

Incident duration is the time from the occurrence of the incident until all of the responders 

have left the scene.  It directly determines how long the incident affects the traffic. 

 

INCIDENT DURATION
TIMELINEIncident occurs

Law-enforcement leaces site

Normal traffic flow

Incident Incident verified

Law-enforcement dispatch

Law-enforcement arrive

Requied help arrives

Site clear

Incident Duration

 
 

Figure 6.1 Illustration of Incident Duration 

 

The basic idea of this work, to predict the duration of a new incident in real time, is to 

establish a look-up table, providing estimated incident duration by a set of factors extracted 

from historical incidents.  Duration of an incident in real time is predicted as the duration in 

the look-up table with the same determinant factors. 
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Historical incidents collected on the study corridor provide information on incident 

type, staring time, location, and actual incident duration.  To establish the look-up table, 

potential factors that may affect incident duration are extracted from such information as 

incident type, time-of-day, and day-of-week.  Those factors that have significant impacts on 

the actual incident duration are then identified. 

There are numerous methods for dealing with a problem to identify the great factors 

from a set of continuous and categorical factors.  A multi-way analysis of variance (ANOVA) 

is often used.  This method is also adopted in this study.  Based on the Multi-way ANOVA, 

the median of actual durations of historical incidents grouped by identified factors is obtained 

for constructing the look-up table.  Note that the median, not the mean, of the actual durations 

of grouped incidents is selected because the frequency of actual durations of historical 

incidents on the study corridor show a 2χ  distribution, as shown in Figure 6.2, rather than a 

normal distribution. 
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Figure 6.2 Incident Duration Frequency Distributions on the Study Corridor 

6.3 CORRIDOR TRAVEL TIME ADJUSTMENT UNDER AN INCIDENT  

6.3.1 Identification of Incident Impact on Traffic 

Identification of incident impacts on traffic generally utilizes the variation of traffic 

measurements.  Sudden changes of traffic measurements are usually observed when an 

incident has significant impacts on traffic.  Based on this observation, numerous incident 

detection algorithms were developed to identify an incident from field traffic measurements 

such as flow rate and occupancy (Parkany and Xie 2005, Cheu et al. 1991).  Inversely, an 

incident detection algorithm can be used to determine whether an incident has significant 

impacts on traffic when an incident already exists.  In this study, the basic California 

algorithm, originally developed for incident detection, is applied for such purposes as 

identifying whether an existing incident has significant impacts on traffic in real time.  The 
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basic principle of the algorithm is that an incident will create increased occupancy levels 

upstream of the incident and a decrease downstream (Payne et al. 1976).   

According to the basic California algorithm, an incident occurring on link i  within 

time interval t  is determined to have significant impacts on traffic when traffic measurements 

from field detectors satisfy the conditions as follows. 

The difference between upstream station occupancy ( ) and downstream station 

occupancy ( ) should be greater than the threshold value 0.08; 

,i to

1,i to +

The ratio of the difference in the upstream and downstream occupancies to the 

upstream station occupancy ,

,

i t i t

i t

o o
o

+− 1,  should be greater than the threshold value 0.5; and 

The ratio of the difference in the upstream and downstream occupancies to the 

upstream station occupancy ,

1,

i t i t

i t

o o
o

+

+

− 1,  should be greater than the threshold value 0.16. 

The threshold values introduced in these conditions were calibrated from empirical 

data in the California algorithm.  Only those incidents whose associated traffic flow 

measurements satisfy these conditions are considered as having significant impacts on traffic 

conditions. 

6.3.2 Proposed Method for Corridor Travel Time Adjustment 

6.3.2.1 Introduction 

Assume that an incident occurs at location x  on link i  with upstream and 

downstream stations i  and 1i +  at time 0T  within time interval h .  If the incident is identified 

as having significant impacts on traffic, the corridor is considered to be divided into three 

segments: 1) segment 1 from the origin of the corridor to the back of the queue; 2) segment 2 

occupied by the physical queue; and 3) segment 3 from the bottleneck to the destination of 

the corridor, as illustrated in Figure 6.3.  Correspondingly, the proposed method should 

predict the travel times of these three segments for each time interval. 
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Bottleneck

Segment  2:
Physical queue

Origin DestinationBack of the queue

 Segment 1: Normal
Traffic

Segment 3: Normal
Traffic

L1 L2 L3  
Figure 6.3 Corridor Travel Time Components under an Incident 

 

Denote the lengths of the three segments as 1L , 2L , and 3L , respectively.  Both 1L  

and 2L  vary with time and satisfy 1 0L ≥ and 2 0L > , but 1 2L L+  is constant. 

Although an incident might cause reduced flow on segment 3 such impact is difficult 

to measure, and therefore, the impacts of incidents on traffic on segment 3 are ignored.  

Under this situation, the temporal traffic characteristics at all involved vehicle detector 

stations on segments 1 and 3 can still be captured by the dynamic traffic flow predictor.  Thus, 

the travel time of segments 1 and 3 can be predicted using the same method as presented in 

Chapter 5. 

For segment 2, although the traffic on the links occupied by the physical queue can be 

predicted by the dynamic traffic flow predictor, the predicted flow rate and occupancy may 

greatly differ from the actual flow rate and occupancy when multiple-step-ahead prediction is 

involved.  

6.3.2.2 Proposed Method 

Travel time prediction considering incidents is conducted for each time interval 

between the incident start time 0T  and the time when the incident is cleared.  The proposed 

method is then continued after the incident is cleared until traffic reaches normal flow.  The 

basic idea is to estimate the shock wave speed based on the measured flow rate, occupancy 

up to current time interval, and extend the estimated shock wave speed to the next several 

time intervals such that the links occupied by the physical queue can be identified.  Since the 

traffic in the physical queue is fairly stable over time, the queuing density estimated from 
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current traffic measurements is extended to next time intervals as well for travel time 

prediction for those links occupied the physical queue. 

Again, we assume that an incident occurs on link i  with upstream and downstream 

stations i  and 1i +  at time 0T  during time interval h .  Let tT  denote the end time of the time 

period t , c′Λ  denote the estimated incident duration, and cΛ denote the actual incident 

duration.  For a driver leaving the origin of the corridor at time 1tT + , , with 

traffic observations up to time step t  available, the proposed method for corridor travel time 

adjustment is presented as follows based on the queuing analysis. 

