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ABSTRACT

During the last few decades, multiobjective programming has received much

attention for both its numerous theoretical advances as well as its continued success

in modeling and solving real-life decision problems in business and engineering. In

extension of the traditionally adopted concept of Pareto optimality, this research in-

vestigates the more general notion of domination and establishes various theoretical

results that lead to new optimization methods and support decision making.

After a preparatory discussion of some preliminaries and a review of the

relevant literature, several new findings are presented that characterize the non-

dominated set of a general vector optimization problem for which the underlying

domination structure is defined in terms of different cones. Using concepts from lin-

ear algebra and convex analysis, a well known result relating nondominated points

for polyhedral cones with Pareto solutions is generalized to nonpolyhedral cones that

are induced by positively homogeneous functions, and to translated polyhedral cones

that are used to describe a notion of approximate nondominance. Pareto-oriented

scalarization methods are modified and several new solution approaches are pro-

posed for these two classes of cones. In addition, necessary and sufficient conditions

for nondominance with respect to a variable domination cone are developed, and

some more specific results for the case of Bishop-Phelps cones are derived.

Based on the above findings, a decomposition framework is proposed for the

solution of multi-scenario and large-scale multiobjective programs and analyzed in

terms of the efficiency relationships between the original and the decomposed sub-

problems. Using the concept of approximate nondominance, an interactive decision

making procedure is formulated to coordinate tradeoffs between these subproblems

and applied to selected problems from portfolio optimization and engineering design.

Some introductory remarks and concluding comments together with ideas

and research directions for possible future work complete this dissertation.
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CHAPTER 1

INTRODUCTION

Whether a doctoral graduate chooses his first professional position, a univer-

sity professor a research emphasis for her next grant proposal, or a business manager

an investment strategy for last year’s financial returns, making the final decision in

each case requires a thorough consideration of multiple and, in general, conflicting

criteria. Does the graduate strive for new challenges and a career in industry or

enjoy the further commitment to research and education in academia? Does the

professor plan to spend more time to prove a promising recent conjecture or con-

tinue her engagement in more profitable interdisciplinary collaboration? And does

the manager gear his actions towards the short-term satisfaction of stakeholders or

choose to invest the capital into more sustainable reserves? Without a doubt, for

each of these three situations one can easily think of many additional alternatives

and objectives, and clearly, based upon personal priorities and preferences, different

people would make different decisions.

In fact, every day during both our private and professional activities, we

make choices that very often not only affect our own lives but also the lives of our

family, friends, customers, co-workers, and essentially anybody else with whom we

interact or, as a result of our decision, do not interact. Furthermore, the presence of

several objectives and potential uncertainties usually does not allow us to identify a

universal best alternative so that we need to weigh or trade off between the different

consequences to reach a consensus and arrive at a best compromise decision. This

step can be facilitated in two ways. First, we should immediately exclude all those

alternatives from further consideration that are decidedly worse than, or dominated

by another alternative. Second, to reduce the challenges arising with a large number

of objectives we may divide, or decompose the different objectives into smaller groups

to iteratively select potential candidates that are brought into agreement in the form



of a preferred decision for our initial problem. These two ideas of domination and

decomposition form the heart of this dissertation.

The discipline of multiple criteria decision making deals with the analysis of

decision problems like the ones described above and provides decision makers with

theoretical and methodological support on how to structure a problem, describe

available alternatives, identify essential criteria, deal with uncertainties, reflect on

preferences, and many other issues related to the overall decision making process.

Combining aspects from a great variety of different fields such as economics, so-

ciology, or psychology, the number of possible applications is long and includes a

nearly endless number of problems from business and management, financial, indus-

trial and economic planning, location, transportation, scheduling, and all areas of

engineering. Because a decision is usually associated with some qualitative action,

it is not surprising at all that mathematics and especially operations research play a

substantial role as well in deriving underlying mathematical models that formulate

both the decisions and objectives in a quantitative manner to enable a subsequent

numerical comparison between the different resulting consequences.

In this text, we study the class of mathematical models for which each of a

finite number of objectives is described in terms of a real-valued mathematical func-

tion, thereby giving rise to a multiobjective programming problem. We refer to the

underlying domain as the decision set, and based on its properties or characteristics

of the objective functions we usually distinguish between discrete and continuous,

or linear and nonlinear programs, respectively. For the most part of our discus-

sion, we consider the continuous nonlinear case so that both the decision set and

its image under the multiple objective functions are continuous sets which usually

consist of an infinite number of points. We call this image the set of outcomes, which

consequently describe the consequences of each decision, and under the assumption

of objective minimization we are interested in identifying those decisions which are

mapped to the minimal elements in the outcome set.

For mathematical programs with a single objective, this notion of minimality

is well defined based on the order of real numbers, and in principle we can use any

2



applicable optimization technique from linear, nonlinear, or integer programming to

find solutions for the corresponding optimization problems. For multiple objectives,

however, each outcome is a vector for which the individual components correspond

to the several objective functions so that we need to give a more precise statement

of what we mean with vector minimality. Based on the assumption of an underlying

partial order that can be described by certain classes of cones, the concept that is

discussed in this text is the concept of domination which, similar to its informal

introduction above, is used to characterize the preference relationships between the

different alternatives and outcomes.

In general, however, the partial order, or equivalently, the implied preference

or domination structure does not provide the means to completely capture all prefer-

ences and identify a unique outcome that dominates every other outcome, but results

in a set of efficient decisions whose outcomes are merely nondominated, or not dom-

inated by any other outcome. In extension of the existing theory of multiobjective

or vector optimization, which deals with the characterization of these efficient and

nondominated sets and the development of applicable methods for their generation

or approximation, in this dissertation we study various of these previous results and

methods and investigate possible generalizations for three new classes of domina-

tion cones. Furthermore, we analyze the effects of objective decompositions and use

our results to formulate several interactive decision making procedures to eventually

identify a preferred decision as the unique solution for a multiobjective decision or

programming problem. These procedures are illustrated on selected applications

from financial optimization and engineering design.

For further guidance, we now give a brief outline of the general organization

of this dissertation. In preparation for the original discussion in this text, we begin in

Chapter 2 with a review of some relevant mathematical concepts and literature and

conclude with a concise statement of our specific research objectives. In particular,

in Section 2.1 we introduce some elementary notation and properties of functions,

define the fundamental notions of cones and binary relations, and highlight the con-

nection between – and relevance of – the former and latter in terms of partial orders.

3



Of central importance in this chapter is Section 2.2 in which we define a domination

structure and the nondominated set in order to subsequently formulate the multi-

objective program with the corresponding concept of efficiency. We also highlight

the two concepts of Pareto and epsilon-efficiency, which are prominently discussed

in later chapters, and present several typical solution methods. For Section 2.3, we

change our style and more informally address some of the previous aspects in the

more practical context of multiple criteria decision making with particular focus on

the existing literature that describes preferences based on domination structures and

discusses interactive decision making or decomposition. Based on that discussion,

Section 2.4 contains the research statement of this dissertation.

In Chapter 3, we study the nondominated set of a multiobjective program for

three different domination structures that generalize the previous notions of dom-

ination cones, extend several existing results from the literature and derive some

new characterizations of – and methods for – the specific domination concepts de-

fined. In particular, in Section 3.1 we show how every cone can be induced by a

positively homogeneous function, use this new representation to extend some known

results from the polyhedral to the nonpolyhedral case, and modify several solution

methods from Pareto to more general domination cones. In Section 3.2, we for-

mulate the new preference assumption of ideal-symmetry for which the domination

structure cannot anymore be described by only one cone but is defined by a collec-

tion of domination cones. We illustrate some benefits of the resulting variable-cone

model, address the problem of finding the corresponding nondominated set, and

derive some optimality conditions for its characterization. Highlighting the concept

of epsilon-nondominance, we define translated cones for a possible characterization

of approximate nondominance in Section 3.3 and derive some specific representa-

tion results for the case of translated polyhedral cones. To provide the means of

computing epsilon-efficient decisions, we extend several optimality conditions from

traditional to translated domination cones and develop some new problem formu-

lations that also allow the volitional generation of a merely approximate solution.
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Several examples are given throughout the discussion, and further research that is

stimulated by these results is proposed in Section 3.4.

For multiobjective programs and the concept of Pareto efficiency, in Chap-

ter 4 we examine the effects of objective decompositions and formulate three inter-

active coordination methods to facilitate the selection of a preferred decision in the

context of multiple criteria decision making. The efficiency relationships between the

original and the decomposed subproblems are analyzed in Section 4.1 and provide

the theoretical foundation for the procedures that we explain in detail in Section 4.2.

Being aware that for practical or discrete problems actual optimization is not always

possible, two optimization-based procedures that make use of nonhierarchical and

hierarchical decision making schemes are complemented by an additional approach

that can also be applied to a mere selection problem. In Section 4.3, we select one

of the former procedures for an initial demonstration on a mathematical program-

ming example before summarizing our results and addressing remaining research

directions in Section 4.4.

Choosing four applications from financial and engineering optimization, we

highlight the practical use of each of the three procedures in Chapter 5. The

optimization-based nonhierarchical coordination method is illustrated in Section 5.1

on an investment selection problem from portfolio optimization for which the final

investment strategy needs to compromise between different subproblems that are

defined based on different stock market scenarios. For the hierarchical procedure,

in Section 5.2 we describe an application of truss topology design in structural opti-

mization and, similar to the previous case, show how we can identify a truss design

that performs well for multiple loading conditions. In Section 5.3, we present a

modification of this approach to solve a discrete selection problem that requires

selecting a single layout from among a finite set of possible layout configurations

for a medium-sized truck vehicle. Finally, using another discrete data set provided

courtesy of the Ford Motor Company, in Section 5.4 we also comment on several

implications of the optimization-free procedure.

Some concluding remarks and our final thoughts are offered in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW AND RESEARCH STATEMENT

2.1 Basic Concepts and Notation

We first introduce some basic notation, clarify our general conventions, and

provide a number of concepts that are used extensively throughout the complete

following text. Starting in Section 2.1.1 with the elementary definition of a function

and the associated notions of injectivity, additivity, linearity, and convexity, the

definitions and propositions regarding convex sets and cones in Sections 2.1.2 and

binary relations and partial orders in Section 2.1.3 are taken in large part from

the fundamental works by Rockafellar (1970, 1997) on general convex analysis and

Sawaragi et al. (1985) and Yu (1985) on some more specific results underlying the

theory of multiobjective and vector optimization.

2.1.1 Real and Vector-Valued Functions

We denote the set of real numbers by R and, for any positive integers l, m

and n, let

Rn = {x = (x1, x2, . . . , xn)T : xi ∈ R for all i = 1, 2, . . . , n} (2.1a)

be the set of n-dimensional real vectors and

Rl×m = {A = (a1, a2, . . . , al)T : ai ∈ Rm for all i = 1, 2, . . . , l} (2.1b)

be the set of real l × m matrices.

Definition 2.1.1 (Function, image and domain). Let X ⊆ Rn be a nonempty set.

A function

f : X → Rm (2.2)



is a mapping that assigns to each element x in the domain X a unique element

y ∈ Rm, denoted by y = f(x). The image of X under f is denoted by

Y := f(X) := {y ∈ Rm : y = f(x) for some x ∈ X} (2.3)

If m = 1, then f is a real-valued function, otherwise it is vector valued and

can also be written in terms of its component functions f = (f1, . . . , fm), where each

fi : X → R is a real-valued function. If f = (f1, . . . , fm) is vector valued, then we

write

f(x1) ≦ f(x2) if and only if fi(x
1) ≤ fi(x

2) for all i = 1, . . . , m (2.4a)

f(x1) ≤ f(x2) if and only if fi(x
1) ≦ fi(x

2) and f(x1) 6= f(x2) (2.4b)

f(x1) < f(x2) if and only if fi(x
1) < fi(x

2) for all i = 1, . . . , m (2.4c)

and use ≧, ≥ and > accordingly.

In general, two different elements x1 6= x2 in the domain X of f can be

mapped to the same element y = f(x1) = f(x2) ∈ Rm.

Definition 2.1.2 (Injective function). A function f : X → Rm is said to be injective

if

f(x1) = f(x2) if and only if x1 = x2 for all x1, x2 ∈ X (2.5)

Remark 2.1.3 (Sufficient condition for injectivity). For a vector-valued function

f = (f1, . . . , fm), injectivity of some fi is sufficient but, in general, not necessary for

injectivity of f .

Definition 2.1.4 (Subadditive, superadditive, and additive function). A function

f : X → Rm is said to be subadditive if

f(x1 + x2) ≦ f(x1) + f(x2) for all x1, x2 ∈ X (2.6)

Furthermore, f is said to be superadditive if the inequality holds in reverse, and

additive if it is both subadditive and superadditive.

In particular, if f is subadditive, then −f is superadditive and vice versa.
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Definition 2.1.5 (Positively homogeneous, sublinear, superlinear, and linear func-

tion). A function f : X → Rm is said to be positively homogeneous if

f(λx) = λf(x) for all x ∈ X and λ > 0 (2.7)

In this case, f is said to be sublinear if it is also subadditive, superlinear if it is

superadditive, and linear if it is additive.

As before, if f is sublinear, then −f is superlinear and vice versa. In partic-

ular, a positively homogeneous function is linear if and only if it is both sublinear

and superlinear.

Definition 2.1.6 (Convex and concave function). A function f : X → Rm is said

to be convex if

f
(

λx1 + (1 − λ)x2
)

≦ λf(x1) + (1 − λ)f(x2) for all x1, x2 ∈ X and 0 ≤ λ ≤ 1

(2.8)

Furthermore, f is said to be concave if the inequality holds in reverse.

Again, if f is convex, then −f is concave and vice versa.

Proposition 2.1.7 (Rockafellar and Wets (1998)). A positively homogeneous func-

tion f : X → Rm is convex if and only if it is sublinear, and concave if and only if

it is superlinear. In the former case

f

(

k
∑

i=1

λix
i

)

≦

k
∑

i=1

λif(xi) for all xi ∈ X and λi > 0, i = 1, . . . , k (2.9)

and in the latter the above holds with the inequality in reverse.

In particular, a positively homogeneous function is linear if and only if it is

both convex and concave.
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Throughout this whole text, we consider Rn and Rm as Euclidean vector

spaces equipped with the standard Euclidean inner product, norm, and metric

〈x1, x2〉 :=
n
∑

i=1

x1
i x

2
i , ‖x‖ :=

√

〈x, x〉, and d(x1, x2) = ‖x1 − x2‖ (2.10a)

〈y1, y2〉 :=
m
∑

i=1

y1
i y

2
i , ‖y‖ :=

√

〈y, y〉, and d(y1, y2) = ‖y1 − y2‖ (2.10b)

unless specified otherwise. In particular, this provides us with a topology of open

sets with the standard notions of continuity and differentiability. If the function

f = (f1, . . . , fm) is differentiable at x ∈ X, then we write

∇fi(x) =

(

∂fi(x)

∂x1
, . . . ,

∂fi(x)

∂xn

)T

∈ Rn (2.11a)

for the gradient of fi for all i = 1, . . . , m and denote the Jacobian of f at x by

∇f(x) = (∇f1(x), . . . ,∇fm(x))T ∈ Rm×n (2.11b)

As we will make only very rare explicit use of these concepts, we do not repeat

the precise definitions which can be found in any beginning textbook on advanced

calculus (Fulks, 1961) or real analysis (Royden, 1963; Rudin, 1976). Furthermore,

although much of the material presented in this text is similarly valid for any other

real linear or topological space, we choose the conceptual simplification of Euclidean

spaces to avoid any additional notational burden and, therefore, for the benefit of a

more coherent presentation.

2.1.2 Elements from Convex Analysis

Let Rm be a Euclidean space. We denote the interior, the boundary, and

the closure of a set Y ⊂ Rm by int Y , bd Y , and cl Y , respectively. For any two sets

Y and Z in Rm, we let

Y + Z := {y + z : y ∈ Y and z ∈ Z} (2.12a)
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be the Minkowski sum, and for z ∈ Rm a single element, we also write Y + z instead

of Y + {z}. Moreover, for λ ∈ R a real number, we denote

λY := {λy : y ∈ Y } and − Y := {−y : y ∈ Y } (2.12b)

Definition 2.1.8 (Convex set). A set Y ⊂ Rm is said to be convex if

λY + (1 − λ)Y ⊆ Y for all 0 ≤ λ ≤ 1 (2.13)

Definition 2.1.9 (Cone). A set C ⊂ Rm is called a cone if

λC ⊆ C for all λ > 0 (2.14)

A nonempty cone is also said to be proper, and in this text we assume that

every cone is a proper cone.

Remark 2.1.10 (Cone and origin). Following the classic definition in Rockafellar

(1970) but different from Rockafellar and Wets (1998) and other authors, according

to Definition 2.1.9 a cone may contain the origin or not. Compare Remark 2.1.20.

Proposition 2.1.11 (Convex cone). A cone C ⊂ Rm is convex if and only if

C + C ⊆ C (2.15)

Definition 2.1.12 (Pointed cone). A cone C ⊂ Rm is said to be pointed if

k
∑

i=1

ci = 0 if and only if ci = 0 for all ci ∈ C, i = 1, . . . , k (2.16)

Proposition 2.1.13 (Pointed convex cone). A convex cone C ⊂ Rm is pointed if

and only if

C ∩ −C ⊆ {0} (2.17)

Definition 2.1.14 (Cone convexity, closedness, boundedness, and compactness).

Let C ⊂ Rm be a cone. A set Y ⊂ Rm is said to be

(i) C-convex if Y + C is convex,

(ii) C-closed if Y + cl C is closed,
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(iii) C-bounded if Y ⊂ z + cl C for some z ∈ Rm, and

(iv) C-compact if (y − cl C) ∩ Y is compact for all y ∈ Y .

Proposition 2.1.15 (Cone convexity). A set Y ⊂ Rm is convex if and only if it

is {0}-convex. Moreover, if Y is convex, then Y is C-convex for any convex cone

C ⊂ Rm.

While the notion of C-boundedness in Definition 2.1.14 (iii) is given in

Tanino and Sawaragi (1980), Sawaragi et al. (1985) provide an alternative char-

acterization for convex sets based on the concept of a recession cone.

Definition 2.1.16 (Recession cone). Let Y ⊂ Rm be a convex set. The set

rec Y := {z ∈ Rm : y + λz ∈ Y for all y ∈ Y and λ > 0} (2.18)

is called the recession cone of Y .

The recession cone is a convex cone and contains the origin.

Proposition 2.1.17 (Cone boundedness). A nonempty closed convex set Y ⊂ Rm

is bounded if and only if rec Y = {0}. Moreover, if Y is C-bounded, then

rec Y ∩ (− cl C) = {0} (2.19)

The latter is used as definition for C-boundedness in Sawaragi et al. (1985)

and equivalent with Definition 2.1.14 (iii) if C is pointed, closed, and convex.

Proposition 2.1.18 (Cone closedness, boundedness, and compactness). Let C ⊂

Rm be a pointed closed convex cone. A convex set Y ⊂ Rm is C-compact if and only

if it is C-closed and C-bounded, or equivalently, if rec Y ∩ (−C) = {0}.

To prevent any confusion, we emphasize that the next definition is correct.

Definition 2.1.19 (Dual and strict dual cone). Let C ⊂ Rm be a set (!). The sets

C∗ := {d ∈ Rm : 〈c, d〉 ≥ 0 for all c ∈ C} (2.20a)

C∗
s := {d ∈ Rm : 〈c, d〉 > 0 for all c ∈ C \ {0}} (2.20b)
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are called the dual and strict dual cone of C, respectively. If C∗ = C, then C is said

to be self-dual.

Remark 2.1.20 (Convexity of dual cones). Dual and strict dual cones are closed

convex and convex cones, respectively. In particular, a strict dual cone does not

contain the origin, and C∗
s ∪ {0} is a closed convex cone. Compare Remark 2.1.10.

Proposition 2.1.21 (Dual and strict dual cone). Let C, C1, C2 ⊂ Rm be sets (!).

If C1 ⊆ C2, then C∗
2 ⊆ C∗

1 . Moreover

(int C)∗ = C∗ = (cl C)∗ and (int C)∗s = C∗ \ {0} (2.21)

Definition 2.1.22 (Hyperplane and halfspace). A set H ⊂ Rm is called a hyperplane

if there exist a ∈ Rm \ {0} and b ∈ R so that

H = H(a, b) := {y ∈ Rm : 〈a, y〉 = b} (2.22)

In this case, the vector a is called a normal vector to H. Moreover, the sets

H(a, b)+ := {y ∈ Rm : 〈a, y〉 ≥ b} (2.22a)

H(a, b)− := {y ∈ Rm : 〈a, y〉 ≤ b} (2.22b)

are called the positive and negative halfspaces associated with H, respectively.

Definition 2.1.23 (Supporting hyperplane). Let Y ⊂ Rm be a set. A hyperplane

H ⊂ Rm is called a supporting hyperplane to Y if

Y ⊆ H+ (or Y ⊆ H−) and cl Y ∩ H 6= ∅ (2.23)

Theorem 2.1.24 (Supporting hyperplane theorem). Let Y ⊂ Rm be a convex set

and z ∈ bd Y be a boundary point of Y . Then there exists a supporting hyperplane

H ⊂ Rm to Y with normal vector a ∈ Rm \ {0} so that

〈a, y − z〉 ≥ 0 for all y ∈ Y (2.24)

Similar to halfspaces in Definition 2.1.22, we define polyhedral sets and cones.
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Definition 2.1.25 (Polyhedral set and cone). A set D ⊂ Rm is called a polyhedral

set if there exist a matrix A ∈ Rl×m \ {0} and a vector b ∈ Rl so that

D = D(A, b) := {y ∈ Rm : Ay ≧ b} (2.25a)

If b = 0, then

C = C(A) := D(A, 0) = {y ∈ Rm : Ay ≧ 0} (2.25b)

is called a polyhedral cone.

Proposition 2.1.26 (Polyhedral set). A set D ⊂ Rm is a polyhedral set if and only

if it is the intersection of a finite number of halfspaces

D = {y ∈ Rm : 〈ai, y〉 ≥ bi, i = 1, 2, . . . , l} (2.26)

In particular, if A = (a1, a2, . . . , al)T ∈ Rl×m and b = (b1, b2, . . . , bl)
T ∈ Rl, then

D = D(A, b).

Definition 2.1.27 (Linear independence and matrix rank). A set of real vectors

{a1, a2, . . . , al} ⊂ Rm is said to be linearly independent if

l
∑

i=1

λia
i = 0 if and only if λi = 0 for all i = 1, . . . , l (2.27)

The rank of a matrix A = (a1, a2, . . . , al)T ∈ Rl×m is the maximal number of linearly

independent vectors from {a1, a2, . . . , al} and denoted by rank A.

Proposition 2.1.28 (Pointed convex polyhedral cone). A polyhedral set D =

D(A, b) ⊂ Rm is always convex. Moreover, a polyhedral cone C = C(A) ⊂ Rm

is pointed if and only if rank A = m.

Proposition 2.1.29 (Farkas’ lemma). Let C = C(A) ⊂ Rm be a polyhedral cone

with matrix A ∈ Rl×m. Then

C∗ = {d ∈ Rm : d = λT AT , λ ∈ Rm, λ ≥ 0} (2.28)

The next result states the relationship between matrices and linear functions.
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Proposition 2.1.30 (Linear function and matrix). A function f : Rm → Rl is

linear if and only if there exists a matrix A ∈ Rl×m such that f(x) = Ax, and f is

injective if and only if rank A = m.

2.1.3 Binary Relations and Partial Orders

We first define the notion of a binary relation on an arbitrary set Z and

collect some of the most important properties.

Definition 2.1.31 (Binary relation). A binary relation R on a set Z is a subset of

the Cartesian product Z × Z. It is said to be

(i) reflexive if (z, z) ∈ R for all z ∈ Z,

(ii) irreflexive if (z, z) /∈ R for all z ∈ Z,

(iii) symmetric if (z1, z2) ∈ R ⇔ (z2, z1) ∈ R for all z1, z2 ∈ Z,

(iv) asymmetric if (z1, z2) ∈ R ⇒ (z2, z1) /∈ R for all z1, z2 ∈ Z,

(v) antisymmetric if (z1, z2) and (z2, z1) ∈ R ⇒ z1 = z2 for all z1, z2 ∈ Z,

(vi) transitive if (z1, z2) and (z2, z3) ∈ R ⇒ (z1, z3) ∈ R for all z1, z2, z3 ∈ Z,

(vii) negatively transitive if (z1, z2) and (z2, z3) /∈ R ⇒ (z1, z3) /∈ R for all
z1, z2, z3 ∈ Z,

(viii) weakly connected if (z1, z2) /∈ R and z1 6= z2 ⇒ (z2, z1) ∈ R for all z1, z2 ∈
Z, and

(ix) (strongly) connected or complete if (z1, z2) /∈ R ⇒ (z2, z1) ∈ R for all
z1, z2 ∈ Z.

Different from the above definitions which are taken from Sawaragi et al.

(1985), Yu (1985) calls a binary relation irreflexive or asymmetric if it is not reflexive

or not symmetric, respectively, and nontransitive if it is not transitive.

Proposition 2.1.32 (Relationships between properties of binary relations). Let

R ⊆ Z × Z be a binary relation on a set Z.

(i) If R is asymmetric, then it is irreflexive.

(ii) If R is transitive and irreflexive, then it is asymmetric.

(iii) If R is negatively transitive and asymmetric, then it is transitive.

(iv) If R is transitive, irreflexive, and weakly connected, then it is negatively
transitive.
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Definition 2.1.33 (Equivalence relation and orders). A binary relation R ⊆ Z×Z

on a set Z is called

(i) an equivalence relation if it is reflexive, symmetric, and transitive,

(ii) a preorder if it is reflexive and transitive,

(iii) a total preorder if it is reflexive, transitive, and connected,

(iv) a partial order if it is reflexive, transitive, and antisymmetric,

(v) a strict partial order if it is irreflexive and transitive,

(vi) a weak order if it is asymmetric and negatively transitive, and

(vii) a total order if it is asymmetric, transitive, and weakly connected.

Proposition 2.1.34 (Strict partial, weak, and total order). Let R ⊆ Z × Z be a

binary relation on a set Z. If R is a total order, then it is is a weak order, and if

it is a weak order, then it is a strict partial order.

If R is a binary relation and (z1, z2) ∈ R, then we also write z1Rz2. In

particular, if R is a partial order on Z, then (Z,R) is called a partially ordered

set, and we write z1 � z2 and z1 � z2 instead of (z1, z2) ∈ R and (z1, z2) /∈ R,

respectively. Furthermore, in this case

z1 ≺ z2 :⇐⇒ z1 � z2 and z2 � z1 (2.29a)

z1 ∼ z2 :⇐⇒ z1 � z2 and z2 � z1 (2.29b)

are a strict partial order and an equivalence relation, respectively, and we call ≺ the

strict partial order associated with � on (Y,R).

Remark 2.1.35 (Componentwise order). The binary relations ≧ and ≦ in Equa-

tion 2.4 are preorders on Rm, and ≥ and ≤ are the associated strict partial orders,

respectively. Furthermore, > and < are also strict partial orders.

In this text, we use the concept of binary relations to introduce orders onto

sets Y ⊂ Rm, and for convenience we usually define these orders on the complete

Euclidean space Rm. In particular, this allows the definition of two further properties

based on the operations of real vector addition and scalar multiplication.
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Definition 2.1.36 (Compatibility with addition and scalar multiplication). A bi-

nary relation R on Rm is said to be compatible with

(i) addition if (y1, y2) ∈ R ⇒ (y1 + z, y2 + z) ∈ R for all y1, y2, z ∈ Rm, and

(ii) scalar multiplication if (y1, y2) ∈ R ⇒ (λy1, λy2) ∈ R for all y1, y2 ∈ Rm

and λ > 0.

The next few results relate the concept of binary relations to cones.

Definition 2.1.37 (Cone relation). Let C ⊂ Rm be a cone. The binary relation

RC :=
{

(y1, y2) ∈ Rm × Rm : y2 − y1 ∈ C
}

(2.30)

is called the cone relation on Rm induced by C.

Proposition 2.1.38 (Cone relation). Let C ⊂ Rm be a cone and RC be the induced

cone relation. Then RC is compatible with addition and scalar multiplication and

(i) reflexive if and only if 0 ∈ C,

(ii) transitive if and only if C is convex, and

(iii) antisymmetric if and only if C is pointed.

In particular, from Definition 2.1.33 and Proposition 2.1.38, we obtain that

for a pointed convex cone C, the cone relation RC is a partial or strict partial order

if and only if 0 ∈ C or 0 /∈ C, respectively. Hence, a pointed convex cone is also

called an ordering cone, and

y1 �C y2 :⇐⇒ y2 − y1 ∈ C (2.31a)

y1 ≺C y2 :⇐⇒ y2 − y1 ∈ C \ {0} (2.31b)

are called the partial and strict partial order induced by C, respectively.

We can reverse the results in Proposition 2.1.38 under the assumption that

R is compatible with addition and scalar multiplication.

Proposition 2.1.39 (Relation cone). Let R be a binary relation on Y ⊂ Rm that

is compatible with scalar multiplication. Then

CR :=
{

y2 − y1 ∈ Rm : (y1, y2) ∈ R
}

(2.32)
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is a cone. In this case, if R is also compatible with addition, then

(i) 0 ∈ CR if and only if R is reflexive,

(ii) CR is convex if and only if R is transitive, and

(iii) CR is pointed if and only if R is antisymmetric.

In particular, using the componentwise orders from Equation 2.4 or Re-

mark 2.1.35, the nonnegative, nonzero, and positive orthant of Rm

Rm
≧ := C≦ = {y ∈ Rm : y ≧ 0} (2.33a)

Rm
≥ := C≤ = {y ∈ Rm : y ≥ 0} (2.33b)

Rm
> := C< = {y ∈ Rm : y > 0} (2.33c)

are pointed convex cones and play an important role in the following discussion of

multiobjective programming and optimization. For reasons that become apparent

later, we name these cones Pareto cones.

2.2 Multiobjective Programming and Optimization

In this section, we use the concepts of partial orders and ordering cones so far

introduced in the previous discussion to define the notions of domination and non-

dominance for multiobjective programming and real-vector optimization problems.

For clarity of our presentation, in Section 2.2.1 we initially restrict our attention to

the latter and wait until we formulate the multiobjective program in Section 2.2.2 to

address the conceptual relationship between efficiency in the domain and nondom-

inance in the image of a vector-valued objective function. Several commonly used

optimization methods that are based on objective scalarization are then reviewed

in Section 2.2.3 and characterized in terms of their ability to generate efficient or

nondominated solutions and their associated tradeoffs. While we also mention some

more specific references throughout the following text, most of the presented ma-

terial can similarly be found in various standard monographs on multiobjective

programming or optimization (Chankong and Haimes, 1983; Sawaragi et al., 1985;

Yu, 1985; Steuer, 1986; Miettinen, 1999; Jahn, 2004; Ehrgott, 2005, among others).
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2.2.1 Domination and the Nondominated Set

We first introduce the fundamental concepts of domination sets and dom-

ination structures that are adopted in this text and address their relationships to

pointed convex cones as established by Yu (1974). Furthermore, we define the non-

dominated set, compare our notion to the original definition in the former reference,

present some basic results and then point to several extensions and related concepts

that can be found in the literature. As before, all given results are also contained

and proven in Sawaragi et al. (1985) or Yu (1985).

Definition 2.2.1 (Domination set and domination structure). Let Y ⊂ Rm be a

nonempty set, R ⊂ Y ×Y be a partial order on Y , and ≺ be the strict partial order

associated with R. For every y ∈ Y , the set

D(y) := {d ∈ Rm : y − d ≺ y} (2.34a)

is called the domination set or set of dominated directions at y, and the collection

D := {D(y) ⊂ Rm : y ∈ Y } (2.34b)

is called the associated domination structure on Y .

If y1 ≺ y2, then y1 is said to dominate y2 or, equivalently, y2 is said to be

dominated by y1. With the same meaning, Yu (1974) also says that y1 is preferred

to y2, but we postpone the notion of preference until later in this chapter.

Remark 2.2.2 (Domination set in the sense of Yu (1974)). In the original definition

by Yu (1974), the domination set D(y) is defined as

D(y) := {d ∈ Rm : y ≺ y + d} (2.35)

which coincides with D(y + d) rather than with D(y) in Definition 2.2.1. However,

if the strict partial order ≺ is compatible with addition, then y − d ≺ y ⇔ y =

y+d−d ≺ y+d and thus D(y) = D(y+d) for all d ∈ Rm. In particular, in this case

D(y) = D(y′) for all y′ ∈ Y , and Definition 2.2.1 is equivalent with the definition

by Yu (1974) because all domination sets are identical.
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If the sets of dominated directions in Definition 2.2.1 vary for different y ∈ Y ,

so that D(y) 6= D(y′) for y 6= y′, in general, then we call the collection D =

{D(y) : y ∈ Y } a variable domination structure for Y . Otherwise, if D(y) = D

for all y ∈ Y , then we usually write D = D instead of D = {D} and say that

the domination structure is constant. In particular, the following special case for a

constant domination structure is implied by Proposition 2.1.39.

Proposition 2.2.3 (Domination cone). Let R be a partial order that is compatible

with addition and scalar multiplication, and ≺ be the strict partial order associated

with R. Then

D(y) = C≺ := {d ∈ Rm : 0 ≺ d} for all y ∈ Y (2.36)

In particular, C≺ is a pointed convex cone that does not contain the origin.

In this case, we also say that the constant domination structure D is a

constant cone and call C≺ the domination cone. In particular, for the special case

of the componentwise order D reduces to the nonzero Pareto cone Rm
≥ .

Based on Proposition 2.1.38, we can also reverse Proposition 2.2.3 and use

any pointed convex cone to induce a constant domination structure that is defined

by the underlying cone relation from Equation 2.31.

Proposition 2.2.4 (Domination cone). Let C ⊂ Rm be a pointed convex cone. If

D(y) ⊂ Rm is defined by the strict partial order induced by C, then D(y) = C \ {0}

for all y ∈ Y .

In this case, D = C \ {0} is again a constant cone, and if y1 ≺C y2, then y1

is also said to dominate y2, or y2 is said to be dominated by y1 with respect to C.

Definition 2.2.5 (Nondominated and weakly nondominated set). Let Y ⊂ Rm be

a nonempty set, and D = {D(y) : y ∈ Y } be a domination structure on Y . The sets

N(Y,D) := {ŷ ∈ Y : (ŷ − D(ŷ) \ {0}) ∩ Y = ∅} (2.37a)

Nw(Y,D) := {ŷ ∈ Y : (ŷ − int D(ŷ) \ {0}) ∩ Y = ∅} (2.37b)
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are called the nondominated and weakly nondominated set of Y with respect to D,

respectively.

We note that Nw(Y,D) = N(Y,D◦), where D◦ := {int D(y) : y ∈ Y }. In

particular, if D = C is a constant cone, then Nw(Y, C) = N(Y, int C) so that, for

large parts of this text, we can restrict our discussion to the nondominated set

only. Moreover, since Definition 2.2.5 explicitly excludes the zero vector from each

domination set, we do not need to further distinguish whether C does or does not

contain the origin. Finally, if C = Rm
≧

is the Pareto cone, then we usually simplify

notation and call

N(Y ) := N(Y, Rm
≥ ) = N(Y, Rm

≧) (2.38)

the Pareto set of Y . For illustration, Figure 2.1 depicts the Pareto set and the

nondominated set for a cone C ⊂ R2, corresponding to the highlighted bold curves,

for the indicated set Y as subset of R2.
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Figure 2.1 Pareto set N(Y, R2
≧

) and nondominated set N(Y, C) for a cone C ⊂ R2

For nondominance with respect to constant domination cones, Figure 2.1

indicates that a smaller set of dominated directions produces a larger nondominated

set, and it turns out that this observation holds as a general result.
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Proposition 2.2.6 (Nondominance relationship for two domination structures).

Let Y ⊂ Rm be nonempty, and D1 = {D1(y) : y ∈ Y } and D2 = {D2(y) : y ∈ Y } be

two domination structures on Y . Then

D1(y) ⊆ D2(y) for all y ∈ Y =⇒ N(Y,D2) ⊆ N(Y,D1) (2.39)

In many proofs in this text, we make implicit use of the following equivalent

statements for the nondominance of ŷ ∈ Y and usually choose the most convenient

notion without any further explanation.

Proposition 2.2.7 (Equivalent conditions for nondominance). Let ŷ ∈ Y and

D(ŷ) ∈ D be the domination set at ŷ. The following conditions are equivalent:

(i) (ŷ − D(ŷ) \ {0}) ∩ Y = ∅;

(ii) there does not exist y ∈ Y such that ŷ − y ∈ D(ŷ) \ {0};

(iii) there does not exist y ∈ Y \ {ŷ} and d ∈ D(ŷ) \ {0} such that ŷ = y + d.

Remark 2.2.8 (Nondominance in the sense of Yu (1974)). As emphasized in Re-

mark 2.2.2, for a variable domination structure D = {D(y) : y ∈ Y }, the concept of

domination adopted in this text differs from the original notion in Yu (1974) who

defines the nondominated set similar to the conditions in Proposition 2.2.7 as

N(Y,D) := {ŷ ∈ Y : there is no y ∈ Y such that ŷ ∈ y + D(y) \ {0}} (2.40)

We note that the fundamental difference between our concept of domination

and the original definition by Yu (1974) is that, in our case, nondominance of ŷ can

be verified based on the domination set D(ŷ) at ŷ alone and does not depend on

the domination sets D(y) at all the remaining other y ∈ Y \ {ŷ}. Furthermore, if

D = D is a constant domination structure, then both notions again are equivalent

and the nondominated set in Remark 2.2.8 coincides with Definition 2.2.5.

Throughout the complete text, we usually assume that both Y and the

nondominated set N(Y,D) are nonempty, and for the most typical case in which

the domination structure D is described by a constant cone C, the following result

establishes conditions that guarantee that our assumption is satisfied, in general.
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Proposition 2.2.9 (Nonemptiness of N(Y, C)). Let C ⊂ Rm be a pointed convex

cone, and Y ⊂ Rm be a nonempty C-compact set. Then N(Y, C) 6= ∅.

In addition, several stronger results than Proposition 2.2.9 exist and replace

pointedness of C by the weaker assumption of acuteness (Hartley, 1978) or C-

compactness of Y by C-semicompactness (Corley, 1980), then relying on Zorn’s

Lemma, or equivalently, the Axiom of Choice (Zermelo, 1904; Ciesielski, 1997).

Other authors derive conditions using the concept of a projecting cone (Benson,

1978) or recession cone (Borwein, 1977; Bitran and Magnanti, 1979; Henig, 1982),

and a recent comparative survey of these and many other results is provided by

Sonntag and Zalinescu (2000). In addition to the above results, Naccache (1978)

and Bitran and Magnanti (1979) also study connectedness and Tanino and Sawaragi

(1978, 1980) examine stability properties of the nondominated set. From among the

few results for domination structures that are not constant cones, Proposition 2.2.9

is extended by Hazen and Morin (1983a,b, 1984) who also derive some first-order

necessary and sufficient conditions for nonconical nondominance.

Two other large parts of the literature deal with questions of duality (pio-

neered by Isermann, 1978; Tanino and Sawaragi, 1979; Corley, 1981; Bitran, 1981;

Jahn, 1983; Hsia and Lee, 1988, and others) with a recent overview provided by

Nakayama (1999) and, in extension of earlier definitions by Kuhn and Tucker (1951)

and Geoffrion (1968), with various notions of proper nondominance (including Bor-

wein, 1977; Hartley, 1978; Benson, 1979, 1983; Coladas Uŕıa, 1981; White, 1982;

Henig, 1982, 1990), some of which are further analyzed in Miettinen and Mäkelä

(2001). As before, in the majority of these references, the domination structure is

defined as a constant convex cone, and some more specific results for polyhedral

cones are obtained by Tamura and Miura (1979), Corley (1985), and Fujita (1996).

A smaller portion also follows the original definition by Yu (1973, 1974) and

considers domination structures that are not necessarily cones but convex sets, in-

cluding some works involving the same author (Yu and Leitmann, 1974; Yu, 1975;

Bergstresser et al., 1976; Bergstresser and Yu, 1977) that, together with several
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of the above results, are comprehensively discussed in Yu (1985). Further exten-

sions of domination structures to more general spaces are proposed by Chew (1979)

and Weidner (1985, 1987, 2003) who also investigates domination sets in more gen-

eral vector optimization. Finally, only two but very recent papers by Chen and

Yang (2002) and Chen et al. (2005a) characterize variable domination structures for

vector-variational inequalities in the context of generalized quasi-vector equilibrium

problems, and some additional references of more specific relevance for our later

discussion are mentioned throughout the remaining text.

2.2.2 Multiobjective Programs and Efficiency

With the concept of domination and the definition of the nondominated set

at hand, we can define the general multiobjective program for which we assume that

the set Y ⊂ Rm is the image of some set X ⊆ Rm under a vector-valued function f .

Definition 2.2.10 (Multiobjective Program). Let X ⊆ Rn be a nonempty set,

f : X → Rm be a vector-valued function, and D = {D(y) ⊂ Rm : y ∈ Y } be a

domination structure on the image Y = f(X) ⊂ Rm of X under f . The triple

(X, f,D) (2.41)

is called the multiobjective program (MOP) with feasible decision set X and objective

function f .

If m = 1 or m = 2, then we usually refer to the triple (X, f,D) as single

objective program (SOP) or biobjective program (BOP), respectively. Throughout

this text, however, we always assume that m ≥ 2 and then say that the objective

function f maps the set of feasible decisions X from the decision space Rn to the set

of outcomes Y = f(X) in the outcome or objective space Rm. We treat the feasible

set X in a mostly generic manner and implicitly assume its representation either as

a finite or countable list

X = {x1, x2, . . . xN} or X = {x1, x2, x3, . . .} (2.42a)
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for some of our practical considerations or, for all theoretical discussion, as a con-

strained set

X = {x ∈ Rn : g(x) ≦ 0, h(x) = 0} (2.42b)

where the functions g = (g1, . . . , gk) : Rn → Rk and h = (h1, . . . , hl) : Rn → Rl

describe k inequality and l equality constraints, respectively.

Definition 2.2.11 (Efficiency). Let (X, f,D) be MOP, Y = f(X) be its outcome

set, and N(Y,D) be the nondominated set of Y with respect to D. The sets

E(X, f,D) := {x̂ ∈ X : f(x̂) ∈ N(Y,D)} (2.43a)

Ew(X, f,D) := {x̂ ∈ X : f(x̂) ∈ Nw(Y,D)} (2.43b)

are called the efficient and weakly efficient set for MOP, respectively.

Hence, a feasible decision x̂ ∈ X is (weakly) efficient for MOP if and only

if its outcome ŷ = f(x̂) is (weakly) nondominated with respect to the domination

structure D. In particular, then E(X, f,D) 6= ∅ if and only if N(Y,D) 6= ∅, and for

D = C a constant pointed convex cone, Corley (1980) shows that Proposition 2.2.9

can also be formulated for the efficient set if X 6= ∅ is compact and if f is C-

semicontinuous (for details, see the original reference or Sawaragi et al., 1985).

For the special case where D = Rm
≧

is the Pareto cone and N(Y ) is the Pareto

set, we usually reformulate Definition 2.2.11 for the definition of Pareto efficiency.

Definition 2.2.12 (Pareto efficiency). Let X ⊆ Rn be a nonempty feasible set,

f : X → Rm be an objective function, and Y = f(X) ⊂ Rm be the set of outcomes

of X under f . A feasible decision x̂ ∈ X is said to be

(i) strictly Pareto efficient if there is no x ∈ X \ {x̂} such that f(x) ≦ f(x̂),

(ii) Pareto efficient if there does not exist x ∈ X such that f(x) ≤ f(x̂), and

(iii) weakly Pareto efficient if does not exist x ∈ X such that f(x) < f(x̂).

In these cases, the outcome ŷ = f(x̂) ∈ Y is said to be a (strict) Pareto, Pareto, or

weak Pareto outcome, respectively.
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This definition essentially repeats Proposition 2.2.7 for the three Pareto

cones defined in Equation 2.33. Moreover, it is clear (otherwise use Proposition 2.2.6)

that strict Pareto efficiency implies Pareto efficiency, and that Pareto efficiency im-

plies weak Pareto efficiency. In particular, if f is injective, then Pareto and strict

Pareto efficiency are equivalent, and in general, this distinction becomes irrelevant

for Pareto outcomes in the objective space.

Since Definition 2.2.12 does not depend on an explicit domination structure

or domination cone but the componentwise order, in this case we also denote MOP

as the pair (X, f) and usually formulate

MOP: Minimize f(x) subject to x ∈ X (2.44)

Similarly, and analogous to Definitions 2.2.5 and 2.2.11, in this case we denote the

sets of strictly Pareto, Pareto, and weakly Pareto efficient decisions by Es(X, f),

E(X, f), and Ew(X, f), and let N(Y ) and Nw(Y ) be the sets of Pareto and weak

Pareto outcomes, respectively.

The predominant literature on multiobjective programming is based on the

minimization (or an equivalent maximization) formulation in (2.44) which allows

the definition of numerous additional concepts of which we only introduce the few

needed within the context of our own results. In particular, by separately solving

the single objective programs

Minimize fi(x) subject to x ∈ X (2.45)

for all i = 1, . . . , m and combining the optimal objective function values, we obtain

the ideal point of MOP.

Definition 2.2.13 (Ideal and utopia point). Let (X, f) be MOP with feasible deci-

sion set X ⊆ Rn and objective function f : X → Rm. The point z = (z1, . . . , zm) ∈

Rm with

zi = inf{fi(x) : x ∈ X} for all i = 1, . . . , m (2.46a)
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is called the ideal point, and any r ∈ Rm with

r ≤ f(x) for all x ∈ X (2.46b)

is called a utopia point of MOP.

Whenever needed, we assume that the ideal point exists and is finite, or

equivalently, that the set of utopia points is nonempty.

Remark 2.2.14 (Existence of the ideal point). If Y = f(X) is Rm
≧

-compact, then

the ideal point exists and is finite. In particular, in this case the infimum in (2.46a)

can be replaced by the minimum and a point r ∈ Rm is utopia if and only if r ≤ z.

