164 research outputs found

    Model-Based Robot Control and Multiprocessor Implementation

    Get PDF
    Model-based control of robot manipulators has been gaining momentum in recent years. Unfortunately there are very few experimental validations to accompany simulation results and as such majority of conclusions drawn lack the credibility associated with the real control implementation

    TIP trajectory tracking of flexible-joint manipulators

    Get PDF
    In most robot applications, the control of the manipulator’s end-effector along a specified desired trajectory is the main concern. In these applications, the end-effector (tip) of the manipulator is required to follow a given trajectory. Several methods have been so far proposed for the motion control of robot manipulators. However, most of these control methods ignore either joint friction or joint elasticity which can be caused by the transmission systems (e.g. belts and gearboxes). This study aims at development of a comprehensive control strategy for the tip-trajectory tracking of flexible-joint robot manipulators. While the proposed control strategy takes into account the effect of the friction and the elasticity in the joints, it also provides a highly accurate motion for the manipulator’s end-effector. During this study several approaches have been developed, implemented and verified experimentally/numerically for the tip trajectory tracking of robot manipulators. To compensate for the elasticity of the joints two methods have been proposed; they are a composite controller whose design is based on the singular perturbation theory and integral manifold concept, and a swarm controller which is a novel biologically-inspired controller and its concept is inspired by the movement of real biological systems such as flocks of birds and schools of fishes. To compensate for the friction in the joints two new approaches have been also introduced. They are a composite compensation strategy which consists of the non-linear dynamic LuGre model and a Proportional-Derivative (PD) compensator, and a novel friction compensation method whose design is based on the Work-Energy principle. Each of these proposed controllers has some advantages and drawbacks, and hence, depending on the application of the robot manipulator, they can be employed. For instance, the Work-Energy method has a simpler form than the LuGre-PD compensator and can be easily implemented in industrial applications, yet it provides less accuracy in friction compensation. In addition to design and develop new controllers for flexible-joint manipulators, another contribution of this work lays in the experimental verification of the proposed control strategies. For this purpose, experimental setups of a two-rigid-link flexible-joint and a single-rigid-link flexible-joint manipulators have been employed. The proposed controllers have been experimentally tested for different trajectories, velocities and several flexibilities of the joints. This ensures that the controllers are able to perform effectively at different trajectories and speeds. Besides developing control strategies for the flexible-joint manipulators, dynamic modeling and vibration suppression of flexible-link manipulators are other parts of this study. To derive dynamic equations for the flexible-link flexible-joint manipulators, the Lagrange method is used. The simulation results from Lagrange method are then confirmed by the finite element analysis (FEA) for different trajectories. To suppress the vibration of flexible manipulators during the manoeuvre, a collocated sensor-actuator is utilized, and a proportional control method is employed to adjust the voltage applied to the piezoelectric actuator. Based on the controllability of the states and using FEA, the optimum location of the piezoelectric along the manipulator is found. The effect of the controller’s gain and the delay between the input and output of the controller are also analyzed through a stability analysis

    Control of Flexible Manipulators. Theory and Practice

    Get PDF

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation

    Get PDF
    A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed are: (1) capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) investigation and simulation of various control methods including manual force/torque and active compliances control; (5) evaluation and implementation of three obstacle avoidance methods; (6) video simulation and edge detection; and (7) software simulation validation

    A Distributed System for Robot Manipulator Control

    Get PDF
    This is the final report representing three years of work under the current grant. This work was directed to the development of a distributed computer architecture to function as a force and motion server to a robot system. In the course of this work we developed a compliant contact sensor to provide for transitions between position and force control; we have developed an end-effector capable of securing a stable grasp on an object and a theory of grasping; we have built a controller which minimizes control delays, and are currently achieving delays of the order of five milliseconds, with sample rates of 200 hertz; we have developed parallel kinematics algorithms for the controller; we have developed a consistent approach to the definition of motion both in joint coordinates and in Cartesian coordinates; we have developed a symbolic simplification software package to generate the dynamics equations of a manipulator such that the calculations may be split between background and foreground

    Modelling of robotic manipulators

    Get PDF
    This thesis explores the different aspects of robotic manipulator modelling and covers both the dynamic and the kinematic issues for the purpose of improving the overall manipulator accuracy. It is shown that the modelling should not stop at producing the model, but rather the model should be validated. The thesis presents a description of the modelling process and examines the three most important formulations for dynamic modelling. A comparison of their performance and ease of use is made, both for manual and computer assisted implementation. Three commercial computer modelling packages are also described and compared with regard to their performance and ease of use for robotic manipulator modelling. It is shown that some software development is required to make the packages easy to use for manipulator specific modelling. As part of this work, one such development was a programme written as a back end to AUTOLEV. This combination provides a powerful tool for dynamic modelling and simulation of manipulators. A more integrated computer aided engineering approach is also discussed through modelling a large industrial manipulator using a geometric modelling package along with another dynamic modelling and simulation program. This approach is very efficient in providing useful information which is difficult to otherwise obtain from direct measurements. The thesis emphasises validation as part of the modelling process. A model does not have to be an exact mathematical description of the manipulator, inclusive of all characteristics, but rather a valid description for the intended use. It is shown that a manipulator model can be split into several joint models and validation performed on each using a parameter estimation technique. It is also shown that friction parameter tuning produces acceptable parameter values for a valid model of a Puma 560 manipulator

    Estimation and control of flexible space structures for autonomous on-orbit assembly

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2009.Includes bibliographical references (p. 135-139).The ability to autonomously assemble large structures in space is desirable for the construction of large orbiting solar arrays, interplanetary spacecraft, or space telescopes. One technique uses free-flying satellites to manipulate and connect elements of the structure. Since these elements are often flexible and lack embedded actuators and sensors, the assembly robot must use its own actuators and onboard measurements to suppress vibrations during transportation maneuvers. This thesis will examine the dynamic modeling of a free-flying robot attached to a flexible beam-like element, vision-based estimation of vibrational motion, and trajectory control for assembly of a space structure.by Jacob G. Katz.S.M
    • …
    corecore