, 1,...t h h= +

Estimation of the Physical Queue Length  

Figure 6.4 presents the time-space diagram of the congestion caused by an incident on 

a corridor without considering the impacts of ramps.   is the physical queue length.  w  is 

the shock wave speed.  The physical queue length changes over time.  The maximum 

physical queue occurs when the approaching flow is smaller than the service flow rate at the 

bottleneck.  The shock wave speed changes over different time intervals as well, depending 

upon the approaching flow and queuing flow, which are unavailable due to the lack of traffic 

measurements on ramps.  On the other hand, the existing shock wave speed can be 

approximated from the changes of physical queue length up to time 

2L

tT  based on the traffic 

measurements at vehicle detector stations along the corridor.  Conversely, such a shock wave 

speed can be used to estimate physical queue length at next time intervals as described 

follows. 
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Figure 6.4 Time-Space Diagram of Congestion Caused by an Incident 

 

(1) Before the incident is actually cleared 

In this case, the actual incident duration cΛ  is unknown, and the incident duration is 

predicted as c′Λ  from the established incident duration look-up table.  At time tT , 

, for a driver leaving the origin of the corridor, there are two possibilities when 

the driver arrives at the back of the physical queue.  The first possibility is that the driver 

arrives at the back of the physical queue before the incident is cleared.  Or, the driver may 

arrive at the back of the physical queue after the incident is cleared.  

0tT T ′< + Λc

For the first scenario, the shock wave speed at the back of the physical queue can be 

estimated as the rate of the physical queue length accumulated over the period from 0T  to tT  

in the form of  

as  

2,

0

t
t

t

L
w

T T
=

−
         (6.1) 

where, 
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tw : the shock wave speed at time tT ; 

2,tL : the physical queue length at time tT ; 

0TTt − : the time taken to form the physical queue. 

The physical queue length  at time 2,tL tT  is estimated as the total length of the 

upstream links that are occupied by the physical queue.  An upstream link is assumed to be 

occupied by the physical queue if the average measured flow rate and estimated density 

satisfy the following conditions: 1) the flow rate is smaller than 2400 vehicle/hour/lane and 2) 

the density is greater than 45 vehicle/minute/lane (TRB 2000).  Given the measured flow rate, 

occupancy, and estimated mean effective vehicle length, the average link density and flow 

rate are estimated in the form of 

1, 2,

2
t

t

k k
k

+
= t          (6.2) 

1, 2,

2
t

t
tf f

f
+

=          (6.3) 

where, 

tk : the estimated link density at time tT ; 

1,tk : the estimated density from traffic measurements at the upstream station of the 

link at time  in the form of tT 1,
1,

1,

5280t
t

t

o
k

g
⋅

= , where  and  are the measured occupancy 

and estimated mean effective vehicle length, respectively;   

1,to 1,tg

2,tk : the estimated density from traffic measurements at the downstream station of the 

link at time  ; tT

tf : the flow rate by averaging the measured flow rates at upstream and downstream 

stations at time ; tT

1,tf : the measured flow rate at the upstream station of the link; 

2,tf : the measured flow rate at the downstream station of the link. 
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The physical queue length at any time  satisfying 1T 1 0tT T T ′c< ≤ + Λ  is estimated by 

extending the estimated shock wave speed tw  to time  in the form of  1T

)()( 0112 TTwTL t −⋅=         (6.4) 

For the second scenario, the driver arrives at the back of the queue at the time that the 

incident is cleared.  Under this situation, the physical queue length at any time , 

, cannot be estimated by equation (6.4) because the shock wave speed 

changes due to the increased capacity at the bottleneck.  However, it can be predicted as the 

physical queue length at time 

1T

0t cT T T′< + Λ < 1

0 cT ′+ Λ  plus the estimated distance the shock wave will travel 

from  to  in the form of 0 cT ′+ Λ 1T

[ ]2 1 2 0 1 0( ) ( ) ( )c t cL T L T w T T′ ′ ′= + Λ + ⋅ − + Λ      (6.5) 

where  is the predicted physical queue length at time 2 0( cL T ′+ Λ ) 0 cT ′+ Λ  when the incident is 

predicted as being cleared,  is the predicted shock wave speed at the physical queue 

between  and  from current time .  The value of  might be zero at some 

time, indicating that at time  there is no physical queue before him.  

tw′

0 cT ′+ Λ 1T tT 2 1( )L T

1T

Assuming that the approaching flow rate and its corresponding density, and the 

density in the physical queue do not change over time, the equation to estimate  at time tw′ tT , 

, is given as 0t cT T T′< + Λ < 1

AQ

A
t kk

fFw
−
−

=′          (6.6) 

where, 

tw′ : the predicted shock wave speed during 0 cT ′+ Λ  and  at time 1T tT ; 

F : the freeway capacity, set as 2400 vehicle/hour/lane in this study; 

Af : the average approaching flow at time tT ; 

Qk :  the density in the physical queue at time tT , which can be estimated as the 

length-weighted average of the link densities in the form of equation (6.2);  

Ak : the density of the approaching flow at time tT .  
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Knowing that  at the back of the physical queue at time tw tT can also be represented 

as d
t

Q A

Af fw
k k
−

=
−

 where df  is the bottleneck capacity at time tT , tw′  is rewritten as  

t
Ad

A
t w

ff
fFw ⋅

−
−

=′         (6.7) 

Equation (6.7) indicates that the approaching flow rate Af  and the bottleneck capacity 

df  are required to be estimated.  In this study, df  is estimated as the mean of the measured 

flow rate from 0T  to tT .  While, Af  is estimated from equation 

0 0 2( ) ( ) ( )A t d t Q tf T T f T T k L T c⋅ − − ⋅ − = ⋅ ⋅      (6.8) 

where c  refers to the number of lanes, 0(A t )f T T⋅ −  refers to the total number of vehicles 

entering the physical queue from  to , and 0T tT )( 0TTf td −⋅  refers to the number of vehicles 

leaving the bottleneck from time  to .  0T tT 0( ) (A t d t 0 )f T T f T T⋅ − − ⋅ −  is the number of 

vehicles in the physical queue, which also can be represented as cTLk tQ ⋅⋅ )(2 . 