It is clear that if z = f(x) for some x ∈ X, then x is optimal for all single

objective programs in (2.45) and, consequently, Pareto efficient for MOP. Since the

different objectives are typically in conflict with each other, however, the minimum

values zi in (2.46a) are usually attained by different xi ∈ X for which fj(x
i) >

fj(x
j) = zj for all j 6= i, in general. Therefore, to find any decision x ∈ X that

further reduces the objective value of xi with respect to fj to some fj(x) < fj(x
i) =

zi, we need to accept a corresponding increase in fi to some new value fi(x) >

fi(x
i). The ratio between such two changes defines the important general notion of

a tradeoff which is further discussed in Chankong and Haimes (1983).

Definition 2.2.15 (Tradeoff and tradeoff rate). Let (X, f) be MOP and x1, x2, x̂ ∈

X be feasible decisions. If fj(x
2) − fj(x

1) 6= 0, then the ratio

Tij(x
1, x2) :=

fi(x
1) − fi(x

2)

fj(x2) − fj(x1)
(2.47a)

is called the tradeoff between x1 and x2 involving fi and fj . If f is continuously

differentiable at x̂, then

Tij(x̂) := −∂fi(x)

∂fj

∣

∣

∣

∣

x=x̂

(2.47b)

is called the tradeoff rate at x̂ involving fi and fj .

Kaliszewski (1994) generalizes this definition to the notion of a global trade-

off, and Miettinen (1999) draws the connection between these concepts and the
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marginal rate of substitution from economics. Furthermore, the extension of trade-

off rates to tradeoff directions based on cones is investigated for convex MOP by

Henig and Buchanan (1997), followed by Lee and Nakayama (1997) for the differ-

entiable case and Miettinen and Mäkelä (2002) for the nondifferentiable case.

Finally, various other notions refine the definition of Pareto efficiency and

include the concepts of proper efficiency by Kuhn and Tucker (1951) and Geoffrion

(1968) to guarantee tradeoff rates that are bounded, and several concepts of approx-

imate or ε-efficiency originally defined by Kutateladze (1979). While the former are

of no particular relevance for our discussion and therefore omitted, the latter play an

important role in many following parts of this text so that we present two possible

definitions and review significant parts of the relevant literature in further detail.

Definition 2.2.16 ((Additive) Epsilon efficiency). Let (X, f) be MOP and ε ∈ Rm,

ε ≧ 0, be a nonnegative vector. A feasible decision x̂ ∈ X is said to be

(i) strictly ε-Pareto efficient if there is no x ∈ X \{x̂} such that f(x) ≦ f(x̂)−ε,

(ii) ε-Pareto efficient if there is no x ∈ X such that f(x) ≤ f(x̂) − ε, and

(iii) weakly ε-Pareto efficient if there is no x ∈ X such that f(x) < f(x̂) − ε.

In these cases, the outcome ŷ = f(x̂) ∈ Y is said to be a strict ε-Pareto, ε-Pareto

or weak ε-Pareto outcome, respectively.

Similar to Definition 2.2.11, we immediately obtain that strict ε-Pareto effi-

ciency implies ε-Pareto efficiency, and that ε-Pareto efficiency implies weak ε-Pareto

efficiency. In particular, if ε = 0, then these two conditions coincide and ε-Pareto

efficiency reduces to the previous notion of Pareto efficiency. We denote the sets of

strictly ε-Pareto, ε-Pareto, and weakly ε-Pareto efficient decisions of X under f by

Es(X, f, ε), E(X, f, ε), and Ew(X, f, ε), and let N(Y, ε) and Nw(Y, ε) be the sets of

ε-Pareto and weak ε-Pareto outcomes, respectively.

If f(x) ≧ 0 for all x ∈ X, then the following version of ǫ-efficiency is also

possible and motivated by a similar notion in Papadimitriou and Yannakakis (2000).

Definition 2.2.17 ((Multiplicative) Epsilon efficiency). Let (X, f) be MOP with

f(x) ≧ 0 for all x ∈ X and 0 ≤ ǫ ≤ 1. A feasible decision x̂ ∈ X is said to be
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(i) strictly ǫ-Pareto efficient if there is no x ∈ X \ {x̂} s.t. f(x) ≦ (1 − ǫ)f(x̂),

(ii) ǫ-Pareto efficient if there is no x ∈ X such that f(x) ≤ (1 − ǫ)f(x̂), and

(iii) weakly ǫ-Pareto efficient if there is no x ∈ X such that f(x) < (1 − ǫ)f(x̂).

In these cases, the outcome ŷ = f(x̂) ∈ Y is said to be a strict ǫ-Pareto, ǫ-Pareto or

weak ǫ-Pareto outcome, respectively.

In this text and the following review of the literature, we restrict our at-

tention to the first notion of (additive) ε-efficiency, which is originally defined by

Kutateladze (1979) and independently introduced into multiobjective programming

first by Loridan (1984) and later by White (1986) who also studies six alternative

definitions and establishes their corresponding relationships. Following either Lori-

dan or White, related definitions or examinations of these concepts are given by

Lemaire (1992), Helbig and Pateva (1994), Tanaka (1996), Yokoyama (1996, 1999)

and Li and Wang (1998) for multiobjective programs and extended to more gen-

eral vector optimization problems by Vályi (1985), Németh (1989), Tammer (1994),

Loridan et al. (1999) and Rong and Wu (2000).

In particular, Yokoyama (1992, 1994) and Deng (1997) derive several op-

timality conditions for convex MOP and Liu (1996) for nondifferentiable MOP

based on the use of penalty functions. Rong (1997) proposes a notion for proper ε-

efficiency, and Kazmi (2001) derives conditions for the existence of epsilon-minima.

Similar to the latter, Dutta and Vetrivel (2001) introduce quasi-epsilon-weak minima

and also establish necessary and sufficient optimality conditions for their existence.

Liu and Yokoyama (1999) and recently Gupta et al. (2005) investigate ε-efficiency

for multiobjective fractional programs, and Gutiérrez et al. (2006a,b,c) study ε-

efficient solutions in the context of scalarization approaches that we introduce in

Section 2.2.3 and later address in Section 3.3.3.

In addition to these mostly theoretical results, the concept of ε-efficiency

is also used in a number of practical applications, including the approximation of

biobjective Pareto sets and the formulation of approximation algorithms for min-

imum cost flows (Ruhe and Fruhwirth, 1990), as well as the study of problems
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in transportation (White, 1998a), finance (White, 1998b), location (Blanquero and

Carrizosa, 2002), and scheduling (Angel et al., 2003). Finally, Fadel et al. (2002) em-

ploy the concept of ε-efficiency as a measure of sensitivity to examine the curvature

of Pareto curves of biobjective problems for applications in engineering design.

2.2.3 Scalarization Approaches and Tradeoffs

A great variety of solution methods exist for generating Pareto efficient deci-

sions and are extensively discussed in many monographs on multiobjective program-

ming and optimization (Miettinen, 1999; Jahn, 2004; Ehrgott, 2005, and others). In

particular, Ehrgott and Wiecek (2005) provide a recent comprehensive survey of

many of these methods and propose their classification into scalarization methods

and nonscalarizing approaches. The methods that we here present are chosen as a

subset of the former and provide a parametric characterization of the set of efficient

decisions by combining the individual objective function components into one real-

valued function which attains its optimal value if and only if the associated decision

is (weakly) efficient for the original problem.

Definition 2.2.18 (Increasing function). Let Y ⊂ Rm be nonempty. A real-valued

function s : Y → R is said to be increasing on Y if

y1 ≤ y2 =⇒ s(y1) ≤ s(y2) and y1 < y2 =⇒ s(y1) < s(y2) (2.48a)

for all y1, y2 ∈ Y , and it is said to be strictly increasing if

y1 ≤ y2 =⇒ s(y1) < s(y2) (2.48b)

For the purpose of this text, we call any increasing function s on Y or a

suitable subset T ⊆ Y a scalarization function for MOP. To change the domain of s

from the outcome set Y in Rm to the feasible set X in Rn, we introduce the function

composition s ◦ f : Rn → R as the associated value function of s on Rn. Finally, if

Π is a set of additional scalarization parameters and s = s(π) for some π ∈ Π, then

we write s(π, y) instead of s(π)(y) or also drop the parameter π as in Equation 2.48

if the specific choice of π ∈ Π is fixed or irrelevant.
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Definition 2.2.19 (Scalarized multiobjective program). Let (X, f) be MOP with

feasible set X ⊆ Rn and objective function f : X → Rm. Let S ⊆ X, T = f(S) ⊆ Y ,

and s(π) : T → R be a scalarization function for MOP with scalarization parameter

π ∈ Π. The parametric single objective program

SOP(π): Minimize s(π, f(x)) subject to x ∈ S ⊆ X (2.49)

is called the associated scalarization problem for MOP.

Since SOP is a single objective program, the notions of optimality and ap-

proximate optimality are standard and follow from the canonical order of real num-

bers. The latter is also discussed in Loridan (1982) and, although not needed in our

current context, introduced here for our later discussion in Section 3.3.3.

Definition 2.2.20 (Epsilon-Optimality and Optimality). Let SOP be given, and

let ǫ ∈ R, ǫ ≥ 0. A solution x̂ ∈ S ⊆ X is called

(i) strictly ǫ-optimal for SOP if s(f(x̂)) < s(f(x)) + ǫ for all x ∈ X \ {x̂}, and

(ii) ǫ-optimal for SOP if s(f(x̂)) ≤ s(f(x)) + ǫ for all x ∈ X.

If ǫ = 0, then x̂ is also called strictly optimal or optimal, respectively.

By definition, we note that each optimal solution for SOP is in particular

strictly ǫ-optimal, and each strictly ǫ-optimal solution is also ǫ-optimal. In particu-

lar, if 0 ≤ ǫ1 ≤ ǫ2, then optimality implies ǫ1-optimality, and ǫ1-optimality implies

ǫ2-optimality. However, for now we postpone all further discussion of ǫ-optimality

until our later investigation of approximate nondominance and summarize various

results that relate optimality and efficiency for SOP and MOP, respectively.

Proposition 2.2.21 (Relationship between SOP optimality and MOP efficiency).

Let (X, f) be MOP, Y = f(X) be its set of outcomes, s : Y → R be an increasing

scalarization function, and x̂ ∈ X be optimal for the associated SOP.

(i) If x̂ ∈ X is strictly optimal for SOP, then x̂ ∈ Es(X, f).

(ii) If s is strictly increasing, then x̂ ∈ E(X, f).

In any case, x̂ ∈ Ew(X, f).
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This result is similarly established in Wierzbicki (1986) and its proof there-

fore omitted. Furthermore, if s = s(π) depends on some additional scalarization

parameter, then for different choices of π ∈ Π, in general we obtain different opti-

mal solutions for SOP and, thus, different efficient decisions for MOP. While some

scalarization methods are capable to generate every efficient decision and thus com-

pletely characterize the efficient set, others also depend on certain properties of the

underlying outcome set and are restricted to generate only a smaller subset. For

questions addressing these issues we refer to the discussion in Wierzbicki (1986).

The probably most common scalarization method combines all objective

functions in the form of a nonnegative linear combination or weighted sum and is

attributed variously to Gass and Saaty (1955), Zadeh (1963), or Geoffrion (1968).

Definition 2.2.22 (Weighted-sum scalarization). Let (X, f) be MOP and w ∈

Rm, w ≥ 0. The single objective program

WS(w): Minimize

m
∑

i=1

wifi(x) subject to x ∈ X (2.50)

is called the weighted-sum scalarization (WS) of MOP with weighting parameter w.

The geometric interpretation of this method is that it finds that boundary

point of the outcome set Y at which the weighting vector w is normal to a supporting

hyperplane to Y .

Proposition 2.2.23 (Weighted-sum sufficient condition for efficiency). Let (X, f)

be MOP and x̂ ∈ X be optimal for WS(w) with weighting parameter w ∈ Rm, w ≥ 0.

(i) If x̂ is strictly optimal, then x̂ ∈ Es(X, f).

(ii) If w > 0, then x̂ ∈ E(X, f).

In any case, x̂ ∈ Ew(X, f).

Based on its geometric interpretation, this method is limited to finding only

those efficient decisions whose associated outcomes occur in convex regions of the

Pareto set. If Y is Rm
≧

-convex, however, then there exists a supporting hyperplane

at every Pareto outcome by Theorem 2.1.24 (supporting hyperplane theorem), and

the next result follows.
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Proposition 2.2.24 (Weighted-sum necessary condition for efficiency). Let (X, f)

be MOP and Y = f(X) be Rm
≧

-convex.

(i) If x̂ ∈ Ew(X, f), then there exists w ≥ 0 such that x̂ is optimal for WS(w).

(ii) If x̂ ∈ E(X, f), then there exists w > 0 such that x̂ is optimal for WS(w).

Li et al. (1999) establish the following result for the tradeoff rate from Defini-

tion 2.2.15 at an optimal solution for the weighted-sum scalarization, which can also

be derived as special case of the tradeoff rates for the general hyperplane method

proposed by Sakawa and Yano (1990).

Proposition 2.2.25 (Weighted-sum tradeoff rates). Let (X, f) be MOP and x̂ ∈ X

be optimal for WS(w). If f is continuously differentiable at x̂ and wi 6= 0, then

Tij(x̂) := −∂fi(x)

∂fj

∣

∣

∣

∣

x=x̂

=
wj

wi
(2.51)

Another important scalarization method is the constrained-objective scalar-

ization, also called the epsilon-constraint method, which is originally introduced by

Haimes et al. (1971) and well known from the detailed discussion in Chankong and

Haimes (1983). Instead of combining the individual objectives, this method con-

verts all objectives into constraints, imposes additional objective bounds, and then

chooses only a single objective for actual minimization.

Definition 2.2.26 (Constrained-objective scalarization). Let (X, f) be MOP, fk

be any single objective of f = (f1, . . . , fm), and b ∈ Rm be a vector. The single

objective program

COk(b): Minimize fk(x) subject to f(x) ≦ b and x ∈ X (2.52)

is called constrained-objective scalarization (CO) of MOP with objective bound b.

While the original problem formulation drops the kth constraint fk(x) ≤

bk from f(x) ≦ b, for later convenience we can also keep this constraint without

changing any of the original results.
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Proposition 2.2.27 (Constrained-objective necessary condition for efficiency). Let

(X, f) be MOP, b ∈ Rm, and x̂ ∈ X be optimal for COk(b).

(i) If x̂ is strictly optimal, then x̂ ∈ Es(X, f).

(ii) If x̂ is optimal for COk(b) for all k = 1, . . . , m, then x̂ ∈ E(X, f).

In any case, x̂ ∈ Ew(X, f).

Other than a weighted sum, the constrained-objective scalarization is not

limited by convexity but can be used to find any efficient decision for MOP.

Proposition 2.2.28 (Constrained-objective necessary and sufficient condition for

efficiency). Let (X, f) be MOP and x̂ ∈ X. Then x̂ ∈ E(X, f) if and only if x̂ is

optimal for COk(f(x̂)) for all k = 1, . . . , m.

Based on the well known sensitivity theorem from nonlinear programming

(Luenberger, 1973, 1984), Chankong and Haimes (1983) also establish a correspond-

ing result for the tradeoff rate at an optimal solution x̂ for the constrained-objective

scalarization. For a precise definition of the concepts stated in the assumptions of

the following proposition, we refer to the original references.

Proposition 2.2.29 (Constrained-objective tradeoff rates). Let (X, f) be MOP, f

be twice continuously differentiable, b ∈ Rm, and x̂ ∈ X be optimal for COk(b). If

(i) x̂ is a regular point of the constraints f(x) ≦ b in COk(b),

(ii) the second-order sufficiency conditions are satisfied at x̂, and

(iii) there are no degenerate constraints at x̂, then

Tki(x̂) := −∂fk(x))

∂fi(x)

∣

∣

∣

∣

x=x̂

= λki for all i = 1, . . . , m, i 6= k (2.53)

where the λki are the Lagrangean multipliers associated with each of the constraints

fi(x̂) ≤ bi of COk(b).

We can also combine the weighted-sum method and the constrained-objective

scalarization into the following hybrid method which is similarly introduced by Wen-

dell and Lee (1977), Corley (1980), and Guddat et al. (1985).
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Definition 2.2.30 (Hybrid scalarization). Let (X, f) be MOP, w ∈ Rm, w ≥ 0, and

b ∈ Rm. The single objective program

HB(w, b): Minimize
m
∑

i=1

wifi(x) subject to f(x) ≦ b and x ∈ X (2.54)

is called the hybrid scalarization (HB) of MOP with weighting parameter w and

objective bound b.

In particular, Guddat et al. (1985) choose the parameter b as an outcome

f(x◦) for some feasible decision x◦ ∈ X with an underlying interpretation as aspi-

ration of reference point. The following results, however, hold in further generality

and essentially repeat the statements of Propositions 2.2.23 and 2.2.28.

Proposition 2.2.31 (Hybrid necessary condition for efficiency). Let (X, f) be MOP

and x̂ ∈ X be optimal for HB(w, b) with weighting vector w ∈ Rm, w ≥ 0, and

objective bound b ∈ Rm.

(i) If x̂ is strictly optimal, then x̂ ∈ Es(X, f).

(ii) If w > 0, then x̂ ∈ E(X, f).

In any case, x̂ ∈ Ew(X, f).

Proposition 2.2.32 (Hybrid necessary and sufficient condition for efficiency). Let

(X, f) be MOP and w ∈ Rm, w ≥ 0. Then x̂ ∈ E(X, f) if and only if x̂ is optimal

for HB(w, f(x̂)).

Remark 2.2.33 (Relationship between hybrid, weighted-sum, and constrained-ob-

jective scalarization). If f(x) ≦ b for all x ∈ X, then the constraints in HB(w, b) are

always satisfied and the hybrid scalarization reduces to the weighted-sum scalariza-

tion WS(w). Furthermore, if w = ek is the kth unit vector, then
∑m

i=1 wifi(x) =

fk(x) and HB(ek, b) reduces to the constrained-objective scalarization COk(b).

Hence, the hybrid scalarization generalizes both the weighted-sum and the

constrained-objective scalarization methods. Furthermore, if we let w = (1, . . . , 1)T

be the vector with all components equal to one and choose b = f(x◦) for some

feasible decision x◦ ∈ X, then we obtain the scalarization method that is originally

introduced by Benson (1978) in the following formulation.

35



Definition 2.2.34 (Benson scalarization). Let (X, f) be MOP and x◦ ∈ X. The

single objective program

B(f(x◦)): Maximize
m
∑

i=1

li subject to f(x◦) − l = f(x) ∈ f(X) and l ≧ 0 (2.55)

is called the Benson scalarization (B) of MOP with reference point f(x◦).

Proposition 2.2.35 (Benson condition for efficiency). Let (X, f) be MOP, x◦ ∈ X

and (l̂, x̂) be optimal for B(f(x◦)). Then x̂ ∈ E(X, f), and in particular, x◦ ∈

E(X, f) if and only if l = 0.

We note that the geometric idea behind this method is to start from the

reference point f(x◦) in the outcome set Y = f(X) and then project this point along

a nonnegative direction l of maximum length onto the Pareto set N(Y ). Based on a

similar geometric interpretation, first Roy (1971), then Gembicki and Haimes (1975),

and later Pascoletti and Serafini (1984) use a similar direction-based approach for

the generation of efficient decisions with respect to a general pointed convex cone.

Definition 2.2.36 (Pascoletti-Serafini scalarization). Let (X, f, C) be MOP with

C ⊂ Rm a pointed convex cone, r ∈ Rm be a vector, and v ∈ int C be an element of

the cone interior. The single objective program

PS(r, v): Minimize µ subject to r + µv − c ∈ f(X), c ∈ C and µ ∈ R (2.56)

is called the Pascoletti-Serafini scalarization (PS) of MOP with reference point r

and reference direction v.

Proposition 2.2.37 (Pascoletti-Serafini condition for efficiency). Let (X, f, C) be

MOP. If µ̂ is optimal for PS(r, v) and ŷ = r + µ̂v − c ∈ Y , then

(i) ŷ ∈ Nw(Y, C), and

(ii) there exists ĉ ∈ C such that ŷ = r + µ̂v − ĉ ∈ N(Y, C).

For the special case in which C = R2
≧

is the Pareto cone, Figure 2.2 illustrates

the principle idea of the Pascoletti-Serafini method with four different choices of the

reference point r ∈ Rm and two different direction vectors v ∈ Rm
> .
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r ŷ Y

rr������) µ̂vr
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Figure 2.2 The Pascoletti-Serafini method PS(r, v) for Y ⊂ R2 and the Pareto
cone R2

≧
with four choices of reference point r ∈ R2 and direction vector v ∈ R2

>

The Pascoletti-Serafini scalarization method can also be derived as a special

application of the results in Gerth and Weidner (1990) who investigate separa-

tion theorems in general topological spaces and is analyzed in some further detail

in Schandl (1999). Besides a generalization of the weighted-sum scalarization for

closed convex cones (Gearhart, 1983; Jahn, 1984; Sawaragi et al., 1985, among oth-

ers), however, we are not aware of any other common scalarization method that

is formulated for a general cone and propose some possible extensions also for the

constrained-objective, hybrid, and Benson scalarization in Section 3.1.3.

For the Pareto case, we present two further scalarization methods of rele-

vance for this text that belong to the important class of approaches that utilize

weighted-ℓp norms and are originally introduced by Zeleny (1973) to approximate

the ideal point in the context of compromise programming. In particular, we only

consider the special case of the probably most important weighted-ℓ∞, or equiva-

lently, the weighted-Chebyshev norm scalarization commonly accredited to Bowman

(1976), Choo and Atkins (1983), or Steuer (1986).

Definition 2.2.38 (Weighted-Chebyshev norm scalarization). Let (X, f) be MOP,

r ∈ Rm with r ≤ f(x) for all x ∈ X be a utopia point, and w ∈ Rm, w ≥ 0 be a

nonnegative vector of weights. The single objective program

CN(r, w): Minimize max
i=1,...,m

{wi(fi(x) − ri)} subject to x ∈ X (2.57)
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is called the weighted-Chebyshev norm scalarization (CN) of MOP with reference

point r and weighting parameter w.

Proposition 2.2.39 (Weighted-Chebyshev norm necessary and sufficient condition

for (weak) efficiency). Let (X, f) be MOP and x̂ ∈ X. Then x̂ ∈ Ew(X, f) if and

only if there exists w > 0 such that x̂ is optimal for CN(r, w).

Hence, we can use the weighted-Chebyshev norm scalarization method to

find all efficient and weakly efficient decisions for any MOP. Furthermore, Steuer

and Choo (1983) and Steuer (1986) also propose an augmented-Chebyshev norm

and Kaliszewski (1987) formulates a modified-Chebyshev norm to guarantee that

all generated solutions are also always efficient.

Remark 2.2.40 (Weighted-Chebyshev norm tradeoff rates). The weighted-Chebyshev

norm scalarization CN(r, w) can equivalently be written as

Minimize α subject to α ≥ wi(fi(x) − ri) for all i = 1, . . . , m and x ∈ X (2.58)

so that, under conditions corresponding to those for the constrained-objective method

in Proposition 2.2.29, the tradeoff rate at an optimal solution x̂ is given by

Tij(x̂) := −∂fi(x)

∂fj

∣

∣

∣

∣

x=x̂

=
λjwj

λiwi
(2.59)

where λi and λj are the Lagrangean multipliers associated with the constraints

α ≥ wi(fi(x) − ri) and α ≥ wj(fj(x) − rj) in (2.58), respectively.

In further generalization of weighted-ℓp norms, Schandl et al. (2002a) intro-

duce the notion of oblique norms and develop norm-based approximation methods

for both BOP and MOP (Schandl et al., 2001, 2002b). For the general class of scalar-

ization approaches that are based on norm minimization, Lin (2005) investigates the

consequences on the generated solutions when choosing different locations for the

reference point. In particular, if r = 0 and w = 1, then the weighted-Chebyshev

norm scalarization CN(0, 1) reduces to the max-norm scalarization, which is also

known as the max-ordering approach (Kouvelis and Yu, 1997; Ehrgott, 2005).
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Definition 2.2.41 (Max-norm scalarization). Let (X, f) be MOP. The single ob-

jective program

MN: Minimize max
i=1,...,m

{fi(x)} subject to x ∈ X (2.60)

is called the max-norm scalarization (MN) of MOP.

Proposition 2.2.42 (Max-norm sufficient condition for weak efficiency). Let (X, f)

be MOP. If x̂ ∈ X is optimal for MN, then x̂ ∈ Ew(X, f).

In particular, analogous to Remark 2.2.40 we can obtain the tradeoff rate at

an optimal solution x̂ for MN as

Tij(x̂) := −∂fi(x)

∂fj

∣

∣

∣

∣

x=x̂

=
λj

λi
(2.61)

In summary, we conclude that a large number of scalarization approaches

exist which can be defined based on linear combinations of objectives in the form of

weighted sums, objective constraints and bounds, reference points, directions, and

various norms and norm variants. As we mention at the very beginning, of course

there are also many other scalarization approaches in addition to the ones described,

but we decide to limit our list to the ones that actually reappear in later parts of this

dissertation and defer to the provided references for any additional information.

2.3 Critique of Multiple Criteria Decision Making

As indicated in the introduction and formalized in Definition 2.2.10, a mul-

tiobjective program MOP is a mathematical model that describes the decisions and

objectives of a multiobjective optimization or decision problem as a set of real vec-

tors X ⊆ Rn and a vector-valued function f : X → Rm, respectively. Moreover,

to enable the partial comparison of different decisions in terms of their resulting

outcomes y ∈ Y = f(X) ⊂ Rm, we can additionally specify a domination structure

D = {D(y) : y ∈ Y } to equip the associated outcome space with a notion of domi-

nation or, by default, adopt an underlying concept of objective minimization as the

special case of Pareto optimality. In any case, throughout this text we constantly

assume that X and f are given explicitly, and we are primarily interested in the
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characterization, generation, or approximation of the efficient and nondominated

sets E(X, f,D) and N(Y,D) associated with different concepts of domination.

Clearly, in doing so we in large part ignore that for practical decision making

problems many additional steps are required before we obtain a model in the form

of a multiobjective program, including the preliminary problem analysis, data col-

lection, handling of uncertainties, and the final model formulation. Being well aware

of the frequent difficulties and crucial importance of all these aspects, however, we

decide not to expose any of these additional details, which are extensively discussed

in numerous monographs on multiple criteria decision making (Keeney and Raiffa,

1976; Zeleny, 1982; Chankong and Haimes, 1983; Yu, 1985) and multiobjective opti-

mization (Sawaragi et al., 1985; Steuer, 1986; Miettinen, 1999; Jahn, 2004; Ehrgott,

2005). In particular, two very recent and comprehensive collections of bibliographic

state-of-the-art surveys (Ehrgott and Gandibleux, 2002; Figueira et al., 2005) pro-

vide excellent overviews over the general field, and many other works exist that also

focus on more specific aspects of multiobjective programming models in the engi-

neering and management sciences (Goicoechea et al., 1982; Osyczka, 1984, 1985;

Stadler, 1984, 1988; Eschenauer et al., 1990; Stadler and Dauer, 1992; Collette and

Siarry, 2003, and many others).

2.3.1 Optimization versus Decision Making

In critical review of some existing ideas in the literature, in this section we

briefly address some of the more practical aspects of multiobjective programming as

they pertain to multiple criteria decision making and the general discussion within

this text. Henceforth assuming that the decision problem is modeled by a feasible

decision set and vector-valued objective function, we first take the traditional and

still typical viewpoint and consider the resulting multiobjective program with re-

spect to Pareto efficiency. In this case, the literature of multiobjective programming

and optimization contains a vast amount of theoretical results that characterize the

efficient or the Pareto set and, moreover, provides us with a great variety of different

solution methods for its generation. From a practical point of view, however, it is
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not immediately clear what the solution of a multiobjective programming problem

is actually meant to be.

For a mathematical program with a single objective, solving this problem is

clearly understood as the process of either finding a decision for which the corre-

sponding scalar outcome attains a minimal value, or coming to the conclusion that

such an outcome does not exist. In particular, although in certain instances still a

very challenging task, we can frequently use an appropriate technique from linear or

nonlinear programming or optimization to actually compute or at least sufficiently

closely approximate such an optimal solution. For a multiobjective program, how-

ever, there usually does not exist a unique optimal outcome, but a nondominated set

which consists of many and possibly infinitely many points. Hence, while it is theo-

retically possible to generate each nondominated outcome based on the scalarization

approaches discussed in Section 2.2.3, for practical purposes this is clearly impos-

sible so that we need to restrict the computation to only a subset of the complete

nondominated set in the form of a discrete representation (Armann, 1989; Benson

and Sayin, 1997; Sayin, 2000; Mattson et al., 2004) or finite approximations (for a

recent survey, see Ruzika and Wiecek, 2005).

In principle, there exist two different approaches to finding suitable repre-

sentations of the nondominated set of a multiobjective programming problem. The

first approach relies on scalarization and uses a parametrized real-valued function

so that, by varying the associated scalarization parameters and solving the series of

resulting single objective programs, different nondominated outcomes and efficient

decisions can be obtained. In particular, the arguably best known scalarization

method is to aggregate all multiple objectives into a single objective in the form of

a linear combination or weighted sum, which we introduce and characterize in Def-

inition 2.2.22 and Propositions 2.2.23 and 2.2.24, respectively. Although seemingly

convenient to handle and therefore still the most widely used method in business

and engineering applications, several drawbacks of this method are recognized (Das

and Dennis, 1997; Fliege, 2004; Scott and Antonsson, 2005) which most prominently

include its failure to generate points in nonconvex regions of the Pareto set. Many
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of the alternative methods that we describe in Section 2.2.3, however, remove these

limitations and, in principle, can be used to find representations of the complete

nondominated set to essentially any desired accuracy.

Of course, in the above discussion we again implicitly assume that the so-

lution of each scalarized single objective program is sufficiently simple so to enable

the generation of many and possibly a quite large number of efficient decisions and

nondominated outcomes. For many realistic problems, however, we also face the

challenge of high computational complexities that frequently impede the successful

use of the aforementioned scalarization approaches. In particular, and especially

in engineering applications, the computation of objective values is often based on

underlying finite element or simulation codes which impose severe restrictions on

the number of permissible function evaluations and, thus, on the number and type

of optimization problems that we can actually solve. Consequently, a recent alter-

native trend to generate nondominated points is the development of new heuristic

approaches such as multiobjective evolutionary and genetic algorithms (Deb, 2001;

Zitzler et al., 2001; Coello Coello et al., 2002; Coello Coello and Romero, 2002; Yen,

2003) that can also be applied if the evaluation of function values or gradients is

computationally too expensive to allow the use of scalarization methods that are

based on traditional optimization. Although typically very problem dependent and

without a rigorous theoretical foundation, these approaches frequently show very

good performance in practice (Narayanan and Azarm, 1999; Gunawan et al., 2004;

Deb and Tiwari, 2005; Gantovnik et al., 2006, and many more).

In any case, from an optimization point of view, we can conclude that the

most common interpretation of solving a multiobjective program is the computation

of a suitable subset of the corresponding efficient and nondominated sets, subject to

certain properties or characteristics such as representation accuracy or approxima-

tion quality (Ruzika and Wiecek, 2005). From the perspective of a decision maker,

however, this optimization stage and the resulting set of potential candidates is

again only a preliminary step to prepare the selection of a final preferred decision

which then constitutes the overall solution to the multiobjective programming model
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and, after translation into the real-life problem context, the original decision mak-

ing problem. In particular, while the solution set in the optimization sense can be

clearly defined based on rigorous mathematical concepts, decision making by nature

involves a decision maker with subjective preferences, priorities, expectations and

personal aspirations which are often not easily described or readily articulated in

terms of the chosen mathematical model.

Hence, we conclude that in the case of decision making, finding a final solu-

tion can still be quite difficult if preferences are not completely modeled or known

and if the numbers of potential candidates and objectives are too large to make

use of existing enumeration or visualization techniques. In remedy of these two

difficulties, we essentially see two possible ways out which we address in the fol-

lowing two Sections 2.3.2 and 2.3.3 with reference to several related approaches in

the literature. The first idea is to refine the concept of Pareto optimality by new

preference assumptions and to introduce new domination structures to include some

of the decision maker’s preferences already into the optimization stage, thereby re-

ducing the set of candidate decisions that are presented to the decision maker for

further consideration. The second idea is to support the decision maker in the pro-

gressive articulation of preferences by interactive decision making procedures and

several decomposition strategies that facilitate the overall conceptual perception of

a large-scale multiobjective program. Based on some of the approaches that we re-

view in the following discussion, we initiate our own contributions with our research

statement in the concluding section of this chapter.

2.3.2 Preference Principles and Domination

The notion and modeling of preferences play an important role in many

aspects of economics, sociology, psychology, and clearly, multiple criteria decision

making, and are extensively researched during the past century (for a comprehensive

recent survey, see Öztürk et al., 2005) and discussed at great length in numerous

fundamental monographs (Fishburn, 1964, 1970; Krantz et al., 1971; Keeney and

Raiffa, 1976; Roberts, 1979; Roubens and Vincke, 1985; Roy, 1996; Aleskerov and
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Monjardet, 2002). Without going into any particular detail, however, again we only

provide a rather informal discussion of some of these general concepts and then

point to some more specific approaches that explicitly use domination structures to

model preferences in the context of multiobjective programming.

In the previous section, we describe how to use a parametrized scalarization

function to generate a representation of the nondominated set by varying the associ-

ated scalarization parameters and solving the resulting collection of single objective

programs. These parameters are usually weights, reference points, or bounds on ob-

jectives which, as indicated in several results in Section 2.2.3, also carry an inherent

meaning of tradeoffs or relative importances between the different criteria. Hence,

the maybe most elegant approach to model the decision maker’s preferences is in

terms of a real-valued function s : Y → R so that

y1 ≺ y2 if and only if s(y1) < s(y2) for all y1, y2 ∈ Y (2.62)

For deterministic choice problems, such a function is usually called a value function,

whereas the term utility function is commonly used for decision problems that also

involve risks and uncertainties. Consequently, the theory that is concerned with

this approach is typically known as value and utility theory (Fishburn, 1964, 1970;

Keeney and Raiffa, 1976) and due to its significant interdisciplinary impacts still a

very active field of study (compare part IV in Figueira et al., 2005).

The formulation of a value or utility function has the main advantage that

it enables the direct assessment of the complete preference structure of the decision

maker and thus does not require the aforementioned distinction between optimiza-

tion and decision making. However, it is also clear that the construction of such a

function is usually quite difficult if not impossible, as the decision maker is usually

not capable to precisely specify all his preferences in terms of the required scalar-

ization parameters. Therefore, another approach is to merely assume some more

generic preference assumptions to yield a set of potential candidates from among

which the decision maker may choose based on additional preferences revealed dur-

ing the decision process or further criteria not included in the original optimization
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model. Many of these assumptions have their origin in the study of social wealth,

economic welfare, and the distribution of incomes, and we restrict our discussion to

only three of the most common principles with an immediate relevance to multiob-

jective programming and some later aspects in this text.

Already highlighted in Definition 2.2.12, the traditional and still most com-

mon solution concept in multiobjective programming is that of Pareto efficiency

which stems from the economic Edgeworth-Pareto Principle

y1 ≺ y2 if y1
i < y2

i for some 1 ≤ i ≤ m and y1
j ≤ y2

j for all 1 ≤ j ≤ m (2.63)

that is independently introduced into the economic literature by Edgeworth (1881)

and Pareto (1896). The predominant use of this principle indicates its wide ac-

ceptance and validity for multiobjective programming, optimization, and decision

making, although it usually requires further refinement for the latter as it usually

does not imply a unique preferred decision but only a set of efficient decisions or

nondominated outcomes. In particular, since this principle equates overall improve-

ment with improvement in any individual component, it does not model any tradeoff

between objectives, say that a relatively large reduction in one objective may be able

to compensate a small increase in some other objective component.

One possible refinement of the Edgeworth-Pareto Principle is commonly

known as the Principle of Transfers and independently formulated by Pigou (1912,

1932) and Dalton (1920). This principle states that given an outcome y with yi < yj

for two different indices i and j, then

y + δei − δej ≺ y for all 0 < δ < yj − yi (2.64)

with the interpretation that any outcome with two unequal objective components

can be improved by transferring a certain amount from the larger to the smaller

objective so to reduce the difference between these two components. In particular,

if all objective components are identical, then further improvement with respect

to this principle is not possible so that we usually combine the Edgeworth-Pareto

Principle with the Principle of Transfers. Recently, this approach is also studied
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in the context of multiobjective programming as the concept of equitable efficiency

(Kostreva and Ogryczak, 1999; Kostreva et al., 2004; Baatar and Wiecek, 2006).

Very similar to the max-norm scalarization, Rawls (1958, 1971) essentially

formulates the same idea as a Principle of Justice

y1 ≺ y2 if max{y1
i : 1 ≤ i ≤ m} < max{y2

i : 1 ≤ i ≤ m} (2.65)

so that an outcome y1 is preferred over y2 as long as the maximal component of y1

is smaller than the maximal component of y2. The partial order associated with this

principle is also called the max-order and can further be modified to the lexicographic

order introduced by Debreu (1954) and Georgescu-Roegen (1954)

y1 ≺ y2 if and only if y1
i < y2

i for some 1 ≤ i ≤ m

and y1
j = y2

j for all 1 ≤ j ≤ i − 1

(2.66)

which, in fact, establishes a total order on the set of outcomes. While preference

with respect to the max-order is defined based on the smaller of the maximum com-

ponents, for the lexicographic order we usually assume that all objectives are ranked

according to their relative importances so that we can identify a preferred outcome

ŷ based on a sequential elimination of outcomes using lexicographic optimization

ŷi := min{yi : yj = ŷj for all 1 ≤ j ≤ i − 1 and y ∈ Y } for all i = 1, . . . , m (2.67)

In particular, similar to the approach using a value or utility function, a lexicographic

order gives rise to a unique preferred outcome, and some of the relationships between

utility theory and lexicographic orders are discussed in Fishburn (1974). Recently,

Ehrgott (2005) also combines lexicographic optimization with the max-order to de-

fine a lexicographic max-ordering approach for multiobjective programming, and

many other variants of objective ranking and elimination methods exist (compare

part III in Figueira et al., 2005) but are not needed in the context of this text.

The existing literature on other preference models in multiple criteria de-

cision making is extensive and also includes many recent developments for more

general decision rules (Greco et al., 2000; Fortemps et al., 2004), rough sets (Greco

46



et al., 1999; Fortemps et al., 2004), and fuzzy measures (S lowiński, 1998; Greco et al.,

1999; Fodor et al., 2000; Grabisch and Labreuche, 2005). Nevertheless, we also omit

the exposition of any of these approaches as they are of no immediate relevance

to our discussion. Instead, we now briefly highlight the few existing works that

model preferences based on the concept of domination or domination structures in

an interplay of multiple criteria decision making with multiobjective programming.

Following his original definition of a domination structure and the closer

investigation of the special case of cones, Yu (1973, 1974, 1975) also describes some

specific applications of either completely or partially known domination cones for

decision making under certainty and uncertainty, respectively. In further general-

ization, Bergstresser et al. (1976) investigate the consequences of extending domina-

tion structures from convex cones to convex sets and derive conditions that require

the underlying domination structure be constant, and Lin (1976) compares these

new concepts to traditional Pareto optimality and shows how domination struc-

tures can also be used to generalize the notion of utility functions. The relevance

of domination structures for solution concepts in multicriteria games is examined in

Bergstresser and Yu (1977), and Tanino et al. (1980) again study domination cones

for preferences in the context of cardinal utility theory and group decision making.

In the general context of fuzzy set theory, Yu and Leitmann (1977) discuss

relationships between domination and confidence structures for Bayesian decision

making, whereas the new notions of fuzzy cones and fuzzy dual cones are introduced

by Takeda and Nishida (1980) to model preferences that are not known precisely but

only fuzzily determined. Also for the case of unknown preferences, Ramesh et al.

(1988, 1989) and independently Köksalan (1989) extend an earlier deterministic

method (Korhonen et al., 1984; Köksalan et al., 1988) that uses pairwise comparisons

and sequential elimination to construct a convex domination cone that describes the

underlying preference structure of the decision maker. Several other modifications to

this approach are later proposed by Prasad et al. (1997) to improve its convergence

and further reduce some of the required preference information that need to be

obtained from or specified by the decision maker.
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Based on the notion of tradeoffs between and relative importances of the

different objectives, Noghin (1997) proposes the use of convex polyhedral cones to

refine the traditional concept of Pareto optimality, and following his work Hunt and

Wiecek (2003) and Hunt (2004) formulate and study two general classes of convex

polyhedral cones to model both preferences and tradeoffs as specified by the decision

maker. Also within the more recent literature, Wu (2004) again uses convex cones to

describe preferences for fuzzy multiobjective programs, and Yun et al. (2004) finally

suggest a new model that incorporates various preference structures of decision

makers in the context of data envelopment analysis.

In the majority of these reviewed papers that use the concept of domination

structures for modeling preferences of the decision maker, we find that the chosen

model is described by a constant domination set and typically by a constant convex

cone. Based on the results in Section 2.1.3, however, this implies that the set of dom-

inated directions is identical for every outcome which usually imposes quite severe

restrictions on the underlying preference assumptions. In particular, the principles

of both transfers (2.64) and justice (2.65) cannot be modeled by a constant cone

(Baatar and Wiecek, 2006), and the occurrence of variable or changing preferences

is long recognized also in many other economic choice and practical decision making

situations (Basmann, 1956; Hammond, 1976; Grout, 1982; Sprumont, 1996; Gul and

Pesendorfer, 2005, among others).

To our best knowledge, however, we are aware of only two current papers that

explicitly address variable domination structures for multiobjective programming,

namely in the context of nonlinear scalarization for multicriteria decision making

problems and variational inequalities (Chen and Yang, 2002; Chen et al., 2005a).

These papers, however, do not discuss the possible role of domination structures for

the modeling of preferences, and we also do not know of any other paper that can

directly be related to preference modeling using a variable domination structure.

Hence, this situation motivates one of our own particular research objectives that is

further addressed at the end of this chapter in Section 2.4.
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2.3.3 Interactive and Decomposition Methods

We emphasize in the earlier sections that the ultimate task in solving a

multiple criteria decision making problem is the selection of a final alternative which

usually depends on the subjective evaluation and preferences of a decision maker. We

also point out that this selection can be quite difficult if this preference information is

not articulated or described in a quantitative manner, possibly hindered by too many

decisions to choose from or too many objectives to simultaneously take into account.

With reference to various parts of the decision making and engineering literature, we

now give a brief overview of two different approaches that are suggested to facilitate

the articulation of preferences and enable the consideration of multiple criteria using

interactive and decomposition methods, respectively.

Based on the presentation in Miettinen (1999, 2002) and Korhonen (2005),

we generally distinguish the following four cases for the collection of preferences from

the decision maker. First, several methods exist that do no depend on any subjective

input but find a final decision based on a completely determined set of decision

rules or a globally valid optimality concept. In fact, some of these methods are used

quite commonly and include the important methods of compromise programming

(Yu, 1972; Zeleny, 1973) to approximate the ideal point or the approaches based

on max-norms and max-orders (Ehrgott, 2005) which we present in Section 2.3.2.

While not of primary interest for practical decision making, however, these methods

are particularly useful for implementation into computer software and automated

decision making when preferences are not available or completely unknown.

On the other hand, if the decision maker is fully knowledgeable about all his

preferences, then we can formulate an associated value function and directly find the

preferred decision without further decision making but based on the optimal solu-

tion of the corresponding single objective program. Since, in this case, the complete

preference information is revealed before we actually generate any efficient decision,

these methods are also known as a priori methods. Alternatively, although based on

the solution of multiple optimization problems, this class also includes several out-

ranking methods such as lexicographic max-ordering or lexicographic optimization
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(Ehrgott, 2005) together with approaches based on the analytic hierarchy process

(Saaty, 1980) or goal programming (Charnes and Cooper, 1977; Ignizio, 1983; Lee

and Olson, 1999). Clearly, these methods are convenient and computationally effi-

cient because we do not need to generate any decision that is not preferred by the

decision maker, but usually not very useful in practice if preferences are partially

unknown or not readily articulated by the decision maker.

Hence, a more common approach is to merely assume a set of general prefer-

ence principles, model the underlying preference or domination structure, and then

find a finite representation of the corresponding efficient or nondominated set for

further consideration by the decision maker, essentially following our discussion in

Section 2.3.1. In these cases, we usually assume that the decision maker is capable to

further specify his preferences after the preliminary optimization stage based on pair-

wise comparisons, ranking procedures, or suitable visualization techniques, provided

their practicality for a reasonable number of generated alternatives. Consequently,

since the decision making stage now succeeds the optimization, in distinction to the

former we also call these approaches a posteriori methods. These methods, how-

ever, often share the common drawback that many solutions may be generated that

eventually are of no real interest to the decision maker.

Several procedures that are based on a progressive articulation of prefer-

ences attempt to overcome the drawbacks of a priori and a posteriori methods by

gathering partial preference information already during the optimization stage. In

these interactive methods, only one or very few initial solutions are generated and,

possibly together with additional information such as their associated tradeoffs, pre-

sented to the decision maker for his subsequent consideration. Since the number of

solutions is kept sufficiently small, we usually assume that the decision maker is

able to evaluate and select the most preferred among these solutions and possibly

specify further preference information revealed during this decision process. Based

on the current and past choices of the decision maker, we then generate a new set

of solutions and iterate the procedure until the decision maker finds a satisfying

solution or decides to otherwise terminate the overall decision making process.
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One of the major advantages of this interactive decision making scheme is

that the decision maker does not need to specify all preferences a priori, but can

still influence the generation of efficient decisions and to a certain degree explore the

nondominated set by progressively revealing preferences after learning more about

the proposed alternatives and the overall problem in general. Some of the classic

and best known interactive methods include the Geoffrion-Dyer-Feinberg or GDF

method by Geoffrion et al. (1972), the interactive surrogate worth tradeoff method

by Chankong and Haimes (1978, 1983), the methods by Zionts and Wallenius (1983)

for linear problems and by Steuer and Choo (1983) and Steuer (1986) who make

prominent use of the weighted-Chebyshev norm. Jaszkiewicz and S lowiński (1995)

formulate an approach based on the analogy of a light beam search, and the methods

by Narula et al. (1994) and Wierzbicki (1999) also make use of reference directions

and points, respectively. Highlighting the proximal-bundle method originally intro-

duced by Miettinen and Mäkelä (1995), most recently Hakanen (2006) also reviews

several other interactive methods (see Miettinen, 1999, 2002; Korhonen, 2005, for

many more) and examines their potential for real-life applications with a particular

focus on chemical process design.

