14,328 research outputs found

    The DRIVE-SAFE project: signal processing and advanced information technologies for improving driving prudence and accidents

    Get PDF
    In this paper, we will talk about the Drivesafe project whose aim is creating conditions for prudent driving on highways and roadways with the purposes of reducing accidents caused by driver behavior. To achieve these primary goals, critical data is being collected from multimodal sensors (such as cameras, microphones, and other sensors) to build a unique databank on driver behavior. We are developing system and technologies for analyzing the data and automatically determining potentially dangerous situations (such as driver fatigue, distraction, etc.). Based on the findings from these studies, we will propose systems for warning the drivers and taking other precautionary measures to avoid accidents once a dangerous situation is detected. In order to address these issues a national consortium has been formed including Automotive Research Center (OTAM), Koç University, Istanbul Technical University, Sabancı University, Ford A.S., Renault A.S., and Fiat A. ƞ

    Guidelines for the Use of Synthetic Fluid Dust Control Palliatives on Unpaved Roads

    Get PDF
    The amount of small soil particles, dust, lost from typical unpaved roads to fugitive dust is staggering. A 1 km stretch of unpaved road can contribute over 2400 kg of dust to the atmosphere (4.2 ton/mile) in a typical 3-month summer season. Road managers typically manage dust from unpaved roads with various dust-control palliatives, which are effective for up to 1 year. Synthetic fluids are a relatively new category of dust-control palliatives. Unlike the more commonly used dust-control palliatives, such as salts, engineering guidelines do not exist for the application and maintenance of synthetic fluids on unpaved roads. To fill this void, we present through this document guidelines for road design and maintenance, palliative selection, application, and care of synthetic fluid-treated roadways.Midwest Industrial Supply United States Department of TransportationReport Documentation Page .............................................................................................. ii Disclaimer ......................................................................................................................... iii List of Figures .................................................................................................................... vi Executive Summary............................................................................................................. 1 CHAPTER 1.0 – Introduction............................................................................................... 4 CHAPTER 2.0 – Background.............................................................................................. 6 Measurements of the Effectiveness of Dust Palliatives .....................................................10 CHAPTER 3.0 – Guidelines .............................................................................................. 16 Road Design and Maintenance...........................................................................................16 Palliative Selection..............................................................................................................20 Application .........................................................................................................................22 Areas Requiring Special Attention......................................................................................26 Maintenance .......................................................................................................................27 CHAPTER 4.0 – Summary................................................................................................. 31 CHAPTER 5.0 – References.............................................................................................. 3

    Ecodriving and Carbon Footprinting: Understanding How Public Education Can Reduce Greenhouse Gas Emissions and Fuel Use

    Get PDF
    Ecodriving is a collection of changes to driving behavior and vehicle maintenance designed to impact fuel consumption and greenhouse gas (GHG) emissions in existing vehicles. Because of its promise to improve fuel economy within the existing fleet, ecodriving has gained increased attention in North America. One strategy to improve ecodriving is through public education with information on how to ecodrive. This report provides a review and study of ecodriving from several angles. The report offers a literature review of previous work and programs in ecodriving across the world. In addition, researchers completed interviews with experts in the field of public relations and public message campaigns to ascertain best practices for public campaigns. Further, the study also completed a set of focus groups evaluating consumer response to a series of websites that displayed ecodriving information. Finally, researchers conducted a set of surveys, including a controlled stated-response study conducted with approximately 100 University of California, Berkeley faculty, staff, and students, assessing the effectiveness of static ecodriving web-based information as well as an intercept clipboard survey in the San Francisco Bay Area. The stated-response study consisted of a comparison of the experimental and control groups. It found that exposure to ecodriving information influenced people’s driving behavior and some maintenance practices. The experimental group’s distributional shift was statistically significant, particularly for key practices including: lower highway cruising speed, driving behavior adjustment, and proper tire inflation. Within the experimental group (N = 51), fewer respondents significantly changed their maintenance practices (16%) than the majority that altered some driving practices (71%). This suggests intentionally altering driving behavior is easier than planning better maintenance practices. While it was evident that not everyone modifies their behavior as a result of reviewing the ecodriving website, even small shifts in behavior due to inexpensive information dissemination could be deemed cost effective in reducing fuel consumption and emissions