(2) After the incident is actually cleared 

Once the incident has been cleared at current time , the shock wave speed can be 

estimated as the physical queue length changes over one time interval in the form of 

tT

T
TLTLw tt

t ∆
−

= − )()( 212         (6.9) 

This shock wave speed can be extend to estimate the physical queue length at any 

time  in next time intervals in the form of 1T

)()()( 1212 ttt TTwTLTL −⋅+=                  (6.10) 

 

Segment Travel Time Estimation  

Given the method to predict the physical queue length at any time in the future, the 

method to adjust the travel times for segments 1, 2 and 3 are given as follows. 
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(1) Travel Time Prediction for Segment 1 

Let 1stt  denote the travel time of segment 1.  The basic idea to predict 1stt  is to use the 

relationship between 1L  and 2L as  

1 1 1 2 1 1 1( ) ( )t s t sL T tt L T tt L+ ++ + + = 2

)

               (6.11) 

where  is the length of segment 1 at time 1 1 1( t sL T tt+ + 1 1t sT tt+ + , 2 1 1( t sL T tt+ )+  is the physical 

queue length at time ,  is the constant representing the distance from the corridor 

origin to the incident location. 

1 1t sT tt+ + 12L

Both  and 1 1 1( )t sL T tt+ + 2 1 1( t sL T tt+ )+  are functions of 1stt .  The approximate solution 

of 1stt  for equation (6.11) is obtained through the steps listed below. 

Step1: initialize link index 1a = . 

Step 2: predict travel times  of link a  and calculate the travel time  from the 

origin of the corridor to station 

att aTT

1a +  using the travel time prediction method 

without considering incident impacts. 

Step 3: predict the physical queue length 2 1( tL T TT+ )a+  at time  using 

equation (6.1) through equation (6.10). 

1tT TT+ + a

2Step 4: if  indicating the driver arrives at the back of the 

physical queue, then go to step 5.  Otherwise, 

2 1 1( )t a aL T TT l L+ + + ≥

1a a= +  and go to step 2. 

Step 5: set 1s att TT= . 

(2)Travel Time Prediction for Segment 2 

Let 2stt  denote the travel time of segment 2.  2stt  is the total travel times of the links 

occupied by the physical.  For a specific link, the travel time can be estimated as 

t

t

l kltt
V f

⋅
= =                   (6.12) 

where, 

l :  the link length; 

V : the average speed; 

tk :  the link density at time ; tT
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tf : the flow rate by averaging the measure flow rates at upstream and downstream 

stations of the link at time . tT

(3) Travel Time Prediction for Segment 3 

Given the predicted 1stt  and 2stt , it is known that the driver passes through the 

bottleneck at time 1 1i sT tt tt+ 2s+ + .  Let 3stt  denote the travel time of segment 3.  3stt  can be 

obtained using the same methods as presented in Chapter 5, consistent with the arrival time at 

each upstream station. 

(4) Corridor Travel Time 

The final corridor travel times affected by the incident are adjusted to 1 2 3s s stt tt tt+ + . 

6.4 PERFORMANCE ANALYSIS 

6.4.1 Structure of Corridor Travel Time Prediction Adjustment System 

The structure of the proposed corridor travel time prediction adjustment system is 

presented in Figure 6.5. 
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Figure 6.5 Structure of Online Corridor Travel Time Prediction Adjustment System 
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6.4.2 Performance Analysis 

6.4.2.1 Incident Duration Estimation 

In order to establish a look-up table to predict the corridor travel time under incident 

situations, 1623 historical incidents on the study corridor are used.  The factors that might 

affect the actual incident duration drawn from the available incident information include 

time-of-day, day-of-week, and incident types.  In order to evaluate the impacts of these 

factors on incident duration, these factors and the actual incident durations are fitted in a 

general univariate linear model, in which a multi-way ANOVA is provided for the 

identification of factors that have impacts on incident duration.   

Table 6.1 presents the multi-way ANOVA results where the potential factors are 

listed in the column “Factor”.  The factors that have impacts on the actual duration are 

identified as day-of-week and incident type, while time-of-day does not have a significant 

impact at a significance level 0.05. 

Table 6.1 Multi-Way ANOVA Results of Incident Duration 

Factor Sum of Squares Degree of 
Freedom Mean Square F-Test P-Value. 

Day-of-week 5113.053 1 5113.053 6.83 .009 
Time-of-day 1368.918 1 1368.918 1.83 .177 
Incident type 20982.688 6 3497.115 4.67 .000 

 

Based on identified factors as day-of-week and incident type, the historic incidents are 

classified into different groups by day-of-week and incident type.  The median and standard 

deviation of the actual durations of each group are obtained as presented in Table 6.2.   
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Table 6.2 Look up Table of Incident Duration 

Day-of-
Week Incident Types Incident 

Duration (min)

Standard Deviation of 
Incident Duration 

(min) 
Disabled Vehicle 10.0 18.2 
Traffic Hazard: Vehicle 12.5 19.2 
Hit and Run 18.0 14.2 
Traffic Collision: Ambulance 
Responding 32.0 31.8 

Traffic Collision: Property 
Damage 14.0 25.5 

Traffic Collision: No Detail 10.0 26.7 

Weekday 

Vehicle Fire 11.0 15.7 
Disabled Vehicle 11.0 15.6 
Traffic Hazard: Vehicle 15.0 18.9 
Hit and Run 44.0 106.0 
Traffic Collision: Ambulance 
Responding 23.0 39.4 

Traffic Collision: Property 
Damage 15.5 51.1 

Traffic Collision: No Detail 17.5 27.0 

Weekend 

Vehicle Fire 4.5 3.5 
 

6.4.2.2 Corridor Travel Time Adjustment 

From June 1, 2006 to June 30, 2006 on the study corridor, there are a total of 52 

incidents.  Among these incidents, 6 incidents are identified that have great impacts on the 

traffic, as described in Table 6.3.  Among the 6 incidents identified as having great impacts 

on traffic, the actual duration of incident 4 is too short to obtain the capacity of the bottleneck 

from the measured flow rate at the immediately downstream station of the incident.  Thus, 

this incident is not considered in the adjustment of predicted corridor travel times.  The 

predicted corridor travel times within the influence time of the remaining 5 incidents are 

adjusted.  The adjustment results for those time intervals within the 5 incident influence time 

are presented in Appendix B. 
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Table 6.3 Incidents Identified as Having Great Impacts on the Traffic 