Hence, we summarize that the main idea of interactive methods is to organize

the complete decision making process as a sequence of more manageable selection

problems with only a small number of possible alternatives to support decision

makers in both learning about and articulation of their individual preferences when

initially unknown or only difficult to reveal. Instead of reducing the number of

alternatives, however, we can also choose to restrict the number of objectives that

we consider simultaneously by adopting a suitable decomposition technique. While

many different decomposition approaches exist, the common underlying idea again is

to simplify an original and relatively difficult problem as a collection of auxiliary and

comparably more tractable subproblems that can be solved separately and properly

coordinated so so obtain an optimal solution for the original problem.

Besides the conceptual simplification of the original problem and its over-

all reduction in dimensionality, Michelena and Papalambros (1997) also enumerate
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several other reasons for decomposing a general problem which primarily include

various computational benefits in terms of both reliability and algorithm speed, the

enhancement of parallel and distributed computing, reduced programming and de-

bugging effort, and the possibility of employing different solution techniques for the

different decomposed subproblems. To review some of the existing methods and

address their relevance to decision problems with multiple criteria, we now span

a wide variety of decomposition techniques from mathematical and multiobjective

programming as well as design optimization and systems engineering. Since the lit-

erature for especially the latter is extremely vast, however, we only highlight some of

the methods of most relevance to our own work and, at the same time, point to a few

selected papers that emphasize the general versatility of decomposition approaches

in multiobjective programming, decision making, and engineering design.

In the context of single objective mathematical programming, most decom-

position approaches are based on the early results by Dantzig and Wolfe (1961) for

linear and Benders (1962) for mixed-variable programs and utilize a special struc-

ture of the underlying decision set to decompose the problem with respect to its

decision variables or constraints (Conejo et al., 2006). While Burkard et al. (1985)

provide a fundamental exposition of general decomposition principles which also

apply to multiobjective programs and decision problems (Bogetoft and Tind, 1989),

the specific cases of Dantzig-Wolfe and Benders decomposition are further extended

to multiobjective programs with block diagonal structure (Yang et al., 1988) and

cone constraints (Csergőffy, 2001, among others). For decision making in a fuzzy

environment (Bellman and Zadeh, 1970), these two methods are also combined with

interactive decision making procedures (Sakawa and Kato, 1997, 1998), genetic al-

gorithms (Kato and Sakawa, 1997, 1998), and multilevel optimization (see Sakawa,

2002, and references therein). Finally, a more general decomposition technique

based on a hybrid method that combines the principle of optimality for dynamic

programming with fuzzy set theory is discussed in Hussein and Abo-Sinna (1993).

While the above mentioned approaches are motivated from single objec-

tive programming for which decompositions are naturally restricted to the decision
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space, for a multiobjective program we can also decompose its outcome and prefer-

ence space and, additionally, an associated parameter space if we solve the problem

using a parametrized scalarization function. For the latter, Zeleny (1974) studies

multiparametric decompositions and develops a weight decomposition method for

linear multiobjective programs which Solanki and Cohon (1989) combine with the

noninferior set estimation method proposed by Cohon (1978). Parameter decompo-

sitions for generalized Chebyshev norms are studied by Dauer and Osman (1985) for

convex problems and by Kassem (1997) in the context of fuzzy multiobjective pro-

gramming. Furthermore, Lam and Choo (1995) employ a linear goal programming

method to determine objective weights used for a decomposition of the preference

space, and Benson and Sun (2000, 2002) again consider parameter decompositions

for weighted sums that result in corresponding decompositions of the outcome space.

Another classification of decomposition approaches for multiobjective pro-

grams distinguishes multilevel or hierarchical decomposition from nonhierarchical

optimization based on the coordination or linking mechanisms and coupling relation-

ships between the different decomposed subproblems (for an overview, see Lieber-

man, 1992). In hierarchical coordination approaches, all subproblems are solved

independently as separate optimization problems and then communicate their so-

lutions to a coordinating master problem that achieves an overall optimal solution

by determination of linking or coupling variables (Mesarović et al., 1970a,b). In

nonhierarchical methods, two or more subproblems typically coordinate with each

other by bidirectional interventions but without a superior master problem (Shankar

et al., 1993), and, in addition, several combinations of these two approaches exist

and include the hierarchical overlapping coordination by Macko and Haimes (1978)

and its later modification proposed by Shima (1991).

In the context of multiple criteria decision making, Lazimy (1986) proposes

an interactive decomposition scheme that decomposes the original problem into

a collection of biobjective subproblems that are coordinated by a standard linear

program as master problem to facilitate preference assessments and tradeoffs. In

a fundamental research monograph, Haimes et al. (1990) describe and examine a
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variety of different hierarchical decomposition and coordination strategies for multi-

objective programs and large-scale systems. As one possible application, they focus

on organizational decompositions that involve multiple decision makers for which

different subproblems model the individual subunits with their private objectives,

while the coordination of the overall solution is assigned to a superior unit which

harmonizes the behavior of the subordinate subsystems. Based on its practical rel-

evance for many real organizations with departmental decision making hierarchies

and various other large-scale systems in many different disciplines, much attention

is dedicated to these particular approaches (Findeisen et al., 1980; Onana, 1989;

Haimes et al., 1990; Gómez et al., 2001; Caballero et al., 2002).

In addition, a countless number of ad-hoc decomposition strategies is pro-

posed for specific applications in management, including resource allocation (Lee

and Rho, 1985), transportation (Korchemkin, 1986), or plant location (Fernández

and Puerto, 2003), as well as in engineering, for example, machine tool spindle sys-

tems (Montusiewicz and Osyczka, 1990), proprotor aerodynamics (Tadghighi, 1998),

or wing design (Wrenn and Dovi, 1988; Tribes et al., 2005). Other decomposition

approaches exist in the context of structural and multidisciplinary optimization

(Sobieszczanski-Sobieski et al., 1985; Sobieszczanski-Sobieski and Kodiyalam, 2001;

Blouin et al., 2004; Mehr and Tumer, 2006) and include traditional collaborative

optimization (Kroo, 1996; Tappeta and Renaud, 1997; Chen et al., 2005b; Haftka

and Watson, 2006; Rabeau et al., 2006) or, more recently, concurrent subspace op-

timization (Huang and Bloebaum, 2004) and analytical target cascading (Lassiter

et al., 2005). For problems in engineering design, a model-based decomposition is

proposed in distinction to object, aspect, and sequential decomposition (Michelena

and Papalambros, 1997; Wagner and Papalambros, 1999) and uses a decomposi-

tion analysis to find an optimal decomposition based on sets of criteria that can be

computed in parallel or need to be evaluated in sequence (Yoshimura et al., 2003).

In the same context, we also find some decomposition methods for which

the subsequent coordination is accomplished in the form of an interactive decision

making procedure (Tappeta and Renaud, 1999; Tappeta et al., 2000; Azarm and
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Narayanan, 2000; Verma et al., 2005) or enhanced by providing preference infor-

mation such as tradeoffs (Kasprzak and Lewis, 2000) obtained from a sensitivity

analysis (Gunawan and Azarm, 2005; Li et al., 2005). Furthermore, several related

studies emphasize the importance of visualizing the optimization process (Messac

and Chen, 2000), the design data (Eddy and Lewis, 2002; Stump et al., 2002, 2003,

2004) and the Pareto frontiers (Agrawal et al., 2004, 2005; Lotov et al., 2004, 2005;

Mattson and Messac, 2005) for facilitated problem perception and decision making.

Three surveys on general coordination approaches are given by Coates et al. (2000),

Whitfield et al. (2000), and with a special focus on decentralized design by Whitfield

et al. (2002). In case of the latter, the issue of convergence is addressed in Chanron

and Lewis (2005) and Chanron et al. (2005) who use game theoretic concepts to

model and analyze the competing interest of the different decision makers.

For many interactive and decomposition methods, however, convergence is

frequently not addressed among the major topics of interest as especially the former

depend on subjective input by the decision maker who might also change his mind

and adjust his preferences throughout the overall decision making process. Hence,

since the final preferred decision is in large part problem dependent, the only con-

ditions that are usually imposed on any decision making procedure is that every

proposed solution is in fact efficient for the overall problem and that, in principle,

every efficient decision can be found by suitable coordination and based on the in-

put received by the decision maker. These two requirements stimulate our later

investigation of objective decompositions for multiobjective programs and the cor-

responding research objective now outlined in the concluding section of this chapter.

2.4 Research Statement and Objectives

After the acquisition of some fundamentals from multiobjective program-

ming, the discussion of its relevance for practical decision making, and a broad

review of several ideas within the mathematical, economic, and engineering liter-

ature, we can draw the first conclusion that in spite of numerous advances in all

these fields the selection of preferred alternatives for decision problems with multiple
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criteria remains subject to various persistent challenges. As we all know from our

personal experience and exposure to the real world, making an ultimate decision

among several possibilities is still a very demanding task and often complicated by

the fact that we are not fully aware of our underlying preferences for a too large

number of competing objectives to be considered simultaneously. We develop our

research objectives from these two observations and their extensive motivation in

our preceding critique of multiple criteria decision making in Section 2.3.

In this dissertation, we devote one chapter each to our ideas in theory,

methodology, and selected applications of multiobjective programming. Whenever

suitable, we intend to first formulate a mathematical framework that provides a rig-

orous foundation for our approaches and then use or combine concepts and results

from convex analysis, linear algebra, and mathematical programming to derive our

own and original contributions. Throughout the text, we also offer some additional

discussion and remarks to draw the connections of our results to the aforementioned

challenges in decision making, which we now highlight in further detail to prepare

the precise statement of the research questions that we subsequently plan to address.

Because preferences, in general, are not precisely known, there is a great need

for the formulation of simplified yet realistic preference models which enable the re-

duction of an initial set of alternatives to a smaller subset of potential candidates of

particular interest to the decision maker. Based on our discussion in Section 2.2.2,

the economic literature provides a series of possible preference principles in exten-

sion of the classical Pareto concept that can be used to induce new domination

structures in further refinement of the traditional Pareto cones. Related approaches

in the mathematical literature, however, are currently restricted to the use of con-

stant convex cones and, in particular, polyhedral cones and, therefore, motivate our

investigation of several new domination structures pursued in Chapter 3.

In particular, our objective in Section 3.1 is the general exploration of non-

polyhedral cones in multiobjective programming with respect to possible cone rep-

resentations and properties as well as the characterization and generation of the

corresponding nondominated sets. In further extension of constant nonpolyhedral
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cones, in Section 3.2 we first study some of the inherent shortcomings of current

models that are based on domination cones that are constant, set out to examine

the implications of replacing constant by variable cones, and then derive one specific

variable domination cone in remedy of the previously recognized model limitations.

Finally, and based on the high relevance of approximations, our focus in Section 3.3

is on the investigation of domination structures that can be used to also describe

a notion of approximate nondominance and the development of a wide variety of

approaches for the computational approximation of both the resulting efficient and

nondominated sets.

We anticipate that the accomplishment of these goals can successfully en-

hance current decision making by providing new and more flexible means to model

preferences and finding more relevant representations or approximations for those

outcomes of actual interest to the decision maker. Furthermore, and as discussed in

Section 2.2.3, the selection of the final decision can then be achieved by any suitable

enumeration, exploration, or visualization technique in possible combination with

an interactive or decomposition-based decision making procedure to further reduce

burden associated with a large number of decision criteria. Our inquiry in Chapter 4

is placed within this general framework.

In particular, our objective in Section 4.1 is to examine the consequences

of decomposing a multiobjective program with respect to its objective function and

the analysis of the corresponding efficiency relationships between the original and

resulting decomposed subproblems. In Section 4.2, we investigate how to use our

obtained results for the formulation of different interactive decision making proce-

dures that are proposed to support decision makers in finding preferred solutions

to potentially large-scale problems by merely solving the collection of smaller-sized

subproblems. Finally, we assess the practicality of our methods on an example in

Section 4.3 and several real-life applications in Chapter 5.

In the concluding Chapter 6 we view our objectives in retrospect.
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CHAPTER 3

DOMINATION CONES AND THE NONDOMINATED SET

In this chapter, we study the concept of domination in multiobjective pro-

gramming and focus on the characterization and generation of the nondominated

set when the underlying domination structure is defined in terms of different cones.

In particular, in each of the three following sections we investigate one particular

generalization of polyhedral and constant domination cones, namely to nonpolyhe-

dral cones in Section 3.1, to variable cones in Section 3.2, and to domination sets

that are translated cones in Section 3.3. The material in the first two sections is

adapted and in parts amended from the similar presentation in Engau and Wiecek

(2006) and Engau (2006), respectively, and in the third section we combine several

aspects of approximate nondominance that are initially addressed in Engau (2004)

and further developed in Engau and Wiecek (2007b,c,d). At the end of this chap-

ter, we offer a summarizing discussion of our findings together with an outlook on

possible further work in the concluding Section 3.4.

3.1 Constant Polyhedral and Nonpolyhedral Cones

Based on the fundamental observation in Section 3.1.1 that every cone can

be described by a positively homogeneous function, we derive several results that

characterize properties of cones based on the corresponding properties of the under-

lying function that can be sublinear or superlinear. We then show in Section 3.1.2

how this new cone representation can be used to establish relationships between

nondominated points with respect to a general cone and Pareto points, in general-

ization of a well known result for the polyhedral case. In Section 3.1.3, we examine

possible modifications of several scalarization methods that are originally formu-

lated for finding Pareto points to also generate nondominated points for a general

polyhedral or nonpolyhedral cone, and we illustrate our findings on three biobjective

examples in Section 3.1.4. The last Section 3.1.5 establishes some further results for



an alternative cone representation that is formulated as a special case of our pre-

vious characterization and, in this vein, also provides examples for multiobjective

programs with more than two objectives.

3.1.1 General Cone Representation and Characterization

We begin with the fundamental theorem in this section and establish the

relationship between cones and positively homogeneous functions.

Theorem 3.1.1 (Cone representation theorem). A set C ⊂ Rm is a cone if and

only if there exists a positively homogeneous function Γ : Rm → Rl such that

C ∪ {0} = C(Γ) := {c ∈ Rm : Γ(c) ≧ 0} (3.1)

Proof. We first derive that C(Γ) is indeed a cone, and then we show how every cone

that contains the origin can be described by a positively homogeneous function.

(⇐) Let Γ : Rm → Rl be a positively homogeneous function and c ∈ C(Γ).

It follows that Γ(c) ≧ 0 by definition of C(Γ) and λΓ(c) = Γ(λc) ≧ 0 for all λ > 0

because Γ is positively homogeneous. Hence, we obtain that λc ∈ C(Γ), showing

that C(Γ) is a cone.

(⇒) Let C ⊂ Rm be a cone and define Γ = (Γ1, . . . , Γm) : Rm → Rm by

Γi(c) :=















|ci| if c ∈ C

−|ci| if c /∈ C

(3.2a)

for all i = 1, . . . , m. The function Γ is positively homogeneous, because

Γi(λc) =















|λci| = λ|ci| = λΓi(c) if c ∈ C

−|λci| = −λ|ci| = λΓi(c) if c /∈ C

(3.2b)

and thus Γ(λc) = λΓ(c) for all λ > 0. In particular, Γ(c) ≧ 0 if and only if

c ∈ C ∪ {0}, and thus, C(Γ) = C ∪ {0}. �

After introducing the notion of a cone in Definition 2.1.9, we indicate in

Remarks 2.1.10 and 2.1.20 why we do not require that a cone necessarily contains

the origin. As a consequence of this decision, however, we now need to explicitly add
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the origin to every cone in Theorem 3.1.1 because, for any positively homogeneous

function Γ, it follows that

Γ(0) = Γ(λ · 0) = λΓ(0) for all λ > 0 (3.3)

and thus Γ(0) = 0. While a different cone definition would result in a somewhat

more elegant cone representation theorem, however, this distinction is essentially

irrelevant for all our remaining discussion.

Definition 3.1.2 (Cone induced by a positively homogeneous function). Let Γ :

Rm → Rl be a positively homogeneous function. The set

C(Γ) := {c ∈ Rm : Γ(c) ≧ 0} (3.4)

is called the cone induced by Γ.

Remark 3.1.3 (Nonuniqueness of cone representation). If the cone C = C(Γ) is

induced by a positively homogeneous function Γ, then C = C(λΓ) for all λ > 0.

Following Definition 3.1.2, we highlight four specific classes of cones that we

study in further detail throughout this complete chapter. While the first two are also

introduced in (2.33a) and (2.25b) of Definition 2.1.25, respectively, for completeness

and further comparison we again repeat their definition.

Definition 3.1.4 (Pareto cone). Let Γ : Rm → Rm be the identity Γ(c) = c. The

induced cone C(Γ) is denoted by

Rm
≧ := {c ∈ Rm : c ≧ 0} (3.5)

and called the m-dimensional Pareto cone.

Definition 3.1.5 (Polyhedral cone). Let A ∈ Rl×m be a matrix and Γ : Rm → Rl

be the linear function Γ(c) = Ac. The induced cone C(Γ) is denoted by

C(A) := {c ∈ Rm : Ac ≧ 0} (3.6)

and called the polyhedral cone C(A) induced by A.
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In particular, for A = Im ∈ Rm×m the m-dimensional identity matrix, Defi-

nition 3.1.5 reduces to Definition 3.1.4 and C(Im) = Rm
≧

is the Pareto cone.

Definition 3.1.6 (P th-order cone). Let Γ : Rm → R be defined by Γ(c) = c1 −

‖c−1‖p where c−1 := (c2, . . . , cm)T ∈ Rm−1. The induced cone C(Γ) is denoted by

Cm
p := {c ∈ Rm : c1 ≥ ‖c−1‖p} (3.7)

and called the m-dimensional pth-order cone.

For p = 2, Stern and Wolkowicz (1991) refer to the second-order cone Cm
2

as ice-cream cone, and Ben-Tal and Nemirovski (2001) call Cm
2 a Lorentz cone and

investigate its approximation by cones that are polyhedral.

The next cone is originally introduced by Bishop and Phelps (1963) and

Phelps (1974) and studied by Bednarczuk (1996) in the context of vector optimiza-

tion in more general topological spaces.

Definition 3.1.7 (Bishop-Phelps cone). Let d ∈ Rm \ {0} be a nonnegative vector,

0 < γ < 1 be a real number, and Γ : Rm → R be defined by Γ(c) = 〈c, d〉− γ‖c‖‖d‖.

The induced cone C(Γ) is denoted by

Cγ,d := {c ∈ Rm : 〈c, d〉 ≥ γ‖c‖‖d‖} (3.8)

and called the Bishop-Phelps cone over d with parameter γ.

In the following results, we first establish sufficient conditions for convexity

and pointedness of C(Γ) and, since the pointedness conditions is not satisfied for

Cm
p and Cγ,d, we then show separately that both pth-order and Bishop-Phelps cones

are also convex and pointed.

Proposition 3.1.8 (Sufficient conditions for convexity and pointedness). Let Γ :

Rm → Rl be a positively homogeneous function and C(Γ) ⊂ Rm be the cone induced

by Γ. Then

(i) C(Γ) is convex if Γ is superlinear, and

(ii) C(Γ) is pointed if Γ is superlinear and Γ(c) = 0 ⇔ c = 0.
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Proof. Let Γ : Rm → Rl be a positively homogeneous function and C(Γ) ⊂ Rm be

its induced cone.

For (i), let c1 ∈ C(Γ) and c2 ∈ C(Γ), so Γ(c1) ≧ 0 and Γ(c2) ≧ 0. Since Γ is

superlinear, it follows that

Γ(c1 + c2) ≧ Γ(c1) + Γ(c2) ≧ 0 (3.9a)

and thus c1 + c2 ∈ C(Γ), showing that C(Γ) is convex.

For (ii), let Γ(c) = 0 ⇔ c = 0 and
∑k

i=1 ci = 0 with ci ∈ C, so Γ(ci) ≧ 0 for

all i = 1, . . . , k. Since Γ is superlinear, it follows that

0 = Γ(0) = Γ

(

k
∑

i=1

ci

)

≧

k
∑

i=1

Γ(ci) ≧ 0 (3.9b)

so Γ(ci) = 0 and all ci = 0, showing that C(Γ) is pointed. �

Remark 3.1.9 (Equivalent pointedness condition for polyhedral cones). The con-

dition Γ(c) = 0 ⇔ c = 0 is always satisfied if the function Γ is injective. If Γ is

linear and thus described by a matrix, then these conditions are also equivalent and

Proposition 3.1.8 reduces to the well known characterization of pointed polyhedral

cones in Proposition 2.1.28.

Hence, it again follows that all polyhedral cones C(A) are convex, and

pointed if and only if rank A = m, or equivalently, if the linear function Γ(c) = Ac is

injective. In particular, we obtain that the Pareto cone Rm
≧

is convex and pointed,

and the same holds true for all pth-order and Bishop-Phelps cones. In these later

cases, however, only convexity follows immediately from Proposition 3.1.8 because

both Γ(c) = c1 − ‖c−1‖p and Γ(c) = 〈c, d〉 − γ‖c‖‖d‖ are superlinear, whereas in

general Γ(c) = 0 ; c = 0. Nevertheless, since Cm
p and Cγ,d are convex, we can

easily show their pointedness using Proposition 2.1.13.

Proposition 3.1.10 (Convexity and pointedness of pth-order and Bishop-Phelps

cones). Every pth-order cone Cm
p ⊂ Rm and every Bishop-Phelps cone Cγ,d ⊂ Rm

is convex and pointed.
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Proof. Based on our previous remarks, we only need to show that Cm
p and Cγ,d are

pointed. Hence, to show that Cm
p is pointed, let c ∈ Cm

p and −c ∈ Cm
p , so

c1 ≥ ‖c−1‖p ≥ 0 and − c1 ≥ ‖−c−1‖p = ‖c−1‖p ≥ 0 (3.10a)

It follows that c1 = 0 and c−1 = 0 which implies c = 0, showing that Cm
p is pointed.

To show that Cγ,d is pointed, let c ∈ Cγ,d and −c ∈ Cγ,d, so

〈c, d〉 ≥ γ‖c‖‖d‖ ≥ 0 and 〈−c, d〉 = −〈c, d〉 ≥ γ‖c‖‖d‖ ≥ 0 (3.10b)

In this case, it follows that 〈c, d〉 = 0 and, thus, ‖c‖ = 0 which implies c = 0, showing

that Cγ,d is pointed. �

Proposition 3.1.11. Let Γ : Rm → Rl be a positively homogeneous function. If Γ

is sublinear, then

−C(−Γ) ⊆ C(Γ) (3.11)

Furthermore, the above inclusion holds in reverse if Γ is superlinear, and with equal-

ity if Γ is a linear function.

Proof. Let Γ : Rm → Rl be sublinear and c ∈ −C(−Γ), so −Γ(−c) ≧ 0. It follows

that

0 = Γ(0) = Γ(c − c) ≦ Γ(c) + Γ(−c) (3.12)

which implies Γ(c) ≧ −Γ(−c) ≧ 0, showing that c ∈ C(Γ). If, instead, Γ is super-

linear, then −Γ is sublinear and, thus, −C(Γ) ⊆ C(−Γ), or C(Γ) ⊆ −C(−Γ). If Γ

is linear, then Γ is both sublinear and superlinear and the result follows. �

3.1.2 Mapping Theorems for the Nondominated Set

In the following theorem, we establish the relationships between the image

of the nondominated set N(Y, C(Γ)) under the mapping Γ and the Pareto set of the

image Γ(Y ), based on the properties of the positively homogeneous function Γ.
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Theorem 3.1.12 (Nondominance mapping theorem). Let Y ⊂ Rm be a nonempty

set, Γ : Rm → Rl be a positively homogeneous function, and C(Γ) ⊂ Rm be the cone

induced by Γ.

(i) If Γ is sublinear, then

Γ[N(Y, C(Γ))] ⊆ N(Γ[Y ], Rl
≧) (3.13a)

(ii) If Γ is superlinear and injective, then

Γ[N(Y, C(Γ))] ⊇ N(Γ[Y ], Rl
≧) (3.13b)

Both inclusions become equality if Γ is linear and injective.

Proof. We only show the first two statements which then immediately imply the

third. Hence, for (i), let û ∈ Γ[N(Y, C(Γ))], so û = Γ(ŷ) with ŷ ∈ N(Y, C(Γ)). Then

Y ∩ (ŷ − C(Γ) \ {0}) = ∅, and hence, there does not exist y ∈ Y \ {ŷ} such that

ŷ−y ∈ C(Γ), or Γ(ŷ−y) ≧ 0. Now suppose by contradiction that û /∈ N(Γ[Y ], Rl
≧

),

then there exists u = Γ(y), u 6= û, so y 6= ŷ, with u ∈ Γ(Y ) ∩ (û − Rl
≧

), thus

û − u ∈ Rl
≧

, or Γ(ŷ) − Γ(y) ≧ 0. However, by sublinearity of Γ,

Γ(ŷ − y) + Γ(y) ≧ Γ(ŷ) =⇒ Γ(ŷ − y) ≧ Γ(ŷ) − Γ(y) ≧ 0 (3.14a)

in contradiction to the non-existence of y ∈ Y \ {ŷ} with Γ(ŷ − y) ≧ 0.

For (ii), let û = Γ(ŷ) ∈ N(Γ[Y ], Rl
≧

). Then Γ[Y ] ∩ (û − Rl
≧
\ {0}) = ∅, and

hence, there does not exist u ∈ Γ[Y ] \ {û} such that û − u ∈ Rl
≧

, or û − u ≧ 0.

Since Γ is injective, Γ(y) 6= Γ(ŷ) if and only if y 6= ŷ, and so there does not exist

y ∈ Y \{ŷ} such that Γ(ŷ)−Γ(y) ≧ 0. Now suppose by contradiction that û = Γ(ŷ) /∈

Γ[N(Y, C(Γ))], or ŷ /∈ N(Y, C(Γ)). Then there exists y 6= ŷ with y ∈ Y ∩ (ŷ−C(Γ)),

thus ŷ − y ∈ C(Γ), or Γ(ŷ − y) ≧ 0. However, by superlinearity of Γ,

Γ(ŷ) ≧ Γ(ŷ − y) + Γ(y) =⇒ Γ(ŷ) − Γ(y) ≧ Γ(ŷ − y) ≧ 0 (3.14b)

in contradiction to the non-existence of y ∈ Y \ {ŷ} with Γ(ŷ) − Γ(y) ≧ 0. �

In particular, if Γ is a linear function, then Γ(c) = Ac for some matrix

A ∈ Rl×m and Theorem 3.1.12 reduces to a well known result for polyhedral cones
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that is widely established throughout the literature (see Yu, 1985; Sawaragi et al.,

1985; Weidner, 1990; Noghin, 1997; Cambini et al., 2003; Hunt and Wiecek, 2003,

among several others).

Theorem 3.1.13 (Nondominance mapping theorem for polyhedral cones). Let Y ⊂

Rm be a nonempty set, A ∈ Rl×m be a real l × m matrix, and C(A) ⊂ Rm be the

polyhedral cone induced by A. Then

A[N(Y, C(A))] ⊆ N(A[Y ], Rl
≧) (3.15a)

If C(A) is pointed, or equivalently, if rank A = m or c → Ac is injective, then

A[N(Y, C(A))] = N(A[Y ], Rl
≧) (3.15b)

Hence, the problem of finding the nondominated set of Y with respect to

a pointed polyhedral cone C(A) is equivalent to finding the Pareto set of A[Y ]

which, in principle, can be accomplished using a suitable scalarization method from

Section 2.2.3. In general, however, if the cone C(Γ) is not polyhedral, then equality

in Theorem 3.1.12 cannot be expected so that we need to find alternative or more

direct means to generate nondominated outcomes for a general cone.

3.1.3 Scalarization Methods for General Cones

In this part, we discuss several of the scalarization methods from Section 2.2.3

that are originally formulated for finding Pareto outcomes and show how these meth-

ods can be modified to also allow for a general (polyhedral or nonpolyhedral) cone

C. In particular, we first establish this generalization for the hybrid scalariza-

tion method and then derive the corresponding results for the weighted-sum, the

constrained-objective, and the Benson method as special cases.

Proposition 3.1.14 (Hybrid scalarization). Let Y ⊂ Rm be a set, C ⊂ Rm be a

convex cone, w ∈ C∗ \{0} (a nonzero element of the dual cone in Definition 2.1.19),

b ∈ Rm, and ŷ ∈ Y be optimal for the hybrid scalarization

HB(w, b): Minimize 〈w, y〉 subject to b − y ∈ C and y ∈ Y (3.16)
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(i) If ŷ is strictly optimal, then ŷ ∈ N(Y, C).

(ii) If w ∈ C∗
s , then ŷ ∈ N(Y, C).

In any case, ŷ ∈ Nw(Y, C).

Proof. Let ŷ ∈ Y be optimal for HB(w, b) with w ∈ C∗ \{0} and, by contradiction,

assume that ŷ /∈ N(Y, C). Then there exists y ∈ (ŷ − C \ {0}) ∩ Y , so ŷ = y + c for

some c ∈ C \{0}. The point y is feasible for HB(w, b), because b− y = b− ŷ + c ∈ C

by feasibility of ŷ for HB(w, b) and convexity of C, but

〈w, ŷ〉 = 〈w, y + c〉 = 〈w, y〉 + 〈w, c〉















≥ 〈w, y〉 in case (i) as w ∈ C∗

> 〈w, y〉 in case (ii) as w ∈ C∗
s

(3.17)

in contradiction to the (in case (i): strict) optimality of ŷ for HB(w, b).

In any case, if w ∈ C∗ \ {0} and ŷ is optimal for HB(w, b), then w ∈ (int C)∗s

by Proposition 2.1.21 and ŷ ∈ N(Y, int C) = Nw(Y, C) by (ii). �

After dropping the constraints b − y ∈ C in the hybrid method, we obtain

the corresponding result for the weighted-sum scalarization.

Proposition 3.1.15 (Weighted-sum scalarization). Let Y ⊂ Rm be a set, C ⊂ Rm,

w ∈ C∗ \ {0}, and ŷ ∈ Y be optimal for the weighted-sum scalarization

WS(w): Minimize 〈w, y〉 subject to y ∈ Y (3.18)

(i) If ŷ is strictly optimal, then ŷ ∈ N(Y, C).

(ii) If w ∈ C∗
s , then ŷ ∈ N(Y, C).

In any case, ŷ ∈ Nw(Y, C).

This result is similarly established in Sawaragi et al. (1985), and its proof

follows as for the hybrid scalarization in Proposition 3.1.14. In particular, while

the previous result requires that C is a convex cone to guarantee feasibility of the

contradicting outcome y for the additional cone constraints b − y ∈ C, we drop

these constraints for the weighted-sum method so that C does not need to be convex

anymore and, moreover, can also be a general domination set.
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For specific choices of the weighting parameter w, we can also derive the

corresponding results for the constrained-objective and the Benson method as special

cases, again under the assumption that C is a convex cone.

Proposition 3.1.16 (Constrained-objective scalarization). Let Y ⊂ Rm be a set,

C ⊂ Rm be a convex cone, ek ∈ C∗ be the kth unit vector, b ∈ Rm, and ŷ ∈ Y be

optimal for the constrained-objective scalarization

COk(b): Minimize yk subject to b − y ∈ C and y ∈ Y (3.19)

(i) If ŷ is strictly optimal, then ŷ ∈ N(Y, C).

(ii) If ek ∈ C∗
s , then ŷ ∈ N(Y, C).

In any case, ŷ ∈ Nw(Y, C).

The proof is clear from Proposition 3.1.14 with w = ek. In particular, we

note that the conditions ek ∈ C∗ and ek ∈ C∗
s are equivalent to ck ≥ 0 and ck > 0

for all c ∈ C, respectively. Similarly, for w = (1, . . . , 1)T ∈ C∗, or
∑m

i=1 ci ≥ 0 for

all c ∈ C, and if b = y◦ ∈ Y is chosen as reference point, then the hybrid method

reduces to the scalarization proposed by Benson but for a general convex cone C.

Proposition 3.1.17 (Benson scalarization). Let Y ⊂ Rm be a set, C ⊂ Rm be a

convex cone, w = (1, . . . , 1)T ∈ C∗ be the vector with all components equal to 1,

y◦ ∈ Y , and ĉ ∈ C be optimal for the Benson scalarization

B(y◦): Maximize
m
∑

i=1

ci subject to y◦ − c = y ∈ Y and c ∈ C (3.20)

(i) If ĉ is strictly optimal, then ŷ = y◦ − ĉ ∈ N(Y, C).

(ii) If w ∈ C∗
s , then ŷ = y◦ − ĉ ∈ N(Y, C).

In any case, ŷ = y◦ − ĉ ∈ Nw(Y, C).

Proof. Since the constraints y◦ − c = y ∈ Y and c ∈ C can equivalently be written

as y◦ − y = c ∈ C and y ∈ Y , and because the maximization of

m
∑

i=1

ci =
m
∑

i=1

(y◦i − yi) =
m
∑

i=1

y◦i −
m
∑

i=1

yi (3.21)
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is equivalent to the (negative) minimization of
∑m

i=1 yi, Proposition 3.1.17 follows

from Proposition 3.1.14 with w = (1, . . . , 1)T . �

Hence, in addition to the Pascoletti-Serafini scalarization in Definition 2.2.36,

we now can also use the the hybrid, the constrained-objective, and the Benson

method to generate nondominated outcomes for a general domination cone C, or

the weighted-sum method for an arbitrary domination set D.

3.1.4 Graphical Examples for Biobjective Programs

We illustrate the use of the nondominance mapping theorems in Section 3.1.2

and the scalarization methods in Section 3.1.3 for finding the nondominated set of

the unit disk Y = {y ∈ R2 : y2
1 + y2

2 ≤ 1} for the three choices of C ⊂ R2 depicted

in Figure 3.1, namely the two-dimensional Pareto cone C1 = R2
≧

(on the left), the

polyhedral cone C2 = C(A) with matrix A = ( 1 0
1 1 ) ∈ R2×2 (in the center), and any

two-dimensional pth-order cone C3 = C2
p = {c = (c1, c2) ∈ R2 : c1 ≥ ‖c2‖p} (on

the right). Furthermore, the boundary of Y is the unit circle which we denote by

bd Y = {y ∈ R2 : y2
1 + y2

2 = 1} for later convenience.

y1

y2

Y

C1

y1

y2

Y

C2

y1

y2

Y

C3

Figure 3.1 The unit disk as outcome set Y ⊂ R2 and the two-dimensional Pareto
(left), polyhedral (center), and pth-order cone (right) in Examples 3.1.18–3.1.20

Example 3.1.18 (Pareto cone). Let Γ1 : R2 → R2 with Γ1(c) = c be the identity,

so C(Γ1) = C(I2) = R2
≧

be the Pareto cone depicted in Figure 3.1 (left). Then

Γ1[N(Y, C(Γ1))] = N(Y, C(I2)) = N(Y, R2
≧) (3.22a)
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and Theorems 3.1.12 and 3.1.13 apply trivially. In particular, in this case it imme-

diately follows that

N(Y, C(Γ1)) = N(Y, R2
≧) = {y ∈ bd Y : y ≤ 0} (3.22b)

as shown in Figure 3.2 (left). Furthermore, since the Pareto cone is both con-

vex and self-dual so that, in particular, ek ∈ C∗ = Rm
≧

for all k = 1, . . . , m and

w = (1, . . . , 1)T ∈ Rm
≧

, Propositions 3.1.14 (hybrid), 3.1.15 (weighted-sum), 3.1.16

(constrained-objective) and 3.1.17 (Benson) apply to all four scalarization methods

in their original formulation for the Pareto case. For further illustration, Figure 3.3

(left) again depicts the Pareto cone together with three possible choices for the

weighting vector for both the hybrid and the weighted-sum scalarization method.

y1

y2

Y

N(Y, R2
≥)

y1

y2

Y

A[Y ]

N(Y, C(A))

N(A[Y ], R2
≥)

y1

y2

Y

B[Y ]

N(Y, C(B))

N(B[Y ], R2
≥)

��

��

@@

@@

Figure 3.2 Nondominance mapping of N(Y, C(Γ)) and N(Γ[Y ], R2
≧

) for Pareto

(left), polyhedral (center), and pth-order cone (right) in Examples 3.1.18–3.1.20

Example 3.1.19 (Polyhedral cone). Let Γ2 : R2 → R2 with Γ2(c) = Ac for A =

( 1 0
1 1 ) ∈ R2×2 be a linear function, so C(Γ2) = C(A) be the induced polyhedral cone

shown in Figure 3.1 (center). Since rank A = 2, it follows that C(A) is pointed and

Γ2 is injective, so that both Theorem 3.1.12 and 3.1.13 apply and give that

Γ2[N(Y, C(Γ2))] = A[N(Y, C(A))] = N(A[Y ], R2
≧) (3.23a)
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In particular, mapping these sets under the inverse A−1 =
(

1 0
−1 1

)

of Γ2 we find that

N(Y, C(Γ2)) = A−1[N(A[Y ], R2
≧)] = {y ∈ bd Y : y2 ≤ 0 and y1 − y2 ≤ 0} (3.23b)

as shown in Figure 3.2 (center). Furthermore, since C(A) is convex with dual

cone C(A)∗ = C(A∗) for A∗ =
(−1 1

0 1

)

∈ R2×2, Propositions 3.1.14 and 3.1.15

apply respectively for the hybrid and the weighted-sum scalarization with possible

weighting vectors w ∈ C(A∗) \ {0} as illustrated in Figure 3.3 (center). However,

since A∗e1 = ( 0
0 ) ≯ 0 and A∗e2 = A∗1 = ( 0

1 ) ≯ 0, only (i) of Propositions 3.1.16

and 3.1.17 apply to the constrained-objective and Benson method, respectively. In

particular, the formulation of the hybrid scalarization becomes

Minimize 〈w, y〉 subject to A(y◦ − y) ≧ 0 and y ∈ Y (3.24)

and thus, together with the constrained-objective and Benson method as special

cases, can be solved as a linear program in the outcome space.
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Figure 3.3 Dual cones and possible choices of the weighting vector for the Pareto
(left), polyhedral (center), and pth-order cone (right) in Examples 3.1.18–3.1.20

Example 3.1.20 (P th-order cone). Let Γ3 : R2 → R2 with Γ3(c) = c1 − ‖c2‖p =

c1 − |c2| be a superlinear function and C(Γ3) = C2
p be the induced pth-order cone,

shown in Figure 3.1 (right). Since Γ3(c1, c2) = Γ3(c1,−c2) for all c = (c1, c2)T ∈ R2,

however, Γ3 is not injective so that both Theorems 3.1.12 and 3.1.13 do not apply

to the pth-order cone C2
p when induced by the superlinear function Γ3.
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However, since c1 − |c2| ≥ 0 can equivalently be written as c1 − c2 ≥ 0

and c1 + c2 ≥ 0, let Γ4(c) = Bc with B =
(

1 −1
1 1

)

∈ R2×2 be a linear function, so

C(Γ3) = C(Γ4) = C(B). Then rank B = 2, C(B) is pointed and, in this case, Γ4 is

also injective so that both Theorems 3.1.12 and 3.1.13 apply and give that

Γ4[N(Y, C(Γ4))] = B[N(Y, C(B))] = N(B[Y ], R2
≧) (3.25a)

Now mapping these sets under the inverse B−1 = 1
2

(

1 1
−1 1

)

of Γ4, it follows that

N(Y, C(Γ3)) = N(Y, C(Γ4)) = B−1[N(B[Y ], R2
≧)]

= {y ∈ bd Y : y1 + y2 ≤ 0 and y1 − y2 ≤ 0}
(3.25b)

as shown in Figure 3.2 (right). Furthermore, since C(B) is convex and self-dual,

Propositions 3.1.14 and 3.1.15 apply to hybrid method and weighted-sum with w ∈

C(B) \ {0}, illustrated in Figure 3.3 (right). However, since Be1 = ( 0
0 ) ≯ 0 and

Be2 = B1 = ( 0
2 ) ≯ 0, again only part (i) of Propositions 3.1.16 and 3.1.17 apply to

the constrained-objective and Benson method, while the hybrid method becomes

Minimize 〈w, y〉 subject to B(y◦ − y) ≧ 0 and y ∈ Y (3.26)

and, as before, can be solved as a linear program.

We note that since all cones in the three above examples eventually turn

out to be polyhedral, in each case the general nondominance mapping theorem in

Theorem 3.1.12 reduces to the special case for polyhedral cones in Theorem 3.1.13.

In fact, Eichfelder (2006) recently shows that every closed convex cone C ⊂ R2 is

polyhedral, and while we already know from Remark 3.1.3 that cone representations

are not unique, in general, we can further conclude that every closed convex cone

C in R2 can also be induced by a linear function or matrix. In particular, it follows

that both Theorems 3.1.12 and 3.1.13 can be applied to all biobjective programs for

which the underlying domination cone is closed and convex and suitably described

in terms of an injective linear function or matrix with full column rank m = 2.

Consequently, to also illustrate situations in which Theorem 3.1.12 provides

a true generalization of Theorem 3.1.13, it is not sufficient to only discuss biobjective
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programs but we need to study multiobjective programs N(Y, C) with Y ⊂ Rm and

m > 2. Since in these cases, however, a convenient graphical illustration is usually

not possible, we choose an alternative path and derive some further analytical results

for truly nonpolyhedral cones in the following section.

3.1.5 Other Cone Representations and Further Results

In conclusion of our discussion of polyhedral and nonpolyhedral cones, we

derive some more specific results for the class of cones that are induced by positively

homogeneous functions Γ = (Γ1, . . . , Γl) : Rm → Rl of the form

Γi(c) = 〈ai, c〉 − αi‖Bic‖p (3.27)

where the αi ∈ R are real numbers, ai ∈ Rm are real vectors, and Bi ∈ R·×m are

real matrices with m columns for all i = 1, . . . , l.

Remark 3.1.21 (Conditions for sublinearity, superlinearity, and linearity). It is

clear that Γ is sublinear if αi ≤ 0 and superlinear if αi ≥ 0 for all i = 1, . . . , l. In

particular, if all αi = 0, then Γ is linear and its induced cone C(Γ) = C(A) with

A = (a1, . . . , al)T ∈ Rl×m is polyhedral.

Furthermore, if we choose Γ : Rm → R as a real-valued function with a = e1

the first unit vector, α = 1, and B = (0, Im−1) ∈ R(m−1)×m with 0 ∈ Rm−1 a vector

of zeros and Im−1 ∈ R(m−1)×(m−1) the (m − 1)-dimensional identity matrix, then

Γ(c) = 〈a, c〉 − α‖Bc‖p = 〈e1, c〉 − ‖(0, Im−1)c‖p = c1 − ‖c−1‖p (3.28)

and C = Cm
p is the m-dimensional pth-order cone. Hence, we can use the new cone

representation in (3.27) to induce all pth-order and polyhedral cones, including the

Pareto cone as special case.

Our first result is an immediate consequence of the nondominance mapping

theorem for general cones and Remark 3.1.21.

Proposition 3.1.22 (Nondominance mapping for new cone representation I). Let

αi ∈ R, ai ∈ Rm, and Bi ∈ R·×m for i = 1, . . . , l, and let C(Γ) ⊂ Rm be the
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nonpolyhedral cone induced by Γ = (Γ1, . . . , Γl) : Rm → Rl with Γi(c) = 〈ai, c〉 −

αi‖Bic‖p. If all αi ≤ 0, then

Γ[N(Y, C(Γ))] ⊆ N(Γ[Y ], Rl
≧) (3.29)

The proof follows directly from Theorem 3.1.12 and Remark 3.1.21 and is

omitted. Moreover, if all αi ≥ 0, then the reverse inclusion in Proposition 3.1.22

holds if the function Γ is also injective, or if C(Γ) is pointed. For special cases, this

can be verified easily.

Proposition 3.1.23 (Condition for convexity and pointedness). Let α ≥ 0 and

C(Γ) ⊂ Rm be the nonpolyhedral cone induced by Γ = (Γ1, . . . , Γm) : Rm → Rm with

Γi(c) = ci − α‖c‖p. If αm1/p < 1, then the function Γ is injective, and the cone

C(Γ) is convex and pointed.

Proof. To show that Γ is injective, let Γ(c) = Γ(d) and, without loss of generality,

assume that ε = α (‖c‖p − ‖d‖p) ≥ 0 (otherwise switch c and d). Then ci −α‖c‖p =

di − α‖d‖p, or ci − di = α (‖c‖p − ‖d‖p) = ε, and thus, c = d + ε1. Hence, ‖c‖p =

‖d + ε1‖p ≤ ‖d‖p + ε‖1‖p, or ε = α (‖c‖p − ‖d‖p) ≤ εα‖1‖p = εαm1/p, and thus,

ε = 0 and c = d, showing that Γ is injective. As Γ, in particular, is superlinear,

Proposition 3.1.8 then gives that C(Γ) is convex and pointed. �

Corollary 3.1.24 (Nondominance mapping for new cone representation II). Let

α ≥ 0, αm1/p < 1, and C(Γ) ⊂ Rm be the nonpolyhedral cone induced by Γ =

(Γ1, . . . , Γm) : Rm → Rm with Γi(c) = ci − α‖c‖p. Then

N(Γ[Y ], Rm
≧) ⊆ Γ[N(Y, C(Γ))] (3.30)

Our last result pertains to the possible application of scalarization methods

based on the conditions for nondominance that we establish in Propositions 3.1.14

(hybrid), 3.1.15 (weighted-sum), 3.1.16 (constrained-objective), and 3.1.17 (Ben-

son). Since the validation of these conditions requires to know (at least a subset of)

the dual cone C(Γ)∗, the next result provides a partial characterization of the dual
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cone associated with a cone that is slightly more general than the one discussed in

Proposition 3.1.23 and Corollary 3.1.24.

Proposition 3.1.25 (Dual cone for new cone representation). Let αi ≥ 0 for all

i = 1, . . . , m, and C(Γ) ⊂ Rm be the convex nonpolyhedral cone induced by Γ =

(Γ1, . . . , Γm) : Rm → Rm with Γi(c) = ci − αi‖c‖p. Then C(Γ) belongs to its dual

C(Γ) ⊆ C(Γ)∗ (3.31)

Moreover, ek ∈ C(Γ)∗s if αk > 0 for k = 1, . . . , m, and 1 ∈ C(Γ)∗s if some αi > 0.

