1,446 research outputs found

    Domination and Decomposition in Multiobjective Programming

    Get PDF
    During the last few decades, multiobjective programming has received much attention for both its numerous theoretical advances as well as its continued success in modeling and solving real-life decision problems in business and engineering. In extension of the traditionally adopted concept of Pareto optimality, this research investigates the more general notion of domination and establishes various theoretical results that lead to new optimization methods and support decision making. After a preparatory discussion of some preliminaries and a review of the relevant literature, several new findings are presented that characterize the nondominated set of a general vector optimization problem for which the underlying domination structure is defined in terms of different cones. Using concepts from linear algebra and convex analysis, a well known result relating nondominated points for polyhedral cones with Pareto solutions is generalized to nonpolyhedral cones that are induced by positively homogeneous functions, and to translated polyhedral cones that are used to describe a notion of approximate nondominance. Pareto-oriented scalarization methods are modified and several new solution approaches are proposed for these two classes of cones. In addition, necessary and sufficient conditions for nondominance with respect to a variable domination cone are developed, and some more specific results for the case of Bishop-Phelps cones are derived. Based on the above findings, a decomposition framework is proposed for the solution of multi-scenario and large-scale multiobjective programs and analyzed in terms of the efficiency relationships between the original and the decomposed subproblems. Using the concept of approximate nondominance, an interactive decision making procedure is formulated to coordinate tradeoffs between these subproblems and applied to selected problems from portfolio optimization and engineering design. Some introductory remarks and concluding comments together with ideas and research directions for possible future work complete this dissertation

    Methods for many-objective optimization: an analysis

    Get PDF
    Decomposition-based methods are often cited as the solution to problems related with many-objective optimization. Decomposition-based methods employ a scalarizing function to reduce a many-objective problem into a set of single objective problems, which upon solution yields a good approximation of the set of optimal solutions. This set is commonly referred to as Pareto front. In this work we explore the implications of using decomposition-based methods over Pareto-based methods from a probabilistic point of view. Namely, we investigate whether there is an advantage of using a decomposition-based method, for example using the Chebyshev scalarizing function, over Paretobased methods

    Decomposition-Based Multiobjective Optimization for Constrained Evolutionary Optimization

    Get PDF
    Pareto dominance-based multiobjective optimization has been successfully applied to constrained evolutionary optimization during the last two decades. However, as another famous multiobjective optimization framework, decomposition-based multiobjective optimization has not received sufficient attention from constrained evolutionary optimization. In this paper, we make use of decomposition-based multiobjective optimization to solve constrained optimization problems (COPs). In our method, first of all, a COP is transformed into a biobjective optimization problem (BOP). Afterward, the transformed BOP is decomposed into a number of scalar optimization subproblems. After generating an offspring for each subproblem by differential evolution, the weighted sum method is utilized for selection. In addition, to make decomposition-based multiobjective optimization suit the characteristics of constrained evolutionary optimization, weight vectors are elaborately adjusted. Moreover, for some extremely complicated COPs, a restart strategy is introduced to help the population jump out of a local optimum in the infeasible region. Extensive experiments on three sets of benchmark test functions, namely, 24 test functions from IEEE CEC2006, 36 test functions from IEEE CEC2010, and 56 test functions from IEEE CEC2017, have demonstrated that the proposed method shows better or at least competitive performance against other state-of-the-art methods

    The Multiobjective Average Network Flow Problem: Formulations, Algorithms, Heuristics, and Complexity

    Get PDF
    Integrating value focused thinking with the shortest path problem results in a unique formulation called the multiobjective average shortest path problem. We prove this is NP-complete for general graphs. For directed acyclic graphs, an efficient algorithm and even faster heuristic are proposed. While the worst case error of the heuristic is proven unbounded, its average performance on random graphs is within 3% of the optimal solution. Additionally, a special case of the more general biobjective average shortest path problem is given, allowing tradeoffs between decreases in arc set cardinality and increases in multiobjective value; the algorithm to solve the average shortest path problem provides all the information needed to solve this more difficult biobjective problem. These concepts are then extended to the minimum cost flow problem creating a new formulation we name the multiobjective average minimum cost flow. This problem is proven NP-complete as well. For directed acyclic graphs, two efficient heuristics are developed, and although we prove the error of any successive average shortest path heuristic is in theory unbounded, they both perform very well on random graphs. Furthermore, we define a general biobjective average minimum cost flow problem. The information from the heuristics can be used to estimate the efficient frontier in a special case of this problem trading off total flow and multiobjective value. Finally, several variants of these two problems are discussed. Proofs are conjectured showing the conditions under which the problems are solvable in polynomial time and when they remain NP-complete

    Bi-Objective Nonnegative Matrix Factorization: Linear Versus Kernel-Based Models

    Full text link
    Nonnegative matrix factorization (NMF) is a powerful class of feature extraction techniques that has been successfully applied in many fields, namely in signal and image processing. Current NMF techniques have been limited to a single-objective problem in either its linear or nonlinear kernel-based formulation. In this paper, we propose to revisit the NMF as a multi-objective problem, in particular a bi-objective one, where the objective functions defined in both input and feature spaces are taken into account. By taking the advantage of the sum-weighted method from the literature of multi-objective optimization, the proposed bi-objective NMF determines a set of nondominated, Pareto optimal, solutions instead of a single optimal decomposition. Moreover, the corresponding Pareto front is studied and approximated. Experimental results on unmixing real hyperspectral images confirm the efficiency of the proposed bi-objective NMF compared with the state-of-the-art methods

    Multi-Objective Stochastic Optimization Programs for a non-Life Insurance Company under Solvency Constraints

    Get PDF
    In the paper, we introduce a multi-objective scenario-based optimization approach for chance-constrained portfolio selection problems. More specifically, a modified version of the normal constraint method is implemented with a global solver in order to generate a dotted approximation of the Pareto frontier for bi- and tri-objective programming problems. Numerical experiments are carried out on a set of portfolios to be optimized for an EU-based non-life insurance company. Both performance indicators and risk measures are managed as objectives. Results show that this procedure is effective and readily applicable to achieve suitable risk-reward tradeoff analysis
    corecore