Inciden
t 

ID 

Start 
Date 

Start 
Time 

Day of 
Week 

Duration
(min) 

Abs 
Milepost

Incident 
Type 

1 2006-06-01 17:01:00 Thursday 27 16.43 Traffic Collision-
Property Damage 

2 2006-06-07 17:46:00 Wednesda
y 9 16.63 Traffic Collision-No 

Details 

3 2006-06-09 15:58:00 Friday 42 18.29 Traffic Collision-
Ambulance Response 

4 2006-06-18 19:45:00 Sunday 2 12.22 Traffic Collision-
Property Damage 

5 2006-06-19 17:19:00 Monday 10 16.10 Traffic Collision- No 
Details 

6 2006-06-30 21:32:00 Saturday 90 13.25 Traffic Collision-No 
Details 

 

Incident 1 occurred at 17:01 on June 1, 2006 at ABS milepost 16.43.  The 

latest time to obtain the estimate of bottleneck capacity is 17:10.  Thus, the predicted 

corridor travel times are considered to be adjusted starting from 17:15.  Figure 6.6 

presents the results of the corridor travel times, in which the actual, predicted without 

and with considering incident impact.  It is observed that the method without 

considering the incident impacts on traffic generally underestimates the actual 

corridor travel times.  Comparatively, the adjustment method generally improves the 

corridor travel times although it still slightly underestimates the actual corridor travel 

times from 17:45 to 18:50.  
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Figure 6.6 Actual, Predicted without and with Adjustment of Corridor Travel 

Times for Incident 1 

 

Illustration of the adjustment method for incident 2 is plotted in Figure 6.7. 

Incident 2 happened at 17:46 on June 7, 2006.  This leads to the latest time to obtain 

the estimate of bottleneck capacity at 17:55.  Thus, the predicted corridor travel times 

are considered to be adjusted starting from 18:00.  Similar to incident 1, the predicted 

corridor travel times are underestimated within the incident influence time before they 

are adjusted.  When compared to incident 1, the occurrence of incident 2 affects the 

traffic greatly when looking at the plots from 17:45 to 17:55, where the big difference 

between the actual and predicted corridor travel times exist. 
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Figure 6.7 Actual, Predicted without and with Adjustment of Corridor Travel 

Times for Incident 2 

 

Figure 6.8 through Figure 6.10 illustrates the corridor travel time adjustment 

of the other three incidents.  Similar to incident 1 and incident 2, all corridor travel 

times are underestimated before the corridor travel times are adjusted.  Note, although 

the actual duration of incident 6 is 90 minutes, its impacts on traffic were not as long 

as its actual duration.    This means that before the incident was cleared at 23:02, the 

traffic conditions had been recovered. 
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Figure 6.8 Actual, Predicted without and with Adjustment of Corridor Travel 

Times for Incident 3 

 

 

 
 

Figure 6.9 Actual, Predicted without and with Adjustment of Corridor Travel 

Times for Incident 5 
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Figure 6.10 Actual, Predicted without and with Adjustment of Corridor Travel 

Times for Incident 6 

6.5 SENSITIVITY ANALYSIS 

Sensitivity analysis helps in quantifying the uncertainty associated with 

estimated model parameters.  Since the proposed corridor travel time prediction 

model predicts corridor travel time by adding all estimates of link travel times, the 

sensitivity analysis in this study is performed on the link travel time function derived 

from equation (5.7) in the form of  

)(
2 22

2

11

1

fg
o

fg
oltt

⋅
+

⋅
=                (6.13) 

where, 

l : the constant of link length; 

1o : the occupancy at upstream vehicle station; 

2o : the occupancy at downstream vehicle station; 

1g : the mean effective vehicle length at upstream vehicle station; 

2g : the mean effective vehicle length at downstream vehicle station; 
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1f : the flow rate at upstream vehicle station; 

2f : the flow rate at downstream vehicle station. 

As seen in equation (6.13), there are three pairs of parameters (i.e., flow rate, 

occupancy, and mean effective vehicle length) in the basic system, and they are 

selected for sensitivity analysis.  Testing of the sensitivity analysis is performed on a 

1.20-mile long link between VDS 400770 and 401243.  

6.5.1 Flow Rate 

Based on equation (6.13), the sensitivity analysis is performed for the 

upstream flow rate using the measured speed (i.e.,  and ), the measured 

occupancy (i.e.,  and ), and the measured downstream flow rate (i.e. 

1V 2V

1o 2o 2f ), and the 

predicted upstream flow rate (i.e. 1̂f ) to calculate the link travel time.  The calculated 

link travel time is then compared to the actual link travel time.   

The sensitivity analysis strategy follows three stages: 1) the different traffic 

conditions are defined by specifying different ranges of occupancy values; 2) the flow 

rate prediction accuracy is set into different groups using the performance measure of 

MAPE under the different traffic conditions; and 3) the MAPE values of link travel 

time prediction results are collected for the different groups of flow rate prediction 

accuracy under the different traffic conditions. 