Proof. To show that C(Γ) is contained in its dual cone, let w ∈ C(Γ) and choose

any c ∈ C(Γ), so wi − αi‖w‖p ≥ 0 and ci − αi‖c‖p ≥ 0. Then

〈w, c〉 =

m
∑

i=1

wici ≥
m
∑

i=1

α2
i ‖w‖p‖c‖p ≥ 0 (3.32a)

yielding w ∈ C(Γ)∗ and thus C(Γ) ⊆ C(Γ)∗. Furthermore, if c 6= 0 and αk > 0, then

〈ek, c〉 = ck ≥ αk‖c‖p > 0 (3.32b)

and it follows that ek ∈ C(Γ)∗s. Similarly, if some αi > 0, then

〈1, c〉 =

m
∑

i=1

ci ≥
m
∑

i=1

αi‖c‖p > 0 (3.32c)

which again implies that 1 ∈ C(Γ)∗s to conclude the proof. �

Hence, in this case Propositions 3.1.14 and 3.1.15 apply to the hybrid and the

weighted-sum scalarization with w ∈ C(Γ) \ {0}, and Propositions 3.1.16 and 3.1.17

apply to the constrained-objective and Benson method if αk > 0 or some αi > 0,

respectively. In particular, the hybrid method becomes

Minimize 〈w, y〉 subject to y◦i − yi ≥ αj‖y◦ − y‖p for i = 1, . . . , m, y ∈ Y (3.33)

and, in this case, can be solved as a pth-order cone program.

Some consequences of these results and possible topics for further investiga-

tion are summarized in the discussion section that concludes this chapter.
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3.2 Variable and Ideal-Symmetric Convex Cones

In this section, we return to the original notion of domination in Defini-

tion 2.2.1 and inquire both relevance and consequences of domination structures

that are variable and, thus, defined by a collection of different domination sets. To-

gether with the new discussion in Section 3.2.1 that revists the relationships between

partial orders and cones, we highlight some inherent model limitations of constant

cones and then introduce the new notion of ideal-symmetry to derive a variable-

cone model in remedy of these recognized shortcomings in Section 3.2.2. Based on

the subsequent generalization of scalarization approaches for variable domination

cones, the characterization of the nondominated set with respect to this new model

is addressed in Section 3.2.3, and some alternative conditions are established for

biobjective cases in Section 3.2.4 and applied to three examples in Section 3.2.5.

3.2.1 Assumptions and Limitations of Constant Cones

We begin our investigation by adding some more details to the discussion in

Section 2.1.3 in which we describe the relationship between convex cones and partial

orders. In particular, in Propositions 2.1.38 and 2.1.39 we establish the equivalence

between a general cone and binary relations that are compatible with scalar multi-

plication and show that this equivalence can be extended to pointed convex cones

and (strict) partial orders under the additional assumption of compatibility with

addition. However, in this case Proposition 2.2.3 implies that the induced domina-

tion structure is described by a constant pointed convex cone, and in order to also

study variable cones we first relax the latter of these two assumptions by the similar

notion of additivity. Hence, different from the partial and strict partial orders �

and ≺ in Section 2.1.3 which distinguish between reflexive and irreflexive binary

relations, we denote the underlying order or relation without this distinction by 4

and, for further convenience, let this order be defined on the complete space Rm.

Definition 3.2.1 (Additivity). A binary relation 4 on Rm is said to be additive if

y1 4 y3 and y2 4 y4 =⇒ y1 + y2 4 y3 + y4 for all y1, y2, y3, y4 ∈ Rm (3.34)
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Remark 3.2.2 (Generalized additivity). If yi ∈ Rm for i = 1, . . . , 2k and yj 4 yj+k

for j = 1, . . . , k, then additivity implies that also

k
∑

j=1

yj 4

k
∑

j=1

yj+k (3.35)

In particular, if y1 = y2 = . . . = yk and yk+1 = yk+2 = . . . = y2k, then additivity

includes compatibility with scalar multiplication for all integer scalars λ = k.

Proposition 3.2.3 (Additivity, reflexivity, and transitivity). If a binary relation is

additive and reflexive on Rm, then it is compatible with addition and transitive.

Proof. To show that an additive and reflexive binary relation is compatible with

addition, let y1 4 y2 and z ∈ Rm. It follows that z 4 z by reflexitivity, and then

additivity implies that y1 + z 4 y2 + z, showing compatibility with addition.

Similarly, to show transitivity, let y1 4 y2 and y2 4 y3. Again −y2 4 −y2

by reflexivity, and then additivity implies that y1 + y2 − y2 4 y2 + y3 − y2 and thus

y1 4 y3, showing transitivity and concluding the proof. �

Hence, we find that a reflexive additive binary relation is also compatible

with addition and transitive and thus, under the additional assumption of compati-

bility with scalar multiplication, that C4 is a convex cone from Proposition 2.1.39.

This result, however, can also be derived directly from the assumption of additivity.

Proposition 3.2.4 (Relation cone under additivity). If the binary relation 4 is

additive and compatible with scalar multiplication, then

C4 := {y2 − y1 ∈ Rm : y1 4 y2} (3.36)

is a convex cone.

Proof. To show that the set C4 is a cone, let c ∈ C4 and λ > 0. Then there

exist y1, y2 ∈ Rm so that c = y2 − y1 and y1 4 y2, and compatibility with scalar

multiplication implies that also λy1 4 λy2 and thus λy2−λy1 = λ(y2−y1) = λc ∈ C4

showing that C4 is a cone.
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To show that the cone C4 is convex, let c1, c2 ∈ C4. Then there exist

y1, y2, y3, y4 ∈ Rm so that c1 = y3 − y1, c2 = y4 − y2 and y1 4 y3, y2 4 y4,

and additivity implies that also y1 + y2 4 y3 + y4 and thus y3 + y4 − (y1 + y2) =

(y3 −y1) + (y4 −y2) = d1 +d2 ∈ C4 showing convexity and concluding the proof. �

By dropping the assumption of compatibility with addition, however, Propo-

sition 2.2.3 does not imply anymore that the induced domination structure is neces-

sarily constant and thus motivates to introduce the following notions to subsequently

define the corresponding domination sets D(y) separately at every outcome y.

Definition 3.2.5 (Additivity and compatibility with scalar multiplication at a

point). A binary relation is said to be additive and compatible with scalar multi-

plication at y ∈ Rm if respectively

y − d1 4 y and y − d2 4 y =⇒ y − (d1 + d2) 4 y for all d1, d2 ∈ Rm (3.37a)

y − d 4 y =⇒ y − λd 4 y for all d ∈ Rm and λ > 0 (3.37b)

Based on this definition, the next result essentially repeats Proposition 3.2.4.

Proposition 3.2.6 (Relation cone at a point). If the binary relation 4 is additive

and compatible with scalar multiplication at y ∈ Rm, then

D(y) := {d ∈ Rm : y − d 4 y} (3.38)

is a convex cone.

Proof. To show that the set D(y) is a cone, let d ∈ D(y) and λ > 0. If d = 0, then

λd = 0 ∈ D(y), otherwise y − d 4 y and compatibility with scalar multiplication

implies that also y − λd 4 y and, thus, λd ∈ D(y), showing that D(y) is a cone.

To show that the cone D(y) is convex, let d1, d2 ∈ D(y). If d1 = 0 or d2 = 0,

then d1 + d2 ∈ D(y), otherwise y − d1 4 y, y − d2 4 y and additivity implies that

also y − (d1 + d2) 4 y and, thus d1 + d2 ∈ D(y), showing that the cone D(y) is

convex and concluding the proof. �

Following the above discussion, however, the cones D(y) in Proposition 3.2.6

do not necessarily need to be identical so that the resulting domination structure
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can also be defined as a variable cone. Before we continue to pursue this observation,

we first introduce the additional notion of monotonicity.

Definition 3.2.7 (Monotonicity). A binary relation is said to be monotonic if

y − ei 4 y for all i = 1, . . . , m and ei ∈ Rm the ith unit vector (3.39)

The interpretation of monotonicity in the context of multiobjective program-

ming is immediate: provided we are interested in objective minimization and reduce

any single component of some original outcome y, then the resulting outcome is

preferred to that original outcome. In particular, the assumption of monotonicity

is equivalent to the Edgeworth-Pareto principle that we introduce in (2.63) in Sec-

tion 2.3.2, and under this additional assumption we now show that the convex cone

in Proposition 3.2.6 always contains all (nonzero) elements of the Pareto cone.

Proposition 3.2.8 (Pareto compatibility). If a monotonic binary relation is addi-

tive and compatible with scalar multiplication at y ∈ Rm, then

D(y) := {d ∈ Rm : y − d 4 y} ∪ {0} (3.40)

is a convex cone that contains the Pareto cone.

Proof. The proof that D(y) is a convex cone follows exactly as in Proposition 3.2.6.

Hence, to show that the convex cone D(y) contains the Pareto cone, let d ∈ Rm
≧

,

so d =
∑m

i=1 die
i = (d1, . . . , dm) ≧ 0. From monotonicity, y − ei 4 y and, thus,

d = y − (y − ei) = ei ∈ D(y). If di = 0, then die
i = 0 ∈ D(y), otherwise di > 0

and die
i ∈ D(y) also, because D(y) is a cone. Convexity of D(y) then implies that

d =
∑m

i=1 die
i ∈ D(y), showing that D(y) contains the Pareto cone. �

In Proposition 3.2.8, if a domination set or cone D(y) contains the Pareto

cone, then we say that D(y) is Pareto compatible. Hence, the assumptions on 4 in

Proposition 3.2.8 imply that the underlying domination structure can be described

by a collection of Pareto compatible convex cones but, so far, do not impose any

condition that also guarantees that this domination structure is in fact variable.
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In preparation of such a condition for the definition of our variable-cone

model in the next section, we now present two examples that do not only highlight

several of the model limitations of a constant cone but also provide intuitive insight

into the later formulation of the corresponding variability assumption.

Example 3.2.9 (Model limitation of constant convex cones). Let Y = {y ∈ R2 :

y1 + y2 ≥ 1, y1 ≥ 0, y2 ≥ 0} be as depicted in Figure 3.4 and C ⊂ R2 be a

Pareto compatible convex cone. In particular, denote z1 = (1, 0), z2 = (0, 1), and

let c1 = z2 − z1 = (−1, 1) and c2 = z1 − z2 = (1,−1). Then we can distinguish the

following four cases that are also shown in Figure 3.4.
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(iii) N(Y, C) = {z2} (iv) N(Y, C) = ∅

Figure 3.4 Nondominated set N(Y, C) in each of the four cases in Example 3.2.9
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(i) If c1 and c2 /∈ C, then N(Y, C) = {y ∈ Y : y1 + y2 = 1} is the Pareto set.

(ii) If c1 ∈ C and c2 /∈ C, then N(Y, C) = {z1} reduces to a singleton.

(iii) Similarly, if c1 /∈ C and c2 ∈ C, then N(Y, C) = {z2}.

(iv) Finally, if c1 and c2 ∈ C, then N(Y, C) = ∅.

Hence, in this case, the nondominated set of Y is either empty, a singleton, or the

complete Pareto set N(Y, R2
≧

) = {y ∈ R2 : y1 + y2 = 1, y1 ≥ 0, y2 ≥ 0}. In

particular, it is not possible to obtain a nondominated set that excludes the two

extreme points z1 and z2 or parts of the extreme ends while maintaining a set of

nondominated outcomes in the middle region of the Pareto set.

The previous example illustrates that constant cone models are limited in

that directions are either dominated or nondominated at all outcomes y ∈ Y so

that, in particular, the vectors c1 and c2 in Figure 3.4 are either contained in all

cones or do not belong to any domination cone D(y) = C. Consequently, in this

case it is not possible that a Pareto outcome in the middle region of the Pareto set

dominates both z1 and z2 without also being dominated by z2 and z1, respectively,

which furthermore precludes to impose a preference principle of transfers (2.64) or

justice (2.65), or a concept of equitable efficiency as described in Section 2.3.2.

Figure 3.5, on the other hand, illustrates how a variable cone, in principle,

is capable to remove this current limitation by changing its orientation and shape

and, thus, the set of dominated directions for every individual outcome.
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Figure 3.5 A variable cone in remedy of the model limitation in Example 3.2.9

81



In the next example, we address another shortcoming of preference models

that are defined based on constant cones, similar to the discussion in Example 3.2.9.

Example 3.2.10 (Another model limitation of constant cones). Let Y ⊂ R2 and y1,

y2, y3, y4 ∈ Y with y1 + y4 = y2 + y3 be as depicted in Figure 3.6 (left). Restricting

consideration to these four outcomes, we find that y1, y2, and y3 are nondominated

with respect to the Pareto cone, while y4 is dominated by y1 but neither dominated

by nor preferred to y2 and y3. Although arguable, in principle we expect that in

a practical decision making context, y1 is preferred to y2 and y3 and, thus, the

overall best outcome. Hence, an underlying preference model should enable that

y1 is preferred to all the three other outcomes, but it should not introduce any

additional preference relationships between y2, y3 and y4.

Using a constant cone C ⊂ R2, however, y1 4 y2 and y1 4 y3 are equivalent

with y2 − y1 and y3 − y1 ∈ C and, thus, also imply that y4 − y2 = y3 − y1 and

y4 − y3 = y2 − y1 ∈ C, or y2 4 y4 and y3 4 y4, respectively. In particular, it is not

possible to define a preference model that allows to individually specify one or both

of the preference relationships y1 4 y2 and y1 4 y3 between y1, y2, and y3, without

also affecting those between y2, y3 and y4.
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Figure 3.6 Four outcomes discussed in Example 3.2.10 (left) and the geometric
interpretation of ideal-symmetry in Definition 3.2.14 and Remark 3.2.15 (right)
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Hence, to remove the shortcoming in Example 3.2.10, again we need to allow

for a variable cone to specify the dominated directions and thus the corresponding

preference relationships separately for every individual or pair of outcomes, respec-

tively. Similar to Figure 3.5 and our earlier discussion, Figure 3.6 (right) indicates

how we may define such a variable cone and also provides the pictorial intuition for

the derivation of our variable-cone model now pursued in the following section.

3.2.2 Ideal-Symmetry Assumption and Model Derivation

Motivated by our previous discussion, we derive a variable domination struc-

ture that can be described by a collection of convex cones for which we introduce

variability by the technical assumption that the set of dominated directions at any

outcome y ∈ Y is symmetric with respect to the direction pointing to (or leading

from) the ideal point. The general idea behind this assumption is illustrated in

Figure 3.6 and made precise in the following definitions.

Definition 3.2.11 (Ideal point and partially ideal outcome). Let Y ⊂ Rm be a

nonempty set. The point z = (z1, . . . , zm) ∈ Rm with

zi = inf{yi : y ∈ Y } for all i = 1, . . . , m (3.41)

is called the ideal point of Y . An outcome y ∈ Y with yi = zi for some index i is

said to be partially ideal.

Note that this definition is the exact equivalent to Definition 2.2.13, and as

before, we again assume that the ideal point z ∈ Rm \ Y exists and is finite but

not itself contained in the outcome set. In this case, we define the ideal domination

vector at every outcome y as shown in Figure 3.6.

Definition 3.2.12 (Ideal domination vector). Let Y ⊂ Rm be nonempty and z ∈

Rm be the ideal point of Y . For every y ∈ Y , the vector

ȳ := y − z ∈ Rm (3.42)

is called the ideal domination vector at y.
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It is clear that the ideal domination vector at every outcome y ∈ Y is

nonnegative, and positive if and only if y is not partially ideal.

Proposition 3.2.13 (Nonnegativity of ideal domination vector). Let Y ⊂ Rm be

nonempty and z ∈ Rm be the ideal point of Y . Then

(i) ȳ ≥ 0 for all y ∈ Y , and

(ii) ȳ > 0 if and only if y ∈ Y is not partially ideal.

Next, we give the fundamental definition of your model.

Definition 3.2.14 (Ideal-symmetry). Let Y ⊂ Rm be nonempty and z ∈ Rm be

the ideal point of Y . A set D ⊂ Rm is said to be ideal-symmetric at y ∈ Y if

〈d1, ȳ〉 = 〈d2, ȳ〉, ‖d1‖ = ‖d2‖ ⇒ d1 ∈ D if and only if d2 ∈ D for all d1, d2 ∈ Rm

(3.43)

Remark 3.2.15 (Geometric interpretation of ideal-symmetry). In Definition 3.2.14,

if d1, d2 6= 0, 〈d1, ȳ〉 = 〈d2, ȳ〉, and ‖d1‖ = ‖d2‖, then

〈d1, ȳ〉
‖d1‖‖ȳ‖ =

〈d2, ȳ〉
‖d2‖‖ȳ‖ (3.43a)

and concepts from analytic geometry provide the possible interpretation of each

ratio as the cosine of the angle formed by one of the vectors d1 or d2 and ȳ, so

cos ∡(d1, ȳ) = cos ∡(d2, ȳ) or ∡(d1, ȳ) = ∡(d2, ȳ) (3.43b)

This geometric intuition is depicted for the biobjective case (m = 2) in Figure 3.6,

remains valid for three objectives (m = 3) as the angle interpretation of the ratios in

Equation 3.43a still holds in spatial analytic geometry, and is naturally generalized

for m > 3 by the definition chosen.

Furthermore, similar to the notion of ideal-symmetry, we call a cone C ⊂ Rm

symmetric over s ∈ Rm if c ∈ C implies that c′ ∈ C for all c′ ∈ Rm with 〈c, s〉 = 〈c′, s〉

and ‖c‖ = ‖c′‖. For notational brevity, and although slightly ambivalent to its

previous meaning, in the following lemma we use the parameter γ to denote the

cosine of any corresponding angle γ1, γ2, γ3 in Figure 3.6.
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Lemma 3.2.16 (Symmetric cone). Let γ ∈ R, s ∈ Rm, s ≥ 0, and define

Cγ,s :=

{

c ∈ Rm \ {0} :
〈c, s〉
‖c‖‖s‖ ≥ γ

}

∪ {0} (3.44)

Then Cγ,s is a cone that is symmetric with respect to s.

(i) If γ ≥ 0, then Cγ,s is convex.

(ii) If γ > 0, then Cγ,s is convex and pointed.

(iii) If γ ≤ mini{si}‖s‖−1, then Cγ,s contains the Pareto cone.

Proof. To show that Cγ,s is a cone, let c ∈ Cγ,s and λ > 0. If c = 0, then

λc = 0 ∈ Cγ,s, otherwise

〈λc, s〉
‖λc‖‖s‖ =

λ〈c, s〉
λ‖c‖‖s‖ =

〈c, s〉
‖c‖‖s‖ ≥ γ (3.44a)

and thus λc ∈ Cγ,s, showing that Cγ,s is a cone.

To show that the cone Cγ,s is symmetric with respect to s, let c ∈ Cγ,s and

c′ ∈ Rm with 〈c, s〉 = 〈c′, s〉 and ‖c‖ = ‖c′‖. If c = 0, then c′ = 0 ∈ Cγ,s, otherwise

〈c′, s〉
‖c′‖‖s‖ =

〈c, s〉
‖c‖‖s‖ ≥ γ (3.44b)

and thus c′ ∈ Cγ,s, showing the the cone Cγ,s is symmetric with respect to s.

For (i), let γ ≥ 0. To show that the cone Cγ,s is convex, let c1, c2 ∈ Cγ,s. If

c1 = c2 = 0, then c1 + c2 = 0 ∈ Cγ,s, otherwise

〈c1 + c2, s〉
‖c1 + c2‖‖s‖ ≥ 〈c1, s〉 + 〈c2, s〉

(‖c1‖ + ‖c2‖)‖s‖ ≥ γ‖c1‖ + γ‖c2‖
(‖c1‖ + ‖c2‖)

= γ (3.44c)

and thus c1 + c2 ∈ Cγ,s, showing that the cone Cγ,s is convex.

For (ii), let γ > 0, then γ ≥ 0 and the cone Cγ,s is convex. To show that the

convex cone Cγ,s is pointed, let c ∈ Cγ,s \ {0}, then

〈−c, s〉
‖−c‖‖s‖ = − 〈c, s〉

‖c‖‖s‖ ≤ −γ < γ (3.44d)

and thus −c /∈ Cγ,s, c /∈ −Cγ,s, or Cγ,s ∩−Cγ,s ⊂ {0}, showing that the convex cone

Cγ,s is pointed.
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For (iii), let γ ≤ mini{si}‖s‖−1. To show that the cone Cγ,s contains the

Pareto cone, let c =
∑m

i=1 cie
i = (c1, . . . , cm) ≥ 0. If c = 0, then c ∈ Cγ,s, otherwise

〈c, s〉
‖c‖‖s‖ =

〈∑cie
i, s〉

‖∑ciei‖‖s‖ ≥
∑

ci〈ei, s〉
∑

ci‖ei‖‖s‖ =

∑

cisi
∑

ci‖s‖
≥ mini{si}

‖s‖ ≥ γ (3.44e)

and thus c ∈ Cγ,s, showing that the cone Cγ,s contains the Pareto cone. �

Remark 3.2.17 (Relationship to Bishop-Phelps cone). If 0 < γ < 1, then the sym-

metric cone Cγ,s in Lemma 3.2.16 is in particular a Bishop-Phelps cone as defined in

Definition 3.1.7, and convexity and pointedness also follow from Proposition 3.1.10.

Based on Lemma 3.2.16, we now replace s by ȳ to define our variable-cone

model as a collection of ideal-symmetric convex cones that contain the Pareto cone.

In particular, and mostly for further notational convenience, we denote ȳmin :=

mini{ȳi} so that ȳmin ≥ 0 for all y ∈ Y , and ȳmin = 0 if and only if y is partially

ideal from Proposition 3.2.13. Moreover, we choose the parameter γ so to replace

the previous term γ‖s‖ with 0 ≤ γ ≤ smin‖s‖−1 by γ · ȳmin with 0 ≤ γ ≤ 1.

Proposition 3.2.18 (Variable-cone model). Let Y ⊂ Rm be a nonempty set, z ∈

Rm be the ideal point of Y , and D := {Dγ(y) : y ∈ Y } be a variable domination

structure with domination sets

Dγ(y) := {d ∈ Rm : 〈d, ȳ〉 ≥ γ‖d‖ȳmin} for all y ∈ Y (3.45)

where ȳ := y − z, ȳmin := mini{ȳi}, and 0 ≤ γ ≤ 1. For every y ∈ Y , Dγ(y) is an

ideal-symmetric convex cone that contains the Pareto cone. In particular, Dγ(y) is

pointed if and only if y is not partially ideal and γ > 0.

The proof is clear with Lemma 3.2.16.

3.2.3 Scalarization Methods for Variable-Cone Model

In Section 3.1.3, we show that several scalarization methods that are orig-

inally formulated for the Pareto case can be modified to also find nondominated

outcomes with respect to general cones. In this section, we investigate some related

results when the domination structure is described by a variable cone and, at the
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same time, derive some more specific results for the variable-cone model that we

derive in the previous section and which is completely defined in Proposition 3.2.18.

We begin with the weighted-sum method for a variable domination structure.

While the following statement essentially repeats Proposition 3.1.15 in Section 3.1.3,

which there we do not prove but derive from the result for the hybrid scalarization

in Proposition 3.1.14, we now include the proof and then point to a subtle difference

in the formulation of these two results.

Proposition 3.2.19 (Weighted-sum scalarization for a variable domination struc-

ture). Let Y ⊂ Rm be nonempty, D = {D(y) : y ∈ Y } be a domination structure,

w ∈ Rm \ {0} be a nonzero weighting parameter, and ŷ ∈ Y be optimal for the

weighted-sum scalarization

WS(w): Minimize 〈w, y〉 subject to y ∈ Y (3.46)

(i) If w ∈ D(ŷ)∗ and ŷ is strictly optimal, then ŷ ∈ N(Y,D).

(ii) If w ∈ D(ŷ)∗s, then ŷ ∈ N(Y,D).

(iii) If w ∈ D(ŷ)∗, then ŷ ∈ Nw(Y,D).

Proof. Let ŷ ∈ Y be optimal for WS(w), so 〈w, ŷ〉 ≤ 〈w, y〉 for all y ∈ Y , or

〈w, ŷ〉 < 〈w, y〉 for all y ∈ Y \ {ŷ} if ŷ is strictly optimal.

For (i) and (ii), suppose by contradiction that ŷ /∈ N(Y,D). Then there

exists y ∈ (ŷ − D(ŷ) \ {0}) ∩ Y , or equivalently, ŷ − y = d ∈ D(ŷ) \ {0}, and thus

〈w, ŷ〉 = 〈w, y + d〉 = 〈w, y〉 + 〈w, d〉















≥ 〈w, y〉 in case (i) as w ∈ D(ŷ)∗

> 〈w, y〉 in case (ii) as w ∈ D(ŷ)∗s

(3.47)

in contradiction to the (in case (i): strict) optimality of ŷ for WS(w).

Furthermore for (iii), if w ∈ D(ŷ)∗ \ {0} and ŷ is optimal for WS(w), then

w ∈ (int D(ŷ))∗s by Proposition 2.1.21 and ŷ ∈ Nw(Y,D) by (ii). �

While apparently the same result as Proposition 3.1.15, we note that the

conditions on the weighting parameter w now also depend on the corresponding

solution ŷ which, however, itself depends on the weighting vector w. Hence, in
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practice, we need to first choose w and, after finding ŷ, we still need to explicitly

verify if any of the conditions in Proposition 3.2.19 is actually satisfied, for example

by solving the additional single objective cone program

Minimize 〈w, d〉 subject to d ∈ D(ŷ) \ {0} (3.48)

In this case, if the optimal objective function value is positive or nonnegative, we can

conclude that w ∈ D(ŷ)∗s or D(ŷ)∗ and thus ŷ ∈ N(Y,D) or Nw(Y,D), respectively.

For our variable-cone model in Proposition 3.2.18, the following corollary

to Proposition 3.2.19 is possible based on the observation that, for every outcome

y ∈ Y , the ideal domination vector ȳ is always contained in the dual cone D(y)∗.

Corollary 3.2.20 (Weighted-sum scalarization for variable-cone model). Let Y ⊂

Rm be nonempty, D = {Dγ(y) : y ∈ Y } be defined by Dγ(y) = {d ∈ Rm : 〈d, ȳ〉 ≥

γ‖d‖ȳmin} with ȳ = y−z, ȳmin = mini{ȳi}, and 0 < γ ≤ 1 for all y ∈ Y . Let y◦ ∈ Y ,

and ȳ◦ = y◦ − z ∈ Rm be the weighting vector for the weighted-sum scalarization

WS(ȳ◦): Minimize 〈ȳ◦, y〉 subject to y ∈ Y (3.49)

(i) If y◦ ∈ Y is strictly optimal for WS(ȳ◦), then y◦ ∈ N(Y,D).

(ii) If y◦ ∈ Y is optimal for WS(ȳ◦) and not partially ideal, then y◦ ∈ N(Y,D).

(iii) If y◦ ∈ Y is optimal for WS(ȳ◦), then y◦ ∈ Nw(Y,D).

Proof. Let y◦ ∈ Y be optimal for the weighted-sum method WS(ȳ◦) with weighting

parameter ȳ◦ ∈ Rm. Since, by definition, 〈d, ȳ◦〉 ≥ γ‖d‖ȳ◦min ≥ 0 for all d ∈ D(y◦),

this shows that ȳ◦ ∈ D(y◦)∗. Moreover, if y◦ is not partially ideal, then ȳ◦min > 0 by

Proposition 3.2.13 and, thus, 〈d, y◦〉 ≥ γ‖d‖ȳ◦min > 0 for all d ∈ D(y◦)\{0}, showing

that ȳ◦ ∈ D(y◦)∗s. The proof now follows from Proposition 3.2.19. �

Hence, to verify nondominance of y◦ ∈ Y under our variable-cone model D,

the problem WS(ȳ◦) can be solved and, if y◦ is a unique optimal solution, or if y◦

is optimal and not partially ideal, then y◦ ∈ N(Y,D). In general, however, these

conditions are only sufficient, but not necessary and, in particular, satisfied only if
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the ideal domination vector ȳ at y coincides with the normal vector of a supporting

hyperplane to Y at y◦.

Furthermore, for the generalization of the hybrid method, the constrained-

objective and the Benson method, it turns out that after the modification of the cone

constraints b− y ∈ C to variable cone constraints b− y ∈ D(y), the proof of Propo-

sition 3.1.14 does not hold anymore unless we explicitly choose the cone constraints

at the optimal solution ŷ ∈ Y . In this case, however, we also obtain a necessary

condition for nondominance with respect to a variable domination structure, similar

to the result in Proposition 2.2.32.

Proposition 3.2.21 (Hybrid scalarization for a variable domination cone). Let

Y ⊂ Rm be a nonempty set, D = {D(y) ⊂ Rm : y ∈ Y } be a domination structure for

which each D(y) is a convex cone, w ∈ Rm \ {0} be a nonzero weighting parameter,

and ŷ ∈ Y be optimal for the hybrid scalarization

HB(w, b): Minimize 〈w, y〉 subject to b − y ∈ D(ŷ) and y ∈ Y (3.50)

(i) If w ∈ D(ŷ)∗ and ŷ is strictly optimal, then ŷ ∈ N(Y,D).

(ii) If w ∈ D(ŷ)∗s, then ŷ ∈ N(Y,D).

(iii) If w ∈ D(ŷ)∗, then ŷ ∈ Nw(Y,D).

Moreover, if ŷ ∈ N(Y,D), then ŷ is (strictly) optimal for HB(w, ŷ) and any w ∈ Rm.

Proof. The proof for (i), (ii) and (iii) follows as the proof of Proposition 3.2.19 in

which the contradicting solution y ∈ Y is feasible for HB(w, b) because

b − y = b − ŷ + d ∈ D(ŷ) (3.51)

by feasibility of ŷ for HB(w, b) and convexity of the cone D(ŷ).

Moreover, if ŷ ∈ N(Y,D) is also chosen as the reference point of the hybrid

scalarization, then there does not exist y ∈ Y such that ŷ − y ∈ D(ŷ) \ {0} which

implies that ŷ is the unique and, thus, a strict optimal solution for HB(w, ŷ). �
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The modification of the constrained-objective and Benson method can be

accomplished accordingly and is omitted. Instead, similar to Corollary 3.2.20, we

derive a corresponding result for the variable-cone model from the previous section.

Corollary 3.2.22 (Hybrid scalarization for the variable-cone model). Let Y ⊂ Rm

be a nonempty set, and D = {Dγ(y) : y ∈ Y } be defined by Dγ(y) = {d ∈ Rm :

〈d, ȳ〉 ≥ γ‖d‖ȳmin} with ȳ = y − z, ȳmin = mini{ȳi}, and 0 < γ ≤ 1 for all y ∈ Y .

Let y◦ ∈ Y , and ȳ◦ = y◦−z ∈ Rm be the weighting vector for the hybrid scalarization

HB(ȳ◦, b): Minimize 〈ȳ◦, y〉 subject to b − y ∈ D(ȳ◦) and y ∈ Y (3.52)

(i) If y◦ ∈ Y is strictly optimal for HB(ȳ◦, b), then y◦ ∈ N(Y,D).

(ii) If y◦ ∈ Y is optimal for HB(ȳ◦, b) and not partially ideal, then y◦ ∈ N(Y,D).

(iii) If y◦ ∈ Y is optimal for HB(ȳ◦, b), then y◦ ∈ Nw(Y,D).

Moreover, y◦ ∈ N(Y, D) if and only if y◦ is (strictly) optimal for HB(ȳ◦, y◦).

Hence, we conclude that the hybrid method can still be used to verify if

any outcome y ∈ Y is nondominated under the variable-cone model D. In par-

ticular, based on the Pareto compatibility of D, Proposition 2.2.6 implies that all

nondominated outcomes can be found within the Pareto set.

Proposition 3.2.23. Let Y ⊂ Rm be a nonempty set, and D = {D(y) : y ∈ Y }

be a domination structure for which each domination set D(y) contains the Pareto

cone, Rm
≧

⊂ D(y) for all y ∈ Y . Then

N(Y,D) ⊆ N(Y, Rm
≧) (3.53)

Hence, to find the nondominated set for our variable-cone model D, the

previous discussion suggests to first find the Pareto set N(Y, Rm
≧

) and then check

which Pareto points ŷ ∈ N(Y, Rm
≧

) remain nondominated with respect to D(ŷ).

While the latter, in principle, can be accomplished using the necessary and sufficient

condition in Corollary 3.2.22, in the next section we derive two alternative optimality

conditions based on the geometric interpretation of the underlying ideal-symmetry

assumption provided in Remark 3.2.15 and Figure 3.6.
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3.2.4 Optimality Conditions for Biobjective Cases

For the special case of convex and concave biobjective programs, we derive

two alternative optimality conditions for nondominance with respect to the variable-

cone model derived in Section 3.2.2, based on the geometric interpretation of ideal-

symmetry in Remark 3.2.15 and Figure 3.6. For the convex case, we use the following

version of Theorem 2.1.24 (Rockafellar, 1970).

Lemma 3.2.24 (Supporting hyperplane theorem). Let Y ⊂ Rm be Rm
≧

-convex and

y◦ ∈ N(Y, Rm
≧

). Then there exists a supporting hyperplane to Y at y◦ with normal

vector n ∈ Rm \ {0} so that 〈n, y − y◦〉 ≥ 0 for all y ∈ Y .

Based on this result, our first theorem uses the existence of a supporting

hyperplane and its associated normal vector at every Pareto outcome y◦ ∈ N(Y, R2
≧

).

Theorem 3.2.25 (Nondominance conditions for convex biobjective case). Let Y ⊂

R2 be nonempty, and D = {Dγ(y) : y ∈ Y } be defined by Dγ(y) = {d ∈ R2 : 〈d, ȳ〉 ≥

γ‖d‖ȳmin} with ȳ = y − z, ȳmin = mini{ȳi}, and 0 ≤ γ ≤ 1 for all y ∈ Y . Let

N(Y, R2
≧

) be R2
≧
-convex, y◦ ∈ N(Y, R2

≧
), and n ∈ Rm \ {0} be the normal vector of

a supporting hyperplane to Y at y◦ with 〈n, y − y◦〉 ≥ 0 for all y ∈ Y .

(i) If 〈n, ȳ◦〉2 + γ2‖n‖2ȳ◦2min > ‖n‖2‖ȳ◦‖2, then y◦ ∈ N(Y,D).

(ii) If 〈n, ȳ◦〉2 + γ2‖n‖2ȳ◦2min ≥ ‖n‖2‖ȳ◦‖2, then y◦ ∈ Nw(Y,D).

Furthermore, let n satisfy that 〈n, y − y◦〉 > 0 for all y ∈ Y \ {y◦}.

(iii) If 〈n, ȳ◦〉2 + γ2‖n‖2ȳ◦2min ≥ ‖n‖2‖ȳ◦‖2, then y◦ ∈ N(Y,D).

Proof. Let N(Y, R2
≧

) be R2
≧

-convex and y◦ ∈ N(Y, R2
≧

). As shown in Figure 3.7,

let η = ∡(n, ȳ◦) be the positive angle between n and ȳ◦, so

0 ≤ cos η = cos ∡(n, ȳ◦) =
〈n, ȳ◦〉
‖n‖‖ȳ◦‖ ≤ 1 (3.54a)

and 0 ≤ sin η ≤ 1. Let δ = max{∡(d, ȳ◦) : d ∈ Dγ(y◦) \ {0}} be the maximal

positive angle between any d ∈ Dγ(y◦) \ {0} and ȳ◦, so

0 ≤ cos δ = min

{ 〈d, ȳ◦〉
‖d‖‖ȳ◦‖ : 〈d, ȳ◦〉 ≥ γ‖d‖ȳ◦min, d 6= 0

}

=
γȳ◦min

‖ȳ◦‖ ≤ 1 (3.54b)

91



and 0 ≤ sin δ ≤ 1. Finally, let µ = max {∡(n, d) : d ∈ Dγ(y◦) \ {0}} be the maximal

positive angle between n and any d ∈ Dγ(y◦) \ {0} at y, so µ = η + δ and

cos µ = min

{ 〈n, d〉
‖n‖‖d‖ : d ∈ Dγ(y◦) \ {0}

}

(3.54c)

For (i), the assumption 〈n, ȳ◦〉2 + γ2‖n‖2ȳ◦2min > ‖n‖2‖ȳ◦‖2 is equivalent to

〈n, ȳ◦〉2
‖n‖2‖ȳ◦‖2

+
γ2ȳ◦2min

‖ȳ◦‖2
= cos2 η + cos2 δ > 1 (3.55a)

yielding cos2 η > 1 − cos2 δ = sin2 δ and cos2 δ > 1 − cos2 η = sin2 η. In particular,

this implies that cos η > sin δ and cos δ > sin η, and thus

cos η cos δ − sin η sin δ = cos(η + δ) = cos µ > 0 (3.55b)

and equivalence follows from repeating the same argument with < instead of >.

Hence, by definition of µ, we first conclude that 〈n, ȳ◦〉2 + γ2‖n‖2ȳ◦2min > ‖n‖2‖ȳ◦‖2

if and only if

cos µ = min

{ 〈n, d〉
‖n‖‖d‖ : d ∈ Dγ(y◦) \ {0}

}

> 0 (3.55c)

or equivalently, 〈n, d〉‖n‖−1‖d‖−1 > 0 and, thus, 〈n, d〉 > 0 for all d ∈ Dγ(y◦) \ {0}.

Since, by assumption, 〈n, y − y◦〉 ≥ 0 for all y ∈ Y , or 〈n, y◦ − y〉 ≤ 0, it therefore

follows that y◦ − y /∈ Dγ(y◦) \ {0}, showing that y◦ ∈ N(Y,D).

For (ii), repeating the same arguments as above yields that the condition

〈n, ȳ◦〉2 +γ2‖n‖2ȳ◦2min ≥ ‖n‖2‖ȳ◦‖2 is equivalent to 〈n, d〉 ≥ 0 for all d ∈ Dγ(y◦) and,

thus, 〈n, d〉 > 0 for all d ∈ int Dγ(y◦). Analogous to the proof in (i), it now follows

that y◦ − y /∈ int Dγ(y◦) \ {0}, showing that y◦ ∈ Nw(Y,D).

Furthermore for (iii), if 〈n, y−y◦〉 > 0 for all y ∈ Y \{y◦}, or 〈n, y◦−y〉 < 0,

then the same conclusion as in (i) already follows if 〈n, d〉 ≥ 0 for all d ∈ Dγ(y◦) as

direct implication of the derivation in (ii). �

Remark 3.2.26 (Extension to multiple objectives). Mainly using trigonometric

concepts from basic analytic geometry, the proof of Theorem 3.2.25 readily extends

to the case with three objectives for which the interpretation of angles remains valid
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and, in particular, preserves the same geometric meaning as in the proven biobjective

case. For m > 3, however, the argumentation loses this geometric interpretation and,

thus, the theorem might not hold anymore.
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Figure 3.7 Illustration of the nondominance conditions for biobjective programs
in Theorems 3.2.25 (left) and 3.2.27 (right) under the variable-cone model

We derive a similar result for the concave biobjective case for the particular

choice Dγ(y) = D1(y) and under the additional assumption that Y is R2
≧

-compact.

In this case, the ideal point z = {z1, z2} ∈ R2 can be defined using the minimum,

zi = min{yi : y ∈ Y } for i = 1, 2, so that the two optimal lexicographic solutions

z1 = (z1
1 , z2) where z1

1 := min{y1 : y2 = z2, y ∈ Y } (3.56a)

z2 = (z1, z
2
2) where z2

2 := min{y2 : y1 = z1, y ∈ Y } (3.56b)

belong both to the outcome set and the Pareto set, as depicted in Figure 3.7 (right).

Theorem 3.2.27 (Nondominance condition for concave biobjective case). Let Y ⊂

R2 be nonempty, and D = {D(y) : y ∈ Y } be defined by D(y) = {d ∈ R2 : 〈d, ȳ〉 ≥

‖d‖ȳmin} with ȳ = y − z and ȳmin = mini{ȳi} for all y ∈ Y . Let Y be R2
≧
-compact,

N(Y, R2
≧

) be R2
≧
-concave (i.e., −R2

≧
-convex), y◦ ∈ N(Y, R2

≧
), and k ∈ {1, 2} be so
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that ȳ◦k = ȳ◦min. Let z = {z1, z2} ∈ R2 be the ideal point of Y and z1 and z2 ∈ Y be

as in (3.56). Then

y◦ ∈ N(Y,D) if and only if y◦ − zk /∈ D(y◦) (3.57)

Proof. Let Y be R2
≧

-compact. As outlined in the discussion preceding the statement

of the theorem, it follows that z1, z2 ∈ N(Y, R2
≧

), and z1 6= z2 as the ideal point

z /∈ Y . Moreover, since z̄1 = (z1
1 − z1, 0) ≥ 0, it follows that D(z1) = {d = (d1, d2) ∈

R2 : d1 ≥ 0} and, thus, z2 ∈ (z1 −D(z1))∩ Y \ {z1}. This shows that z1 /∈ N(Y,D)

and, by repeating the analogous argument for z2, that z2 /∈ N(Y,D).

(⇐) Now let N(Y, R2
≧

) be R2
≧

-concave and y◦ ∈ N(Y, R2
≧

) \ {z1, z2}, so, in

particular, z1 < y◦1 < z1
1 and z2 < y◦2 < z2

2 . By R2
≧

-concavity, then there does not

exist y ∈ Y that falls below the two line segments from y◦ to z1 and z2, as indicated

in Figure 3.7. In particular, if we can show that y◦− z1, y◦− z2 /∈ D(y◦), then there

does not exist y ∈ (y◦ − D(y◦)) ∩ Y \ {y◦} which implies that y◦ ∈ N(Y,D).

Hence, without loss of generality, let ȳ◦min = ȳ◦1 ≤ ȳ◦2, then y◦ − z1 /∈ D(y◦)

by assumption and it only remains to show that y◦ − z2 /∈ D(y◦). But this follows,

because

〈y◦ − z2, ȳ◦〉 − ‖y◦ − z2‖ȳ◦1 (3.58a)

= 〈y◦ − z2, y◦ − z〉 − ‖y◦ − z2‖ · ȳ◦1 (3.58b)

= (y◦1 − z1)2 + (y◦2 − z2
2)(y◦2 − z2) −

√

(y◦1 − z1)2 + (y◦2 − z2
2)2 · ȳ◦1 (3.58c)

= ȳ◦21 + (y◦2 − z2
2)ȳ◦2 −

√

ȳ◦21 + (y◦2 − z2
2)2 · ȳ◦1 (3.58d)

≤ ȳ◦21 + (y◦2 − z2
2)ȳ◦2 − ȳ◦21 (3.58e)

= (y◦2 − z2
2)ȳ◦2 (3.58f)

= (y◦2 − z2
2)(y◦2 − z2) < 0 (3.58g)

from z2 < y◦2 < z2
2 . The reverse direction (⇒) is clear because z1, z2 ∈ Y . �

The point (z1
1 , z

2
2) ∈ R2 in Theorem 3.2.27 is also known as the nadir point

(see Miettinen, 1999, among others), and more general, for a set Y ⊂ Rm, the nadir

point can defined by zN = {zN
1 , . . . , zN

m} with zN
i := sup{yi : y ∈ N(Y, Rm

≧
)}.
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Remark 3.2.28 (Extension to multiple objectives). The proof of Theorem 3.2.27

only holds for the biobjective case m = 2, based on the exploited characterization of

the nadir point using the two optimal lexicographic solutions in (3.56). For m > 2,

however, the nadir point cannot be computed by lexicographic optimization but

must be found through optimization over the Pareto set, so that this point is not

readily available (Yamamoto, 2002; Ehrgott and Tenfelde-Podehl, 2003), in general.

3.2.5 Model Illustration on Biobjective Examples

We illustrate the possible application of Theorems 3.2.25 and 3.2.27 for find-

ing the nondominated set for each of the three sets Y ⊂ R2 depicted in Figure 3.8.

In each case, the ideal point lies at the origin so that z = (0, 0) ∈ R2 and ȳ = y

for all y ∈ Y . Furthermore, to apply both Theorem 3.2.25 and 3.2.27, we choose

γ = 1 and, thus, let the domination structure D = {D(y) : y ∈ Y } be defined by

D(y) = {d ∈ R2 : 〈d, y〉 ≥ ‖d‖ymin} for all y ∈ Y .

Y ⊂ R2

6y2

-
y1

����*
n

s

s

N(Y,D)

Y ⊂ R26y2

-
y1

c

c

N(Y,D)

Y ⊂ R26y2

-
y1

@
@

@
@

@
@@
�

�
��

c

c

@
@@

N(Y,D)
n

Figure 3.8 Nondominated sets N(Y,D) for the variable-cone model and convex
(left), concave (center), and linear (right) Pareto sets as in Examples 3.2.29–3.2.31

Example 3.2.29 (Convex case). Let Y = {y ∈ R2 : (1 − y1)2 + (1 − y2)2 ≤ 1} be

as depicted in Figure 3.8 (left). Then N(Y, R2
≧

) = {y ∈ Y : (1 − y1)2 + (1 − y2)2 =

1, y1 ≤ 1, y2 ≤ 1} is R2
≧

-convex, and Theorem 3.2.25 can be used to find N(Y,D).

Hence, let y ∈ N(Y, R2
≧

), so

(1 − y1)2 + (1 − y2)2 = 1 for 0 ≤ y1 ≤ 1 and 0 ≤ y2 ≤ 1 (3.59a)
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and, without loss of generality, assume that ymin = y1 ≤ y2, so 0 ≤ y1 ≤ 1 − 1
2

√
2

or 1 − y1 ≥ 1
2

√
2 > 0. Since the supporting hyperplane at y has the normal vector

n = (1−y1, 1−y2) ∈ R2 that satisfies ‖n‖2 = 1 and 〈n, y−y′〉 > 0 for all y′ ∈ Y \{y},

the condition in Theorem 3.2.25 becomes

〈n, y〉2 + ‖n‖2y2
min − ‖n‖2‖y‖2

= [(1 − y1)y1 + (1 − y2)y2]2 + y2
1 − (y2

1 + y2
2)

= (1 − y1 − y2)2 − y2
2

= (1 − y1)2 − 2(1 − y1)y2

= (1 − y1)(1 − y1 − 2y2) ≥ 0

⇔ (1 − y1) ≥ 2y2

⇔ (1 − y1)2 = 1 − (1 − y2)2 = 2y2 − y2
2 ≥ 4y2

2

⇔ y1 ≤ y2 ≤ 2
5

Using Equation 3.59a, y1 and y2 can equivalently be restricted from below by 1
5 , so

that 1
5 ≤ y1 ≤ y2 ≤ 2

5 and thus, by symmetry of Y in y1 and y2

N(Y,D) =
{

y ∈ Y : (1 − y1)2 + (1 − y2)2 = 1, 1
5 ≤ y1, y2 ≤ 2

5

}

(3.59b)

as shown in Figure 3.8 (left).