    Managing Dust on Unpaved Roads and Airports

    Get PDF
    INE/AUTC 14.1

    Project54 vehicle telematics for remote diagnostics, fleet management and traffic monitoring

    Get PDF
    The Project54 system was developed to introduce advanced technologies into the operations of the New Hampshire Department of Safety and other law enforcement agencies. The application of computing, sensing and telecommunication technologies within the Project54 system enables advanced telematics services that can provide benefits to vehicle operators, fleet managers and the public. This thesis describes the implementation of remote diagnostics and fleet management services for the Project54 system and investigates the use of radar equipped police vehicles as traffic probes. Aftermarket diagnostic hardware has been integrated in the Project54 system and software applications have been developed to control the hardware and record diagnostic information. An electronic data entry form has been created for tracking vehicle operating expenses and a vehicle status reporting system is described. Additionally, a traffic congestion scoring method using information from traffic radar units is presented

    Bio-Based Renewable Additives for Anti-Icing Applications (Phase II)

    Get PDF
    The performance and impacts of several agro-based anti-icers along with a traditional chloride-based anti-icer (salt brine) were evaluated. A statistical design of experiments (central composite design) was employed for developing anti-icing liquids consisting of cost-competitive chemicals such as agro-based compounds (e.g., Concord grape extract and glycerin), sodium chloride, sodium metasilicate, and sodium formate. The following experimentally obtained parameters were examined as a function of the formulation design: ice-melting capacity at 25°F (−3.9°C), splitting strength of Portland cement mortar samples after 10 freeze-thaw/deicer cycles, corrosion rate of C1010 carbon steel after 24-hour immersion, and impact on asphalt binder stiffness and m-value. One viable formula (“best performer”) was tested for thermal properties by measuring its differential scanning calorimetry (DSC) thermograms, the friction coefficient of asphalt pavement treated by this anti-icing formulation (vs. 23 wt.% NaCl and beet juice blend) at 25°F after being applied at 30 gallons per lane mile (1 hour after simulated trafficking and plowing), and other properties (pH, oxygen demand in COD). Laboratory data shed light on the selection and formulation of innovative agro-based snow- and ice-control chemicals that can significantly reduce the costs of winter maintenance operations

    Wearing Surface Testing: Yukon River Bridge

    Get PDF
    INE/AUTC 12.2

    Construction Dust Amelioration Techniques

    Get PDF
    INE/AUTC 12.0

    Preserving Privacy in Automotive Tire Pressure Monitoring Systems

    Get PDF
    The automotive industry is moving towards a more connected ecosystem, with connectivity achieved through multiple wireless systems. However, in the pursuit of these technological advances and to quickly satisfy requirements imposed on manufacturers, the security of these systems is often an afterthought. It has been shown that systems in a standard new automobile that one would not expect to be vulnerable can be exploited for a variety of harmful effects. This thesis considers a seemingly benign, but government mandated, safety feature of modern vehicles; the Tire Pressure Monitoring System (TPMS). Typical implementations have no security-oriented features, leaking data that can be used for reliable tracking by a determined attacker, and being completely open to spoofing attacks. This research investigates potential privacy concerns of TPMS, first by demonstrating the feasibility of both identifying vehicles and reconstructing their routes without prohibitive cost or expertise. Then, an ID obfuscating scheme is proposed, called TPMS Obfuscation through Rolling ID (TORI), to mitigate these privacy threats while remaining true to the design requirements of TPMS. Various conditions are tested using a modified traffic simulator, which validate the ability to reconstruct the identities of vehicles even from sparse detections
    • 

    corecore