The sensitivity analysis results to upstream flow rate under different traffic 

conditions are presented in Table 6.4.  It can be observed that the link travel time 

performance is fairly stable across different traffic conditions when occupancy is 

smaller than 0.12.  Comparatively, the performance becomes a little worse when the 

occupancy is greater than 0.12.  This indicates that under uncongested traffic 

conditions, the link travel time is less sensitive to flow rate than under congested 

conditions.  Furthermore, it is also observed that the larger the MAPE of flow rate, the 

worse the link travel time prediction accuracy. 
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Table 6.4 Sensitivity Analysis to Upstream Flow Rate 

Traffic Condition by 
Measured Occupancy (%) 

Flow Rate Prediction 
Accuracy by MAPE (%) 

MAPE of Link Travel 
Time (%) 

0~2 0.057 
2~4 0.174 
4~6 0.306 
6~8 0.352 
8-10 0.443 
10-12 0.592 
12-15 0.693 
15-20 0.981 

0~5 

>20 3.406 
0~2 0.042 
2~4 0.142 
4~6 0.235 
6~8 0.287 
8-10 0.428 
10-12 0.514 
12-15 0.608 
15-20 0.727 

5~8 

>20 3.68 
0~2 0.053 
2~4 0.153 
4~6 0.197 
6~8 0.318 
8-10 0.421 
10-12 0.367 
12-15 0.448 
15-20 0.509 

8~12 

>20 2.032 
0~2 0.065 
2~4 0.285 
4~6 0.323 
6~8 0.488 
8-10 0.666 
10-12 1.156 
12-15 1.312 
15-20 1.364 

>12 

>20 4.231 
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6.5.2 Occupancy 

Using the same sensitivity strategy as flow rate, sensitivity analysis results to 

upstream occupancy are presented in Table 6.5.  It can be observed that the link travel 

time performance is very sensitive to the prediction accuracy of the occupancy.  

However, with the same range of occupancy prediction accuracy, the link travel time 

prediction performance is fairly stable to the occupancy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 108



Table 6.5 Sensitivity Analysis to Upstream Occupancy  

Traffic Condition  
by Measured Occupancy (%) 

Occupancy Prediction 
Accuracy by MAPE (%) 

MAPE of Link 
Travel Time (%) 

0~2 0.383 
2~4 1.242 
4~6 1.653 
6~8 3.082 
8-10 3.837 
10-12 4.756 
12-15 5.821 
15-20 7.556 

0~5 

>20 12.573 
0~2 0.441 
2~4 1.302 
4~6 2.112 
6~8 3.059 
8-10 4.037 
10-12 4.821 
12-15 5.657 
15-20 7.689 

5~8 

>20 13.562 
0~2 0.468 
2~4 1.327 
4~6 1.983 
6~8 3.142 
8-10 3.976 
10-12 4.803 
12-15 5.985 
15-20 7.547 

8~12 

>20 13.214 
0~2 0.438 
2~4 1.232 
4~6 2.218 
6~8 2.978 
8-10 3.856 
10-12 4.645 
12-15 6.043 
15-20 8.431 

>12 

>20 15.346 
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6.5.3 Mean Effective Vehicle Length 

The Results of the sensitivity analysis to upstream mean effective vehicle 

length under different traffic conditions are presented in Table 6-6.  The results show 

that the link travel time performance is very sensitive to the mean effective vehicle 

length.  A worse prediction of mean effective vehicle length leads to worse link travel 

time prediction accuracy.  When compared to the flow rate and occupancy, the 

sensitivity analysis shows that the mean effective vehicle length and occupancy are 

much more sensitive to travel time prediction.  Although the flow rate may also lead 

to bad prediction of travel time, its effects are not as significant as the mean effective 

vehicle length. 
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Table 6.6 Sensitivity of MAPE to Upstream MEVL  

Traffic Condition by 
Measured Occupancy (%) 

MEVL Prediction 
Accuracy by MAPE (%) 

MAPE of Link Travel 
Time (%) 

0~2 0.683 
2~4 1.134 
4~6 2.732 
6~8 3.894 
8-10 4.899 
10-12 5.642 
12-15 7.912 
15-20 8.913 

0~5 

>20 − 
0~2 0.698 
2~4 1.438 
4~6 2.642 
6~8 3.574 
8-10 4.568 
10-12 5.463 
12-15 7.124 
15-20 8.453 

5~8 

>20 − 
0~2 0.842 
2~4 1.654 
4~6 2.492 
6~8 3.536 
8-10 4.442 
10-12 5.532 
12-15 6.605 
15-20 7.786 

8~12 

>20 14.569 
0~2 3.047 
2~4 3.320 
4~6 2.592 
6~8 5.684 
8-10 5.675 
10-12 5.642 
12-15 6.224 
15-20 9.862 

>12 

>20 17.466 
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6.6 COMPARATIVE EVALUATION 

6.6.1 Choice of Algorithms for Comparison 

As described in Chapter 2, Section 2.3.2, generally two groups of methods can 

be used for travel time prediction.   

The first group of methods predicts travel time by predicting the space-mean 

speed.  Assumptions of free-flow-speed and mean effective vehicle length are often 

made by this category of methods.  Furthermore, these methods don’t predict travel 

time but report travel times for the time the traffic flow data was collected. 

The second group of methods estimate travel time from the cumulative traffic 

counts at both upstream and downstream stations, thereby obtaining the density of the 

freeway links.  However, this method requires the estimation of an initial number of 

vehicles on the freeway links.  Furthermore, system errors exist in the collection of 

traffic flow data from field detectors, and are very difficult to adjust.  Figure 6.11 

illustrates a typical phenomenon of cumulative traffic counts caused by system errors 

between the upstream (VDS 401079) and downstream (VDS 401239) stations using 

the measured flow rates on 06/04/2006.  It is observed that the daily difference in 

cumulative traffic counts between two vehicle detector stations is about 14,000 

vehicles, which is too large to be held in the very short freeway link with a length of 

0.71 miles.  Although adjustments by introducing some feedback control mechanism 

can be made to make up under-or over-measured traffic counts at the downstream 

station, the full system error cannot be completely solved.  The worst situation is that, 

at certain time steps, the cumulative traffic counts at upstream and downstream 

stations cannot converge and, thus, lose the ability to estimate the link density.  

Therefore, the second category of travel time prediction methods is not considered in 

this study. 
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Figure 6.11 Cumulative Traffic Count on 06/04/2006 at VDSs 401079 and 401239 

 

Focusing on the first category of corridor travel time prediction methods, two 

methods are selected as alternative methods for comparative evaluation.  

Method 1 reports the corridor travel time for the time the traffic flow data is 

collected.  Therefore, the effects of traffic progression are not considered.  This 

method reports the link travel times by estimating the space-mean speed using 

equation (2.7), and obtains the corridor travel time by adding all link travel times.  