If Y is R2
≧

-concave, we can use Theorem 3.2.27 instead of Theorem 3.2.25.

Example 3.2.30 (Concave case). Let Y = {y ∈ R2 : y2
1 + y2

2 ≥ 1, y1 ≥ 0, y2 ≥ 0}

be as depicted in Figure 3.8 (center). Then N(Y, R2
≧

) = {y ∈ Y : y2
1 +y2

2 = 1} is R2
≧

-

concave, and Theorem 3.2.27 can be used to find N(Y,D). Hence, let y ∈ N(Y, R2
≧

)

y2
1 + y2

2 = 1 for 0 ≤ y1 ≤ 1 and 0 ≤ y2 ≤ 1 (3.60a)

and, without loss of generality, assume that ymin = y1 ≤ y2, so 0 ≤ y1 ≤ 1
2

√
2 or

1−y1 ≥ 1− 1
2

√
2. Since z1 = (1, 0) and z2 = (0, 1), the condition in Theorem 3.2.27

becomes
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〈y − z1, y〉 − ‖y − z1‖y1

= (y1 − 1)y1 + y2
2 −

√

(y1 − 1)2 + y2
2 · y1

= 1 − y1 −
√

2 − 2y1 · y1

=
√

1 − y1(
√

1 − y1 −
√

2 · y1) < 0

⇔ 2y2
1 > 1 − y1 ⇔ 1

2 < y1 ≤ y2

Using Equation 3.60a, y1 and y2 can equivalently be restricted from above by 1
2

√
3

so that 1
2 < y1 ≤ y2 < 1

2

√
3 and thus, by symmetry of Y in y1 and y2

N(Y,D) =
{

y ∈ Y : y2
1 + y2

2 = 1, 1
2 < y1, y2 < 1

2

√
3
}

(3.60b)

again shown in Figure 3.8 (center).

The concluding example considers the same set previously discussed in Ex-

ample 3.2.9 and finally shows how the new variable-cone model resolves the limita-

tions highlighted in our earlier discussion.

Example 3.2.31 (Linear case). Let Y = {y ∈ R2 : y1 + y2 ≥ 1, y1 ≥ 0, y2 ≥ 0} be

as depicted in Figure 3.8 (right). Then N(Y, R2
≧

) = {y ∈ Y : y1 + y2 = 1} is both

R2
≧

-convex and R2
≧

-concave so that both Theorems 3.2.25 and 3.2.27 can be used to

find N(Y,D). Hence, let y ∈ N(Y, R2
≧

), so

y1 + y2 = 1 for 0 ≤ y1 ≤ 1 and 0 ≤ y2 ≤ 1 (3.61a)

and, without loss of generality, assume that ymin = y1 ≤ y2, so 0 ≤ ymin = y1 ≤
1
2 ≤ y2. Since the supporting hyperplane at y has the normal vector n = (1, 1) that

satisfies 〈n, y − y′〉 ≥ 0 for all y′ ∈ Y , the condition in Theorem 3.2.25 becomes

〈n, y〉2 + ‖n‖2y2
min − ‖n‖2‖y‖2

= (y1 + y2)2 + 2y2
1 − 2(y2

1 + y2
2) = 1 − 2y2

2 > 0

⇔ y1 ≤ y2 < 1
2

√
2
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Using Equation 3.61a, y1 and y2 can equivalently be restricted from below by 1− 1
2

√
2

so that 1 − 1
2

√
2 < y1 ≤ y2 < 1

2

√
2 and thus, by symmetry of Y in y1 and y2

N(Y,D) =
{

y ∈ Y : y1 + y2 = 1, 1 − 1
2

√
2 < y1, y2 < 1

2

√
2
}

(3.61b)

as shown in Figure 3.8 (right). Alternatively, with z1 = (1, 0) and z2 = (0, 1), the

condition in Theorem 3.2.27 becomes

〈y − z1, y〉 − ‖y − z1‖y1

= (y1 − 1)y1 + y2
2 −

√

(y1 − 1)2 + y2
2 · y1

= (y1 − 1)y1 + (1 − y1)2 −
√

(y1 − 1)2 + (1 − y1)2 · y1

= (y1 − 1)(2y1 − 1) −
√

2(1 − y1)y1

= (y1 − 1)(2y1 − 1 +
√

2y1) < 0

⇔ 2y1 − 1 +
√

2 > 0

⇔ y1 > 1
2+

√
2

= 2−
√

2
2 = 1 − 1

2

√
2

yielding the same answer as Theorem 3.2.25.

In conclusion, we observe that the variable-cone model derived and studied in

this section principally removes the model limitation highlighted in Example 3.2.9.

Since the underlying assumption of ideal-symmetry, however, is only one among

many possibilities to introduce variability into the domination structure of a multi-

objective program, many further research directions are possible and addressed as

part of the concluding discussion at the end of this chapter.

3.3 Translated Cones and Approximate Nondominance

The purpose of this section is to characterize a notion of approximate non-

dominance, namely the concept of epsilon-nondominance (Kutateladze, 1979; Lori-

dan, 1984; White, 1986), using the framework of cones and to develop various solu-

tion methods for the generation of epsilon-nondominated outcomes. In preparation

for the former and based on the observation that the underlying domination struc-

ture cannot be described by a cone anymore, but needs to be defined as a cone that
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is shifted from the origin, we begin our investigation in Section 3.3.1 with the defini-

tion and possible representations of translated cones. In Sections 3.3.2 and 3.3.3, we

reexamine several of our previous findings for this new class of cones, including the

nondominance mapping theorem from Section 3.1.2 and the scalarization methods

from Section 3.1.3, respectively, and we derive various additional results in this new

context of approximate nondominance. Sections 3.3.4, 3.3.5 and 3.3.6 finally address

the question of purposely generating ε-nondominated outcomes from a theoretical,

methodological, and practical point of view, respectively.

3.3.1 Representation of Translated Cones

We first introduce the notion of a translated cone and then study some

general properties and possible representations of translated cones as polyhedral

sets, using some of the elementary concepts from linear algebra and convex analysis

that are reviewed in Section 2.1.2.

Definition 3.3.1 (Translated cone). A nonempty set D ⊂ Rm is called a translated

cone if there exists a cone C ⊂ Rm and a vector e ∈ Rm such that

D = Ce := C + e (3.62)

In this case, the vector e is called a translation vector for D.

Following the classical definition by Rockafellar (1970), a translated cone

Ce ⊂ Rm is not necessarily a cone anymore but has its vertex shifted from the origin

to the new point e ∈ Rm. In this case, however, a more general notion presented in

Luenberger (1969) also allows for a cone with an arbitrary vertex and corresponds

to what Rockafellar calls a skew orthant or generalized m-dimensional simplex with

one ordinary vertex and m − 1 directions (or vertices at infinity). Other than the

above two monographs, Nachbin (1996) introduces affine cones to describe mappings

between convex vector spaces, and Bauschke (2003) mentions translated cones in the

context of duality results for Bregman projections onto linear constraints. None of

these references, however, contributes any specific results to the representation of

translated cones as now pursued in the remaining section.
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First, if D is a translated cone, then there exists a unique cone C such that

D = Ce, and the vector e is unique if C is also pointed.

Proposition 3.3.2 (Uniqueness of cone and translation vector). Let C, C1, C2 ⊂

Rm be cones and e1, e2 ∈ Rm.

(i) If C1
e1 = C2

e2, then C1 = C2.

(ii) If Ce1 = Ce2 and C is pointed, then e1 = e2.

Proof. For (i), suppose C1
e1 = C2

e2 and let d ∈ C1. Then d + e1 ∈ C1
e1 = C2

e2 and

thus d+e1−e2 ∈ C2. Since C2 is a cone, we also have that 1
2(d+e1−e2) ∈ C2, thus

e2 + 1
2(d + e1 − e2) ∈ C2

e2 = C1
e1 and e2 + 1

2(d + e1 − e2) − e1 = 1
2(d + e2 − e1) ∈ C1.

The fact that C1 is a cone now gives that also d + e2 − e1 ∈ C1, and we conclude

d + e2 − e1 + e1 = d + e2 ∈ C1
e1 = C2

e2 and finally d + e2 − e2 = d ∈ C2. Hence

C1 ⊆ C2, and by interchanging the roles of C1 and C2 we obtain the result.

For (ii), let C◦ = C∪{0}, then also C◦
e1

= C◦
e2

and, in particular, e1 ∈ Ce1 =

Ce2 ∋ e2. Then there must exist vectors d1, d2 ∈ C such that e1 = d2 + e2 and

e2 = d1 + e1, yielding that d1 = −d2 and thus d1 = d2 = 0 as C is pointed, showing

that e1 = e2 and concluding the proof. �

If C is not pointed, then the translation vector is not unique, in general.

Example 3.3.3 (Translated cone with multiple translation vectors). If we let

C = {d = (d1, d2)T ∈ R2 : d1 ≥ 0} (3.63)

then C = Ce for all vectors e ∈ {(e1, e2)T ∈ R2 : e1 = 0}.

Although a translated cone is not necessarily a cone, we also say that D = Ce

is pointed if the underlying cone C is pointed. In particular, if C = C(A) = {d ∈

Rm : Ad ≧ 0} is a polyhedral cone induced by some matrix A ∈ Rl×m, then we

know from Proposition 2.1.28 that C(A) is pointed if and only if rank A = m. An

equivalent condition uses the concept of the kernel of a polyhedral set or cone which

we introduce in the following definition and then utilize to characterize the set of

suitable translation vectors for translated polyhedral cones.
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Definition 3.3.4 (Kernel). Let D(A, b) ⊂ Rm be the polyhedral set described by

the matrix A ∈ Rl×m and vector b ∈ Rm. The set

ker D(A, b) := {y ∈ Rm : Ay = b} (3.64)

is called the kernel of D(A, b).

If A and b are clear from the context, then we simply write ker D instead

of ker D(A, b). However, since the representation D(A, b) of a polyhedral set is not

unique, in general, the kernel also depends on the specific choices of the matrix

A ∈ Rl×m and the vector b ∈ Rl.

Example 3.3.5 (Dependence of kernel on representation). If we let A = (1, 1)T ∈

R2×1, b = (1, 0)T ∈ R2, and

D1 := D(A, b) = {d ∈ R : d ≥ 1, d ≥ 0} = {d ∈ R : d ≥ 1} (3.65)

be the associated polyhedral set (in this case: cone), then ker D1 = ∅. However, if

we let D2 := D(1, 1), then D1 = D2 but ker D2 = {1}.

Next, we formulate the fundamental result for the characterization and rep-

resentation of translated polyhedral cones as polyhedral sets.

Theorem 3.3.6 (Translated polyhedral cones). Let C = D(A) be the polyhedral

cone induced by some matrix A ∈ Rl×m.

(i) Let e ∈ Rm be a translation vector for a translated polyhedral cone Ce.

Let b = Ae ∈ Rl and D = D(A, b) be the polyhedral set induced by A and b. Then

Ce = D (3.66a)

(ii) Let b ∈ Rl and D = D(A, b) be the polyhedral set induced by A and b.

Let ker D(A, b) 6= ∅ and e ∈ ker D(A, b) be any kernel element of D. Then

D = Ce (3.66b)

In both cases (i) and (ii), C and D are pointed if and only if rank A = m, or

equivalently, if ker C = {0}.
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Proof. For (i), we have to show that Ce = D where C = D(A) and D = D(A, b)

with b = Ae. For the first inclusion, let d = c+e ∈ Ce for some c ∈ C. Then Ac ≧ 0

and it follows that

Ad = A(c + e) = Ac + Ae ≧ 0 + b = b (3.67a)

which implies that d ∈ D, showing that Ce ⊆ D. For the reversed inclusion, let

d ∈ D. Then Ad ≧ b = Ae and it follows that

Ad − Ae = A(d − e) ≧ 0 =⇒ d − e ∈ C =⇒ d ∈ C + e = Ce (3.67b)

which shows that also D ⊆ Ce and, thus, Ce = D.

For (ii), we have to show that if D = D(A, b) and ker D(A, b) 6= ∅, then

D = Ce where C = D(A) and e ∈ ker D(A, b). Hence, let D = D(A, b) and

e ∈ ker D(A, b). Then Ae = b and it follows that

d ∈ D ⇐⇒ Ad ≧ b = Ae ⇐⇒ Ad − Ae = A(d − e) ≧ 0 ⇐⇒ d − e ∈ C (3.67c)

which implies that D − e = C and therefore D = Ce.

By definition, the translated cone D = Ce is pointed if and only if C is

pointed, or equivalently, if rank A = m or Ac = 0 if and only if c = 0. Clearly , in

this case ker C = {0} and the proof is complete. �

Hence, we conclude that every translated polyhedral cone D = Ce with

C = C(A) can be described as a polyhedral set D = D(A, b), and that a polyhedral

set D = D(A, b) describes a translated polyhedral cone if its kernel ker D(A, b) is

nonempty. In this case, we also call D a polyhedral translated cone.

Based on the interpretation of ker D(A, b) as the solution set of the inho-

mogeneous system of linear equations Ad = b, we can also formulate the following

alternative characterization as our concluding corollary.

Corollary 3.3.7 (Polyhedral translated cones). Let A ∈ Rl×m be a real l × m

matrix, b ∈ Rl be a real vector, and D = D(A, b) ⊂ Rm be the associated polyhedral

set. Then D is a
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(i) polyhedral translated cone if rank A = rank(A, b), and a

(ii) pointed polyhedral translated cone if rank A = rank(A, b) = m.

In both cases, ker D(A, b) 6= ∅ and D = Ce with C = C(A) the polyhedral cone

induced by A and e ∈ ker D(A, b) a (in case (ii): the unique) translation vector.

In particular, we obtain that the polyhedral cone C = C(A) is always unique

from Proposition 3.3.2.

3.3.2 Cone Characterizations of Epsilon-Nondominance

We first introduce the notion of ε-nondominance for general cones in exten-

sion of the concept of additive ε-efficiency in Definition 2.2.16 and similar to the

definition in Helbig and Pateva (1994). We then highlight the relationship to trans-

lated cones, provide various characterizations for the associated ε-nondominated set,

and use the representation of translated cones as polyhedral sets to finally derive

some more specific results for ε-nondominance with respect to a polyhedral cone.

Definition 3.3.8 (Epsilon-Nondominance). Let Y ⊂ Rm be a nonempty set, C ⊂

Rm be a cone, and ε ∈ C be a vector. The sets

Ns(Y, C, ε) := {y ∈ Y : (y − ε − C ∪ {0}) ∩ Y = ∅} (3.68a)

N(Y, C, ε) := {y ∈ Y : (y − ε − C \ {0}) ∩ Y = ∅} (3.68b)

Nw(Y, C, ε) := {y ∈ Y : (y − ε − int C) ∩ Y = ∅} (3.68c)

are called the strictly ε-nondominated, ε-nondominated, and weakly ε-nondominated

set of Y with respect to C, respectively.

We immediately see that Ns(Y, C, ε) ⊆ N(Y, C, ε) ⊆ Nw(Y, C, ε). Moreover,

for ε = 0, we note that N(Y, C, 0) = N(Y, C) and Nw(Y, C, 0) = Nw(Y, C) reduce

to the nondominated and weakly nondominated set, respectively, while the set of

strictly (0-)nondominated outcomes is empty and, thus, originally not defined in

Definition 2.2.5. Similarly, in the special case that C = Rm
≧

is the Pareto cone,

N(Y, Rm
≧

, ε) = N(Y, ε) and Nw(Y, Rm
≧

, ε) = Nw(Y, ε) correspond to the sets of ε-

Pareto and weak ε-Pareto outcomes that we first introduce after Definition 2.2.16.
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Furthermore, we note that the sets Cε = C + ε and int Cε = int(C + ε) =

int C + ε are translated cones with translation vector ε, so that the ε-nondominated

set with respect to a cone C can also be described as a nondominated set with

respect to the translated cone Cε.

Proposition 3.3.9 (Translated cone nondominance). Let Y ⊂ Rm be a set, C ⊂ Rm

be a pointed convex cone, and ε ∈ C \ {0}. Then

(i) Ns(Y, C, ε) = N(Y, D) for D = C ∪ {0} + ε,

(ii) N(Y, C, ε) = N(Y, D) for D = C \ {0} + ε,

(iii) Nw(Y, C, ε) = N(Y, D) for D = int C + ε, or alternatively

(iv) Nw(Y, C, ε) = Nw(Y, D) for D = C + ε.

Proof. Since N(Y, D) := {y ∈ Y : (y − D \ {0}) ∩ Y = ∅} by Definition 2.2.5,

the proof for the first three cases (i), (ii), and (iii) follows immediately from Defini-

tion 3.3.8 if D = D \ {0}, or if we show that the domination sets D do not contain

the origin. In particular, since

int C + ε ⊆ C \ {0} + ε ⊆ C ∪ {0} + ε (3.69)

it is sufficient to show that 0 /∈ C ∪ {0} + ε. Hence, let ε ∈ C \ {0}, then it follows

from Proposition 2.1.13 that −ε /∈ C ∪ {0} because C is a pointed convex cone. In

particular, we obtain that 0 /∈ C ∪ {0} + ε and the result follows.

Similarly for (iv), we have Nw(Y, D) = N(Y, int D) and the proof follows

directly because int(C + ε) = int C + ε and 0 /∈ int C + ε from the above. �

The following result is an immediate consequence of the previous proposition

and highlights the particular role of the translated cone Cε = C + ε.

Corollary 3.3.10 (Translated cone nondominance). Let Y ⊂ Rm be a set, C ⊂ Rm

be a pointed convex cone, ε ∈ C, and D = Cε := C + ε.

(i) If 0 ∈ C and ε 6= 0, then N(Y, D) = Ns(Y, C, ε).

(ii) If 0 /∈ C (so ε 6= 0), then N(Y, D) = N(Y, C, ε).

In any case, N(Y, int D) = Nw(Y, D) = Nw(Y, C, ε).
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The previous two results emphasize that we need to be very specific if we de-

cide to include or exclude the origin from the domination cone C, based on which the

translated cone nondominance in Proposition 3.3.9 and Corollary 3.3.10 results in

slightly different notions of approximate nondominance. We continue this discussion

after collecting one additional statement that describes the relationship between two

ε-nondominated sets for two different choices of ε and is based on Proposition 2.2.6.

Proposition 3.3.11. Let Y ⊂ Rm be a set, C ⊂ Rm be a pointed convex cone, and

ε1, ε2 ∈ C be two vectors so that ε2 − ε1 ∈ C. Then

N(Y, C, ε1) ⊆ N(Y, C, ε2) (3.70)

and the same inclusion holds for the strictly and weakly ε-nondominated sets.

Proof. Since all three proofs work essentially the same, we only give details for the

ε-nondominated case. Hence, let D1 = C \ {0} + ε1 and D2 = C \ {0} + ε2. If

ε2 − ε1 ∈ C, or ε2 ∈ C + ε1, then it also follows that

C \ {0} + ε2 ⊆ C \ {0} + C + ε1 ⊆ C \ {0} + ε1 (3.71)

since C is a pointed convex cone. Hence, we see that D2 ⊆ D1, and now Proposi-

tion 2.2.6 implies that N(Y, D1) ⊆ N(Y, D2) and, together with Proposition 3.3.9,

that N(Y, C, ε1) ⊆ N(Y, C, ε2). The remaining proofs for the strictly and weakly

ε-nondominated cases now follow analogously. �

In particular, since ε ∈ C implies that (1 − λ)ε ∈ C for all 0 ≤ λ < 1 and

(µ − 1)ε ∈ C for all µ > 1, we conclude from the previous result that

N(Y, C) ⊆ N(Y, C, λε) ⊆ N(Y, C, ε) ⊆ N(Y, C, µε) (3.72)

for every ε ∈ C and all 0 ≤ λ ≤ 1 and µ ≥ 1.

Based on Proposition 3.3.9 and Corollary 3.3.10, we mention earlier that the

three different notions of ε-nondominance distinguish between translated cones that

keep or remove the origin from the original underlying cone. For the further study

of this subtle difference, we introduce the following useful definition.
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Definition 3.3.12 (Epsilon-translated nondominated set). Let Y ⊂ Rm be a set,

C ⊂ Rm be a cone, and ε ∈ C be a vector. The sets

Nε(Y, C) := (N(Y, C) + ε) ∩ Y (3.73a)

Nwε(Y, C) := (Nw(Y, C) + ε) ∩ Y (3.73b)

are called the ε-translated and weakly ε-translated nondominated set of Y with re-

spect to C, respectively.
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Figure 3.9 Sets of (weakly) Pareto, ε-Pareto, and ε-translated Pareto outcomes

Figure 3.9 illustrates these two notions together with the three previous

concepts of (strictly and weakly) ε-nondominance for the depicted set Y and the

particular case of Pareto nondominance. First, the set N(Y, R2
≧

) of Pareto outcomes

is given by the curve connecting points A and B, while the set Nw(Y, R2
≧

) of all weak

Pareto outcomes corresponds to the extended curve from C to D. If we translate

these two sets by the specified translation vector ε, then we obtain the (weakly)

ε-translated Pareto sets Nε(Y, R2
≧

) and Nwε(Y, R2
≧

) as the curves connecting points
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E and F, and G and H, respectively. In this case, the set Ns(Y, R2
≧
, ε) of strict ε-

Pareto outcomes is the shaded area enclosed by all marked points without the curve

connecting I, G, E, F, H and J, the ε-Pareto set N(Y, R2
≧
, ε) additionally includes

the curve from E to F, and the weakly ε-Pareto set Nw(Y, R2
≧
, ε) also contains the

complete remaining curve from I to J.

In particular, all outcomes in the (weakly) ε-translated Pareto set in Fig-

ure 3.9 belong to those outcomes that are (weakly) ε-Pareto but not strictly ε-Pareto,

respectively, and it turns out that this characterization holds as a general result.

Proposition 3.3.13 (Relationship between ε-nondominance concepts). Let Y ⊂

Rm be a set, C ⊂ Rm be a cone, and ε ∈ C be a vector. Then

Nε(Y, C) ⊆ N(Y, C, ε) \ Ns(Y, C, ε) (3.74a)

Nwε(Y, C) ⊆ Nw(Y, C, ε) \ Ns(Y, C, ε) (3.74b)

Proof. For the first inclusion, let ỹ ∈ Nε(Y, C), so ỹ = ŷ + ε for some ŷ ∈ N(Y, C).

Then there does not exist y ∈ Y such that ŷ − y ∈ C \ {0}, or ỹ − ε − y ∈ C \ {0}

which implies that ỹ ∈ N(Y, C, ε). Moreover, since ỹ − ŷ − ε = 0 ∈ C ∪ {0}, it is

clear that ỹ /∈ Ns(Y, C, ε), and the result follows. As before, the second statement

is proven analogously by replacing the cone C by its interior. �

Figure 3.9 also suggests that outcomes that are ε-Pareto but not strictly

ε-Pareto can be characterized as subset of those outcomes among the ε-Pareto set

that are nondominated with respect to the negative Pareto cone, with an underlying

interpretation of objective maximization rather than minimization. More general,

we show in the following result that the set difference between the ε-nondominated

set and strictly ε-nondominated set constitutes a subset of those outcomes in the

ε-nondominated set (all with respect to C) that are nondominated with respect to

the negative cone −C.

Theorem 3.3.14. Let Y ⊂ Rm be a set, C ⊂ Rm be a cone, and ε ∈ C. Then

N(Y, C, ε) \ Ns(Y, C, ε) ⊆ N(N(Y, C, ε),−C) (3.75)
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Proof. If ŷ ∈ N(Y, C, ε) \ Ns(Y, C, ε), then there does not exist y ∈ Y such that

ŷ− y− ε ∈ C \ {0}, but ŷ− y− ε ∈ C ∪{0} for some y ∈ Y which, together with the

former, implies that ŷ = y + ε. To show that ŷ ∈ N(N(Y, C, ε),−C), we then need

that there does not exist ỹ ∈ N(Y, C, ε) such that ŷ− ỹ ∈ −C \ {0}, or equivalently,

that ỹ− ŷ ∈ C \ {0} only if ỹ /∈ N(Y, C, ε). Hence, let ỹ− ŷ ∈ C \ {0} and the result

now follows since ŷ = y+ε implies that ỹ−y−ε ∈ C \{0} and, thus, ỹ /∈ N(Y, C, ε).

�

Combining the previous result with Proposition 3.3.13, we can infer the

following concluding corollary.

Corollary 3.3.15. Let Y ⊂ Rm be a set, C ⊂ Rm be a cone, and ε ∈ C. Then

Nε(Y, C) ⊆ N(Y, C, ε) \ Ns(Y, C, ε) ⊆ N(N(Y, C, ε),−C) (3.76)

Hence, Theorem 3.3.14 and Corollary 3.3.15 provide a partial characteri-

zation of the solution set for a modified optimization problem over the set of ε-

nondominated outcomes. While we illustrate the relevance of this particular result

in the later Section 3.3.4, several parts of the literature also study other optimization

problems over the nondominated or efficient set (Benson and Sayin, 1994; Tu, 2000;

Yamamoto, 2002; Jorge, 2005), including the computation of nadir points (Ehrgott

and Tenfelde-Podehl, 2003) previously mentioned in Remark 3.2.28.

Other than the previous two results that describe the relationship between

the (ε-)nondominated sets with respect to a cone C and its negative −C, we now

address the relationship between ε-nondominated and approximate Pareto outcomes

in further generalization of the nondominance mapping theorem initially discussed

in Section 3.1.2. In particular, using the representation of translated cones as poly-

hedral sets in Theorem 3.3.6, we first extend Theorem 3.1.13 from polyhedral cones

to polyhedral sets and then show how this new result can be used to derive the

corresponding relationship between approximate nondominance with respect to a

polyhedral cone and approximate Pareto nondominance.
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Theorem 3.3.16 (Nondominance mapping theorem for polyhedral sets). Let Y ⊂

Rm be a set, and D = D(A, b) ⊂ Rm be the polyhedral set for some matrix A ∈ Rl×m

and some vector b ∈ Rl. Then

A[N(Y, D)] ⊆ N(A[Y ], Rl
≧b) (3.77a)

where Rl
≧b

:= Rl
≧

+ b = {v ∈ Rl : v ≧ b}. If D is pointed, or equivalently, if

rank A = m, then

A[N(Y, D)] = N(A[Y ], Rl
≧b) (3.77b)

Proof. Let û ∈ A[N(Y, D)] with û = Aŷ, ŷ ∈ N(Y, D), i.e., there do not exist

y ∈ Y, d ∈ D, d 6= 0 such that ŷ = y + d. Now suppose by contradiction that

û /∈ N(A[Y ], Rl
≧b

), then û ≧ u + b for some u = Ay ∈ A[Y ], u 6= û and thus y 6= ŷ.

It follows that

û − u = Aŷ − Ay = A(ŷ − y) ≧ b (3.78a)

and setting d = ŷ − y gives ŷ = y + d, d ∈ D, d 6= 0 in contradiction to the above.

For the opposite direction, let û ∈ N(A[Y ], Rl
≧b

) with û = Aŷ, ŷ ∈ Y . Then there

does not exist u = Ay ∈ A[Y ], Ay 6= Aŷ such that Aŷ ≧ Ay + b, or A(ŷ − y) ≧ b.

Now suppose by contradiction that û /∈ A[N(Y, D)], or ŷ /∈ N(Y, D). Then there

exist y ∈ Y, d ∈ D, d 6= 0 such that ŷ = y + d and hence

A(ŷ − y) = Ad ≧ b (3.78b)

with Aŷ 6= Ay if rank A = m. This yields the contradiction. �

The next result provides an alternative condition on the vector b ∈ Rl to

guarantee equality in Theorem 3.3.16.

Proposition 3.3.17 (Alternative condition for equality). Let Y ⊂ Rm be a set, and

D = D(A, b) ⊂ Rm be the polyhedral set for A ∈ Rl×m and b ∈ Rl. If b /∈ −Rl
≧
, then

A[N(Y, D)] = N(A[Y ], Rl
≧b) (3.79)
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Proof. The inclusion A[N(Y, D)] ⊆ N(A[Y ], Rl
≧b

) follows as in Theorem 3.3.16,

and for the reversed inclusion, the final contradiction follows from

A(ŷ − y) = Ad ≧ b (3.80)

since b /∈ −Rl
≧

implies that Ad 6= 0 and , thus, Aŷ 6= Ay. �

Based on the above results, we now employ Proposition 3.3.9 to relate ε-

nondominated outcomes with respect to a polyhedral cone C = C(A) to outcomes

that are nondominated with respect to the polyhedral set D = D(A, b) describing the

translated cone Cε = C + ε. Using this relationship, we derive the ε-nondominance

mapping theorem for polyhedral cones as concluding result in this section.

Theorem 3.3.18 (Epsilon-nondominance mapping theorem for polyhedral cones).

Let Y ⊂ Rm be a set and C = C(A) ⊂ Rm be the pointed polyhedral cone induced by

a matrix A ∈ Rl×m with full rank A = m. Let ε ∈ C \ {0} and b = Aε. Then

A[Ns(Y, C, ε)] = N(A[Y ], Rl
≧b) (3.81)

Proof. We combine several of the results derived in this and the previous section.

First, we obtain from Theorem 3.3.6 that the translated polyhedral cone D = Cε

with C = D(A) and translation vector ε can be described by the polyhedral set

D = D(A, b) for b = Aε as stated in the assumptions. Hence, it follows that

D = D(A, b) = Cε = C + ε (3.81a)

where D is pointed because C is pointed, or equivalently, because rank A = m. In

particular, since 0 ∈ C(A), Proposition 3.3.9 and Corollary 3.3.10 imply that

N(Y, D) = Ns(Y, C, ε) (3.81b)

and therefore we can finally apply Theorem 3.3.16 to conclude that

A[Ns(Y, C, ε)] = N(A[Y ], Rl
≧b) (3.81c)

This completes the proof and section. �
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3.3.3 Scalarization Methods and Epsilon-Optimality

After deriving several cone characterizations of ε-nondominance in the pre-

vious section, we now investigate the relationships between ε-nondominance and ǫ-

optimality when solving a multiobjective program based on scalarization approaches.

In particular, for each method introduced in Section 2.2.3 we establish the relation-

ship between ǫ ∈ R and ε ∈ Rm that guarantees that an ǫ-optimal solution for the

single objective program SOP is also ε-efficient for MOP. Most recently, some of

these results are also and independently derived by Gutiérrez et al. (2006a,b).

Our first result generalizes Lemma 2.2.21 and is formulated for an arbitrary

increasing and superadditive but otherwise generic scalarization function in the par-

ticular case of Pareto nondominance.

Proposition 3.3.19 (Sufficient conditions for approximate Pareto nondominance).

Let Y ⊂ Rm be a nonempty set, and s : Rm → R be an increasing and superadditive

scalarization function. Let ε ∈ Rm, ε ≧ 0 and ǫ ∈ R, ǫ ≥ 0 with s(ε) ≥ ǫ, and ŷ ∈ Y

be ǫ-optimal for the single objective program

SOP: Minimize s(y) subject to y ∈ Y (3.82)

(i) If ỹ is strictly ǫ-optimal, or if ǫ < s(ε), then ỹ ∈ Ns(Y, ε).

(ii) If s is strictly increasing, then ỹ ∈ N(Y, ε).

In any case, ŷ ∈ Nw(Y, ε)

Proof. For (i), if ỹ ∈ Y is strictly ǫ-optimal for SOP, or s(ỹ) < s(y) − ε for all

y ∈ Y , let s(ε) ≥ ǫ and suppose by contradiction that ỹ /∈ Ns(Y, ε). Then there

exists y ∈ Y such that y ≦ ỹ − ε, or y + ε ≦ ỹ, and thus

s(ε) ≤ s(y + ε) − s(y) ≤ s(ỹ) − s(y) < ǫ (3.83a)

since s is superadditive, increasing, and because ỹ is strictly ǫ-optimal, in contra-

diction to s(ε) ≥ ǫ. Moreover, if ǫ < s(ε), then the contradiction still follows if ỹ is

only ǫ-optimal for which all inequalities in (3.83a) may also hold with equality.
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For (ii), if s is strictly increasing, let s(ε) ≥ ǫ and suppose by contradiction

that ỹ /∈ N(Y, ε). Then there exists y ∈ Y such that y ≤ ỹ − ε, or y + ε ≤ ỹ, and

s(ε) ≤ s(y + ε) − s(y) < s(ŷ) − s(y) ≤ ǫ (3.83b)

because s is strictly increasing, in contradiction to s(ε) ≥ ǫ.

Finally, again let s(ε) ≥ ǫ and suppose by contradiction that ỹ /∈ Nw(Y, ε).

Then there exists y ∈ Y such that y < ỹ − ε, or y + ε < ỹ, and the contradiction to

s(ε) ≥ ǫ again follows from the inequality chain in (3.83b). �

Since weighted sums are linear and, in particular, additive and superadditive,

we can immediately use Proposition 3.3.19 to derive the corresponding result for the

weighted-sum scalarization, which is similarly given in White (1986), Deng (1997),

and Dutta and Vetrivel (2001), for the special case of Pareto nondominance.

Choosing an alternative path and following our discussion in Section 3.1.3

in which we extend several scalarization methods for general cones, we first derive

the corresponding result for the hybrid scalarization method and then derive those

for the weighted-sum, constrained-objective, and Benson method as special cases.

Proposition 3.3.20 (Approximate hybrid scalarization). Let Y ⊂ Rm be a set,

C ⊂ Rm be a convex cone, b ∈ Rm, w ∈ C∗ \ {0}, ε ∈ C, ǫ ≤ 〈w, ε〉, and ỹ ∈ Y be

ǫ-optimal for the hybrid scalarization

HB(w, b): Minimize 〈w, y〉 subject to b − y ∈ C and y ∈ Y (3.84)

(i) If ỹ is strictly ǫ-optimal, or if ǫ < 〈w, ε〉, then ỹ ∈ Ns(Y, C, ε).

(ii) If w ∈ C∗
s , then ỹ ∈ N(Y, C, ε).

In any case, ỹ ∈ Nw(Y, C, ε).

Proof. Let ỹ be ǫ-optimal for HB(w, b), so

〈w, ỹ〉 ≤ 〈w, y〉 − ǫ for all y ∈ Y (3.84a)

that satisfy b − y ∈ C, and 〈w, ỹ〉 < 〈w, y〉 − ǫ if ỹ is strictly ǫ-optimal.
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For (i), if ỹ is strictly ǫ-optimal, let w ∈ C∗ \ {0}, ǫ ≤ 〈w, ε〉, and by

contradiction suppose that ỹ /∈ Ns(Y, C, ε). Then there exists y ∈ Y such that

ỹ − y − ε ∈ C ∪ {0}, and thus

b − y = (b − ỹ) + (ỹ − y − ε) + ε ∈ C (3.84b)

by feasibility of ỹ for HB(w, b), ε ∈ C, and convexity of C, showing that y is also

feasible for HB(w, b). Furthermore, it also follows that 〈w, ỹ − y − ε〉 ≥ 0 as w ∈ C∗

which implies that

〈w, ỹ〉 ≥ 〈w, y〉 + 〈w, ε〉 ≥ 〈w, y〉 + ǫ (3.84c)

in contradiction to strict ǫ-optimality of ỹ for HB(w, b). Moreover, if ǫ < 〈w, ε〉,

then 〈w, ỹ〉 > 〈w, y〉 + ǫ and the contradiction persists if ỹ is only ǫ-optimal.

For (ii), if w ∈ C∗
s , suppose by contradiction that ỹ /∈ N(Y, C, ε). Then there

exists y ∈ Y with ỹ − y − ε ∈ C \ {0}, and feasibility of y for HB(w, b) follows as

in (i). However, now w ∈ C∗
s implies that 〈w, ỹ − y − ε〉 > 0, or 〈w, ỹ〉 > 〈w, y〉 + ǫ

again in contradiction to ǫ-optimality of ỹ for HB(w, b).

In any case, (int C)∗s = C∗ \ {0} from Proposition 2.1.21 which implies that

ỹ ∈ N(Y, int C, ε) = Nw(Y, C, ε) from (ii). �

In particular, analogous to the discussion in Section 3.1.3, we can imme-

diately derive the corresponding results for the weighted-sum, the constrained-

objective, and the Benson scalarization method. The proofs are, therefore, omitted.

Proposition 3.3.21 (Approximate weighted-sum scalarization). Let Y ⊂ Rm be a

set, C ⊂ Rm be a cone, w ∈ C∗ \ {0}, ε ∈ C, ǫ ≤ 〈w, ε〉, and ỹ ∈ Y be ǫ-optimal to

the weighted-sum scalarization

WS(w): Minimize 〈w, y〉 subject to y ∈ Y (3.85)

(i) If ỹ is strictly ǫ-optimal, or if ǫ < 〈w, ε〉, then ỹ ∈ Ns(Y, C, ε).

(ii) If w ∈ C∗
s , then ỹ ∈ N(Y, C, ε).

In any case, ỹ ∈ Nw(Y, C, ε).
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Proposition 3.3.22 (Approximate constrained-objective scalarization). Let Y ⊂

Rm be a set, C ⊂ Rm be a convex cone, b ∈ Rm, ek ∈ C∗ be the kth unit vector,

ε ∈ C, ǫ ≤ εk, and ỹ ∈ Y be ǫ-optimal to the constrained-objective scalarization

COk(b): Minimize yk subject to b − y ∈ C and y ∈ Y (3.86)

(i) If ỹ is strictly ǫ-optimal, or if ǫ < εk, then ỹ ∈ Ns(Y, C, ε).

(ii) If ek ∈ C∗
s , then ỹ ∈ N(Y, C, ε).

In any case, ỹ ∈ Nw(Y, C, ε).

Proposition 3.3.23 (Approximate Benson scalarization). Let Y ⊂ Rm be a set,

y◦ ∈ Y , C ⊂ Rm be a convex cone, w = (1, . . . , 1)T ∈ C∗ be the vector with all

components equal to one, ε ∈ C, ǫ ≤ ∑j
i=1 εi, and ỹ = y◦ − c̃ ∈ Y where c̃ ∈ C be

ǫ-optimal to the Benson scalarization

B(y◦): Maximize
m
∑

i=1

ci subject to y◦ − c = y ∈ Y and c ∈ C (3.87)

(i) If c̃ is strictly ǫ-optimal, or if ǫ <
∑m

i=1 εi, then ỹ ∈ Ns(Y, C, ε).

(ii) If w = (1, . . . , 1)T ∈ C∗
s , then ỹ ∈ N(Y, C, ε).

In any case, ỹ ∈ Nw(Y, C, ε).

For the Pascoletti-Serafini scalarization method, we can prove the following

result which, like the original method, is also formulated for a convex cone.

Proposition 3.3.24 (Approximate Pascoletti-Serafini scalarization). Let Y ⊂ Rm

be a nonempty set, C ⊂ Rm be a convex cone, ε ∈ C, ǫ ∈ {δ : ε − δv ∈ C}, and

ỹ = r + µ̃v− c̃ ∈ Y where (µ̃, c̃) be ǫ-optimal for the Pascoletti-Serafini scalarization

PS(r, v): Minimize µ subject to r + µv − c = y ∈ Y, c ∈ C and µ ∈ R (3.88)

If µ̃ is strictly ǫ-optimal for PS(r, v), then ỹ ∈ Ns(Y, C, ε), and ỹ ∈ Nw(Y, C, ε) in

any case.

Proof. For ǫ ∈ {δ : ε − δv ∈ C}, denote cǫ := ε − ǫv ∈ C. Then let µ̃ with c̃ ∈ C

be strictly ǫ-optimal for PS(r, v), so µ̃ ≤ µ + ǫ whenever r + µv − c ∈ Y for some
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c ∈ C, and suppose by contradiction that µ̃ /∈ Ns(Y, C, ε). Then there exists y ∈ Y

such that ỹ − y − ε ∈ C ∪ {0}, or y = ỹ − c − ε for some c ∈ C ∪ {0} yielding

y = r + µ̃v − c̃ − c − ε (3.88a)

= r + µ̃v − c̃ − c − (ǫv + cǫ) (3.88b)

= r + (µ̃ − ǫ)v − (c̃ + c + cǫ) (3.88c)

where c̃ + c + cǫ ∈ C as C is a convex cone. Hence, it follows that µ = µ̃ − ǫ, or

µ̃ = µ + ǫ in contradiction to strict ǫ-optimality of µ̃ for PS(r, v).

Next, let µ̃ with c̃ ∈ C be ǫ-optimal for PS(r, v), so µ̃ ≤ µ + ǫ whenever

r + µv − c ∈ Y for some c ∈ C, and suppose by contradiction that ỹ /∈ Nw(Y, C, ε).

Then there exists y ∈ Y such that ỹ − y − ε ∈ int C, or y = ỹ − c − ε for some

c ∈ int C. Now, since c ∈ int C, there also exists γ > 0 such that cγ = c − γv ∈ C

which implies that

y = r + µ̃v − c̃ − c − ε (3.88d)

= r + µ̃v − c̃ − (γv + cγ) − (ǫv + d) (3.88e)

= r + (µ̃ − γ − ǫ)v − (c̃ + cγ + cǫ) (3.88f)

where c̃+cγ +cǫ ∈ C as C is a convex cone. Hence, it now follows that µ = µ̃−γ−ǫ,

or µ̃ = µ + γ + ǫ > µ + ǫ in contradiction to optimality of µ̃ for PS(r, v). �

Finally, we derive two further results for the weighted-Chebyshev norm

scalarization and, as a special case, the max-norm scalarization method which again

are both formulated for the Pareto case.

Proposition 3.3.25 (Approximate weighted-Chebyshev norm scalarization). Let

Y ⊂ Rm be a set, r ∈ Rm, w ∈ Rm, w ≥ 0, ε ∈ Rm, ε ≧ 0, ǫ ≤ mini=1,...,m{wiεi},

and ỹ be ǫ-optimal for the weighted-Chebyshev norm scalarization

CN(r, w): Minimize max
i=1,...,m

{wi(yi − ri)} subject to x ∈ X (3.89)

If ỹ ∈ Y is strictly ǫ-optimal, or if ǫ < mini=1,...,m{wiεi}, then ỹ ∈ Ns(Y, ε), and

ỹ ∈ Nw(Y, ε) in any case.

115



Proof. First, if ỹ is strictly ǫ-optimal, so maxi{wi(ỹi − ri)} < maxi{wi(yi − ri)}+ ǫ

for all y ∈ Y , let ǫ ≤ mini{wiεi} and suppose by contradiction that ỹ /∈ Ns(Y, ε).

Then there exists y ∈ Y such that ỹ ≧ y + ε which implies that

max
i=1,...,m

{wi(ỹi − ri)} ≥ max
i=1,...,m

{wi(yi − ri + εi)} (3.89a)

≥ max
i=1,...,m

{wi(yi − ri)} + min
i=1,...,m

{wiεi} (3.89b)

≥ max
i=1,...,m

{wi(yi − ri)} + ǫ (3.89c)

in contradiction to strict ǫ-optimality of ỹ for CN(r, w). Moreover, if ǫ < mini{wiεi},

then (3.89c) holds strictly and a contradiction persists also if ỹ is only ǫ-optimal.

Second, suppose by contradiction that ỹ /∈ Nw(Y, ε), then there exists y ∈ Y

such that y < ỹ + ε, or ỹ > y − ε, and in this case the inequality in (3.89a) is strict

because w ≥ 0 and, thus, wi > 0 for at least one i, yielding the same contradiction

as before and concluding the proof. �

In particular, with r = 0 ∈ Rm and wi = 1 > 0 for all i = 1, . . . , m, we

obtain the corresponding max-norm result as concluding statement of this section.

Proposition 3.3.26 (Approximate max-norm scalarization). Let Y ⊂ Rm be a set,

ε ∈ Rm, ε ≥ 0, ǫ ≤ mini{εi}, and ỹ be ǫ-optimal for the max-norm scalarization

MN: Minimize max
i=1,...,m

{yi} subject to y ∈ Y (3.90)

If ỹ ∈ Y is strictly ǫ-optimal, or if ǫ < mini{εi}, then ỹ ∈ Ns(Y, ε), and ỹ ∈ Nw(Y, ε)

in any case.

3.3.4 Exact Generation of Approximate Solutions

The previous results for approximate scalarization methods in principle dis-

tinguish the generation of strictly ε-nondominated, ε-nondominated, and weakly ε-

nondominated outcomes. However, since strictly ε-nondominated outcomes are also

(weakly) ε-nondominated, these results do not provide the means to more specifically

characterize cases in which a generated outcome is only (weakly) ε-nondominated

but not strictly ε-nondominated.
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Consequently, and motivated by the prominent role of ε-translated nondom-

inated outcomes in Proposition 3.3.13 that enable the proper distinction between

(weakly) ε-nondominated outcomes and strict ε-nondominance, we now investigate

several approaches for the exact generation of an ε-translated nondominated out-

come. Restricting our attention to the Pareto case, throughout the following discus-

sion we assume that we already know a Pareto or weak Pareto outcome ŷ ∈ N(Y, Rm
≧

)

or Nw(Y, Rm
≧

) but that we want to relax this outcome by some specified ε ∈ Rm to

obtain the corresponding ε-translated outcome ỹ = ŷ + ε. In particular, for conve-

nience we usually assume that ỹ ∈ Y , although ỹ /∈ Y is also possible, in general.

While we still formulate all following statements with respect to the outcome

set Y ⊂ Rm, for which some of the following methods and results are obvious as

they are explicitly constructed to yield ỹ = ŷ + ε as optimal solution, we emphasize

that the main difficulty remains to solve the underlying optimization problem with

respect to feasible set X in the decision space Rn. We further address some of

the resulting practical or computational issues in the two subsequent sections and,

therefore, refrain from the exposition of any such details already at this point.

The first method utilizes an arbitrary norm and is probably the most intu-

itive method to generate a particular solution ỹ = ŷ + ε.

Proposition 3.3.27 (Exact norm generating method). Let ŷ ∈ Y , ε ∈ Rm, and

ỹ = ŷ+ε ∈ Y . Then ỹ is optimal for the single objective norm-minimization problem

Minimize ‖ŷ − ε − y‖ subject to y ∈ Y (3.91)

We do not need to formally prove the method proposed in Proposition 3.3.27,

as its validity is immediately clear from the assumption that ỹ = ŷ+ε ∈ Y . To solve

the problem in (3.91), we can choose any suitable norm, including the weighted-ℓp

or pth-order norm

‖ŷ − ε − y‖p :=

(

m
∑

i=1

wi(|ŷi − εi − yi|)p

)1/p

(3.92)

hence also including the weighted-Chebyshev norm for p = ∞ as a special case.
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If our previous assumption that ỹ ∈ Y is not satisfied, then one conceptual

drawback of the above norm method is that the identified optimal solution may

either be greater or smaller than ỹ and, therefore, does not necessarily belong to the

ε-nondominated set N(Y, ε) unless we explicitly introduce the additional constraint

that y ≦ ŷ + ε. In this case, however, we can more generally formulate the following

multiobjective program.

Proposition 3.3.28 (Exact constraint generating method). Let ŷ ∈ Y , ε ∈ Rm,

and assume that ỹ = ŷ + ε ∈ Y . Then ỹ is the unique nondominated outcome to the

multiobjective programming problem

Minimize − y subject to y ≦ ŷ + ε and y ∈ Y (3.93)

Again, correctness of Proposition 3.3.28 is immediate from the assumption

that ỹ = ŷ +ε ∈ Y , and a formal proof can be omitted. Furthermore, if our assump-

tion that ỹ ∈ Y is not satisfied, then any other solution to the problem in (3.93)

is still ε-nondominated and can now be found using any suitable scalarization tech-

nique. If ỹ ∈ Y , however, then the imposed constraints in (3.93) enforce optimality

of ỹ by restricting the original outcome set Y such that ỹ lies at the boundary, and

more precisely, at an extreme point of the set ỹ − Rm
≧

.

In the remaining part of this section, we investigate an alternative approach

to modify the original problem so that interior points in the original outcome set

become boundary points of a modified outcome set. However, in this case we do not

introduce any additional constraints but an additional component into the objective

function vector, based on the concept of an outcome space augmentation. The

underlying idea for this method is to define a suitable augmentation function a :

Y → R and then consider Y as new set Y = {(y, z)) ∈ Y × R : z = a(y)} in the

augmented outcome space Rm+1 in which all interior points of Y ⊂ Rm become

boundary points of Y ⊂ Rm+1. We study the associated augmented MOP for

two scalarization methods, namely the weighted-sum and the weighted-Chebyshev
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norm scalarization, and we show how ε-translated Pareto outcomes for MOP can

be identified as nondominated outcomes for the respective AMOP.

Definition 3.3.29 (Augmented Multiobjective Program). Let Y ⊂ Rm and a :

Y → R be a real-valued function. The multiobjective program

AMOP: Minimize [y, a(y)]T subject to y ∈ Y (3.94)

is called the augmented multiobjective program (AMOP), and a is called the aug-

mentation function of AMOP.

Of course, to relate nondominance for AMOP with ε-nondominance for MOP

we need to find some suitable choices of the augmentation function a. In particular,

in the following results we define some specific augmentation functions in terms of

an optimal solution ŷ for a corresponding SOP with scalarization function s.

Definition 3.3.30 (Augmentation function associated with scalarization function).

Let Y ⊂ Rm, s : Y → R be a scalarization function, and ŷ ∈ Y be optimal for the

associated single objective program

SOP: Minimize s(y) subject to y ∈ Y (3.95a)

The function a : Rm → R ∪ {∞} with

a(y) := (s(y) − s(ŷ))−1 (3.95b)

is called the augmentation function associated with s and ŷ.

Following common convention, we define 0−1 := ∞ and derive some further

properties of the resulting augmentation functions in the following proposition.

Proposition 3.3.31 (Properties of augmentation functions associated with scalar-

ization functions). Let Y ⊂ Rm, s : Y → R be an increasing scalarization function,

ŷ ∈ Y be optimal for the corresponding SOP, and a : Y → R ∪ {∞} be the augmen-

tation function associated with s and ŷ. Then
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(i) a(y) ≥ 0 for all y ∈ Y ,

(ii) a(y) = ∞ for all y that are optimal for SOP, and

(iii) a is decreasing: y1 ≦ y2 ⇒ a(y1) ≥ a(y2) for all y1, y2 ∈ Y .

Proof. Since ŷ is optimal for SOP, it follows that s(ŷ) ≤ s(y), or s(y) − s(ŷ) ≥ 0

and thus a(y) = (s(y) − s(ŷ))−1 ≥ 0 for all y ∈ Y , showing (i). In particular,

if y ∈ Y is optimal to SOP, then s(y) = s(ŷ) and a(y) = ∞, showing (ii). For

(iii), let y1, y2 ∈ Y with y1 ≦ y2, then s(y1) ≤ s(y2) since s is an increasing

scalarization function and 0 ≤ s(y1) − s(ŷ) ≤ s(y2) − s(ŷ) from (i). Taking inverses

gives (s(y1) − s(ŷ))−1 ≥ (s(y2) − s(ŷ))−1 and thus implies that a(y1) ≥ a(y2). �

The two concluding theorems show that by solving AMOP with an aug-

mentation function associated with either a weighted-sum or a weighted-Chebyshev

norm and an optimal solution ŷ, the corresponding ε-translated outcome ỹ = ŷ + ε

for MOP can be obtained as an optimal solution to the respective scalarized AMOP.

For a further motivation of this approach, we refer to Figure 3.10 which also illus-

trates our first result for the weighted-sum augmentation method.

Theorem 3.3.32 (Weighted-sum augmentation). Let Y ⊂ Rm and ŷ ∈ Y be optimal

for the weighted-sum scalarization WS(w) with scalarization function

s(w, y) := 〈w, y〉 (3.96a)

with weighting parameter w ∈ Rm, w ≥ 0, and

a(w, y) := (s(w, y) − s(w, ŷ))−1 = 〈w, y − ŷ〉−1 (3.96b)

be the augmentation function for AMOP. Let ε ∈ Rm, ε ≥ 0, and assume that

ỹ = ŷ + ε ∈ Y . Let ǫ = s(w, ε) = 〈w, ε〉. Then ỹ is optimal for the weighted-sum

scalarization WS
(

[

w, ǫ2
]T
)

of AMOP with weighting parameter (w, ǫ2)T ∈ Rm+1.

Proof. Consider the AMOP and the related weighted-sum scalarization

AMOP: Minimize
[

y, 〈w, y − ŷ〉−1
]T

subject to y ∈ Y (3.97a)

WS
(

[

w, ǫ2
]T
)

: Minimize 〈w, y〉 + ǫ2〈w, y − ŷ〉−1 subject to y ∈ Y (3.97b)
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Figure 3.10 Illustration of the weighted-sum augmentation in Theorem 3.3.32

and substitute t = s(w, y) = 〈w, y〉 and t̂ = s(w, ŷ) = 〈w, ŷ〉. Then the objective

function for WS
(

[

w, ǫ2
]T
)

becomes t + ǫ2
(

t − t̂
)−1

and attains its minimum for

t̃ = t̂ + ǫ = s(w, ŷ) + ǫ, or

t̃ = s(w, ŷ) + ǫ = 〈w, ŷ〉 + 〈w, ε〉 = 〈w, ŷ + ε〉 = s(w, ŷ + ε) = s(w, ỹ) (3.98)

Hence, it follows that ỹ is optimal for WS
(

[

w, ǫ2
]T
)

. �

The final theorem uses the weighted-Chebyshev norm scalarization function

and is formulated to find the (weak) ε-translated Pareto outcome ỹ = ŷ + ε for any

(weak) Pareto outcome ŷ ∈ N(Y ), but under the additional assumption that ε > 0.
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Theorem 3.3.33 (Weighted-Chebyshev norm augmentation). Let Y ⊂ Rm and

ŷ ∈ N(Y, Rm
≧

) be a Pareto outcome. Let

s(w, ŷ, y) := max
i=1,...,m

{wi(yi − ŷi)} (3.99a)

be the weighted-Chebyshev norm scalarization function with weighting parameter

w ∈ Rm, w ≥ 0 and reference point ŷ, and

a(w, ŷ, y) := (s(w, ŷ, y) − s(w, ŷ, ŷ))−1 = s(w, ŷ, y)−1 (3.99b)

be the augmentation function for AMOP. Let ε ∈ Rm, ε > 0, and assume that

ỹ = ŷ+ε ∈ Y . Let wi = ε−1
i for all i = 1, . . . , m. Then ỹ is optimal for the weighted-

Chebyshev norm method CN
(

[w, 1]T , [ŷ, 0]T
)

of AMOP with weighting parameter

(w, 1)T ∈ Rm+1 and reference point (ŷ, 0)T ∈ Rm+1.

Proof. Consider AMOP and the related weighted-Chebyshev norm scalarization

AMOP: Minimize
[

y, s (w, ŷ, y)−1
]T

subject to y ∈ Y (3.100a)

CN
(

[w, 1]T , [ŷ, 0]T
)

: Minimize max
i=1,...,m

{

wi(yi − ŷi), s (w, ŷ, y)−1
}

subject to y ∈ Y

(3.100b)

and substitute t = s(w, ŷ, y) = maxi=1,...,m{wi(yi − ŷi)} ≥ 0. Then the objective

function for CN
(

[w, 1]T , [ŷ, 0]T
)

becomes max{t, t−1} with t ≥ 0 and attains its

minimum for t̃ = 1, or

t̃ = s(w, ŷ, y) = max
i=1,...,m

{wi(yi − ŷi)} = 1 (3.101a)

In particular, for ỹ = ŷ + ε it follows that

s(w, ŷ, ỹ) = max
i=1,...,m

{wi(ỹi − ŷi)} = max
i=1,...,m

{wiεi} = 1 (3.101b)

by choice of wi = ε−1
i , and hence, ỹ = ŷ + ε is optimal for CN([w, 1]T , [ŷ, 0]T ). �

In the following two sections, we first contrast these new generating methods

with the previous approximate scalarization approaches and then examine their

applicability on some concluding practical example.
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3.3.5 Computation of Approximate Solutions

We now address the more practical question of finding approximate solutions

using different techniques from single and multiobjective programming and compu-

tational optimization. Based on our theoretical results in Sections 3.3.4 and 3.3.5,

we propose two different approaches for the generation of ε-nondominated outcomes

for a multiobjective program MOP, which are depicted in Figure 3.11 and further

described in the following paragraphs.

multiple objective programming
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Figure 3.11 Relationships between (ǫ-)optimality for SOP and (ε-)nondominance
for MOP for the approximate (ABCDE) and exact (FGHI) generating methods

Usually, if we intend to find the nondominated set for MOP, we choose a

suitable scalarization method and formulate an associated single objective program

SOP (A) which is solved to optimality (B) using any appropriate linear or nonlinear

optimization technique. In this case, the established scalarization results that we re-

view in Section 2.2.2 provide us with relationships between the optimal solutions for

SOP and nondominated outcomes (or efficient decisions) for MOP (C). In addition,

using the new relationships between ǫ-optimality for ǫ ∈ R and ε-nondominance for
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ε ∈ Rm derived in the previous Section 3.3.3, we can also relate ǫ-optimal solutions

for SOP (D) to ε-nondominated outcomes for MOP (E). Hence, we accordingly call

these methods approximate methods, as the generation of ε-nondominated outcomes

is based on an approximate solution of SOP.

Procedure 3.3.34 (Approximate method). Let MOP be given.

1. Choice of SOP: Choose a scalarization problem SOP.

2. Choice of π: Choose a scalarization parameter π ∈ Π.

3. Choice of ε: Choose an admissible vector ε ∈ Rm.

4. Computation of ǫ: Compute the corresponding ǫ ∈ R.

5. Solution of SOP: Solve SOP for an ǫ-optimal solution.

This generic procedure assumes that based on prior knowledge and experi-

ence with the underlying MOP, we are able to choose a suitable scalarization problem

SOP in Step 1 together with an appropriate scalarization parameter π ∈ Π and the

desired vector parameter and ε ∈ Rm in Steps 2 and 3, respectively. Clearly, in

practice each of these choices depends on the concrete problem to be solved and the

specific reasons for which an approximate solution is generated.

For now, however, we postpone this discussion and directly proceed to Step 4

in which we compute the corresponding scalar parameter ǫ = ǫ(π, ε) based on the

results derived in the previous section. In particular, we note that each SOP but the

Pascoletti-Serafini method provides us with an explicit upper bound on the set of

suitable values for ǫ ∈ R for which an ǫ-optimal solution for SOP is still guaranteed

to also be ε-nondominated for MOP.

For the most typical case of Pareto nondominance, however, we can also

derive the corresponding upper bound on the set {δ : ε−δv ∈ C} as specified for the

approximate Pascoletti-Serafini scalarization in Proposition 3.3.24. In particular, if

we choose C = Rm
≧

to be the Pareto cone, then we readily obtain that
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ǫ = max{δ : ε − δv ∈ Rm
≧} = max{δ : ε ≧ δv} (3.102a)

= max{δ : εi ≥ δvi for all i = 1, . . . , m} (3.102b)

= max{δ : εi/vi ≥ δ for all i = 1, . . . , m} = min
i=1,...,m

{εi/vi} (3.102c)

This result is also listed in Table 3.1 which again summarizes all required scalariza-

tion parameters π ∈ Π, the admissible ε ∈ Rm and the corresponding upper bounds

of ǫ ∈ R for all scalarization approaches examined in Section 3.3.3. In particular,

since the max-norm scalarization does not depend on any additional parameters, in

this case, the second step (choice of π) of Procedure 3.3.34 does not apply.

Table 3.1 Parameter choices for the approximate methods in Procedure 3.3.34

SOP(π) π ∈ Π ε ∈ Rm ǫ = ǫ(π, ε)

Hybrid HB(w, b) w ≥ 0, b ∈ Rm ǫ = 〈w, ε〉
Weighted-sum WS(w) w ≥ 0 ǫ = 〈w, ε〉

Constrained-objective COk(b) b ∈ Rm ǫ = εk

Benson B(y◦) y◦ ∈ Y ε ≥ 0 ǫ =
∑

i εi

Pascoletti-Serafini PS(r, v) r ∈ Rm, v ≥ 0 ǫ = mini{εi/vi}
Chebyshev-norm CN(r, w) r ∈ Rm, w ≥ 0 ǫ = mini{wiεi}

Max-norm MN no parameter ǫ = mini{εi}

Finally, in Step 5 of Procedure 3.3.34 we only need to solve SOP for an

ǫ-optimal solution in which case our previous results ensure that the associated out-

come is also ε-nondominated for MOP. In principle, we suggest that the approximate

solution of SOP is best accomplished by a suitable modification of the termination

criteria of the chosen optimization routine, although possibly challenging due to

inaccurate or unavailable optimality bounds and unclear or hidden black-box imple-

mentations of the different stopping conditions in commercial optimization software.

We illustrate some of our own difficulties together with the discussion of our pre-

liminary computational results in the subsequent section.
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Another potential drawback of the above approximate methods is that an

ǫ-optimal solution for SOP, in general, does not guarantee the full relaxation spec-

ified by the vector parameter ε which, in certain situations that we also discuss

later, might be of primary interest when intentionally generating such approximate

solutions. In order to resolve this current limitation, in Section 3.3.4 we investigate

several alternative approaches for the exact generation of ε-translated nondominated

outcomes, and for its description again see Figure 3.11. These alternative methods

modify MOP and formulate an associated ε-MOP (F) so that optimal solutions

(H) for its associated scalarized problem (G) yield associated ε-nondominated out-

comes (I) for the original MOP. In particular, we propose two exact methods based

on norms and additional constraints in Propositions 3.3.27 and 3.3.28, respectively,

and the two augmentation approaches in Theorems 3.3.32 and 3.3.33 which are again

summarized in the following generic procedure and Table 3.2.

Procedure 3.3.35 (Augmentation method). Let MOP be given.

1. Choice of SOP: Choose a scalarization function s for SOP.

2. Choice of π: Choose a scalarization parameter π for SOP.

3. Solution of SOP: Solve SOP for a Pareto outcome ŷ ∈ N(Y ).

4. Choice of ε: Choose ε ≥ 0 and let ỹ = ŷ + ε ∈ Nε(Y ).

5. AMOP Formulation: Formulate the AMOP associated with s and ŷ.

6. AMOP Scalarization: Formulate a scalarization method for AMOP.

7. AMOP Solution: Solve the scalarization problem for ỹ ∈ Nε(Y ).

In order to examine the practical applicability of these generating meth-

ods for the actual computation of ε-nondominated outcomes, the following section

discusses some of our numerical results that are obtained from implementing the ap-

proximate method, both the exact norm and exact constraint generating methods,

as well as the weighted-sum augmentation approach.
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Table 3.2 Parameter choices for the augmentation methods in Procedure 3.3.35

1. Choice of SOP Weighted-sum Weighted-Chebyshev norm

2. Choice of π s(w, y) = 〈w, y〉 s(w, ŷ, y) = maxi{wi(yi − ŷi)}
3. Solution of SOP ŷ ∈ N(Y ) ŷ ∈ N(Y )
4. Choice of ε ε ≥ 0 ε ≥ 0

5. AMOP formulation a(w, y) = 〈w, y − ŷ〉−1 a(w, ŷ, y) = maxi{wi(yi − ŷi)}
6. AMOP scalarization WS([w, ǫ2]), ǫ = 〈w, ε〉 CN([w, 1]T , [ŷ, 0]T ), wi = ε−1

i

7. AMOP solution ỹ = ŷ + ε ∈ Nε(Y ) ỹ = ŷ + ε ∈ Nε(Y )

3.3.6 Example and Computational Results

We present some selected computational results that are obtained from im-

plementing the previously derived approximate and exact generating methods for

finding approximate and ε-translated Pareto outcomes for a multiobjective program.

In particular, for our illustration we choose an engineering problem from truss topol-

ogy design which is frequently used as prominent test case also for many other appli-

cations (Stadler and Dauer, 1992; Coello Coello and Lamont, 2004) and algorithms

(Ben-Tal and Nemirovski, 1997; Jarre et al., 1998; Coello and Christiansen, 2000,

among many others).
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Figure 3.12 A four-bar plane truss with cross-sectional areas x1, x2, x3 and x4
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The specific problem that we select is taken from Koski (1988) who for-

mulates a mathematical model for designing a four-bar plane truss, shown in Fig-

ure 3.12, as a biobjective program with the two conflicting objectives of minimizing

both the volume V of the truss (f1) and the displacement ∆ of the joint connecting

bars 1 and 2 (f2), subject to given physical restraints on the feasible cross-sectional

areas x1, x2, x3, x4 of the four bars. The stress on the truss is caused by three forces

of magnitudes F and 2F as depicted in Figure 3.12, and the length L of each bar,

the Young’s modulus of elasticity E and the only nonzero stress component σ are

modeled as constants. The corresponding formulation of this problem is given as

Minimize f1(x) = L(2x1 +
√

2x2 +
√

2x3 + x4) (3.103a)

f2(x) =
FL

E

(

2

x1
+

2
√

2

x2
− 2

√
2

x3
+

2

x4

)

(3.103b)

subject to (F/σ) ≤ x1 ≤ 3(F/σ) (3.103c)

√
2(F/σ) ≤ x2 ≤ 3(F/σ) (3.103d)

√
2(F/σ) ≤ x3 ≤ 3(F/σ) (3.103e)

(F/σ) ≤ x4 ≤ 3(F/σ) (3.103f)

where F = 10 kN, E = 2 × 105 kN/cm2, L = 200 cm and σ = 10 kN/cm2.
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Figure 3.13 Outcome set for the four-bar plane truss problem in 3.103
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A sample of the outcome set for the problem in (3.103) is depicted in Fig-

ure 3.13 and shows that the possible truss volumes range between about 1500 cm3

and 3500 cm3 with the corresponding nodal displacements at the joint connecting

bars 1 and 2 less than 0.05 cm. Hence, due to this significant difference in mag-

nitude, for all following computation we first normalize these objectives and then

generate one hundred Pareto outcomes for an initial representation of the actual

Pareto set, also highlighted in Figure 3.13.

We observe that the generated Pareto set is convex so that, in principle,

we can use the weighted-sum scalarization to generate all Pareto outcomes for this

problem. Consequently, we also choose this method for the following illustration

of the approximate method, following the scheme outlined in the previous section.

First, based on the determined ranges of truss volume and joint displacement, we

specify four different relaxation or tolerance vectors ε and, for varying choices of the

weighting vector w, compute the associated scalar ǫ = w1ε1 + w2ε2. Then, in the

actual computation step, we solve the corresponding weighted-sum scalarization for

an ǫ-optimal solution by suitable modification of the underlying stopping criterion.

The obtained results are shown in Figure 3.14.

As expected, in each case we find that the newly generated outcomes are

ε-Pareto for the original problem, based on the specified values for ε indicated for

each of the four individual plots. However, while we choose one hundred different

combinations for the weighting vector in each case, the numbers of distinct out-

comes that are actually generated are quite different and, in general, decrease with

increasing ε. We believe that the main reason for this behavior is that a modified

stopping criterion enables the optimization routine to terminate early and, thus,

with intermediate solutions that do not yet reach different regions of the outcome

set. In other words, the larger the admissible relaxation, the earlier we can stop

the optimization algorithm and the more often we are still at the same intermediate

solution, resulting in fewer different outcomes generated and providing a possible

explanation for the above observation. A similar argumentation also explains why
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Figure 3.14 Pareto and ε(-translated) Pareto outcomes for the four-bar truss
problem generated by the approximate weighted-sum method with four choices of ε

the generated ε-Pareto outcomes are more or less concentrated in the same area

and, in this case, all fall into the middle region of the Pareto curve.

Moreover, we can also identify numerous other issues that may influence

which ε-Pareto outcomes are generated when using an approximate method that

is based on scalarization, including the chosen optimization routine, the underlying

algorithm and its implementation, the selection of initial points, and of course the

imposed stopping criterion. Consequently, much further work and investigation is

possible and necessary to completely analyze this approach which, however, is far

beyond the purpose of this discussion. Hence, as only one further consequence of

the above dependencies and numerical difficulties, at the moment we conclude that

approximate methods do not seem suitable to generate a reasonable representation
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of the set of ε-Pareto outcomes and especially of those ε-translated Pareto outcomes

that achieve the full relaxation specified by the parameter ε.

In remedy of this last shortcoming and to contrast the approximate methods

with the exact generating methods derived in Section 3.3.5, we also present some

of our results for the exact norm, the exact constraint, and the weighted-sum aug-

mentation method. Starting from the identical set of one hundred Pareto outcomes

initially generated by the weighted-sum scalarization for the original problem, we

use the same four choices of ε as before to formulate the corresponding new problems

for finding the associated ε-translated outcomes. In particular, Figures 3.15 and 3.16

show our results for the exact norm and constraint generating method, respectively,

and as intended both approaches yield a reasonable set of fully ε-translated Pareto

outcomes for each of the four different values of the parameter ε.
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Figure 3.15 Pareto and ε(-translated) Pareto outcomes for the four-bar truss
problem generated by the exact norm generating method with four choices of ε
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Figure 3.16 Pareto and ε(-translated) Pareto outcomes for the four-bar truss
problem generated by the exact constraint generating method with four choices of ε

While the generated sets are almost identical, we emphasize one subtle dif-

ference between these two methods which is also mentioned during the initial discus-

sion of these two approaches in Section 3.3.5. We recall that a norm minimization

method merely attempts to minimize the deviation from the currently specified ε-

translated outcome, thereby possibly resulting in a final outcome that is slightly

greater and, therefore, not itself ε-nondominated, in general. The introduction of

additional constraints for the second approach, however, guarantees that all gener-

ated outcomes also satisfy the additionally imposed constraints and, thus, are always

ε-nondominated, in particular. This observation also explains the different behavior

of these two methods in the lower right regions of Figures 3.15 and 3.16 in which

the corresponding ε-translated outcomes do not anymore belong to the outcome set,

opposite to the assumption in our previous theoretical discussion.
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Moreover, another difference between these two approaches is that only the

exact norm generating method is a single objective program whereas the constraint

method is still formulated as a multiobjective program and, thus, dependent on a

scalarization method for its solution. Based upon the scalarization function used,

this might lead to additional numerical difficulties possibly explaining the few out-

liers in Figure 3.16 that do not occur for the exact norm method in Figure 3.15. In

general, however, we can conclude that both approaches seem to resolve the pre-

viously recognized shortcomings of the approximate method and yield an almost

complete representation of the set of fully relaxed or ε-translated Pareto outcomes

for various choices of ε over the complete outcome set of the original problem.
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Figure 3.17 Pareto and ε(-translated) Pareto outcomes for the four-bar truss
problem generated by the exact weighted-sum augmentation with four choices of ε
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Finally, the results shown in Figure 3.17 are obtained from implementing

the weighted-sum augmentation approach and reveal that this method, although

conceptually appealing, is subject to various numerical issues and difficulties. In

particular, we believe that due to the potential division by zero, this formulation

becomes very sensitive and, especially in comparison to the results for the two previ-

ous methods, therefore does not seem suited for actual implementation in practice.

Nevertheless, again much further research is possible and may lead to other find-

ings, further improvements, or new and better approaches for the generation of

ε-nondominated outcomes in multiobjective programming.

3.4 Discussion and Further Research

In this chapter, we study the concept of domination in multiobjective pro-

gramming, and based on the prominent role played by domination cones, we focus

in large part on domination structures that can be defined in terms of cones. While

we emphasize as part of our literature review in Section 2.2.1 that the established

theory of multiobjective or vector optimization includes various results that describe

properties of the nondominated set for a general convex cone, the use of cones in

multiobjective programming is frequently limited to polyhedral cones and the de-

velopment of generating methods in the large majority of cases typically restricted

to finding Pareto optimal solutions.

Consequently, we begin in Section 3.1 with the investigation of general cones

while taking a closer look at possible cone representations and appropriate modi-

fications of several existing scalarization methods. In analogy to the definition of

polyhedral cones that are described by linear functions, we find in Theorem 3.1.1

(cone representation theorem) that an arbitrary cone can be induced by a function

that is positively homogeneous, and based on the additional property of superlin-

earity we establish some first sufficient conditions for pointedness and convexity in

Proposition 3.1.8. Also motivated by a corresponding result for polyhedral cones,

in Theorem 3.1.12 (nondominance mapping theorem) we establish relationships be-

tween the image of the nondominated set with respect to a general cone and the
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Pareto set of the image of the complete outcome set under that cone-inducing map-

ping. In addition, independent of the specific cone representation, we show in the

series of Propositions 3.1.14–3.1.17 how the hybrid, constrained-objective and Ben-

son scalarization methods can be modified for a general cone, and the weighted-sum

method for a general domination set. Along with this discussion, we illustrate our

main results for four special types of cones, namely Pareto, polyhedral, pth-order

and Bishop-Phelps cones, among which the first three are special cases of an alter-

native cone representation that is examined separately at the end of that section.

We believe that this material offers several interesting research questions

worthwhile of further pursuit. First, other than for polyhedral cones, the charac-

terization of pointedness and the nondominance mapping theorem in the general

case are currently valid only as a sufficient condition and set inclusion, respectively,

and further assumptions or a completely different cone representation may be de-

rived to also obtain the corresponding or new results in stronger form. Second,

although the modified scalarization methods, in principle, allow the generation of

nondominated outcomes for a general cone, except for the weighted-sum we need

to replace the initially linear inequality constraints by new and in general nonlinear

cone constraints, so that the resulting scalarized problems become mathematical

cone programs which are considerably more difficult to solve or may also require

the development of completely new solution methods and algorithms in extension

of semidefinite and second-order cone programming (Alizadeh and Goldfarb, 2003;

Pataki, 2003). Finally, although the literature uses the concept of Bishop-Phelps

cones for applications in nonlinear analysis (Hyers et al., 1997) and reports on various

applications of especially second-order cones in engineering and robust optimization,

including portfolio optimization, signal processing, and truss topology design (Lobo

et al., 1998), the question remains if there is also any practical relevance of general

cones for the purpose of domination in multiobjective programming.

In a way following this very last question, our investigation of variable domi-

nation cones in Section 3.2 provides at least a partial answer as the cones underlying
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the derived variable-cone model in Proposition 3.2.18 can be described as Bishop-

Phelps cones, based on the assumption of ideal-symmetry that is introduced in Defi-

nition 3.2.14 to steer the variability of the associated domination structure. Placing

our discussion into the general framework of preferences and preference modeling,

we lead to this assumption with two motivating examples that illustrate some of

the limitations of preference models that are described by constant cones. In par-

ticular, in Example 3.2.9 we find that, for linear cases, it is not possible to describe

a preference model that excludes extreme or corner points while maintaining a set

of nondominated outcomes in the middle region of the Pareto frontier, and Exam-

ple 3.2.10 shows that a constant cone does not enable the individual specification

of preferences between two arbitrarily selected outcomes without also affecting the

preference relationships among the remaining other points. After examining some of

the consequences and, in fact, difficulties of variable cones in the formulation of gen-

erating methods, we instead use the geometric interpretation of the ideal-symmetry

assumption in Remark 3.2.15 to derive two alternative optimality conditions in The-

orem 3.2.25 for the convex and Theorem 3.2.27 for the concave biobjective case, that

are subsequently used to illustrate how our new variable-cone model removes the

previously recognized shortcomings of constant cones.

Due to the scarce existing literature but the seemingly high potential for

significant impacts on the advancement of domination and preference modeling, we

expect that further inquiry of variable domination structures and variable cones, in

particular, opens a rich and rewarding avenue for many following research activities.

In continuation of our own work, the maybe most imperative issue is the formula-

tion of more general conditions for nondominance that can either emerge from our

preliminary discussion of scalarization methods for variable cones or extend The-

orems 3.2.25 and 3.2.27 from biobjective to multiobjective cases by removing the

restricting geometric character currently employed in their proofs. Moreover, while

the three chosen Examples 3.2.29–3.2.31 are simple enough to find the nondomi-

nated sets based on the above results combined with our perceptual intuition and

some basic algebra, we do not only need to derive new conditions but eventually
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also develop suitable optimization methods for the algorithmic or computational

generation of nondominated outcomes with respect to variable cones. Finally, our

assumption of ideal-symmetry can be replaced by several other mechanisms that

guarantee variability of the associated domination structure which, in particular,

can also be derived directly from an underlying preference assumption such as the

principle of transfers (2.64) or justice (2.65) in Section 2.3.2 to eventually produce

a variety of new approaches to variable preference modeling of immediate relevance

also to multiple criteria decision making.

Another notion of high importance in both theory and applications of mul-

tiobjective programming and optimization is the concept of approximation or ap-

proximate nondominance that we initially address in Section 2.3.1 and investigate

with respect to its underlying domination structure, possible cone representations,

and generating methods in Section 3.3. Highlighting the concepts of (strict and

weak) epsilon-nondominance that we introduce in Definition 3.3.8, we first realize

that the associated domination structures cannot be described by a cone anymore

but now correspond to translated cones (Luenberger, 1969), and we show in Theo-

rem 3.3.6 how translated polyhedral cones have an equivalent representation in terms

of polyhedral sets. We use this result to generalize the nondominance mapping in

Theorem 3.1.13 to also hold for approximate Pareto and epsilon-nondominance in

Theorem 3.3.18, and based on the definition of epsilon-translated nondominated out-

comes in Definition 3.3.12 we establish several other relationships between the (strict

and weak) epsilon-nondominated sets which are summarized in Corollary 3.3.15.

Finally, we propose two different approaches for the generation of approximate so-

lutions based on scalarization methods, illustrate their application on an example

and already provide a detailed assessment of these methods and some selected com-

putational results along with the discussion in the foregoing text.

While possible directions for future work certainly include a similar examina-

tion of other approximation concepts than the ones chosen in this text, we can also

think of several research questions that directly build on our above results obtained

for epsilon-nondominance. First, while we present some initial results on translated
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cones and focus on representations for the polyhedral case in terms of a linear system

of inequalities, analogous characterizations may be derived for translated nonpoly-

hedral cones based on our earlier cone representation in Theorem 3.1.1 when using

systems of inequalities that are nonlinear. Second, we encourage closer investigation

of the proposed generating methods together with their further improvement and

application for the development of new approximation methodologies for difficult or

large-scale multiobjective programs, in which the generation of the nondominated

set is practically impossible or at least computationally too expensive. Addition-

ally, and opposed to the common belief that epsilon-nondominance is a concept of

approximation that primarily accounts for modeling limitations or computational in-

accuracies and thus is tolerable rather than desirable, we also promote the relevance

and application of this concept in practical decision making situations, including

its prominent role in the study of decomposition and coordination methods now

pursued in the following next chapter.
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CHAPTER 4

DECOMPOSITION AND COORDINATION METHODS

In remedy of the challenges resulting from a high number of objectives in

multiobjective programming and multiple criteria decision making, in this chapter

we choose to decompose the vector objective function of a large-scale multiobjective

program to define a collection of smaller-sized subproblems and investigate several

solution methods and decision making procedures for their subsequent coordination.

The associated function and problem decomposition is introduced and analyzed in

Section 4.1 which establishes the theoretical foundation for the formulation of an

interactive decision making scheme that we describe in Section 4.2 and illustrate

on an example in Section 4.3. The first two sections are extended versions of the

similar treatment in Engau and Wiecek (2007e), while the particular discussion in

Section 4.2.2 and the third section is adjusted from Engau and Wiecek (2007a)

originally addressing the same subject matter but in the more applied context of

multidisciplinary optimization and engineering design. Section 4.4 concludes this

chapter with a brief summary and suggestions for both further research and numer-

ous applications in direct transition also to the next following chapter.

4.1 The Decomposed Multiobjective Program

The first definition introduces the adopted notion of decomposition and also

serves to clarify the associated notation that is used throughout this chapter.

Definition 4.1.1 (Decomposition and Partition). Let X ⊆ Rn be a set, f : X → Rm

be a vector-valued function, and I := {1, 2, . . . , m} be the index set of f

f = (f1, f2, . . . , fm) =: (fi)i∈I (4.1a)

A collection {Ij ⊂ I : j = 1, . . . , M} is called a decomposition of I, and

F := {f j = (fi)i∈Ij
: j = 1, . . . , M} (4.1b)



is called the associated function decomposition of f . It is said to be

(i) complete if
⋃M

j=1 Ij = I, and

(ii) pairwise disjoint if Ii ∩ Ij = ∅ for all i 6= j ∈ I.

A complete and pairwise disjoint decomposition is also called a partition.

In this complete chapter, we restrict our discussion to the Pareto case and

study the multiobjective program (X, f) with respect to the feasible set X and

objective function f rather than with respect to the associated outcome set Y =

f(X). Since the function decomposition of f is conceptually equivalent to projecting

Y onto a collection of different subspaces of the outcome space Rm, the former is

much more convenient as it does not require to distinguish nondominance in these

different subspaces, but allows to restrict our discussion to a common underlying

feasible decision set X in the decision space Rn.

Definition 4.1.2 (Decomposed Multiobjective Program). Let (X, f) be MOP and

F = {f j = (fi)i∈Ij
: j = 1, . . . , M} with |Ij | = mj be a function decomposition of

f . The collection of all multiobjective programs

MOPj : Minimize f j(x) = [f j
1 (x), . . . , f j

mj
(x)] subject to x ∈ X (4.2)

is called the decomposed MOP (DMOP), and each MOPj is also called a subproblem

of DMOP. It is said to be complete if the function decomposition F is complete.

MOP: Minimize f(x) = [f1(x), f2(x), . . . , fm(x)] subject to x ∈ X

MOP1: Min
[

f1
1 (x), . . . , f1

m1
(x)
]

subject to x ∈ X
MOPM : Min

[

fM
1 (x), . . . , fM

mM
(x)
]

subject to x ∈ X
. . .

. . .

. . .

MOP2: Min
[

f2
1 (x), . . . , f2

m2
(x)
]

subject to x ∈ X

�
�

�
�� �

�
�
��

?

6 A
A
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Decomposition Integration

Figure 4.1 Decomposition of MOP into collection of subproblems MOPj (DMOP)
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Definition 4.1.2 is illustrated in Figure 4.1. The original MOP with decision

set X and objective function f = (f1, f2, . . . , fm) is decomposed into a collection

of M subproblems MOPj with the same feasible set X but new objective functions

whose components f j
1 , . . . , f j

mj are only a subset of those contained in the original

objective function f . After solving these subproblems, we refer to the reversed

process of relating solutions for MOPj to solutions for MOP as integration.

A problem formulation that is very similar to this decomposition approach

also arises in multiscenario multiobjective programming (Singh, 2001; Fadel et al.,

2005; Wiecek et al., 2006) which we introduce next.

Definition 4.1.3 (Multiscenario multiobjective program). Let S = {1, 2, . . . , M}

be a set of scenarios, Xs ⊆ Rn be a feasible set and fs : Xs → Rms be a vector-

valued objective function for each single scenario s ∈ S. Let X :=
⋂

s∈S Xs 6= ∅ be

the common feasible set for all scenarios. The collection

MSMOP: Minimize {fs(x) : s ∈ S} subject to x ∈ X (4.3)

is called the multiscenario multiobjective program (MSMOP).

Hence, one possible application of DMOP is that it allows to treat MSMOP

in terms of its individual scenarios as subproblems MOPs that are restricted to the

common feasible set X. In particular, in this case any feasible decision for a sub-

problem is also feasible for the original problem, and the integration of decisions

from the subproblem level to the original MOP can be accomplished by simply eval-

uating those objective functions that have not yet been considered in the respective

subproblem. The following result now establishes the relationships between efficient

decisions for a subproblem MOPj of DMOP and the original problem MOP and is

similarly established by Singh (2001) in the context of MSMOP.

Proposition 4.1.4 (Efficiency for MOPj implies efficiency for MOP). Let MOP

and DMOP be given, and x̂ ∈ X be a feasible decision.

(i) If x̂ is weakly efficient for MOPj, then x̂ is weakly efficient for MOP

Ew(X, f j) ⊆ Ew(X, f) (4.4a)
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(ii) If x̂ is efficient for MOPj and if f j is injective, then x̂ is efficient for MOP

E(X, f j) ⊆ E(X, f) (4.4b)

Proof. For (i), let x̂ ∈ Ew(X, f j) and, by contradiction, assume that x̂ /∈ Ew(X, f).

Then there exists x ∈ X such that f(x) < f(x̂), or equivalently, fi(x) < fi(x̂) for all

i ∈ I. In particular, this implies that fi(x) < fi(x̂) for all i ∈ Ij ⊂ I, or equivalently,

f j(x) < f j(x̂) in contradiction to x̂ ∈ Ew(X, f j).

For (ii), let x̂ ∈ E(X, f j) and, by contradiction, assume that x̂ /∈ E(X, f).

Then there exists x ∈ X such that f(x) ≤ f(x̂), or equivalently, fi(x) ≤ fi(x̂) for all

i ∈ I and f(x) 6= f(x̂), so x 6= x̂. In particular, this implies that fi(x) ≤ fi(x̂) for all

i ∈ Ij ⊂ I and f j(x) 6= f j(x̂) because f j is injective, or equivalently, f j(x) ≤ f j(x̂)

in contradiction to x̂ ∈ E(X, f j). �

Hence, any (weakly) efficient decision for a subproblem of DMOP is also

(weakly) efficient for the original MOP. The following example illustrates that the

reversed statement, however, in general does not hold true.

Example 4.1.5 (Efficiency for MOP does not imply efficiency for MOPj). Let

X = {x1, x2, x3, x4} be a feasible set with only four decisions, and the objective

function f = (f1, f2, f3) : X → R3 be composed of three single objectives that are

to be minimized. The objective function values f(x) of the four decisions are listed

in Table 4.1, and it is easily verified that all four decisions are efficient for MOP

with objective function f = (f1, f2, f3). However, if we define the three subproblems

MOP1, MOP2, and MOP3 with objective functions f1 = (f1, f2), f2 = (f1, f3), and

f3 = (f2, f3), respectively, then we find that in each case only one of the decisions

x1, x2, or x3 remains efficient while the respective other two are merely weakly

efficient. In particular, the decision x4 is neither efficient nor weakly efficient for

any of the three subproblems, although apparently the best compromise decision.

Although Example 4.1.5 illustrates that efficient decisions for the original

problem are not necessarily efficient for any subproblem, it is clear that, in fact,

every feasible decision is ε-efficient for MOP and εj-efficient for MOPj .
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Table 4.1 Objective function values for the four decisions in Example 4.1.5

decision f1 f2 f3 observation

x1 1 1 9 efficient for MOP and MOP1 with f1 = (f1, f2)
x2 1 9 1 efficient for MOP and MOP2 with f2 = (f1, f3)
x3 9 1 1 efficient for MOP and MOP3 with f3 = (f2, f3)
x4 2 2 2 efficient for MOP but not for any subproblem

Proposition 4.1.6 (Epsilon-efficiency of feasible solutions). Let MOP and DMOP

be given, and x̃ ∈ X be a feasible decision. Then x̃ is ε-efficient for MOP for some

ε ∈ Rm, ε ≧ 0, and εj-efficient for MOPj for some εj ∈ Rmj , εj ≧ 0.

Proof. Let r ∈ Rm with r ≦ f(x) for all x ∈ X be a utopia or the ideal point

for MOP and set ε := f(x̃) − r ≧ 0. Then there does not exist x ∈ X such that

f(x) ≤ r = f(x̃)− ε and, thus, x̃ ∈ E(X, f, ε). The proofs of x̃ ∈ E(X, f j , εj) follow

analogously. �

The ε found in the proof of Proposition 4.1.6 is usually only a very weak

upper bound. To improve this bound, we can also solve the Benson scalarization

B(f(x̃)): Maximize

m
∑

i=1

εi subject to f(x̃) − ε ∈ f(X) and ε ≧ 0 (4.5)

for an optimal solution ε̂ to obtain an efficient decision x̂ ∈ E(X, f) with f(x̂) =

f(x̃)− ε. In particular, then f(x̃) = f(x̂) + ε̂ is an ε̂-translated Pareto outcome and

x̃ ∈ E(X, f, ε̂) but x̃ /∈ E(X, f, ε) for any ε ≤ ε̂ by Proposition 3.3.13.

Corollary 4.1.7 (Efficiency relationships between MOP and DMOP). Let MOP

and DMOP be given. Then there exist εj ∈ Rmj , εj ≧ 0, such that

⋃

j=1,...,M

Ew(X, f j) ⊂ Ew(X, f) ⊂
⋂

j=1,...,M

E(X, f j , εj) (4.6)

Furthermore, if f j is injective for all j = 1, . . . , M , then the weakly efficient sets

can be replaced by efficient sets.
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4.1.1 Subproblem Scalarization

Starting from an initial decomposition of MOP into the collection DMOP

of subproblems MOPj , in this section we first use the concept of scalarization func-

tions to combine the multiple objectives of each individual subproblem into a single

objective and then consider the collection of all these objectives as a new multiob-

jective program. We then investigate several relationships between scalarizations of

this new problem and scalarizations of the original MOP.

Definition 4.1.8 (MSOP). Let MOP and DMOP be given, and for all j = 1, . . . , M

let sj(π
j) : Rmj → R be a scalarization function for MOPj with scalarization pa-

rameter πj ∈ Πj . The collection of all single objective programs

SOPj : Minimize sj(π
j , f j(x)) subject to x ∈ X (4.7)

is called the multiple SOP (MSOP) of DMOP.

By dropping the scalarization parameters πj ∈ Πj and changing from the

scalarization functions sj : Rmj → R to the associated collection of value functions

vj : X → R on the decision set X

vj(x) = sj(π
j , f j(x)) for all j = 1, . . . , M (4.7a)

we note that MSOP can equivalently be written as the multiobjective program

MSOP: Minimize v(x) = [v1(x), . . . , vM (x)] subject to x ∈ X (4.7b)

In this formulation, now each subproblem is represented by a separate value function

vj which can be chosen either based on analytical properties such as convexity or,

in a more applied context, according to the underlying physical interpretation of

the objectives contained in MOPj . The relationships between efficient decisions for

MSOP and the original MOP are derived in the following result.

Proposition 4.1.9 (Efficiency relationships between MSOP and MOP). Let MOP

and MSOP be given, and x̂ ∈ X be a feasible decision.
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(i) If x̂ is weakly efficient for MSOP, then x̂ is weakly efficient for MOP

Ew(X, v) ⊆ Ew(X, f) (4.8a)

(ii) If x̂ is efficient for MSOP, v is strictly increasing (with respect to f(x)) and
DMOP complete, then x̂ is efficient for MOP

E(X, v) ⊆ E(X, f) (4.8b)

Proof. For (i), let x̂ ∈ Ew(X, v) and, by contradiction, assume that x̂ /∈ Ew(X, f).

Then there exists x ∈ X such that f(x) < f(x̂), or equivalently, f j(x) < f j(x̂) for

all j = 1, . . . , M . In particular, this implies that vj(x) < vj(x̂) for all j = 1, . . . , M ,

or equivalently, v(x) < v(x̂) in contradiction to x̂ ∈ Ew(X, v).

For (ii), let x̂ ∈ E(X, v) and, by contradiction, assume that x̂ /∈ E(X, f).

Then there exists x ∈ X such that f(x) ≤ f(x̂), or equivalently, f j(x) ≦ f j(x̂)

for all j = 1, . . . , M and fk(x) ≤ fk(x̂) for some k ∈ {1, . . . , M} (as the objective

function component with strict inequality is contained in some fk because DMOP

is complete). In particular, this implies that vj(x) ≤ vj(x̂) for all j = 1, . . . , M

and vk(x) < vk(x̂) because v is strictly increasing, or equivalently, v(x) ≤ v(x̂) in

contradiction to x̂ ∈ E(X, v). �

Hence, analogous to the result in Proposition 4.1.4, every (weakly) efficient

decision for MSOP is also (weakly) efficient for the original MOP. Following the

previous notational conventions, we abbreviate a scalarization of MSOP by SSOP

and characterize the resulting single objective functions for the weighted-sum and

the weighted-Chebyshev norm scalarization in the following two examples.