This method was originally used by the Illinois Department of Transportation (IDOT) 

to estimate current travel time on major freeways in the Chicago area using data 

aggregated at 5-minute increments from single loop detectors.  Later research by 

Dailey (1997) used 25.63 ft as the mean effective vehicle length based on six-day 

period estimates to estimate the space-mean speed and thus for travel time estimation.   

Method 2 predicts the corridor travel times, but does not consider the traffic 

progression along the corridor.  The predictor for dynamic traffic flow prediction is 

used for one-step-ahead prediction of flow rate and occupancy. 
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6.6.2 Implementation of Algorithms 

Both alternative methods are tested on the same platform using the same 

datasets to ensure conformity and congruity among these two methods and the 

proposed method.  As an addendum to the descriptions of the algorithms provided in 

the previous section, some more implementation details are provided for ease of 

reference. 

Both methods designed for comparative evaluation estimate space-mean speed 

from flow rate and occupancy in the form of MEVL flowspeed
occupancy

⋅
= .  For method 1, 

mean effective length is directly estimated from current flow rate and occupancy 

using the presented MEVL estimation method.  In the case of the second method, 5-

minute-ahead prediction of flow rate and occupancy are performed using the proposed 

SARIMA model, and thus the corresponding mean effective vehicle length is 

estimated using the proposed MEVL estimation.  Based on this, one-step-ahead 

prediction of all link travel times can be obtained.  For both methods, the corridor 

travel time is obtained by adding all link travel times. 

6.6.3 Performance 

The overall performance of the three methods is presented in Table 6.7.  

Method 1 has the worst performance for prediction accuracy.  When compared to 

method 1, method 2 improves prediction accuracy in terms of MAPE although it 

merely uses one-step-ahead predicted flow rate and occupancy and corresponding 

mean effective vehicle length.  The proposed method in this study produces the best 

performance with the minimum values of MAE, MAPE, and RMSE.  The 

performance results prove that both flow rate and occupancy should be predicted for 

the corridor travel time prediction instead of the reported corridor travel time at the 

time traffic flow was collected.  It also proves that traffic progression should be 

considered in the corridor travel time prediction.  A longer corridor may cause worse 

performance in both methods 1 and 2. 
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Table 6.7 Results of Comparative analysis  

Method MAE(min) MAPE(%) RMSE(min) 
Method 1 1.14 10.24 1.31 
Method 2 0.78 7.16 0.82 
Proposed method 0.49 5.34 0.75 
 

6.7 DESIGN OF THE FULL ON-LINE CORRIDOR TRAVEL TIME 

PREDICTION SYSTEM 

In this section, a full on-line corridor travel time prediction system is 

presented to facilitate the reproducibility of the proposed corridor travel time 

prediction model.  In this system, all methods are integrated including operations data 

screening, flow rate and occupancy prediction, mean effective vehicle length 

estimation, and corridor travel time prediction and adjustment. 

The full on-line corridor travel time prediction system has a modular 

architecture.  The modules are identified as follows: 1) parameter loading; 2) data 

loading; 3) operation data screening; 4) operation data transformation 5) corridor 

travel time prediction; 6) predicted corridor travel time adjustment. 

The module of parameter loading is used to load the parameters that are 

predetermined before real-time implementation of the proposed corridor travel time 

prediction model for different tasks.  The parameters required are list below. 

o Data screening criteria.  These parameters are used for the operations data 

screening; 

o Station-specific data transformation parameters λ  for both flow rate and 

occupancy; 

o Station-specific simple exponential smoothing parameters α  for both flow 

rate and occupancy; 

o Initialization of parameter values for the adaptive Kalman filtering; 

o Station-specific free-flow-speed; 

o Duration of incident by day-of-week and incident type. 

The data loading module obtains the station-specific traffic flow data when a 

new data record becomes available.  Real-time incident information is also loaded.  
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The data screening module is used to determine whether the loaded traffic flow data is 

corrected using the data screening criteria.  The module of data transformation is used 

to transform the loaded traffic data to input the corridor travel time prediction and 

adjustment system.  The module of corridor travel time prediction integrates all the 

methods of multi-step ahead prediction of flow rate and occupancy, mean effective 

vehicle length estimation, and the corridor travel time prediction without considering 

incident.  The predicted corridor travel time adjustment module integrates the 

determination of incident impacts on traffic, incident recovery time prediction, and 

the prediction of corridor travel time under an incident.  This module only works 

when there is existing incident information at the current time.  This module is not 

triggered for a new incident just loaded in the system. 

The full system works in a time-updated style, but always predicts the corridor 

travel time 5 minutes in advance.  The whole structure of the full on-line corridor 

travel time prediction system is presented in Figure 6.12. 
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Figure 6.12 Structure of the Full Online Corridor Travel Time Prediction 

System 
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6.8 SUMMARY 

Due to the fact that the corridor travel times under an incident which 

significantly affects traffic is not predicted as accurate as those incident-free traffic 

conditions, this chapter focuses on the development of a methodology to adjust the 

predicted corridor travel time under an incident based on queuing analysis.  To test 

the proposed method, an incident occurring on the freeway is considered to determine 

whether it has a significant impact on traffic.  If it does affect the traffic, the proposed 

method is applied.  Otherwise, the corridor travel times under such an incident are not 

adjusted.  

Testing of the proposed method is performed on the study corridor staring 

from 06/01/2006 to 06/30/2006.  Performance analysis on the testing results indicates 

that the proposed corridor travel time adjustment method can improve the corridor 

travel time prediction accuracy, although it adjusts the corridor travel times from the 

next step of the occurrence of an incident. 
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CHAPTER 7  

CONCLUSIONS AND FUTURE RESEARCH 

7.1 CONCLUSIONS 

Travel time data is useful for a wide range of transportation analyses including 

congestion management, transportation planning, and traveler information.  Direct 

collection of travel time data through the techniques of test vehicles, ITS probe 

vehicles, and license plate matching is time-consuming and limited to wide 

applications.  With the implementation of ITS deployments, travel time estimation 

and prediction has attracted many concerns about the continuously generated traffic 

measurements from such devices.  Despite limited success under light traffic 

conditions, traditional corridor travel time prediction methods have suffered various 

drawbacks.  There has not been a reliable methodology for travel time prediction 

based on data generated by single loop detectors. 