Example 4.1.10 (Weighted-sum SSOP). Let MOP and DMOP with f j = (fi)i∈Ij

and |Ij | = mj for all j = 1, . . . , M be given. Let wj = (wj
i )i∈Ij

∈ Rmj , wj ≥ 0, and

u ∈ RM , u ≥ 0, be weighting parameters for weighted sums sj(w
j , f j(x)) : Rmj → R

for SOPj and s(u, v(x)) : RM → R be a weighted-sum for SSOP, then

s(u, v(x)) =

M
∑

j=1

ujvj(x) =

M
∑

j=1

ujsj(w
j , f j(x)) (4.9)

=

M
∑

j=1

uj

∑

i∈Ij

wj
i fi(x) =

M
∑

j=1

∑

i∈Ij

ujw
j
i fi(x) =

m
∑

i=1

∑

j:i∈Ij

ujw
j
i fi(x)
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Example 4.1.11 (Weighted-Chebyshev norm SSOP). Let MOP and DMOP be

given as in Example 4.1.10, r ∈ Rm be a reference point and wj = (wj
i )i∈Ij

∈ Rmj ,

wj ≥ 0 be the weighting parameters for weighted-Chebyshev norms sj(r, w
j , f j(x)) :

Rmj → R for SOPj for all j = 1, . . . , M . Let 0 ∈ Rm be the reference point and

u ∈ RM , u ≥ 0 be the weighting parameter for the weighted-Chebyshev norm

s(0, u, v(x)) : RM → R for SSOP, then

s(0, u, v(x)) = max
j=1,...,M

{ujvj(x)} = max
j=1,...,M

{ujsj(r, w
j , f j(x))} (4.10)

= max
j=1,...,M

{uj max
i∈Ij

{wj
i (fi(x) − ri)}} = max

j=1,...,M
max
i∈Ij

{ujw
j
i (fi(x) − ri)}

= max
i=1,...,m

max
j:i∈Ij

{ujw
j
i (fi(x) − ri)} = max

i=1,...,m
{max

j:i∈Ij

{ujw
j
i }(fi(x) − ri)}

The previous two examples reveal the following relationship between SSOP

and the corresponding scalarizations of the original MOP.

Proposition 4.1.12 (Equivalence between SOP and SSOP). Let MOP and DMOP

be given, and let DMOP be complete. If SOP, all SOPj and SSOP are defined using

either weighted-sum or weighted-Chebyshev norm scalarization functions, then SSOP

is equivalent to SOP.

Proof. (Weighted sum ⇒) Let SSOP be defined using weighted sums, then its

objective function takes the form

s(u, v(x)) =

m
∑

i=1

∑

j:i∈Ij

ujw
j
i fi(x) (4.11a)

from Example 4.1.10. In particular, if wi =
∑

j:i∈Ij
ujw

j
i for all i ∈ I, then

s(u, v(x)) =
∑m

i=1 wifi(x) is also a weighted sum for SOP.

(Weighted sum ⇐) For the converse, let SOP be defined using a weighted

sum with weighting parameter w ∈ Rm, w ≥ 0, and let DMOP be complete. Then

|{j : i ∈ Ij}| 6= ∅ for all i = 1, . . . , m, and with wj
i = wi|{j : i ∈ Ij}|−1 for all i ∈ Ij

and u = 1 as the weighting parameters for SOPj and SSOP, it follows analogous to

Example 4.1.10 that
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s(1, v(x)) =

M
∑

j=1

vj(x) =

M
∑

j=1

∑

i∈Ij

wj
i fi(x) =

m
∑

i=1

∑

j:i∈Ij

wj
i fi(x) =

m
∑

i=1

wifi(x) (4.11b)

showing that SSOP is equivalent to SOP.

(Chebyshev norm ⇒) If SSOP is defined using weighted-Chebyshev norms,

then its objective function takes the form

s(0, u, v(x)) = max
i=1,...,m

{max
j:i∈Ij

{ujw
j
i }(fi(x) − ri)} (4.12a)

from Example 4.1.11. In particular, if wi = maxj:i∈Ij
{ujw

j
i } for all i ∈ I, then

s(0, u, v(x)) = maxi{wi(fi(x) − ri)} is also a weighted-Chebyshev norm for SOP.

(Chebyshev norm ⇐) For the converse, let SOP be defined using a weighted-

Chebyshev norm with weighting parameter w ∈ Rm, w ≥ 0 and reference point

r ∈ Rm, and let DMOP be complete. Let wj
i = wi for all i ∈ Ij and u = 1 be

the weighting parameters and r and 0 ∈ RM be the reference points for SOPj and

SSOP, respectively, then it follows analogous to Example 4.1.11 that

s(0, 1, v(x)) = max
j=1,...,M

{v(x)} = max
j=1,...,M

{sj(w
j , r, f j(x))} (4.12b)

= max
j=1,...,M

{max
i∈Ij

{wj
i (fi(x) − ri)}} = max

i=1,...,m
{wi(fi(x) − ri)}

again showing that SSOP is equivalent to SOP. �

In particular, since every (weakly) efficient decision for MOP can be gener-

ated as an optimal solution for a weighted-Chebyshev norm scalarization function

(Steuer, 1986, or Proposition 2.2.39), one consequence of the equivalence between

SOP and SSOP in Proposition 4.1.12 is that through a suitable scalarization of the

subproblems in DMOP, any (weakly) efficient solution for MOP is also (weakly)

efficient for MSOP. This observation is summarized in the following corollary.

Corollary 4.1.13 (Equivalence between MOP and MSOP). Let MOP and DMOP

be given, and x̂ ∈ X be a feasible decision. If x̂ is weakly efficient for MOP, then

there exist a collection of scalarization functions and associated value functions for

all MOPj such that x̂ is weakly efficient for MSOP.
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4.1.2 Subproblem Coordination

Other than for the previous subproblem scalarization, we now do not com-

bine the objective functions from different subproblems into a new single objective

program but modify each MOPj by introducing the objectives from other subprob-

lems as additional constraints into an associated coordination problem.

Definition 4.1.14 (Coordination problem). Let MOP and DMOP be given, and

xj ∈ X be a feasible decision and εj ∈ Rmj , εj ≧ 0 be a nonnegative vector for all

j = 1, . . . , m. The multiobjective program

COPk: Minimize fk(x) (4.13)

subject to f j(x) ≦ f j(xj) + εj for all j = 1, . . . , M (4.13a)

and x ∈ X (4.13b)

is called the kth coordination problem (COPk), and xj and εj are called the reference

point and coordination parameter for COPk from COPj , respectively.

For sake of brevity and notational convenience, we also write

X(f j , xj , εj) := {x ∈ X : f j(x) ≦ f j(xj) + εj} (4.14)

for the associated coordination constraints and then denote the feasible set for COPk

as
⋂M

j=1 X(f j , xj , εj). Similar to Propositions 4.1.4 and 4.1.9, the relationships

between efficient decisions for COPk and MOP can be described as follows.

Proposition 4.1.15 (Efficiency for COPk implies efficiency for MOP). Let MOP

and DMOP be given, and x̂ ∈ X be a feasible decision.

(i) If x̂ is weakly efficient for COPk, then x̂ is weakly efficient for MOP

Ew





M
⋂

j=1

X(f j , xj , εj), fk



 ⊆ Ew(X, f) (4.15a)

(ii) If x̂ is efficient for COPk and if fk is injective, then x̂ is efficient for MOP

E





M
⋂

j=1

X(f j , xj , εj), fk



 ⊆ E(X, f) (4.15b)
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(iii) If x̂ is efficient for MOP and if DMOP is complete, then x̂ is efficient for
all COPk with xj = x̂ and εj = 0 for all j = 1, . . . , M

x̂ ∈ E





M
⋂

j=1

X(f j , x̂, 0), fk



 for all k = 1, . . . , M (4.15c)

In any case, if x̂ is feasible for COPk and if xj is (weakly) ε-efficient for MOPj,

then x̂ is (weakly) (εj + ε)-efficient for MOPj.

Proof. For (i), let x̂ ∈ Ew(
⋂M

j=1 X(f j , xj , εj), fk) and, by contradiction, assume

that x̂ /∈ Ew(X, f). Then there exists x ∈ X such that f(x) < f(x̂), or equivalently,

fi(x) < fi(x̂) for all i ∈ I. In particular, this implies that fi(x) < fi(x̂) for all

i ∈ Ij ⊂ I, or equivalently, f j(x) < f j(x̂) ≦ f j(xj)+εj for all j = 1, . . . , M , showing

that also x ∈ ⋂M
j=1 X(f j , xj , εj). In particular, fk(x) < fk(x̂), in contradiction to

x̂ ∈ Ew(
⋂M

j=1 X(f j , xj , εj), fk).

For (ii), let x̂ ∈ E(
⋂M

j=1 X(f j , xj , εj), fk) and, by contradiction, assume that

x̂ /∈ E(X, f). Then there exists x ∈ X such that f(x) ≤ f(x̂), and, analogous to the

above, it follows that x ∈ ⋂M
j=1 X(f j , xj , εj). Moreover, then f(x) 6= f(x̂), so x 6= x̂

and fk(x) 6= fk(x̂) as fk is injective. In particular, this implies that fk(x) ≤ fk(x̂)

in contradiction to x̂ ∈ E(
⋂M

j=1 X(f j , xj , εj), fk).

For (iii), let x̂ ∈ E(X, f), and assume that x̂ /∈ E(
⋂M

j=1 X(f j , x̂, 0), fk) by

contradiction. Then there exists x ∈ ⋂M
j=1 X(f j , x̂, 0) such that fk(x) ≤ fk(x̂), or

equivalently, f j(x) ≦ f j(x̂) for all j = 1, . . . , M and fk(x) ≤ fk(x̂) (as the objective

function component with strict inequality is contained in some fk because DMOP

is complete). In particular, this implies that f j
i (x) ≤ f j

i (x̂) for all i ∈ Ij ⊂ I and

fk
l (x) < fk

l (x̂) for some l ∈ Ik ⊂ I, so fi(x) ≤ fi(x̂) for all i ∈ I and fl(x) < fl(x̂)

for some l ∈ I, or equivalently, f(x) ≤ f(x̂) in contradiction to x̂ /∈ E(X, f).

Finally, let xj ∈ Ew(X, f j , ε) and, of course by contradiction, assume that

x̂ /∈ Ew(X, f j , εj + ε). Then there exists x ∈ X such that f j(x) < f j(x̂) − εj − ε ≦

f j(xj) − ε, in contradiction to xj ∈ Ew(X, f j , ε). If xj ∈ E(X, f j , ε), the proof of

x̂ ∈ E(X, f j , εj + ε) follows analogously. �
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Hence, we conclude that through the modification of the initial subproblems

MOPj by coordination constraints and a suitable choice of the coordination param-

eters εj , any efficient solution for MOP can be identified by solving a corresponding

coordination problem COPk. In general, however, the set of efficient decisions for

COPk depends on the particular choices of εj , and the following problem can be

used to examine some of these underlying dependencies.

Definition 4.1.16 (Tradeoff problem). Let MOP, DMOP, and COPk with reference

points xj ∈ X and coordination parameters εj ∈ Rmj for all j = 1, . . . , m be given.

The single objective program

TOPkl: Minimize fk
l (x) (4.16)

subject to f j(x) ≦ f j(xj) + εj for all j = 1, . . . , M (4.16a)

and x ∈ X (4.16b)

is called the lth tradeoff problem (TOPkl) for COPk involving objective fk
l .

The following result establishes the relationship between efficient decisions

for COPk and optimal solutions for TOPkl.

Proposition 4.1.17 (Efficiency for COPk implies optimality for TOPkl). Let MOP

and DMOP be given, and let x̂ ∈ X.

(i) If x̂ is efficient for COPk, then x̂ is optimal for TOPkl with xk = x̂ and
εk = 0.

(ii) If x̂ is efficient for MOP and if DMOP is complete, then x̂ is optimal for all
TOPkl with xj = x̂ and εj = 0 for all j = 1, . . . , M .

Proof. For (i), let x̂ ∈ E(
⋂M

j=1 X(f j , xj , εj), fk) and, by contradiction, assume

that x̂ is not optimal for TOPkl with xk = x̂ and εk = 0. Then there exists x ∈
⋂M

j=1 X(f j , xj , εj) with xk = x̂ and εk = 0 such that fk
l (x) < fk

l (x̂), or equivalently,

f j(x) ≦ f j(xj) + εj for all j = 1, . . . , M , so x ∈ ⋂M
j=1 X(f j , xj , εj) and, for j = k,

fk(x) ≤ fk(x̂), in contradiction to x̂ ∈ E(
⋂M

j=1 X(f j , xj , εj)).
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For (ii), let DMOP be complete, so
⋃M

j=1 Ij = I, and x̂ ∈ E(X, f). By

Proposition 4.1.15, it follows that x̂ ∈ E(
⋂M

j=1 X(f j , x̂, 0), fk) for all k = 1, . . . , m,

and the proof follows immediately from (i). �

Remark 4.1.18 (Tradeoff rates associated with coordination and tradeoff prob-

lems). Let x̂ ∈ X be efficient for COPk. By Proposition 4.1.17, it then follows that

x̂ is also optimal for TOPkl, and using Definition 2.2.15 the tradeoff between x̂ and

xj involving fk
l and f j

i is given by

T kl
ji (x̂, xj) :=

fk
l (x̂) − fk

l (xj)

f j
i (xj) − f j

i (x̂)
(4.17a)

Furthermore, if the conditions in Proposition 2.2.29 (constrained-objective tradeoff

rates) are satisfied for TOPkl, then the tradeoff rate between fk
l and f j

i at x̂ is

T kl
ji (x̂) := −∂fk

l (x)

∂f j
i (x)

∣

∣

∣

∣

x=x̂

= −∂fk
l (x)

∂εj
i

∣

∣

∣

∣

x=x̂

= λkl
ji (4.17b)

where λkl
ij denotes the Lagrangean multiplier of the coordination constraint f j

i (x) ≤

f j
i (x̂) + εj

i in TOPkl. Hence, for an infinitesimal small increase δ of εj
i and thus in

f j(x̂), the resulting decrease in fk
l (x̂) equals δλkl

ij .

The above results are used in the following decision making procedures.

4.2 Interactive Procedures and Decision-Making

Based on the previous theoretical results, we now present three different

procedures that can be used by a decision maker to identify a preferred solution for

a multiobjective programming problem using an initial objective decomposition as

proposed in Section 4.1. In each case, the decision making steps involved are first

summarized in a generic procedure or flowchart and then explained in some more

detail in the subsequent discussion.

4.2.1 Optimization-Based Nonhierarchical Coordination

We initially assume that the decision problem and the underlying multi-

objective program is a classical optimization problem with functional descriptions
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for all objectives and constraints. In particular, in this case we can use any suit-

able optimization technique from linear and nonlinear programming to solve the

corresponding subproblems or coordination problems.

Procedure 4.2.1 (Nonhierarchical coordination). Let MOP and DMOP be given.

1. Select an initial x̂ ∈ X, and let xj = x̂ and εj = 0 for all j = 1, . . . , M .

2a. If x̂ is a preferred solution for MOP, stop.

2b. Otherwise select MOPk for improvement of x̂ with respect to fk.

3. Solve COPk for a new solution x̃, and update xk = x̃ and εk = 0.

4a. If fk(x̃) is satisfying, adjust εk ≧ 0, set x̂ = x̃ and go back to Step 2.

4b. Otherwise compute the tradeoffs T k.
j. at x̃ from TOPkl.

5. Update some or all εj and go back to Step 3.

The validity of Procedure 4.2.1 is implied by Proposition 4.1.15 which guar-

antees that all efficient decisions for COPk that we select in Step 3 are at least weakly

efficient for the original MOP. Moreover, as every efficient decision for MOP can in

principle be found as an efficient decision to some coordination problem, based on

the decision maker’s input the procedure is capable to also find every potentially

preferred solution for the overall problem. We now give some more details and pro-

vide some helpful discussion for each step of the procedure and its application to

solving a multiobjective program

MOP: Minimize f(x) = [f1(x), f2(x), . . . , fm(x)] subject to x ∈ X (4.18a)

The procedure starts with MOP and assumes that the decision maker is

able to define a suitable decomposition by selecting subsets of the initial objective

function components (f1, f2, . . . , fm) which are then used to formulate the collection

of associated subproblems

MOPj : Minimize f j(x) = [f j
1 (x), f j

2 (x), . . . , f j
mj

(x)] subject to x ∈ X (4.18b)

152



that form the decomposed MOP (DMOP). Clearly, in practice this step depends

in large part on the specific problem that the decision maker wants to solve and

may also influence the choice of intermediate and thus the final preferred solution.

As general guideline, we suggest to decompose MOP into subproblems that have

a sufficiently small number of objectives and, ideally, into biobjective problems to

enable the immediate visualization of the Pareto sets in the form of two-dimensional

Pareto curves, providing various perceptual benefits for the further selection of ef-

ficient decisions and reference points for the individual coordination problems. For

now, however, we postpone the further discussion of these and other related issues

until we show some actual applications of this procedure in the next chapter.

Henceforth assuming that the decomposition DMOP and all MOPj are de-

fined, in Step 1 of Procedure 4.2.1 we select a first feasible decision x̂, which is also

used as the first reference point for all subproblems, and initialize the coordination

parameters εj = 0 for all j = 1, . . . , m. To examine if x̂ is already preferred for

MOP, in Step 2 we evaluate f(x̂) for the complete MOP and, provided this outcome

is already satisfying, terminate the procedure with x̂ as the preferred solution. Oth-

erwise, if the current outcome is not satisfying, then there exists at least one other

subproblem MOPk, or equivalently, some objective function fk which we would like

to further improve in the subsequent Step 3.

Since the different objectives in different subproblems are usually conflict-

ing, in general we expect that improvement with respect to fk is only possible at

a corresponding decay in some other objective. Initially, however, since the first

feasible decision x̂ is chosen arbitrarily and not necessarily efficient, we might also

improve upon fk(x̂) without further decay in any other f j(x̂), and therefore, we

formulate the corresponding kth coordination problem

COPk: Minimize fk(x) = [fk
1 (x), . . . , fk

mk
(x)] (4.19)

subject to f j
i (x) ≤ f j

i (xj) + εj
i for all i ∈ Ij , j = 1, . . . , M (4.19a)

x ∈ X (4.19b)
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with initial reference points xj = x̂ and coordination parameters εj = 0 for all j =

1, . . . , M . We then solve this problem using any applicable optimization technique,

for example a scalarization method, and select a new solution x̃ that now, from

Proposition 4.1.15, is also at least weakly efficient for the original MOP.

Next, we need to evaluate the corresponding outcome fk(x̃) of the new

decision x̃ in MOPk in comparison to the previous outcome fk(x̂). If we are satisfied

with the improvement that we achieved over fk(x̂), then we can immediately accept

x̃ as new solution to replace x̂ and start with the next iteration of the procedure at

Step 2. In other instances, we might also be overly satisfied with the improvement

achieved by fk(x̃), in which case we would still use x̃ to replace the previous solution

x̂ but, additionally, increase the corresponding coordination parameter εk so to

allow some later decay in fk to possibly enable further improvement in some other

subproblem during subsequent iterations of the procedure. Otherwise, if we are not

satisfied with the achieved improvement in fk, then we need to accept a further

decay in at least one other objective f j in another subproblem by increasing its

corresponding coordination parameter εj .

To help the decision maker on this tradeoff and to decide which εj to modify,

we propose to compute the associated sensitivities from the corresponding single

objective tradeoff problems

TOPkl: Minimize fk
l (x) (4.20)

subject to f j
i (x) ≤ f j

i (xj) + εj
i for all i ∈ Ij , j 6= k (4.20a)

fk
i (x) ≤ fk

i (x̃) for all i ∈ Ik (4.20b)

x ∈ X (4.20c)

From Proposition 4.1.17, we know that since x̃ is efficient for COPk, it is also efficient

for the corresponding TOPkl. In particular, if the conditions in Proposition 2.2.29

(constrained-objective tradeoff rates) hold at x̃, we can compute the Lagrangean

multipliers λkl
ji associated with each constraint f j

i (x) ≤ f j
i (xj) + εj

i in TOPkl. Fol-

lowing from Remark 4.1.18, a positive λkl
ji > 0 then indicates that the corresponding
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coordination constraint is active at the current decision x̃ so that an increase of

the corresponding coordination parameter εj
i may yield further improvement in fk

l .

Hence, after a corresponding update of some or all of these εj
i in Step 5, we can

again solve the coordination problem COPk with new coordination parameters in

Step 3 to find a new solution x̃ and repeat Step 4 as described above.

Note that the computation of the Lagrangean multipliers can be accom-

plished rather conveniently based on the fact that the efficient decision x̃ for COPk

is already known to be optimal for the tradeoff problem TOPkl. Since almost all

common optimization software provides a final solution together with its associated

Lagrangean multipliers, we therefore suggest to use any suitable optimization rou-

tine and specify the optimal solution x̃ as the initial point for TOPkl, which then

should almost immediately confirm optimality of x̃ and return all λkl
ji in one or at

least a comparably small number of total iterations.

We finally remark that convergence of this procedure, in general, cannot

be established due to its dependency on input by the decision maker. Nevertheless,

based on the underlying theoretical results every decision proposed by the procedure

is at least (weakly) efficient for MOP, and in principle, every efficient solution can

be reached. If a preferred decision, however, cannot be found in a desired number

of iterations, then the decision maker may allow more iterations, choose a different

initial solution, vary the decomposition and, thus, DMOP, or eventually modify the

initial aspirations and expectations.

4.2.2 Optimization-Based Hierarchical Coordination

One potential drawback of the previous nonhierarchical coordination pro-

cedure is that for problems with many objectives or decompositions into many

subproblems, the number of additional constraints in the coordination problems

becomes quite large and renders the simultaneous update of several coordination

parameters εj difficult. Furthermore, if there are several subproblems for which the

current decision is not satisfactory, it might not always be easy to decide which

subproblem to choose for further improvement. To facilitate these two difficulties,
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we propose an alternative procedure that, instead of working with all subproblems

simultaneously, uses a hierarchical ranking of all subproblems. As illustrated in

Figure 4.2, this new procedure initially considers only MOP1 as first coordination

problem COP1 and then sequentially modifies the subsequent MOPj into new COPj

by introducing only the objectives from the previous iterations as additional con-

straints. In particular, note that the coordination problems in this case are slightly

different from the ones in the previous approach and limited to those constraints of

earlier subproblems, so that we do not need to select all εj and reference points xj

immediately, but can specify all our choices in a sequential manner.

MOP: Minimize f(x) = [f1(x), f2(x), . . . , fm(x)] subject to x ∈ X

COP1: Minimize f1(x) =
[

f1
1 (x), . . . , f1

m1
(x)
]

subject to x ∈ X

COP2: Minimize f2(x) =
[

f2
1 (x), . . . , f2

m2
(x)
]

subject to f1(x) ≦ f1(x1) + ε1

x ∈ X

COP3: Minimize f3(x) =
[

f3
1 (x), . . . , f3

m3
(x)
]

subject to f1(x) ≦ f1(x1) + ε1

f2(x) ≦ f2(x2) + ε2

x ∈ X

COPM : Minimize fM (x) =
[

fM

1 (x), . . . , fM

mM
(x)
]

subject to f1(x) ≦ f1(x1) + ε1

f2(x) ≦ f2(x2) + ε2

. . .
fM−1(x) ≦ fM−1(xM−1) + εM−1

x ∈ X

Backtracking

Coordination

?

Decomposition
6

Integration

xM

6

ε1, ε2, . . . , εM−1

6

-

6
ε1, ε2

-

6ε1

-

?

x1

ε1

?

x2

ε2

?

x3 . . . xM−1

εM−1

Figure 4.2 Optimization-based hierarchical decomposition and coordination
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Clearly, other than for the nonhierarchical procedure, in this case the decision

maker must decide not only on the particular decomposition of the original MOP

into subproblems, but also on the subproblem hierarchy. While this step is again

problem specific and therefore addressed in some more detail in context of the later

applications, the similar problem also arises for general lexicographic orders for

either single (Fishburn, 1974; Rentmeesters et al., 1996) or multiobjective programs

(Ying, 1983). Some other research, however, exists to provide the decision maker

with further guidance to establish a ranking among criteria (Matsumoto et al., 1993;

Dym et al., 2002) or related works that focus on the decomposition of multiobjective

programs based on criteria influence (Yoshimura et al., 2002, 2003).

Once the decomposition and the subproblem hierarchy have been defined,

the procedure works as follows. In each step, the decision maker solves a coordi-

nation problem COPk and selects a corresponding decision xk that is used as the

reference point for a corresponding coordination constraint introduced into all sub-

sequent coordination problems. Additionally, the decision maker may also specify

an additional coordination parameter εk that describes the maximal acceptable de-

viation for subsequent solutions from the current outcome fk(xk). Of course, the

decision maker might also initially set all εj = 0 and later change any of these values

using a backtracking mechanism as indicated in Figure 4.2.

For the update of these εj and similar to the previous procedure, the decision

maker can again utilize the sensitivity information obtained from the corresponding

tradeoff problems. For further illustration, we assume that the decision maker has

solved COP1 through COPk−1 by selecting decisions x1, . . . , xk−1 and, mainly to

simplify the following arguments and without loss of generality, has initially decided

to set εj = 0 for all j = 1, . . . , k− 1. In particular, this implies that all coordination

constraints f j(x) ≦ f j(xj) + εj in COPk reduce to f j(x) ≦ f j(xj) and, hence, that

every feasible decision xk for COPk is also efficient for the previous COPj . While

the decision maker should now select a new decision xk and proceed to the next

problem, it may also happen that the decision maker is not satisfied with any of the
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available outcomes fk(x̃) for COPk and thus is willing to change some or all of the

previous εj to gain further improvement in one of the objectives of fk.

-
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Figure 4.3 On the left (a), Pareto curve for COPj with f j = (f j
1 , f j

2 ), and on the
right (b), its image for COPk with fk = (fk

1 , fk
2 ) [not the Pareto curve for COPk]

This situation is depicted in Figure 4.3 in which we assume for further

simplicity that both COPj and COPk are biobjective programs with objectives

f j = (f j
1 , f j

2 ) and fk = (fk
1 , fk

2 ), respectively. In particular, since each xk is also effi-

cient for COPj , f j(xk) lies on the Pareto curve for COPj , depicted in Figure 4.3(a),

and on the corresponding image of the efficient set for COPj in COPk, shown in

Figure 4.3 (b). Hence, to improve the current objective fk(xk), we need to increase

the coordination parameter εj = (εj
1, ε

j
2) to also allow for εj-efficient decisions for

COPj , for example the decision xk
new as indicated in Figure 4.3. In this case, the

corresponding tradeoffs between xk and xk
new involving fk and f j are given by

T k1
j1 (xk, xk

new) =
∆fk

1 (xk)

∆f j
1 (xk)

=
fk
1 (xk) − fk

1 (xk
new)

f j
1 (xk

new) − f j
1 (xk)

=
fk
1 (xk) − fk

1 (xk
new)

ε1
(4.21a)

T k2
j1 (xk, xk

new) =
∆fk

2 (xk)

∆f j
1 (xk)

=
fk
2 (xk) − fk

2 (xk
new)

f j
1 (xk

new) − f j
1 (xk)

=
fk
2 (xk) − fk

2 (xk
new)

ε1
(4.21b)

T k1
j2 (xk, xk

new) =
∆fk

1 (xk)

∆f j
2 (xk)

=
fk
1 (xk) − fk

1 (xk
new)

f j
2 (xk

new) − f2
1 (xk)

=
fk
1 (xk) − fk

1 (xk
new)

ε2
(4.21c)

T k2
j2 (xk, xk

new) =
∆fk

2 (xk)

∆f j
2 (xk)

=
fk
2 (xk) − fk

2 (xk
new)

f j
2 (xk

new) − f j
2 (xk)

=
fk
2 (xk) − fk

2 (xk
new)

ε2
(4.21d)
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and as before, to decide which of the εj to modify, we can use the sensitivities from

the corresponding tradeoff problem

TOPkl: Minimize fk
l (x) (4.22)

subject to f j
i (x) ≤ f j

i (xj) + εj
i for all i ∈ Ij , j = 1, . . . , k − 1 (4.22a)

fk
l (x) ≤ fk

l (xk) for all l ∈ Ik (4.22b)

x ∈ X (4.22c)

In this case, however, and according to the defined subproblem hierarchy, we

only introduce those coordination constraints that are associated with the subprob-

lems that are solved in previous iterations. Again assuming that we can compute

the Lagrangean multipliers for each of these constraints, we obtain that

T kl
ji (xk) = −∂fk

l (x)

∂f j
j (x)

∣

∣

∣

∣

x=xk

= λkl
ji for all l ∈ Ik and i ∈ Ij , j = 1, . . . , k − 1 (4.23)

and at least for very small changes in εj
i , we may use these tradeoff rates to approx-

imate the actual tradeoffs similar to the ratios listed in (4.21) as

∆fk
l (xk)

∆f j
i (xk)

=
∆fk

l (xk)

εj
i

≈ −λkl
ji (4.23a)

⇐⇒ ∆fk
l (xk) ≈ −λkl

jiε
j
i for all l ∈ Ik and i ∈ Ij , j = 1, . . . , k − 1 (4.23b)

As mentioned earlier, however, in general these estimates are only valid for very

small and, in fact, infinitesimal small changes in εj
i . Merely as a rule of thumb,

we state that the larger the magnitude of a computed Lagrangean multiplier, the

larger the tradeoff that we should expect. For example, if λkl
ji ≫ 1, then we infer

that already a small additional increase in εj
i may yield a significant improvement of

fk
l (xk). On the other hand, if λkl

ji < 1, then the improvement in fk
l (xk) is relatively

small compared to the increase εj
i . For practical purposes, we therefore suggest to

initially choose a tradeoff threshold of 1 at which we do not wish to further increase

any εj
i , then suggesting to terminate the procedure with the current decision as

final and preferred solution for the overall problem. In particular, in this case

we do not need to solve all subproblems, while Proposition 4.1.15 still guarantees
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that the final decision is also efficient for the original MOP, although possibly in

favor of the objectives contained in those subproblems COP1, . . . , COPk so far

participating in the coordination process, compared to COPk+1, . . . , COPM that

are omitted due to early termination. Finally, and similar to the previous procedure,

if a preferred decision cannot be revealed in a desired number of iterations, or

after solving the last subproblem COPM , the decision maker again may decide to

allow more iterations, use backtracking to change some of the reference points xj or

coordination parameters εj , modify the proposed tradeoff threshold, or eventually

restart the procedure with a newly chosen decomposition or subproblem hierarchy.

4.2.3 Optimization-Free Coordination

Due to the high complexity in many real-life optimization models or the lim-

ited number of admissible objective function evaluations because of cost-intensive

computational requirements, traditional optimization methods often are not appli-

cable and must be replaced by heuristic approaches such as a genetic algorithm or

simulation and sampling techniques. In these cases, a (possibly still quite large)

set of feasible decisions is generated and presented to the decision maker, who then

needs to make a final decision from among these candidates based on (possibly quite

many) objectives that are used for their evaluation. The procedure in this section

assumes that once this set of preliminary candidate solutions has been found, no

further optimization is possible so that the decision problem essentially reduces to

a mere selection problem. However, the selection of a preferred decision may still

be a very difficult task for large numbers of decisions and objectives and can be

facilitated by a similar decomposition and coordination mechanism as proposed for

the previous two procedures.

The alternative approach in this case is based on the observation in Propo-

sition 4.1.6 that every efficient decision for MOP is εj-efficient in every subproblem

MOPj for some εj , giving rise to the relationship

M
⋃

j=1

E(X, f j) ⊆ E(X, f) ⊆
M
⋂

j=1

E(X, f j , εj) (4.24)
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in the corresponding Corollary 4.1.7. Hence, the idea of the following procedure is

to iteratively modify the choices of εj until we obtain a nonempty intersection of the

sets of εj-efficient decisions E(X, f j , εj) for all MOPj with only a reasonably small

number of potentially preferred decisions for which the final selection becomes a

more manageable task. In this case, the proper coordination of this process should

guarantee that we also compromise between the different εj to eventually reach

preferred compromise solutions for the different subproblems in DMOP.

Procedure 4.2.2 (Optimization-free coordination). Let MOP and DMOP be given.

1. Select initial εj ∈ Rmj , εj ≧ 0, for all j = 1, . . . , M .

2. Find E(X, f j , εj) for MOPj for all j = 1, . . . , M .

3a. If
⋂M

j=1 E(X, f j , εj) 6= ∅, select a solution x̂ from the intersection.

3b. Otherwise change some or all εj and go back to Step 2.

4a. If x̂ is a preferred solution, stop.

4b. Otherwise change some or all εj and go back to Step 2.

In principle, this procedure can be used in two different ways. As a first

possibility, the decision maker may choose to start with comparably large values for

all εj so that, initially, there still exist many solutions in the common intersection

of the εj-efficient sets for MOPj . In this case, however, it may still be difficult to

identify a preferred decision so that the decision maker may sequentially reduce one

or more of the coordination parameters εj until only a reasonable small number of

decisions remain in the new intersection. Under the assumption that the changes

in εj agree with the preferences and expectations of the decision maker, a final

preferred solution then can be chosen from among the set of decisions remaining in

the common intersection of the εj-efficient decisions for MOPj .

On the other hand, the decision maker may also prefer to start with very

small values for εj , or initially set εj = 0 for all j = 1, . . . , M . In this case, however,

the intersection of the εj-efficient sets in Step 3 is usually empty, so that the decision

maker needs to sequentially increase one or more of the εj until finding one or a
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small number of decisions that belong to the common intersection and thus establish

reasonable compromise decisions, again provided that the choices of εj reflect the

specific preferences of the decision maker.

Without any underlying optimization, however, it is clear that the mere

intersection of the ε-efficient sets in Step 3 of this procedure in general does not

provide the means to guarantee that the final selected solution is actually efficient

for MOP. However, and as mentioned before, the advantage of this coordination

procedure over the two previous approaches is that it is also applicable to a discrete

solution set of a multiobjective program as found by, for example, a sampling tech-

nique or a genetic algorithm, for which a further optimization is computationally

too expensive or for other reasons not possible.

4.3 Mathematical Programming Example

Before we apply each of the three coordination procedures introduced in the

previous section to a real-life application in the next chapter, we first demonstrate

the proposed hierarchical decision making procedure and the underlying coordina-

tion mechanism on an example from mathematical programming. Thereby adopting

the role of a hypothetical decision maker, by the nature of this approach it is un-

avoidable that all our decisions remain subjective and, in practice, would also depend

on the actual decision maker’s expertise, preferences and expectations.

The chosen problem consists of four quadratic objective functions f1, f2, f3

and f4 which need to be minimized, subject to three inequality constraints g1, g2

and g3 in two variables x1 and x2

Minimize f1(x1, x2) = (x1 − 2)2 + (x2 − 1)2

f2(x1, x2) = x2
1 + (x2 − 3)2

f3(x1, x2) = (x1 − 1)2 + (x2 + 1)2

f4(x1, x2) = (x1 + 1)2 + (x2 − 1)2

subject to g1(x1, x2) = x2
1 − x2 ≤ 0

g2(x1, x2) = x1 + x2 − 2 ≤ 0

g3(x1, x2) = −x1 ≤ 0
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We denote the feasible set for this problem by X = {x ∈ R2 : gi(x) ≤ 0, i = 1, 2, 3}

and, since we consider all decisions and objectives without any underlying physical

interpretation, priorities or relative importances, we group the four objectives into

the two canonical pairs f1 = (f1
1 , f1

2 ) = (f1, f2) and f2 = (f2
1 , f2

2 ) = (f3, f4).

Additionally, to reduce any further notational burden, we also replace all double

indices 11, 12, 21 and 22 by 1, 2, 3 and 4, respectively.

To find a preferred decision to the above problem using the proposed hier-

archical procedure, we now start by solving

COP1: Minimize f1 = [f1(x), f2(x)] subject to x ∈ X (4.25)

for ten Pareto solutions that are depicted on the left in Figure 4.4 and then select the

highlighted middle point as first solution and reference point x1 = (0.447, 1.553). In

a practical context, this choice can be justified by the fact that this decision yields

comparable outcome levels for f1(x1) = 2.717 and f2(x1) = 2.294 and, thus, is one

of the best compromise decisions for COP1. Furthermore, for later reference, we

also calculate the two other objective values f3(x1) = 6.823 and f4(x1) = 2.340.
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s Pareto points for COP1

* selected point in COP1

Figure 4.4 On the left, ten Pareto outcomes for COP1 with f1 = (f1, f2), and on
the right, their corresponding images for f2 = (f3, f4)

However, we remark that, so far, our decision is merely based on the first

subproblem with respect to objectives f1 and f2. The plot on the right of Figure 4.4

shows the Pareto outcomes for COP1 with respect to the two other objectives f3
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and f4 and is provided here for convenience only. In addition, both plots also depict

a sample of the complete feasible set which show how all Pareto outcomes that

are found as solutions for the first subproblem belong to the worst outcomes with

respect to the second subproblem. In this context, also compare Figure 4.4 with the

previous illustration in Figure 4.3.

Before we proceed to the next coordination problem COP2, we investigate

the tradeoffs at the current decision x1 with respect to the two objectives f3 and f4

by computing the Lagrangean multipliers for the corresponding tradeoff problems

TOP3: Minimize f3(x) TOP4: Minimize f4(x)

subject to f1(x) ≤ f1(x1) + ε1 subject to f1(x) ≤ f1(x1) + ε1

f2(x) ≤ f2(x1) + ε2 f2(x) ≤ f2(x1) + ε2

f4(x) ≤ f4(x1) f4(x) ≤ f4(x1)

x ∈ X x ∈ X

where, initially, ε1 = ε2 = 0. Then choosing the optimal decision x1 as initial point in

our optimization routine, this immediately (after one iteration) confirms optimality

of x1 for both TOP3 and TOP4 and provides us with the tradeoff information

T31(x1) = −∂f3(x)

∂f1(x)

∣

∣

∣

∣

x=x1

= λ31 = 0.171 T41(x1) = −∂f4(x)

∂f1(x)

∣

∣

∣

∣

x=x1

= λ41 = 1.171

T32(x1) = −∂f3(x)

∂f2(x)

∣

∣

∣

∣

x=x1

= λ32 = 1.829 T42(x1) = −∂f4(x)

∂f2(x)

∣

∣

∣

∣

x=x1

= λ42 = 0.829

Hence, we see that only two tradeoff values are greater than 1, thus suggesting that

improvement in f3 or f4 is best achieved by increasing the coordination parameter

ε2 for f2 or ε1 for f1, respectively, before solving the second coordination problem

COP2: Minimize f2 = [f3(x), f4(x)] (4.26)

subject to f1(x) ≤ f1(x1) + ε1 = 2.717 + ε1 (4.26a)

f2(x) ≤ f2(x1) + ε2 = 2.294 + ε2 (4.26b)

x ∈ X (4.26c)

In particular, if we decide to focus on the more promising tradeoff between f3 and

f2, we might choose a new coordination parameter ε2 = 1, and after solving COP2
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with ε = (ε1, ε2) = (0, 1), we select the new decision xnew = (0.440, 1.239) with

its corresponding outcome f(xnew) = (2.490, 3.294, 5.328, 2.131) as new solution.

Hence, in this case, the actually achieved tradeoff between x1 and xnew involving f3

and f2 can now be computed according to the ratios in Equation 4.21 as

T32(x1, xnew) =
∆f3(x1)

∆f2(x1)
=

f3(x1) − f3(xnew)

f2(xnew) − f2(x1)
=

6.823 − 5.328

3.294 − 2.294
= 1.495 (4.27)

Here we note that although the chosen value ε2 = 1 is rather large compared to

the previous outcome value of f2(x1) = 2.294, the computed tradeoff λ32 = 1.829

at x1 provides a quite reasonable estimate for the actual tradeoff of 1.495. However

and as emphasized before, these tradeoff values should not be mistaken as precise

predictions for the tradeoffs that are usually achieved, especially when we decide to

simultaneously change both coordination parameters ε1 and ε2.

For illustration of this last remark, assume that we now decide to set ε =

(ε1, ε2) = (1, 2). Based on the initial tradeoff values computed at x1, we might

expect to gain improvements of ∆f3(x1) ≈ −λ32ε2 = 1.829 · 2 = 3.658 in f3 and

∆f4(x1) ≈ −λ41ε1 = 1.171 · 1 = 1.171 in f4. Then solving COP2 for, say, five new

efficient decisions, we obtain the five corresponding Pareto outcomes depicted on

the right of Figure 4.5 which, together with their new tradeoff values, are listed in

Table 4.2. For convenience, we also circle all those sampled outcomes from Figure 4.4

that satisfy the coordination constraints f1(x) ≤ f1(x1) + ε1 = 3.717 and f2(x) ≤

f2(x1) + ε2 = 4.294 and, thus, form the underlying set of feasible points for COP2.
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Figure 4.5 On the right, five Pareto outcomes for COP2 with f2 = (f2, f3) and
ε1 = (ε1, ε2) = (1, 2), and on the left, their corresponding images for f1 = (f1, f2)
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Table 4.2 Efficient decisions for COP2 and their objective and tradeoff values

# x1 x2 f1 f2 f3 f4 λ31 λ32 λ41 λ42

1 0.503 0.990 2.242 4.294 4.206 2.258 0 0.990 1.003 0
2 0.384 0.964 2.613 4.294 4.236 1.916 0 0.990 0.856 0
3 0.240 0.942 3.101 4.294 4.348 1.541 0 0.990 0.704 0
4 0.122 0.931 3.532 4.294 4.501 1.264 0 0.990 0.596 0
5 0.072 1.000 3.717 4.005 4.861 1.149 0 1.060 0.556 0

We find that the maximal improvements with respect to f3 and f4

∆maxf
3(x1) = f3(x1) − f3(0.503, 0.990) = 6.823 − 4.206 = 2.617 (expected: 3.658)

∆maxf
4(x1) = f4(x1) − f4(0.072, 1.000) = 2.400 − 1.149 = 1.251 (expected: 1.171)

are achieved by two different of the five efficient decisions for COP2 and thus not

achievable simultaneously so that, in this case, the choice of a preferred solution must

also compromise between these different possible improvements. Again selecting the

best compromise decision among these five solutions, we choose the third decision

in Table 4.2 as our second solution x2 = (0.240, 0.942), which is also highlighted in

Figure 4.5 with its new objective function values f(x2) = (3.101, 4.294, 4.348, 1.541).

In particular, we note that all tradeoff values at this decision reduce to values below

the suggested tradeoff threshold of 1, and consequently, we terminate the procedure

with this decision as our final solution.

To conclude this example, we also observe that while our final and all other

highlighted outcomes in Figure 4.5 are Pareto for the second subproblem COP2, so

that all underlying decisions are (at least weakly) efficient for the original MOP, none

of these outcomes actually lies on the Pareto curve for either the first or second sub-

problem. Hence, and as mentioned earlier, the decision making procedures proposed

in this chapter are capable to find decisions that truly compromise between the dif-

ferent subproblems and that cannot be found using other decomposition approaches

that do not properly coordinate the chosen decomposition.
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4.4 Discussion and Further Research

In close interplay of theoretical investigation and methodological develop-

ment, in this chapter we study a decomposition strategy for large-scale multiobjec-

tive programs and establish various results that subsequently lead to the formulation

of three interactive coordination and decision making procedures. Based on our ex-

plicit goal to remedy the challenges resulting from a high number of objectives, we

choose to decompose the original objective vector into several subsets of objective

components that can be evaluated independently, thus giving rise to a collection of

separate and smaller-sized subproblems. In particular, the objective spaces in every

subproblem are of lower dimension than for the original problem, and therefore, we

expect that solving these subproblems in the sense of choosing preferred decisions

becomes a more manageable task for the decision maker.

In the characterization of the efficiency relationships between the solutions

for the original and the decomposed subproblems, we show in Proposition 4.1.4

that all (weakly) efficient decisions for subproblems are also (weakly) efficient for

the original problem, for which the stronger result holds true under the additional

assumption that the decomposed objective function is injective. For the converse re-

lationship, however, we find in Example 4.1.5 that efficient decisions for the original

problem are not necessarily efficient for any subproblem, but merely epsilon-efficient

for a suitable choice of the associated relaxation parameter.

We contrast our decomposition approach with traditional scalarization tech-

niques and verify in a series of results preceding Corollary 4.1.13 that any efficient

decision that can be generated by scalarizing the complete problem can also be

found by separate scalarizations of the decomposed subproblems. In particular, as

one additional advantage of the proposed objective decomposition, we mention the

possibility to group objectives with similar analytical properties or a common phys-

ical interpretation into the same subproblem and, for each of these, use different

scalarization functions or parameters to achieve additional flexibility compared to

scalarization approaches that combine all objectives at once.
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To identify efficient solutions by other means than scalarization, we propose

an alternative approach that coordinates between different subproblems by adding

their objectives as additional constraints into a modified coordination problem. In

this case, Proposition 4.1.15 essentially maintains the result of Proposition 4.1.4

that all (weakly) efficient decisions for the coordination problems are also (weakly)

efficient for the original problem but, in addition, now every efficient decision for the

original problem also solves a suitable coordination problem. In particular, although

otherwise similar to the constrained-objective scalarization in Definition 2.2.26, each

coordination problem is still a multiobjective program so that not only the specifica-

tion of the associated parameters but also the selection of its corresponding solution

can be influenced by preferences and input of the decision maker.

In further modification of the above coordination problems, we introduce

a collection of single objective programs that can be used to assess the tradeoffs

and sensitivities associated with each objective function component and coordina-

tion constraint at any selected efficient decision. In particular, based on our result

in Proposition 4.1.17 that guarantees optimality of efficient decisions also for these

tradeoff problems, we can forgo their explicit solution and address in Remark 4.1.18

and the following discussion how we can compute all relevant sensitivities in a

straightforward manner from the associated set of Lagrangean multipliers.

Following the above results, we formulate three interactive decision making

procedures that are proposed to support decision makers in organizing the coordina-

tion between subproblems and to facilitate the required specification of coordination

parameters and the selection of preferred decisions for the individual subproblems.

The first Procedure 4.2.1 and the second in Figure 4.2 differ in whether this coor-

dination is accomplished in a nonhierarchical or hierarchical fashion and are based

on optimization, whereas the unique feature of Procedure 4.2.2 is its formulation as

a pure selection method. Especially in view of our earlier discussion in Section 3.4,

we again emphasize the prominent role played by the concept of epsilon-efficiency to

reflect compromises and tradeoffs based on the preferences of the decision maker but

essentially independent of its previous consideration as concept of approximation.

168



Choosing the optimization-based hierarchical procedure to solve a mathe-

matical programming example with four objectives, we illustrate how we can con-

veniently select an overall preferred decision by working only with one pair of biob-

jective problems and effectively use visualizations of the Pareto curves for each indi-

vidual problem which is impossible in the original four-dimensional outcome space.

Moreover, in our discussion we focus in large part on the proposed sensitivity anal-

ysis and find that although the provided tradeoff information, in general, does not

provide reliable estimates for the actually achieved improvement, it can be a helpful

indication for the suggested termination of the overall decision making procedure.

In addition, we expect that the proposed decomposition-coordination scheme is also

well suited for decentralized decision processes and provides a general framework

that enables the independent participation of multiple decision makers.