In this dissertation, a methodology is developed to provide more accurate 

short-term corridor travel time information based on traffic flow data from single loop 

detectors and incident information from traffic monitoring systems.  The proposed 

method uses relationships among traffic variables such as flow rate, occupancy, speed, 

and density, and underlying traffic features over time to calculate link or corridor 

travel time.  As a result, the accuracy of the final results depends upon the 

relationships used for travel time calculation and the investigation of traffic 

characteristics over time.   

Tests of the corridor travel time prediction methodology are conducted on a 

study corridor, and some conclusions can be drawn from the test results.  It is 

concluded that traffic flow can be quite accurately predicted with a weekly SARIMA 

model.  The MAPE values of flow rate and occupancy prediction range from 5.89% to 

7.83% and 5.90% to 7.93%, respectively, across all vehicle detector stations.  It is also 

concluded that the proposed dynamic traffic flow predictor can be used for multiple-

step-ahead prediction of flow rate and occupancy.  Test results show that multiple-

step-ahead prediction performance for flow rate and occupancy degrades little with 
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increased number of steps, which is important for the corridor travel time prediction 

considering the effects of traffic progression along the corridor.   

Testing a corridor travel time prediction method without considering incident 

shows that multiple-step-ahead prediction of flow rate and occupancy under incident 

situations leads to a large difference between the predicted and actual travel times.  

This indicates that the sudden changes in traffic measurements under an incident as 

compared to incident-free conditions cannot be fully captured by the dynamic traffic 

flow predictor, particularly under congested traffic conditions.   

Sensitivity analysis concludes that the occupancy and mean effective vehicle 

length have much more significant impacts on the final corridor travel time 

performance than does flow rate.  This is a potentially fruitful area for future research, 

placing more emphasis on occupancy prediction and the development of more robust 

methods for mean effective vehicle length estimation.   

In summary, the proposed method is able to capture the real-time 

characteristics of traffic and provides more accurate travel time estimates when 

compared to alternative methods.  Particularly, adjustment of the predicted corridor 

travel time enhances the prediction accuracy under an incident.   

7.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

Though this dissertation provides several contributions to transportation 

literature in the area of corridor travel time prediction, there are several areas in which 

future work is needed.   

This dissertation uses aggregated 5-minute traffic flow data as well as incident 

data obtained along a 11.096 mile long California corridor.  Within the testing period, 

the ramp data are unavailable; there is a need for similar work that performs on a 

corridor with ramp data available to incorporate the ramp impacts on traffic behavior.   

The proposed method merely accounts for the temporal characteristics in 

traffic flow data with a seasonal autoregressive integrated moving average (SARIMA) 

model.  Future research might find it useful to take both temporal and spatial 

characteristics in traffic flow measurements into consideration in corridor travel time 
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model development.  This may improve the corridor travel time prediction accuracy 

when using less accurate traffic flow data collected by single loop detectors.   

Furthermore, the relationship between flow rate and occupancy is not 

considered in the model development for dynamic traffic flow prediction.  Attempting 

to include consideration of the relation between flow rate and occupancy might make 

prediction of dynamic traffic flow better.  For example, taking the linear relationship 

between the flow rate and occupancy under light traffic conditions might smooth the 

effects of the sudden changes in consecutive flow rates or occupancies on the flow 

rate and occupancy prediction.  Future work may consider using a new variable (e.g. 

the ratio of flow rate and occupancy) for time series modeling for both link and 

corridor travel time prediction. 

The proposed method for corridor travel time adjustment under an incident 

assumes that the approaching traffic flow of the physical queue does not change over 

time.  An incident may affect traffic for a long time; this assumption may degrade the 

adjustment accuracy.  Future work should be performed to analyze both spatial and 

temporal characteristics of traffic flow at the incident location. 

Finally, testing of the proposed methodology is performed on the samples that 

pass through the data quality screening criteria.  However, some traffic flow data still 

seems abnormal.  It is found that the mean effective vehicle length is smaller than 14 

feet for some traffic flow data when calculated from the measured flow rate, 

occupancy, and average speed.  Related research is needed to develop more robust 

data screening criteria for wide applications of traffic flow data. 
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APPENDIX A OPTIMAL VALUES OF BOX-COX 

TRANSFORMATION PARAMETER 

VDS Flow Rate Occupancy 

401079 0.45 0.15 
401239 0.55 0.25 
401052 0.40 0.00 
400329 0.45 0.10 
401195 0.40 0.05 
401558 0.45 0.15 
400378 0.45 0.25 
400445 0.50 0.10 
400443 0.40 0.10 
401221 0.40 0.05 
401228 0.45 0.25 
400081 0.45 0.15 
400770 0.40 0.15 
401243 0.45 0.10 
401209 0.40 0.15 
401260 0.45 0.15 
400976 0.60 0.15 
400838 0.35 0.05 
400430 0.45 0.10 
400865 0.40 0.10 
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APPENDIX B CORRIDOR TRAVEL TIME PREDICTION AND 

ADJUSTMENT UNDER INCIDENTS 

Table B.1 Corridor Travel Time Prediction and Adjustment under Incident 1 on 

June 1, 2006 Thursday  

TIME 
Actual 

Travel Time 
(min) 

Predicted Corridor 
Travel Time without 

Considering Incident 1 
(min) 

Predicted Corridor 
Travel Time Considering 

Incident 1 (min) 

16:45 12.17 11.49 N/A 
16:50 12.33 11.40 N/A 
16:55 12.17 11.27 N/A 
17:00 12.33 11.54 N/A 
17:05 12.67 11.73 N/A 
17:10 13.00 12.46 N/A 
17:15 13.17 13.39 13.50 
17:20 13.33 13.36 13.55 
17:25 13.17 13.48 13.42 
17:30 12.83 13.14 13.60 
17:35 12.83 12.73 13.30 
17:40 12.67 12.45 13.13 
17:45 13.00 12.24 12.65 
17:50 13.00 12.28 12.65 
17:55 12.50 11.65 11.81 
18:00 12.33 11.27 11.45 
18:05 12.17 11.06 11.49 
18:10 12.00 10.80 11.12 
18:15 11.83 11.05 11.15 
18:20 11.33 10.40 10.87 
18:25 10.83 10.19 10.50 
18:30 10.67 9.85 10.26 
18:35 10.50 9.54 10.37 
18:40 10.17 9.22 9.92 
18:45 10.00 9.07 10.04 
18:50 9.50 8.87 9.73 
18:55 9.17 8.35 8.26 
19:00 9.00 8.13 N/A 
19:05 8.70 8.04 N/A 
19:10 8.67 7.82 N/A 
19:15 8.33 7.64 N/A 
19:20 8.17 7.64 N/A 
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Table B.2 Corridor Travel Time Prediction and Adjustment under Incident 2 on 

June 7, 2006, Wednesday  

TIME 
Actual 

Travel Time 
(min) 

Predicted Corridor 
Travel Time without 

Considering Incident 1 
(min) 

Predicted Corridor 
Travel Time Considering 

Incident 1 (min) 

17:30 14.73 14.11 N/A 
17:35 14.49 14.20 N/A 
17:40 14.99 14.99 N/A 
17:45 15.43 13.14 N/A 
17:50 17.00 14.50 N/A 
17:55 16.67 13.21 14.65 
18:00 15.83 13.53 15.26 
18:05 15.17 13.26 15.00 
18:10 14.83 12.43 14.24 
18:15 13.83 12.12 13.23 
18:20 13.17 11.64 12.95 
18:25 12.50 11.31 12.74 
18:30 12.17 10.92 12.13 
18:35 11.67 10.50 12.20 
18:40 11.17 10.46 11.06 
18:45 10.67 9.78 10.45 
18:50 10.00 9.49 10.35 
18:55 9.50 8.67 9.24 
19:00 8.33 8.1 8.68 
19:05 8.17 7.91 N/A 
19:10 7.83 7.72 N/A 
19:15 7.83 7.69 N/A 
19:20 7.67 7.66 N/A 
19:25 7.67 7.66 N/A 
19:30 7.83 7.65 N/A 
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Table B.3 Corridor Travel Time Prediction and Adjustment under Incident 3 on 

June 9, 2006, Friday  

TIME 
Actual 

Travel Time 
(min) 

Predicted Corridor 
Travel Time without 

Considering Incident 1 
(min) 

Predicted Corridor 
Travel Time Considering 

Incident 1 (min) 

16:00 12.33 10.91 N/A 
16:05 12.00 10.35 N/A 
16:10 11.83 10.56 12.27 
16:15 12.33 10.57 12.35 
16:20 12.83 10.84 12.57 
16:25 13.33 10.55 12.39 
16:30 13.50 11.05 12.91 
16:35 14.00 11.77 13.51 
16:40 14.50 11.58 13.39 
16:45 14.33 11.24 14.59 
16:50 14.50 11.05 14.42 
16:55 14.17 10.83 14.21 
17:00 13.83 10.30 13.72 
17:05 13.83 9.84 12.39 
17:10 14.50 10.11 12.70 
17:15 14.50 13.04 13.06 
17:20 14.50 12.93 12.97 
17:25 14.17 12.75 13.29 
17:30 14.00 13.02 13.28 
17:35 13.67 12.48 12.54 
17:40 13.17 13.25 13.34 
17:45 12.17 11.57 12.08 
17:50 11.67 9.59 10.22 
17:55 11.17 9.43 10.03 
18:00 10.83 9.39 9.97 
18:05 10.50 9.43 9.98 
18:10 10.50 9.40 10.01 
18:15 10.33 9.16 9.78 
18:20 10.17 8.93 9.54 
18:25 10.17 8.65 9.25 
18:30 10.00 8.55 9.16 
18:35 10.00 8.59 9.20 
18:40 9.83 8.70 9.31 
18:45 9.67 8.61 9.24 
18:50 9.17 8.39 9.05 
18:55 8.67 8.23 8.89 
19:00 8.17 8.40 N/A 
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Table B.4 Corridor Travel Time Prediction and Adjustment under Incident 5 on 

June 19, 2006, Monday  

TIME 
Actual 

Travel Time 
(min) 

Predicted Corridor 
Travel Time without 

Considering Incident 1 
(min) 

Predicted Corridor 
Travel Time Considering 

Incident 1 (min) 

17:10 12.00 11.29 N/A 
17:15 12.00 11.43 N/A 
17:20 11.83 11.07 N/A 
17:25 11.67 10.97 11.00 
17:30 12.00 10.81 10.83 
17:35 11.83 10.96 10.97 
17:40 11.67 10.29 10.52 
17:45 11.33 10.53 10.74 
17:50 11.17 9.37 9.89 
17:55 11.00 9.06 9.75 
18:00 10.50 8.72 9.56 
18:05 10.00 8.31 9.17 
18:10 10.00 8.24 9.11 
18:15 10.00 8.41 9.33 
18:20 10.00 7.94 8.28 
18:25 9.67 7.91 8.14 
18:30 9.50 7.65 N/A 
18:35 9.17 7.65 N/A 
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Table B.5 Corridor Travel Time Prediction and Adjustment under Incident 3 on 

June 30, 2006, Friday  

TIME 
Actual 

Travel Time 
(min) 

Predicted Corridor 
Travel Time without 

Considering Incident 1 
(min) 

Predicted Corridor 
Travel Time Considering 

Incident 1 (min) 

21:30 10.17 9.70 N/A 
21:35 9.50 8.91 N/A 
21:40 10.00 10.11 N/A 
21:45 9.67 9.89 9.89 
21:50 9.50 8.15 9.89 
21:55 9.17 8.35 9.89 
22:00 9.00 8.13 8.91 
22:05 8.67 7.91 N/A 
22:10 8.33 7.65 N/A 
22:15 8.00 7.64 N/A 
22:20 8.00 7.66 N/A 
22:25 8.00 7.69 N/A 
22:30 8.00 7.68 N/A 
22:35 8.17 7.67 N/A 
22:40 8.17 7.69 N/A 
22:45 8.00 7.67 N/A 
22:50 8.00 7.66 N/A 
22:55 8.00 7.66 N/A 
23:00 7.83 7.66 N/A 
23:05 7.83 7.66 N/A 
23:05 10.17 9.70 N/A 
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