Nevertheless, much further work is possible and necessary to achieve or fur-

ther advance the practicality of the proposed decision making procedures for real-life

applications and again comes along with several interesting research ideas also of

interest from a theoretical point of view. First, the current limitations of the pro-

posed tradeoff and sensitivity analysis urge to take a closer look at its underlying

assumptions and to derive conditions under which we can more precisely predict the

resulting changes in the corresponding objective function values. Second, while the

current tradeoff analysis utilizes a sensitivity result from single objective program-

ming, namely the sensitivity theorem from nonlinear programming (Luenberger,

1984) that is based on Lagrangean duality, the question remains if there also exists

a multiobjective analogon and motivates a further investigation of general vector

duality and sensitivity. Third, by replacing Pareto by general cone efficiency, it is

not necessarily clear how to properly decompose the overall domination cone for the

individual subproblems so to obtain similar results to those presented for the Pareto

case, and we propose such inquiry as another interesting research problem.

From among the numerous methodological issues that need to be addressed,

we only highlight the apparent dependency of the decision making process and,

thus, of the final preferred decision on the chosen decomposition. While several of
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our results, namely Propositions 4.1.9, 4.1.12, 4.1.15 and 4.1.17, require a complete

decomposition that includes all original objectives in at least one subproblem, at the

moment we do not impose any other restriction on either the number of objectives

per subproblem nor the number of subproblems themselves. Hence, although we

generally recommend to decompose the original problem into sufficiently small and

preferably biobjective programs to enable the visualization of the individual Pareto

curves, the examination of other consequences may lead to new insights and enhance

the subsequent decision making already in the preparatory decomposition step.

In most practical cases, however, we believe that a suitable decomposition

is usually problem-dependent and best chosen based on the specific objectives that

are modeled in the underlying multiobjective program. In particular, emerging in-

terests in the formulation of multiscenario multiobjective programs as given in Def-

inition 4.1.3 provide a host of potential applications that imply a natural problem

decomposition into different scenarios (Wiecek et al., 2006). For example, Kouvelis

and Yu (1997) examine single objective programs for which the different scenarios

are defined by different data instances, and they are interested in finding solutions

that are robust, or comparably preferred in all associated subproblems. In structural

optimization and engineering design, different scenarios are frequently defined as dif-

ferent loading conditions, and for multidisciplinary optimization a different subprob-

lem can be associated with each individual discipline (Sobieszczanski-Sobieski and

Haftka, 1997). Other possible applications include product platform design (Fellini

et al., 2002, 2005) for which the scenarios represent different products that are pro-

duced from a common set of shared components resulting in potential sacrifices in

individual product performance, and typical scenarios in vehicle configuration de-

sign include the same vehicle operating in various steering maneuvers under different

road or driving conditions (Gobbi and Mastinu, 2002; Fadel et al., 2005).

Without going into any further detail, we summarize that the number of

possible applications of the proposed decomposition and coordination methods is

essentially unlimited, and we choose only four particular problems for the further

illustration of our decision making procedures in the now following chapter.
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CHAPTER 5

APPLICATIONS IN FINANCE AND ENGINEERING DESIGN

In this chapter, we apply the decomposition approach proposed in the previ-

ous Chapter 4 to selected real-life applications from finance and engineering design

and show how each of the three interactive decision making procedures can be used to

coordinate between the resulting subproblems by setting tradeoffs and resolving con-

flicts for the identification of a final and overall preferred decision. In particular, we

extend the classical Roy-Markowitz model for portfolio optimization in Section 5.1

to allow for multiple estimates of investment returns and risks, thereby giving rise to

a multiscenario multiobjective program, and we similarly solve a truss design prob-

lem with multiple loading conditions in Section 5.2 using the two optimization-based

procedures. Their modification for a selection problem is described in Section 5.3

for a vehicle configuration problem in the context of packaging optimization, and

we finally use the originally proposed optimization-free procedure to select a vehicle

system component in the context of highway safety in the concluding Section 5.4.

5.1 Investment Selection in Portfolio Optimization

A common problem in portfolio optimization asks an investor to distribute

a financial capital among n assets to maximize the portfolios’s return over a fixed

holding period. For the following discussion, we let xa ∈ R, 0 ≤ xa ≤ 1, denote the

investment proportion into asset a = 1, . . . n, and x = (x1, . . . , xn)T ∈ Rn be the

investment vector. Since asset returns, in general, are not known at the beginning

of the holding period, we let ra be a real-valued random variable for the return

of asset a, and r(x) =
∑n

a=1 raxa be the portfolio return of the investment vector

or investment strategy x. With this notation, the resulting portfolio optimization

problem (POP) can be formulated as the stochastic program

POP: Maximize r(x) =

n
∑

a=1

raxa subject to

n
∑

a=1

xa = 1, x ≧ 0 (5.1)



To solve POP, Roy (1952) and Markowitz (1952) independently introduce an equiva-

lent deterministic biobjective program by replacing the random return maximization

r(x) with maximization of the expected return E[r(x)] and minimization of its vari-

ance V [r(x)]. Following their approach, we let µa = E[ra] be the expected return

and σ2
aa = V [ra] be the variance of asset a = 1, . . . , n, and for a 6= b = 1, . . . , n, we

let σ2
ab = Cov[ra(x), rb(x)] be the covariance between ra and rb. Modern portfolio

theory assumes that µa, σ2
aa, and σ2

ab are known for all a, b = 1, . . . , n, although, in

reality, expected returns, variances and covariances are unknown and can only be

estimated from historical data (Elton et al., 2003). Hence, in general, the selected

and presumingly optimal portfolio is usually biased depending on the particularly

chosen estimator, a fact commonly ignored in the discussion of possible investments.

To remove this drawback and to find an investment strategy that per-

forms well for a variety of different estimators, in this example, we study the Roy-

Markowitz mean-variance model and allow the simultaneous consideration of three

different estimates j = 1, 2, 3 for return expectations µj
a, variances σ2j

aa and covari-

ances σ2j
ab. More precisely, given historical data over D days, we let rad denote the

return of asset a on day d = 1, . . . , D and then estimate the average return µa as

µj
a = Ej(ra) =

∑D
d=1 wj

drad
∑D

d=1 wj
d

(5.2a)

where the parameters wj
d are weights that may vary for different days d to put

different emphases on, say older or more recent data. In particular, with w1
d = 1 for

all d = 1, . . . , D, we use the sample mean r̄a as estimate µ1
a and, furthermore, choose

w2
d = d and w3

d = d2 to obtain first and second order linearly weighted averages as

µ2
a and µ3

a, respectively, thereby assigning higher weights to data that is more recent.

In all three cases, the variances and covariances are computed accordingly as

σ2j
ab = Ej [(rad − Ej(ra))(rbd − Ej(rb))] =

∑D
d=1 wj

d(rad − µj
a)(rbd − µj

b)
∑D

d=1 wj
d

(5.2b)

Finally replacing positive return maximization by the equivalent negative return

minimization, the resulting collection of biobjective programs
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BOPj : Minimize (−Ej [r(x)], V j [r(x)]) subject to

n
∑

a=1

xa = 1, x ≧ 0 (5.3)

with Ej [r(x)] =
∑n

a=1 µj
axa and V j [r(x)] =

∑n
a=1

∑n
b=1 σ2j

abxaxb is a multiscenario

multiobjective program in the same form as DMOP and, thus, can be solved using

any of the two optimization-based procedures proposed in the previous chapter. In

particular, since the expectation terms are linear and the variances are quadratic in

the investment vector x, all objective functions are convex and twice continuously

differentiable which, in principle, allows to compute the Lagrangean multipliers from

the tradeoff problems associated with each of the three subproblems BOPj .

Based on recent one-year data of twenty assets included in the S&P500

stock market index, we first use the two formulas in (5.2a) and (5.2b) to compute

expected returns µj
a, variances σ2j

aa and covariances σ2j
ab for all assets a, b = 1, . . . , 20

and j = 1, 2, 3, respectively. Furthermore, we normalize all data to magnitudes

less than 1 by dividing each return vector and covariance matrix by the maximum

absolute value of its entries, before starting with Step 1 of Procedure 4.2.1.

Step 1: We select an initial strategy x̂ of equal investment proportions x̂a =

1/20 for every asset a = 1, . . . , 20 and initialize xj = x̂ and εj = (εj
E , εj

V ) = (0, 0)

for j = 1, 2, 3. The associated expected returns and variances correspond to point

A in Figure 5.1, that also shows the individual Pareto sets obtained from separately

solving each of the three subproblems BOPj . Moreover, the numerical values of all

returns and variances are listed in Table 5.1, and to simplify the later discussion we

also denote the current portfolio x̂ as xA.

Step 2b: The initial investment xA naturally shows a considerable diversifi-

cation and, therefore, already provides very small variances of at most 0.13, strongly

favoring the minimization of the portfolio’s risk over its return maximization. Conse-

quently, this initial solution is not preferred, and we can select any and, specifically,

choose the first subproblem for its further improvement.
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Step 3: We formulate and solve the problem

COP1: minimize (−E1[r(x)], V 1[r(x)]) (5.4)

subject to − Ej [r(x)] ≤ −Ej [r(xj)] + εj
E (5.4a)

V j [r(x)] ≤ V j [r(xj)] + εj
V for j = 1, 2, 3 (5.4b)

where xj = xA and εj
E = εj

V = 0 for all j from Step 1. Using the weighted-sum

scalarization approach, we identify the Pareto set for COP1, depicted in Figure 5.1,

and then select the solution corresponding to point B as our new portfolio x̂ = xB.

In particular, this solution yields the most improvement with respect to expected

returns, while meeting or even further reducing the variances and, thus, the risk as-

sociated with the initial investment strategy xA, which can be inferred by comparing

the numerical values in Table 5.1. Moreover, the new point B now is Pareto for the

first subproblem, although it is not Pareto for the second or third subproblem. Since

still ε1 = 0, we only update x1 = xB before proceeding to Step 4.
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Figure 5.1 Individual Pareto sets for each BOPj with bold curves corresponding
to the Pareto set for COP1 (left) in Step 3 and its image for BOP2 and BOP3

Step 4b: Figure 5.1 indicates that the variance constraints V j [r(x)] ≤

V j [r(xA)]+εj
V with εj

V = 0 in COP1 prevent a further improvement in the expected

return unless we decide to further relax the values for εj
V . Since the V 1 constraint in

COP1 is active at the current solution xB, we can formulate the associated tradeoff

problem TOP11 and minimize the negative expected return −E1[r(x)] under the
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same constraints as in COP1 to compute that T 11
12 = λ11

12 = 3.35, where λ11
12 is the

Lagrangean multiplier associated with the constraint V 1[r(x)] ≤ V 1[r(x1)] at the

optimal solution xB of TOP11. Although we note from Table 5.1 that the two con-

straints for V 2 and V 3 are not active, the slack is sufficiently small to similarly

approximate T 11
22 = λ11

22 = 3.15 and T 11
32 = λ11

32 = 3.27 from neighboring points of

xB. An interpretation of these values implies that for very small increases in εj
V or,

equivalently, V j , we expect a threefold improvement in the expected return E1.

Step 5: To restrict the acceptable variances to values of, say less than 0.3,

we specify all εj
V = 0.18 before resolving COP1 in Step 3. While this should guaran-

tee the significant further improvement in E1, however, this relaxation is clearly too

large to result in an accurate threefold improvement obtained as current tradeoff in

Step 4b, valid only for much smaller relaxations of εj
V .
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Figure 5.2 Bold curves from point B to point C correspond to the Pareto set for
COP1 (left) in Step 3(2) and its image for BOP2 (center) and BOP3 (right)

Step 3(2): Figure 5.2 shows the new Pareto set obtained by solving COP1

with x1 = xB from the previous Step 3, initial strategies x2 = x3 = xA, εj
E = 0 and

εj
V = 0.18 for j = 1, 2, 3. In particular, while all solutions are still Pareto for the

first subproblem, now they deviate significantly from the individual Pareto curves

for the second and third subproblem. Hence, after selecting the point C as new

solution x̂ = xC , we update x1 = xC , reset ε1
V = 0, and again proceed to Step 4.
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Step 4a: Overly satisfied with the achieved return E1 = 0.9 of the current

portfolio xC , which is listed with the other values in Table 5.1, we adjust ε1
E = 0.1 to

merely maintain an expected return E1 ≥ 0.8 for the first subproblem, but possibly

gain a better solution in view of the other two subproblems.

Step 2b(2) While the current portfolio xC is still reasonable for the second

subproblem but rather unacceptable for the third subproblem, simply judged based

on the respective distances from point C to the Pareto curves in Figure 5.2, we now

focus on further improvement on the expected return E3.

Step 3(3): Consequently, we formulate and solve the problem

COP3: minimize (−E3[r(x)], V 3[r(x)]) (5.5)

subject to − Ej [r(x)] ≤ −Ej [r(xj)] + εj
E (5.5a)

V j [r(x)] ≤ V j [r(xj)] + εj
V for j = 1, 2, 3 (5.5b)

where x1 = xC is the current solution, x2 = x3 = xA is still the initial point,

ε1
E = 0.1, ε1

V = 0, εj
E = 0 and εj

V = 0.18 for j = 2, 3. The resulting Pareto set

for COP3 is depicted in Figure 5.3, and the values for the three highlighted points

D, E, and F are listed in Table 5.1. Note that all solutions for COP3 relax E1 by

the maximum specified amount of ε1
E = 0.1 and achieve improvement not only in

the optimized third subproblem, but also in the second subproblem. In particular,

after selecting the solution xE that corresponds to the middle point E in Figure 5.3

as the best compromise solution x̂ for COP3, we set x3 = xE , ε3 = 0, and do not

desire further improvement of either E2 or V 2.

Step 4a and 2a: Satisfied with the achieved objective function values in the

third and, moreover, all other subproblems, we do not need to further adjust ε3

and now go to Step 2a to terminate the procedure with the current x̂ = xE as the

preferred final solution and investment strategy.
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Figure 5.3 Bold curves from point D to point F correspond to the Pareto set for
COP3 (right) in Step 3(3) and its image for BOP1 (left) and BOP2 (center)

Table 5.1 Return and variance estimates for portfolios in Figures 5.1, 5.2, and 5.3

BOP1 BOP2 BOP3

E1[r(x̂)] V 1[r(x̂)] E2[r(x̂)] V 2[r(x̂)] E3[r(x̂)] V 3[r(x̂)]

A 0.152906 0.120385 0.290292 0.129330 0.357932 0.126309
B 0.636321 0.120385 0.700503 0.125709 0.671444 0.122688
C 0.905929 0.300385 0.845338 0.294723 0.753173 0.272746
D 0.805929 0.199371 0.791192 0.201070 0.726274 0.190173
E 0.805929 0.250229 0.863149 0.243992 0.825127 0.225964
F 0.805929 0.300385 0.893574 0.294483 0.875052 0.274021

This example can be modified in several ways. Instead of changing the

weights for the chosen return and variance estimates, different scenarios can also be

defined based on data of varying histories, for example, 12-month or 3-year perfor-

mances (Ehrgott et al., 2004). In addition, various new objectives such as dividends,

social responsibility, or liquidity can be included into the portfolio selection process

(Spronk et al., 2005; Steuer et al., 2005), thereby necessitating to decompose the

resulting problem without a physical interpretation of different scenarios. The ap-

plication of the procedure, however, will essentially remain the same.
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5.2 Truss Topology Design in Structural Optimization

Structural design optimization deals with the development and engineering

of complex systems and structures such as cars, airplanes, spaceships or satellites.

Based on tremendous gain in experience and knowledge, together with the rapid

progress in available computing technologies, the underlying mathematical models

and design simulations become better and better and provide designers with grow-

ing amounts of data that need to be analyzed for choosing a final optimal design.

In particular, the steadily increasing number of design specifications, measures and

criteria used to evaluate the performance of the simulated designs lead to cumber-

some and sometimes unachievable tradeoff analyses, thus resulting in complex and

very difficult, if not unsolvable, decision making problems.

Consequently, structural design is also a common field for application of

multiobjective optimization. By nature, in a majority of such problems one criterion

is typically the structural volume or weight which needs to be minimized, while

loading conditions or other structural performance specifications may give rise to

the additional criteria. In particular, in our discussion we investigate the design

of the four-bar plane truss structure already described in Section 3.3.6 and various

other places in the literature (Koski, 1984, 1985; Koski and Silvennoinen, 1987;

Koski, 1988; Stadler and Dauer, 1992; Coello and Christiansen, 2000; Coello Coello,

2001; Coello Coello and Lamont, 2004) for which the original mathematical model

is a biobjective program with the two conflicting objectives of minimizing both the

volume V of the truss and the displacement d1 of the node joining bars 1 and 2

under the loading condition depicted for the leftmost truss in Figure 5.4.
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Figure 5.4 Three different loading conditions on a four-bar plane truss structure
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In our particular application, however, we also use the two additional loading

conditions from Koski (1984) that are depicted for the middle and right truss in

Figure 5.4 and analyzed with respect to their associated displacements d2 and d3 by

Blouin (2004). The length L = 200 cm of the structure, the acting force F = 10 kN,

Young’s modulus of elasticity E = 2 × 105 kN/cm2 and the only nonzero stress

component σ = 10 kN/cm2 are again assumed to be constant, and the cross-sectional

areas x1, x2, x3 and x4 of the four bars again are subject to several additional

physical restraints that yield the feasible design or decision set

X =
{

x = (x1, x2, x3, x4) ∈ R4 : F
σ ≤ x1, x4 ≤ 3F

σ ,
√

2F
σ ≤ x2, x3 ≤ 3F

σ

}

(5.6)

The overall problem then becomes to select a feasible preferred design that minimizes

the structural volume V (x) and joint displacements d1, d2, d3 for the three different

loading conditions in Figure 5.4

Minimize V (x) = L(2x1 +
√

2x2 +
√

2x3 + x4) (5.7a)

d1(x) =
FL

E

(

2

x1
+

2
√

2

x2
− 2

√
2

x3
+

2

x4

)

(5.7b)

d2(x) =
FL

E

(

2

x1
+

2
√

2

x2
+

4
√

2

x3
+

6

x4

)

(5.7c)

d3(x) =
FL

E

(

6
√

2

x3
+

3

x4

)

subject to x ∈ X (5.7d)

This problem can also be viewed as a multiscenario multiobjective program

(Fadel et al., 2005) as introduced in Definition 4.1.3, with each loading condition act-

ing as one of three possible scenarios. Based on the assumption that the first loading

scenario occurs most often and the third scenario only very rarely, we decompose

the overall problem into the three associated criteria pairs f1 = (f1
1 , f1

2 ) = (d1, V ),

f2 = (f2
1 , f2

2 ) = (d2, V ) and f3 = (f3
1 , f3

2 ) = (d3, V ). In particular, we note that the

volume criterion participates in every scenario and, thus, is repeated in each sub-

problem. Moreover, by including additional scenarios this example readily extends

to problems with five or any other number of objectives as well, and the restric-

tion to three subproblems is merely for the ease of demonstration. Similar to our
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previous discussion of the mathematical programming example in Section 4.2.2, we

use the optimization-based hierarchical procedure from Figure 4.2 to find a common

design that is preferred for all given scenarios. Consequently, we start by solving

COP1: Minimize f1(x) = [d1(x), V (x)] subject to x ∈ X (5.8)

to obtain the ten Pareto solutions that are highlighted in Figure 5.5, from among

which we subsequently select the highlighted point (∗) as preferred compromise solu-

tion for COP1. The corresponding truss design x1 = (1.7459, 2.4732, 1.4142, 2.4730)

is illustrated in Figure 5.7 and has performance values of V (x1) = 2292.5 cm3 for the

truss volume and d1(x1) = 0.0110 cm, d2(x1) = 0.0721 cm and d3(x1) = 0.0872 cm

for the three node displacements.
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Figure 5.5 On the left, ten Pareto solutions for COP1 and the first scenario, and
centered and on the right, their respective images for the second and third scenario

Before we solve the next coordination problem, we formulate the two tradeoff

problems that are associated with the second and third scenario

TOP21: Minimize d2(x) TOP31: Minimize d3(x)

subject to d1(x) ≤ d1(x1) + εd1
subject to d1(x) ≤ d1(x1) + εd1

V (x) ≤ V (x1) + εV V (x) ≤ V (x1) + εV

x ∈ X x ∈ X
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but, for conceptual simplicity, restrict our analysis to the tradeoff between the dif-

ferent deflection criteria. Solving the two tradeoff problems TOP21 and TOP31 with

x1 as initial design, we obtain the associated Lagrangean multipliers

λ21 =
∂d2(x)

∂d1(x)

∣

∣

∣

∣

x=x1

= 413.77 and λ31 =
∂d3(x)

∂d1(x)

∣

∣

∣

∣

x=x1

= 538.03 (5.9)

in which case the very large magnitudes of these values clearly indicate that the

currently selected design x1 should be further improved. However, as emphasized

before and quite obvious at this point, these values do not give us an accurate

prediction on the improvement that we should expect to actually obtain.

Considering that the current first node deflection of d1(x1) = 0.0110 cm is

significantly smaller than the second and third displacement, d2(x1) = 0.0721 cm

and d3(x1) = 0.0872 cm, we assume that we are still willing to accept a design that

yields a first node deflection of up to 0.03 cm, provided a reasonable tradeoff or

improvement with respect to d2 or d3. Thus, while setting εV = 0 to maintain the

current volume of the truss, we only change the tolerance value εd1
= 0.02 cm and

then solve the next coordination problem

COP2: Minimize f2 = [d2(x), V (x)] (5.10)

subject to d1(x) ≤ d1(x1) + εd1
= 0.0310 (5.10a)

V (x) ≤ V (x1) + εV = 2292.5 (5.10b)

x ∈ X (5.10c)

By solving COP2 for the second scenario, we now find a corresponding new

set of Pareto optimal designs, that is depicted in the middle plot of Figure 5.6 and

for which the corresponding performances for the first and third scenario are again

depicted in the left and in the right plot, respectively.

In particular, we note from the left plot that all these new solutions, in

fact, meet the specified upper performance bound on d1 for the first subproblem,

while resulting in a tradeoff between the volume and second node deflection in

COP2. Assuming that our main incentive is still the improvement with respect

181



1000 2000 3000 4000
0

0.01

0.02

0.03

0.04

0.05

0.06

volume (cm3)

no
de

 d
ef

le
ct

io
n 

1 
(c

m
)

1000 2000 3000 4000
0.03

0.04

0.05

0.06

0.07

0.08

0.09

volume (cm3)

no
de

 d
ef

le
ct

io
n 

2 
(c

m
)

1000 2000 3000 4000
0.04

0.06

0.08

0.1

0.12

0.14

volume (cm3)

no
de

 d
ef

le
ct

io
n 

3 
(c

m
)

Figure 5.6 In the center, Pareto solutions for COP2 and the second scenario, and
on the left and right, their respective images for the first and third scenario

to the second node deflection d2, we decide not to further improve the structural

volume and, thus, select the highlighted bottommost point as the improved second

design x2 = (1.1754, 1.6582, 2.7837, 2.8298), depicted in Figure 5.7.

w

w

w

w1.7459

2.4732

1.4142

2.4730
w

w

w

w1.1754

1.6582

2.7837

2.8298

Figure 5.7 Selected Pareto designs x1 for COP1 (left) and x2 for COP2 (right)

The performances of this new design are given as V (x2) = 2292.5 cm3,

d1(x2) = 0.0310 cm, d2(x2) = 0.0411 cm and d3(x2) = 0.0756 cm, and hence, the

actually achieved tradeoffs can now be computed as
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∆d2(x)

∆d1(x)
=

d2(x1) − d2(x2)

d1(x2) − d1(x1)
=

0.0721 − 0.0411

0.0310 − 0.0110
= 1.55 (5.11a)

∆d3(x)

∆d1(x)
=

d3(x1) − d3(x2)

d1(x2) − d1(x1)
=

0.0872 − 0.0756

0.0310 − 0.0110
= 0.58 (5.11b)

As expected, the tradeoff between d1 and d2 achieves a value greater than 1

and, thus, is a favorable one. The smaller tradeoff value between d1 and d3 is not

surprising either as we only solve COP2 which, in fact, does not minimize with

respect to d3. Nevertheless, from the right plot in Figure 5.6 we see that the current

design x2 already gives a reasonable compromise solution with respect to the third

loading scenario that also involves d3. In particular, upon computing the updated

tradeoff ratios λ21 from TOP21 at the new design x2 and including the additional

constraint d2(x) ≤ d2(x2) + εd2
with (εd1

, εd2
, εV ) = (0.02, 0, 0) into a new TOP31

TOP31: Minimize d3(x) (5.12)

subject to d1(x) ≤ d1(x1) + εd1
= d1(x2) = 0.0310 (5.12a)

d2(x) ≤ d2(x2) + εd2
= 0.0411 (5.12b)

V (x) ≤ V (x2) + εV = 2292.5 (5.12c)

x ∈ X (5.12d)

we obtain a set of new Lagrangean multipliers, yielding the updated tradeoff ratios

T21(x2) = −∂d2(x)

∂d1(x)

∣

∣

∣

∣

x=x2

= λ21 = 0.7877 (5.13a)

T31(x2) = −∂d3(x)

∂d1(x)

∣

∣

∣

∣

x=x2

= λ31 = 0 (5.13b)

T32(x2) = −∂d3(x)

∂d2(x)

∣

∣

∣

∣

x=x2

= λ32 = 0.2481 (5.13c)

Since all these values are now less than a possible tradeoff threshold of 1, we may

conclude that solving the third coordination problem is unlikely to yield significant

further improvement, and thus, our previous discussion suggests to terminate the

solution of this problem with x2 from Figure 5.7 as the final preferred design.
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5.3 Vehicle Layout Configuration in Packaging Optimization

Packaging optimization deals with the spatial arrangement of a given set of

objects into some specified volume. We personally face such problems when packing

our book bag or briefcase to get ready for school or work, or when fitting clothes and

other belonging into a suitcase and that suitcase into our car’s trunk to get ready for

our next vacation. Clearly, these problems also occur in many industrial settings,

for example when a manufacturer of cat food needs to put the produced cans into

boxes, a grocery store supplier loads those boxes onto a truck, and a worker at the

local store takes the cans out of their boxes and arranges their display onto shelves

for their final sale to a customer. In an engineering context, packaging optimization

is also related to layout and configuration design, and the problem that we address

in the following discussion is taken from the particular case of vehicle configuration

design following the treatment in Yi (2005).

In this particular application, we are interested in the layout of a set of ve-

hicle components for a medium-sized truck that needs to be designed for possible

use in both civilian and military situations and environments, thus imposing some

very specific and critical design objectives onto the final truck configuration. As

depicted in Figure 5.8, the components include engine, reformer, transmission, ac-

cumulator, pump, reservoir, fuel tank, and auxiliary power unit (APU), and a total

of 36 decision variables models the respective location and rotational orientation of

these components as well as their overall packaging sequence.

The objectives that we consider are the truck’s ground clearance, its vehicle

dynamics, as well as component maintainability and survivability. A high ground

clearance is important to enable the truck’s flexibility in a variety of different terrains

and is measured as the maximum angle that the truck can climb without interference

with the ground. As vehicle dynamics objective, we employ the maximum lateral

acceleration of the truck before wheel-lift, which must be avoided due to the potential

fatal consequence of a truck roll-over. It is clear, however, that the possibility of a

roll-over increases with the truck’s ground clearance, and consequently, we already

expect to see a conflict between these first two objectives in our later analysis.
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Figure 5.8 Vehicle components for configuration design of a medium-size truck

The component maintainability is defined as index for the ease of mainte-

nance of the truck, for which we require that those components that need to be

handled more frequently, such as the reservoir or fuel tank, are easily accessible.

Finally, with the objective of survivability we refer to the specific military require-

ment that the truck must be capable to resist the attack of bullets and explosives

during combat, so that especially the fuel tank and power unit should be blocked by

other items to be protected from a direct external access. As before, we note that

the objectives of maintainability and survivability are usually in conflict.

A very detailed discussion of this model together with an extensive expla-

nation of the underlying computation and simulation codes is given in the original

reference (Yi, 2005). In particular, due to the high complexity in evaluating the

different objectives for a given packaging sequence and design configuration, this

problem is originally solved by a genetic algorithm that provides the designer or

decision maker with a set of one hundred candidate designs and their correspond-

ing outcomes from among which a final truck layout is to be chosen. Clearly, this
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selection still puts a significant burden on the decision maker who now needs to

consider and suitably compare all these candidates to ultimately select a final and

preferred layout design. In particular, since this problem consists of four objectives

so that the outcome space is four dimensional, a visualization of these outcomes is

only possible if we choose a decomposition into biobjective subproblems, using the

general objective decomposition approach as proposed in the previous chapter.

In Figure 5.9, we show this decomposition of the four-dimensional outcome

space into the two subproblems with ground clearance and vehicle dynamics in the

first plot on the left and maintainability and survivability in the second subproblem

plotted on the right. While the physical interpretation of ground clearance and

vehicle dynamics is given as maximum angle (measured in degrees) and acceleration

(measured in meters per square seconds), the other two objectives are normalized

between 0 and 1 so that their values can be interpreted as percental achievement of

the respective single objective optimum. We also note that, in both cases, the two

objectives exhibit the conflict that we expect from our earlier discussion.
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Figure 5.9 Decomposition of the four-dimensional outcome space of the truck
layout problem into biobjective subproblems with their individual Pareto sets
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Since in this application all outcomes are readily available, we do not need to

formally solve any subproblem or coordination problem but can immediately select

a preferred outcome (∗) from the Pareto set of the first subproblem. Here note that,

because all objectives are subject to maximization, the Pareto sets correspond to the

upper right fronts and are highlighted by black bullets (•) and squares (�) for the

first and second subproblem, respectively. Similar to the discussion for the previous

examples and Figures 4.3 and 4.4, we also note that the individual Pareto outcomes

for each subproblem are again among the worst outcomes for the respective other

problem, justifying the subsequent coordination step to find a design whose outcome

establishes a better compromise between all four objectives by trading off ground

clearance and vehicle dynamics with maintainability and survivability.

To decide on this tradeoff, we also investigate the objective values at the

current design with a ground clearance of 43.5 degrees, a vehicle dynamics index

of 5.79 m/s2, and maintainability and survivability values of 16% and 41%, respec-

tively. Based on further expert opinion, we can now specify maximal deviations

from each of these values and, as indicated in Figure 5.10, select εgc = 1.5 degrees

for ground clearance and εvd = 0.8 m/s2 for vehicle dynamics. The resulting set

of ε-Pareto outcomes for the first subproblem and the correspondingly improved

outcomes for the second subproblem are highlighted as circled points in Figure 5.10.

In view of the high importance of survivability, we now select the new high-

lighted point (∗) in Figure 5.10 as the new and final outcome, yielding the new

objective values of 42.21 degrees for ground clearance and 5.72 m/s2 for vehicle

dynamics as well as 52% for maintainability and 81% for survivability. Hence, the

decay of 0.07 m/s2 in vehicle dynamics and 1.29 degrees in ground clearance has

enabled an improvement of 36% in maintainability and 40% in survivability. While

the comparison and interpretation of these changes with respect to the actual truck

layouts, depicted in Figure 5.11, is difficult due to complex dependencies between

the different vehicle characteristics, we only note how the cylinder-shaped fuel tank

has moved from the very exposed side position for the first to a more hidden position

for the second truck layout. Clearly, based on the critical role of a well protected fuel

187



40 42 44 46
5.6

5.65

5.7

5.75

5.8

5.85

ground clearance (degrees)  

ve
hi

cl
e 

dy
na

m
ic

s 
(m

/s
2 ) 

   

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

maintainability (normalized)

su
rv

iv
ab

ili
ty

 (
no

rm
al

iz
ed

) 
 

eps
gc

 = 1.5

eps
vd

 = 0.1

◦ ε-Pareto outcomes in left and corresponding images in right plot
• Pareto outcomes in right plot among the above ε-Pareto outcomes (◦)
• 100 outcomes from GA ∗ previously and newly selected outcome

Figure 5.10 Subproblem tradeoff and selected outcomes for truck layout problem

tank for the overall survivability of both the truck’s driver and its passengers, this

might be one of the reasons for the significant improvement in survivability of the

second over the first truck layout. Any further discussion, however, again requires

specific expert knowledge on this particular application.

Figure 5.11 Vehicle configurations of outcomes selected for truck layout problem
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5.4 Seat and Head Restraint Selection in Vehicle System Design

According to the most recent data released by the U.S. Department of Trans-

portation, 43,443 people died in motor vehicle crashes in the year 2005 (Fatality

Analysis Reporting System (FARS), 2006). To reduce the deaths and injuries that

occur in car and other traffic accidents, the Vehicle Research Center (VRC) of the

Insurance Institute for Highway Safety (IIHS) conducts research on crash testing to

supply consumers with information about car crashworthiness and car manufactur-

ers with recommendations on improving their adopted design specifications.

In this context, we consider the selection of a seat and head restraint system

following the recent Research Council for Automobile Repair (RCAR) standard for

evaluating and rating the ability of seats and head restraints to prevent neck injury

in moderate and low-speed car crashes (Insurance Insitute for Highway Safety, 2006).

The procedures and criteria were developed by the International Insurance Whiplash

Prevention Group (IIWPG), and the data underlying our analysis is provided by

courtesy of Ford Research & Advance Engineering Laboratories (Fu, 2006).

This data consists of 510 design solutions that are evaluated by four per-

formance criteria as developed by the IIWPG, namely the forward acceleration of

the seat occupant’s torso (T1 acceleration), the time to head restraint contact, the

neck shear force, and the neck tension force. The latter two are considered jointly

and combined by an equally weighted vector sum, thereby yielding a multiobjective

program with three objectives. Since the performance evaluation of any additional

design would necessitate to conduct a new crash test and, thus, is not possible

anymore at this stage of the design process, an actual optimization is replaced by

the mere selection of the preferred available design solution, using the objective

decomposition and coordination outlined in Procedure 4.2.2 in Section 4.2.3.

Let I = {1, 2, 3}, and f = (f1, f2, f3) denote the vector criterion including T1

acceleration (f1), time to head restraint contact (f2), and neck forces (f3), all nor-

malized to values between 0 and 1. We completely decompose I into I1 = {1, 2}, I2 =

{1, 3}, I3 = {2, 3}, and, accordingly, let f1 = (f1, f2), f2 = (f1, f3), f3 = (f2, f3),

and ε1 = (ε1, ε2), ε2 = (ε1, ε3), ε3 = (ε2, ε3). Finally, we let X = {x1, . . . , x510} be
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the set of designs and denote E = |E(X, f, ε)|, Ej = |E(X, f j , εj)| for j = 1, 2, 3,

Ejk = |E(X, f j , εj)∩E(X, fk, εk)| for j 6= k = 1, 2, 3, and E123 = |⋂3
j=1 E(X, f j , εj)|.

Table 5.2 shows these cardinalities for different choices of ε, and Figure 5.12 depicts

all 510 designs evaluated for MOP and the three biobjective subproblems BOP1,

BOP2, and BOP3 to provide illustration of our following discussion.

Table 5.2 Solution set sizes of MOP and DMOP for design selection problem

ε1 ε2 ε3 E E1 E2 E3 E12 E13 E23 E123

1 0.0 0.0 0.0 36 17 7 5 3 2 1 0
2 0.1 0.0 0.0 84 54 27 5 20 3 1 0
3 0.5 0.0 0.0 384 380 263 5 263 5 2 2
4 0.0 0.1 0.0 94 69 7 13 6 8 2 2
5 0.0 0.5 0.0 410 399 7 183 7 173 4 4
6 0.0 0.0 0.1 118 17 97 73 9 7 69 6
7 0.0 0.0 0.5 432 17 422 425 15 16 421 15
8 0.0 0.1 0.1 160 69 97 78 24 22 69 18
9 0.1 0.1 0.1 205 129 119 78 55 35 71 32

10 0.03 0.03 0.03 77 45 28 16 11 4 11 1

Step 1: In this initialization step, we select ε1 = ε2 = ε3 = 0 so that all

coordination parameters for each of the subproblems are initially equal to zero.

Step 2: Based on pairwise comparisons, we find the true efficient sets

E(X, f j , 0) = E(X, f j) with set cardinalities as listed in Row 1 in Table 5.2. Note

that we obtain 36 efficient solutions for MOP, of which E1 = 17, E2 = 7, and E3 = 5

are also efficient for BOP1, BOP2, and BOP3, respectively. In particular, this means

that 7 solutions are efficient for the complete, but not for any subproblem.

Step 3a: While the intersections of the solution sets for any two subprob-

lems contain E12 = 3, E13 = 2, or E23 = 1 solutions and, in particular, are nonempty,

there does not exist a common design that is efficient for all three subproblems si-

multaneously, E123 = 0. Hence, we need to relax at least one of the εj , and since
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Figure 5.12 Decomposition of the three-dimensional outcome space of the design
selection problem into biobjective subproblems with their individual Pareto sets

the smallest set contains E3 = 5 solutions, obtained for the third subproblem BOP3

that combines the second and third objective, we subsequently choose either ε2 or

ε3. For completeness, however, we also note that upon relaxing ε1 = 0.1, the in-

tersection of all three solution sets remains empty, and even for the relatively large

value of ε1 = 0.5, we only find E123 = 2 designs as potential candidate solutions.

The corresponding other cardinalities are listed in Rows 2 and 3 of Table 5.2.

Step 2(2): Rows 4/5 and 6/7 in Table 5.2 show the number of new solu-

tions when relaxing ε2 and ε3, respectively, for repeating values of 0.1 and 0.5. In

particular, now the number E123 of common solutions in the intersection of all three

subproblems increases from 2 and 4 for relaxation of ε2 to 6 and 15 for ε3.
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Step 3b and 4a: A remaining drawback of these solutions, however, is the

relatively large relaxation of only one εj , whereas better compromise solution might

exist for smaller but simultaneous relaxation of several εj . Hence, we once more

repeat Step 2, before finally concluding this discussion.

Step 2(3): Row 8 in Table 5.2 shows that a small simultaneous relaxation

of both ε2 = ε3 = 0.1 is sufficient to find E123 = 18 and, thus, more solutions than

for a separate relaxation by 0.5 in either one. Moreover, although the individual

relaxation of ε1 = 0.1 in Row 2 did not result in an increase in the number of

common solutions for all three subproblems, in combination with ε2 and ε3 it does

and now almost doubles this number from earlier 18 to now 32 solutions.

Step 3b and 4b: Hence, to select a final solution, we can further reduce the

current values ε1 = ε2 = ε3 = 0.1 until finding a unique solution in the intersection

of the three individual subproblems. In particular, by choosing ε1 = ε2 = ε3 = 0.03,

only one of the previously 18 solutions remains in the common solution set, as

given in Row 10 in Table 5.2. Therefore, we terminate this exemplary illustration

of our procedure and the optimization-free coordination method with this solution,

corresponding to the highlighted point in Figure 5.12, as preferred final design.

In general, Steps 3b and 4b of Procedure 4.2.2 do not require that the fi-

nal solution is always obtained as a singleton. In fact, for most decision making

situations we recommend that this procedure only be used to identify a (suitably

small) number of candidate solutions for ultimate consideration based on specific

problem knowledge and expert opinion. Without this expertise, however, we decide

to conclude this example without any additional discussion.
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CHAPTER 6

CONCLUSION

During the last few decades, multiobjective programming has received much

attention for both its numerous theoretical advances as well as its continued success

in modeling real-life optimization and decision problems with multiple criteria in

various fields including the management and engineering sciences. A common char-

acteristic of these problems is that, in general, there does not exist a unique optimal

solution, but a set of efficient decisions or nondominated outcomes from among

which a decision maker chooses based on personal preferences or additional criteria

not included in the original optimization model. While a great variety of approaches

exist to generate parts of these two sets, however, choosing a final preferred solution

still remains difficult, especially if the numbers of solutions and objectives are too

large to allow the effective use of currently existing decision making techniques. The

research that we here present can in various ways be related to this observation, and

its main accomplishments fall into the following two major parts.

At first, we pursue the mathematical investigation of multiobjective pro-

grams that usually elides the role of a decision maker and merely focuses on the

theoretical characterization of the sets of efficient decisions or nondominated out-

comes and the development of different optimization techniques for their generation,

based on the nature of the underlying feasible set, objective functions, and the cho-

sen concept of optimality. Based on the equivalence between partial orders and

certain classes of convex cones, much attention has been devoted to the case of cone

efficiency where, in large part, the cone is polyhedral and described by a linear sys-

tem of inequalities as induced by a linear function or matrix. General domination

structures, however, are a more flexible means to describe preference or domination

relationships and provide the fundamental framework for this part of our work.



We present a diverse collection of new results that characterize the nondom-

inated set of a multiobjective program when the underlying domination structure is

defined in terms of different cones. In particular, we extend the case of a constant

polyhedral cone to constant and variable nonpolyhedral cones, and to translated

polyhedral cones that can be used to also describe epsilon-nondominated outcomes.

In each of these three cases, we start with an analysis of the associated cone represen-

tation, discuss some related cone properties and investigate possible generalizations

of several results originally known for only polyhedral cones. Some of our main

results include that every cone can be described by a positively homogeneous func-

tion, that the defined variable cones belong to the class of Bishop-Phelps cones,

and that translated polyhedral cones can also be characterized as polyhedral sets.

For a further characterization and the generation of corresponding nondominated

outcomes, we modify scalarization methods that are originally formulated for the

Pareto case and extend the associated optimality conditions for domination by gen-

eral cones and epsilon-nondominance. We derive some more specific conditions for

the variable-cone model and develop several new approaches that also allow the

intentional generation of a merely approximate solution. Wherever possible, we il-

lustrate our findings on some analytical, graphical, or practical example and offer

an outlook to topics for possible further research in the concluding discussion.

While advancing various theoretical aspects of multiobjective programming,

we envision that the previous results also have several potential implications for prac-

tical decision making and preference modeling, in particular. While it is undoubtful

that preferences of decision makers in general cannot be described completely and

therefore must remain at least partially unmodeled, our variable-cone model illus-

trates that several limitations of the current restriction to constant polyhedral cones

can be removed if we also allow for variable domination. Some possible further re-

search into this direction is proposed along with the relevant discussion within the

text. Furthermore, we believe that the importance of epsilon-nondominance is usu-

ally underestimated as simply a concept of approximation or suboptimality, in spite
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of its high relevance to objective decompositions, decision tradeoffs and compromis-

ing between scenarios as discussed in the second part of this dissertation.

Therein we continue with the investigation of Pareto multiobjective pro-

grams and employ the concepts of function and problem decompositions to examine

the consequences of decomposing the original objective function into a collection of

new functions that consist of only a subset of the original objective function compo-

nents. In particular, in analyzing the corresponding efficiency relationships between

the original problem and the decomposed subproblems, we observe that efficient

decisions for the latter are also efficient for the former and that this relation, in

general, cannot be reversed unless we relax efficiency to epsilon-efficiency. Several

further results are derived for either scalarization of the original and subproblem

objectives or for adding objectives as additional constraints to allow the overall co-

ordination of efficiency tradeoffs, and we obtain that both approaches are capable

to completely characterize the efficient set of the original problem.

Based on the latter result and reintroducing participation of a decision

maker, we formulate a first interactive decision making procedure that utilizes the

above problem decomposition and subproblem coordination to support the solution

of a large-scale problem by only working with the collection of smaller-sized sub-

problems. The procedure assumes that the decision maker is capable to articulate

his preferences for both the selection of intermediate solutions and the specifica-

tion of additional coordination parameters that are used for trading off between

the different subproblems. In addition to the possibility of assessing these tradeoffs

through a sensitivity analysis for every intermediate decision, we further enhance the

initially nonhierarchical procedure by a hierarchical coordination to reduce some of

the preference information required from the decision maker, and we demonstrate

its use on a mathematical programming example. Also taking into account that

many real-life decision problems are limited in computational resources or simply

too complex to enable a traditional subproblem optimization, we finally suggest a

third procedure for the pure selection of a final solution from a given candidate set
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or population which may be generated by sampling and simulation techniques or

other heuristic approaches such as an evolutionary or genetic algorithm.

To illustrate applications for each of the three procedures, we describe four

real-life problems from financial optimization and engineering design and provide

some careful discussion in support of our theoretical findings. The first two prob-

lems are drawn from portfolio and structural optimization and formulated as mul-

tiscenario programs which are solved using the optimization-based hierarchical and

nonhierarchical coordination method, respectively. In both cases, we show that the

procedures provide convenient methods to arrive at final solutions that establish

reasonable tradeoffs between the different scenarios. The other two examples are

motivated from vehicle design and described as selection problems for which we need

to choose a single final outcome from a finite set that is obtained through simula-

tions and a genetic algorithm. Using a modified version of the previous procedures

in one and the third procedure in the other case, we illustrate how a decision maker

can arrive at a preferred decision for these two problems as well.

While the first two applications reveal that the additional information ob-

tained from the proposed sensitivity analysis, at the moment, cannot provide the

decision maker with accurate predictions on remaining tradeoffs between subprob-

lems, we are confident that a further analysis in continuation of our current efforts

can bring new insights and lead to additional improvements of our proposed method-

ology. As of now, however, we believe that our procedures are already well suited for

practical decision making by offering the benefits of a simplified problem perception,

enhanced preference articulation, and facilitated decision making due to the overall

reduction of dimensionality. In particular, for decompositions into biobjective sub-

problems, our methods enable the simultaneous consideration of multiple objectives

without their aggregation or scalarization but, at the same time, maintaining the ca-

pability to visualize Pareto curves, which is of vital importance for decision makers

without strong analytical training. A method validation for large-scale problems,

however, together with several other remaining issues as outlined in the respective

discussions is postponed for inquiry in the near or later future.
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For now, we decide to conclude this text with the following final remark.

Without a doubt, the preparation and writing of this dissertation is influenced by

a series of different decisions which reflect numerous compromises and tradeoffs

in selection and arrangement of the included materials. If this outcome supports

understanding, achieves appreciation, stimulates interest or motivates continuation

of any of the work presented, then we meet our primary objective and are content

to come to an end.
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Öztürk, M., Tsoukiàs, A., and Vincke, P. (2005). Preference modelling. In
Multiple criteria decision analysis. State of the art surveys, volume 78 of
International Series in Operations Research & Management Science, pages
29–71. Springer, Berlin.

Papadimitriou, C. H. and Yannakakis, M. (2000). On the approximability of trade-
offs and optimal access of web sources (extended abstract). In 41st Annual
Symposium on Foundations of Computer Science (Redondo Beach, CA,
2000), pages 86–92. IEEE Comput. Soc. Press, Los Alamitos, CA.
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